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Abstract

Low-valent early transition metals are often intrinsically highly reactive as a result of their strong 

propensity toward oxidation to more stable high-valent states. Harnessing these highly reducing 

complexes for productive reactivity is potentially powerful for C-C bond construction, organic 

reductions, small-molecule activation and many other reactions that offer orthogonal 

chemoselectivity and/or regioselectivity patterns to processes promoted by late transition metals. 

Recent years have seen many exciting new applications of low-valent metals through building new 

catalytic and/or multicomponent reaction manifolds out of classical reactivity patterns. In this 

Review, we survey new methods that employ early transition metals and invoke low-valent 

precursors or intermediates in order to identify common themes and strategies in synthesis and 

catalysis.

Early transition metals are excellent candidates for the design and implementation of new 

catalytic reactions: they are earth abundant, often highly reactive and frequently exhibit 

different structures and orthogonal reactivity compared with late transition metals1,2. 

However, owing to their electropositive, oxophilic3 nature, the organometallic chemistry of 

early transition metals has historically been dominated by complexes in high-valent states 

(FIG. 1). By contrast, there are considerably fewer examples of the application of low-valent 

early transition metals: such complexes are often highly reducing and require strong 

stabilizing ligands, such as strong π-acceptors or bulky cyclopentadienyls.

Nonetheless, there is great interest in harnessing the highly reactive nature of low-valent 

early transition metals for practical synthesis and catalysis. There are myriad elegant 

examples of stoichiometric N2 activation4–17, reductive coupling18–22 and radical 

reactions23–25 mediated by low-valent early transition metals. The majority of this reactivity 

is dependent on the fact that highly reduced early metals can activate otherwise unreactive 
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molecules, wherein metal oxidation and the formation of strong metal-ligand bonds provide 

a large thermodynamic driving force.

Although many seminal contributions to the field were carried out decades ago, there has 

been a renaissance in the field over the past 15 years enabled by new ligand designs, 

reagents and approaches. Early transition metals are well positioned to have considerable 

impact in a wide array of fields, from small-molecule activation and energy storage to 

photoredox catalysis and other new organic methods. This Review covers new applications 

of low-valent early transition metals26 (classified here as groups 3, 4 and 5, excluding V 

because it does not predominantly exist in its highest oxidation state) in synthesis and 

catalysis. In particular, this Review highlights how the unique properties of low-valent 

metals can access new mechanisms and enable challenging chemical transformations 

inaccessible by their late transition metal counterparts.

Generation of low-valent complexes

The most common routes for generating low-valent early transition metal complexes involve 

the reduction of metal halides with strong alkali metals27–32; reduction with other (often 

weaker) reducing metals, such as Mg (REFS33,34), Mn (REF.35), Al (REFS36,37) or Zn 

(REF.38) (providing more functional group tolerance); or p-H abstraction39–43 from a metal 

alkyl (Fig. 2a). Many of these reductions can be performed in situ to directly generate 

reactive low-valent intermediates or in the presence of π-accepting ligands to generate 

isolable or transiently stable ‘masked’ species that can liberate a reactive low-valent metal 

fragment upon loss of the re-accepting ligand. For example, the Negishi reagent, Cp2Zr(η2-

butene) (1), is synthesized by the treatment of Cp2ZrCl2 with nBuLi or nBuMgBr, wherein 

the Cp2ZrnBu2 intermediate undergoes β-H abstraction to liberate one equivalent of butane 

along with the product44–46. Cp2Ti(TMS2C2) (2) (TMS2C2 = bistrimethylsilylacetylene) and 

related Ti and Zr analogues can be synthesized by reduction of the corresponding high-

valent chlorides with Mg in the presence of the π-accepting alkyne TMS2C2 (REF47), while 

substituted hafnocene analogues have been synthesized using Li as a reductant48,49.

Stable low-valent coordination complexes of the early transition metals that lack strongly 

stabilizing ligands are uncommon. However, examples continue to emerge that challenge the 

limits of stability (FIG. 2b). For example, a suite of divalent group 3 amides has recently 

been reported50–53, including the first crystallographically characterized Sc11 compound52, 

extending the chemistry of low-valent Sc and Y beyond metallocene derivatives54,55. The 

ScII amide complex 3 exhibits remarkably different reactivity from other reduced group 3 

and lanthanide complexes, for the first time revealing end-on, reversible binding of N2 to 

form the bridged bimetallic 4 (REF53). Bulky aromatic heterocycles derived from 

phosphaalkynes, which are much poorer donors than Cp-based ligands, can also stabilize 

ScII complexes56. An improved synthesis and full electronic characterization of py4TiCl2 

(5)57, a rare example of a TiII coordination complex, have recently been reported, building 

upon earlier studies by several groups58,59. The chemistry of low-valent early transition 

metal isocyanide60–62 and arene complexes63,64 has also continued to expand, including the 

recent synthesis of the formally Ta0 complex 6 (REF60).
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The high reactivity of strong alkali metal reductants places an inherent restriction on the 

solvent and reagent compatibility of reactions that employ them as reductants. Considerable 

progress has been made in designing new reactions and reductants that overcome this 

challenge. One creative workaround that was recently introduced is to reduce compounds by 

passing them through columns of KC8, limiting (or at least fine tuning) the contact time of 

the reagent and solvent with the strong reductant65. Another strategy is to use inner-sphere 

reductants that are less prone to over-reduction. In this context, Tsurugi and Mashima have 

promoted the use of organosilicon reductants, such as 3,6-bis(trimethylsilyl)-1,4-

cyclohexadiene66–68 ( 7) and 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine69–71 derivatives 

(for example, 8), to reduce group 4 and group 5 metal halides (Fig. 2c) for homogeneous 

catalytic applications. In the case of 8, the steric bulk of the tetramethylpyrazine by-product 

prevents its coordination to the reduced metal catalyst, which is critical for productive 

chemistry. These organosilicon reductants derive their reduction potential (ranging from 

+0.83 V to −0.40 V versus Cp2Fe) from the aromatization of the 1,4-diene core. These 

reductants have been used by the broader community for wide-ranging applications, from 

the in situ reduction of Ti precursors in chemical vapour deposition72 to the in situ 

generation of TiIII for reductive umpolung reactions73. Similarly, commercially available 

tris(trimethylsilyl)silane has been used to generate NbIII cyclotrimerization catalysts in 

situ74. A major advantage of these silicon-based reductants is that the by-products are simple 

to remove: Me3SiCl is less likely than alkali metal halides to coordinate to electrophilic 

metals, and the aromatic by-products can be removed in vacuo. Metal salt by-products are 

often difficult and/or tedious to remove and may interfere with productive chemistry of the 

reduced complex; thus, these procedures offer an important advancement for applications of 

reduced early metal chemistry.

Alternative reduction methods of early transition metals include single-electron transfers 

from weak reductants such as citrate75 or benzylamine76. Hydrogenolysis of metal alkyls 

has also been used to synthesize low-valent Nb (REF77) and Zr (REF78) arene complexes. 

Redox non-innocent ligands can also engender redox reactivity with early transition metals 

without formally changing the metal oxidation state67,68,79–82.

Reductive coupling reactions

Reductive coupling of unsaturated organics by d2 early transition metals has been exploited 

for a vast array of synthetically useful C-C bond forming reactions. Typically, these 

reactions involve activation of an alkene or an alkyne to form either a metallacyclopropane 

or metallacyclopropene, respectively. These species can be considered as 1,2-dianion 

equivalents and can be intercepted sequentially by two different electrophiles. Often, the 

resulting metallacycles can be further functionalized, forming the basis for a diverse set of 

coupling reactions, such as the Negishi21,22,45, Fagan-Nugent19,83–85, Kulinkovich43,86–88, 

Pauson-Khand89–94 and several other stoichiometric coupling reactions of alkynes, alkenes, 

alkyl halides and carbonyl compounds18,20. Although most d2 early metals exhibit this type 

of reactivity, low-valent Ti and Zr complexes — in particular, Cp2Mn (M = Ti, Zr) and 

(O’’Pr)2TII fragments — have seen the most development in this field, and as such the use of 

such reagents in the total synthesis of natural products has flourished23,95–97.
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Ti(OiPr)4/RM-mediated reductive coupling reactions.

The discovery of the main group metal alkyl reduction of early metals45 inspired many 

reductive coupling reactions using titanium. In 1989, Kulinkovich reported the Ti(O’Pr)4-

catalysed cyclopropanation of esters with Grignard reagents to form cyclopropanols86 (FIG. 

3a). Shortly after, the Kulinkovich reaction was translated to amides (de Meijere 

modification), which results in the formation of cyclopropylamines by a similar 

mechanism98. Since these initial reports, several improvements have been made to this 

chemistry. Intermolecular alkene couplings can be achieved by using cyclohexyl or 

cyclopentylmagnesium chloride to activate Ti(OiPr)4, as the resulting Ti-cyclopentene (or 

cyclohexene) adduct 9 can be displaced by monosubstituted or tethered alkenes to make a 

new alkene adduct 10 (REFS99, 100) (FIG. 3a, bottom). This discovery has helped 

dramatically expand the scope of Kulinkovich reactions, as alkene starting materials are 

more widely available than Grignard reagents. The Kulinkovich cyclopropanation has an 

intrinsic diastereoselectivity for the cis-1,2-dialkylated cyclopropanol when using Grignard 

reagents larger than ethyl, and the use of chiral TADDOL (a,a,a’,a’-tetraaryl-2,2-

disubstituted-1,3-dioxolane-4,5-dimethanol) ligands has allowed for good 

enantioselectivity88,101,102. This diastereoselectivity can be reversed when cyclopropanating 

homoallylic alcohols as a result of coordinating directing group effects99 or remote 

stereocentre influences103.

A recent modification of the Kulinkovich-de Meijere reaction allows for the synthesis of 

carbocyclic amino ketones mediated by Ti(OiPr)4/RMgBr (REF104) (FIG. 3b, top). By using 

allyl-substituted lactams such as 11, the cyclopropanation step of the de Meijere mechanism 

can be arrested, as the bridgehead nitrogen atom of the alkene-inserted intermediate 12 
cannot π-bond with the neighbouring carbon (Bredt’s rule)105. This ultimately leads to 

cyclic aminoketone 13 upon protic workup. Increasing the ring size of the lactam relieves 

ring strain in the intermediate 12; thus, larger ring systems are no longer affected by Bredt’s 

rule and typical de Meijere cyclopropylamine generation proceeds. Similarly, interrupted 

Kulinkovich-de Meijere reactions yield hydroxyl-substituted lactams (16) with homoallylic 

imide (14) substrates106–108, which do not undergo cyclopropanation owing to resonance 

stabilization of the metallacyclic intermediate 15 (FIG. 3b, bottom).

Micalizio has shown that regioselectivity and stereoselectivity in the reductive coupling of 

various unsaturated compounds can be induced through the use of alkoxide directing groups 

(FIG. 3c) — a strategy similar to that employed by Sharpless for asymmetric alkene 

epoxidation109. This is an advancement from the limited selectivity obtained through Fagan-

Nugent chemistry: substrate-directed metallacycle-mediated cross-couplings, although 

requiring prefunctionalization with potentially undesirable functional groups, allow for the 

regiospecific assembly of target molecules. By contrast, undirected cross-couplings of the 

same type typically give statistical mixtures in unbiased systems110,111.

Regioselective and stereoselective coupling of alkenes with imines is possible when using 

Ti(OiPr)4/nBuLi as opposed to Ti(OiPr)4/RMgBr (REFS112,113). Using BuLi as the metal 

alkyl reductant rather than a Grignard reagent grants dramatically enhanced stability to the 

titanacyclopropane intermediate as a result of the interaction of LIOiPr with the metal centre, 
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forming a tentative ‘ate’ complex113. Homoallylic alcohols cross-couple with aromatic 

imines to give 1,5-aminoalcohols using Ti(OiPr)4/RMgBr (REF109), but the employment of 

Ti(OiPr)4/n BuLi allows for both aromatic and aliphatic imines to be used successfully in the 

reaction114. Imines (17) couple with allylic alcohols (18) to form stereodefined homoallylic 

amines (19)115 (FIG. 3c, top). Alkene stereoselectivity is achieved in these reactions through 

coordination of the deprotonated alcohol to the preformed Ti-imine complex, which 

undergoes syn-carbometallation (20) and syn-elimination through boat-like transition states 

(21 and 22) (FIG. 3c, top right). Primary homoallylic amines are accessible through similar 

coupling reactions with aldehydes in the presence of LiHMDS (lithium 

hexamethyldisilazide), which forms the TMS-imine complex in situ. These primary 

homoallylic amines have been applied as starting materials for the synthesis of complex 

bicycles116 and pyridines117.

Substrate-directed selective alkene-alkyne-alkyne formal [2+2+2] reactions are also 

possible. For example, alkoxide-directed annulations can give hydroindane derivatives (26 
and 27) and angularly substituted decalins118–122 (FIG. 3c, bottom). The reactions proceed 

through alkoxide-directed insertion of an alkyne into the titanacyclopropene 23 to make the 

bicyclic metallacyclopentadiene 24. The chemoselectivity of this insertion is driven by the 

electronic bias of the a-SiMe3 group: the Ti-C(TMS) bond is more difficult to insert into 

than the Ti-C(Ph) bond of 23. Next, [4+2] cycloaddition of the pendent alkene forms a 

bridged bicyclic metallacyclopentene 25, which can undergo allylic isomerization and be 

quenched through protonation with allylic transposition (26) or oxidation (27). The choice of 

alcohol for the quench affects the selectivity for either cis-hydroindanes or trans-

hydroindanes, although the origin of this effect remains unclear119.

Other early-transition-metal-mediated reductive coupling reactions.

Metallacycle 28, formed by reducing Cp*TiCl3 (Cp* = C5Me5
−) in the presence of 

dimethylbutadiene, can react with two equivalents of isocyanide to give an asymmetric 

metal-bound bis(imine) 29 (REF123) (FIG. 4a). Furthermore, upon heating 29 at 55˚C in 

pyridine, cyclopentenimine 30 is extruded, and Cp*TiCl(py) (N′Bu) is formed. The result is 

a unique formal [4+1] coupling reaction alongside cleavage of an isocyanide triple bond, 

such that the C atom is inserted into both C-H bonds at the 2 position to give an exo-

methylene. By contrast, the reaction with the hafnium analogue of 28 results in 31, which 

was initially misidentified as a cyclic amidine complex124 but instead is the result of imine 

C-C coupling from the Hf analogue of 29. The Cp*2Zr analogue can selectively insert one 

equivalent of isocyanide (or CO) into the metal-butadiene bond, allowing for sequential 

reactions to be carried out125.

CpR
2M(TMS2C2) (M = Ti, Zr; R = H, alkyl) can act as a masked source of CpR

2MII, easily 

liberating TMS2C2 upon treatment with a variety of reagents47. Recently, Rosenthal has 

discovered that Cp*2
II fragments can couple nitriles to form metalla-2,5-

diazacyclopentadienes, which can undergo further reaction and exchange one nitrile partner 

for another unsaturated substrate (for example, a different nitrile, CO2 or H2)126–128. Nitrile-

nitrile couplings are quite uncommon, although they have been observed with TiIII 

complexes much earlier129. Taking advantage of this reaction manifold, Tilley has recently 
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used Cp2Ti(TMS2C2) for the coupling of tethered dinitriles, such as 32, to 

diazametallacyclopentadienes, such as 33 (REF100). Once coupled, 33 can be reacted further 

with electron-deficient alkynes, H3O+ or ECl2 (E = SO, POPh, S, Se, Te) to generate 

pyrazines (34), diones (35) or diazoles (36) (FIG. 4b). Although this work focused primarily 

on installing these moieties in polycyclic aromatic hydrocarbons, [2+2+2] pyrazine synthesis 

at an early transition metal had not been previously observed, providing new insight on 

routes to incorporate nitriles more effectively into reductive coupling reactions mediated by 

early transition metals. In a similar vein, stoichiometric Cp2Zr(TMS2C2) has been used as a 

general platform for C-C coupling and can be used to couple tethered diynes to make 

polycyclic aromatic hydrocarbons130–133. Cp2MII fragments can also be used to construct 

metallacyclocumulenes and other highly strained metallacycles47,49,134–142. Here, the steric 

bulk of the Cp* ligands imbue stability, which enables easy isolation of the metal complexes 

that feature exotic bonding motifs. Structural characterization of the products of reductive 

metallacyclization of 1,3-butadiynes reveals that the rich chemistry is strongly dependent on 

the terminal diyne substituents. Similarly, Beckhaus has coupled unsaturated organics with 

group 4 metal pentafulvene complexes143–148, presenting an interesting approach to the 

synthesis of exotic appended Cp-type ligands. Likewise, fulvenes can be homocoupled to 

give ansa-metallocene complexes from group 4 metal chlorides and nBuLi (REFS149,150).

There are fewer examples of group 5 metals facilitating reductive coupling reactions. 

Alkyne-stabilized masked TaIII hydrides can stoichiometrically insert isonitriles and alkynes 

into the Ta-H bond, followed by C-C reductive coupling of the bound alkyne to give 

butadienyl and azadiene fragments151. Dimethyltantalum corrole complexes can react with 

CO to give coupled diacetyl complexes152. This process is presumed to occur via insertion 

of two CO molecules into the two Ta-Me bonds, followed by reductive elimination of the 

two acyl ligands to give diacetyl, which then binds to the resulting low-valent tantalum as 

the ene-diolate form to formally oxidize TaIII to TaV.

Catalytic alkyne cyclotrimerization is also common with low-valent group 4–5 transition 

metals34,110,153. There are two limiting mechanisms for cyclotrimerization: triple insertion 

followed by reductive elimination through a metallacycloheptatriene (37) or [4+2] 

cycloaddition of the 3rd unsaturated partner to make a metallanorbornadiene (38) (FIG. 4c, 

left). Recent mechanistic work on a ditantalum system indicates that the [4+2] pathway is 

more likely154. Remarkably, alkyne cyclotrimerization reactions can be intercepted with 

other unsaturated substrates; for example, Obora has shown that thermally stable low-valent 

Nb catalysts can chemoselectively insert alkenes155–157 and nitriles158 to give cross-coupled 

products159 (FIG. 4c, right).

Functionalization and defunctionalization

Hydrogenation.

Catalytic hydrogenation of unsaturated substrates is challenging with d2 early transition 

metals because of their propensity to promote reductive coupling. Additionally, there are 

very few examples of direct H2 activation by d2 group 5 metals160–166. Nonetheless, there 

are several elegant examples of arene and alkene hydrogenation and alkyne semi-

hydrogenation catalysed by d2 group 5 metals162,167178.
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β-Diketiminate NbIII imido complexes promote remarkably selective semi-hydrogenation of 

alkynes176 (FIG. 5a, top). Treatment of (BDI)Nb(N′Bu)(CO)2 (39) (BDI = 2,6-

diisopropylbenzene-p-diketiminate) with 1-phenyl-1-propyne yields the 

metallacyclopropene complex 33, which does not undergo reductive coupling owing to steric 

encumbrance around the metal centre179. Consequently, it was found that 40 can catalyse the 

semi-hydrogenation of phenylpropyne to Z-p-methylstyrene under H2/CO. Two mechanistic 

proposals were made (FIG. 5a, right): through alkyne-CO ligand exchange, followed by σ-

bond metathesis of the metallacyclopropene of 40 with H2 to yield a NbV vinyl hydride (41), 

from which C-H reductive elimination then liberates Z-β-methylstyrene and regenerates an 

arene-bound Nb111 (42) (path A), or through 1,2-H2 addition across the imido of 40 to make 

a Nb amido hydride (43), which can then undergo reductive H migration to vinyl amide 44 
followed by a-elimination to 42 (path B). The rate and selectivity for semi-hydrogenation are 

highly CO-dependent, which may provide a tuneable handle in future systems. Higher CO 

concentration maintained selectivity but slowed the reaction, indicating that CO-alkyne 

exchange is kinetically relevant. However, lower loadings led to the formation of more fully 

hydrogenated propylbenzene, indicating that CO also plays a role in efficient product 

displacement.

Fortier recently described the synthesis of a new masked TiII synthon, 45 (FIG. 5a, bottom). 

This complex undergoes a relatively rare example of early transition metal d2 C-H oxidative 

addition160,180194 followed by β-H abstraction to extrude H2 and make a new 

cyclometallated complex 46 (REF195). Remarkably, this reaction is reversible, opening up 

the possibility that these complexes might be useful as hydrogenation catalysts. In fact, 45 
also performs a unique example of early-transition-metal-promoted transfer 

hydrogenation196 (FIG. 5a, bottom left), hydrogenating cyclohexene with concomitant 

production of 46, with the ligand serving as the terminal hydrogen donor. This interesting 

system can also catalytically hydrogenate cyclic alkenes and cyclic dienes, although the 

mechanism by which this occurs — transfer hydrogenation or a more classical dihydride 

mechanism — remains unknown.

Dehydrogenation.

There are several examples of C-H oxidative addition to low-valent early transition 

metals160,180–194,197,198, including several that lead to stoichiometric 

dehydrogenation188–190. The majority of dehydrogenation reactions promoted by early 

transition metals are, however, predicated on high-valent, electrophilic metal reactivity, such 

as 1,2-C-H addition across metal-ligand multiple bonds199–201. The first catalytic, selective 

dehydrogenation of alkanes was recently demonstrated with Ti catalyst 47 [REF.202] [FIG. 

5b]. This system takes advantage of 1,2-C-H addition of the alkane C-H bond to a Ti 

alkylidiyne 50, followed by β-H abstraction of the resultant Ti-alkyl-alkylidene (51) to 

formally reduce Ti, making a new Ti11 alkyl-alkene adduct 52 (REFS40–41–203–204). 

Remarkably, this system is rendered catalytic by addition of a methylene transfer agent, 

phenyldibenzophosphole methylene ylide, H2CP(C12H8)Ph (48), which serves as an oxidant 

to reoxidize the TiII fragment (53) back to a TiIV alkylidene (54)202. The structure of this 

reagent is critical, as deleterious phenyl migration from a TiII-ylide adduct will occur with 

other simple arylphosphorus ylides204. Although turnover numbers in this system are poor 
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and phosphorus ylides are impractical terminal oxidants, this system is remarkable in its 

selectivity, yielding only terminal alkene products. This selectivity results from the unique 

mechanism, which — unlike late transition metal alkane dehydrogenation catalysts — does 

not involve metal hydride species, which could isomerize the alkene.

There are many low-valent Ti and Zr complexes capable of the catalytic dehydrogenation of 

amine boranes, particularly using metallocene derivatives205–210. In a recent elegant 

application, a Cp*2TiCl2/nBuLi catalytic system has been shown to promote an unusual 

step-growth dehydropolymerization of MeNH2(BH3), enabling the first synthesis of high-

molar-mass poly(N-methylaminoborane) by an early transition metal211. This system was 

also successful in the catalytic dehydropolymerization of several other primary amine borane 

derivatives. Despite computational evidence for a MII/MIV redox mechanism for amine 

borane dehydrogenation212, there is conflicting experimental evidence that indicates 

alternate mechanisms may also be involved. For example, several MIV precatalysts such as 

M(NMe2)4 (M = Ti, Zr)208, [iPr2Si(NDIPP)2] Zr(NMe2)2-LiCl(THF)3 (DIPP = 2,6-

diisopropylphenyl)213 and K5-(Me3SiNCH2CH2)2N(CH2CH2SiMe2CH2) Zr (REF196) may 

promote dehydrogenation via c-bond metathesis routes, while in other cases, MIII 

metallocene species have been observed in situ214.

Hydrodefluorination.

C-F bond dissociation energies (BDEs) range from 110 to 130 kcal mol−1 fluoro-organics 

are not easily biodegraded but instead are often incinerated217,218. Thus, there is 

considerable impetus to design catalytic methods for C-F bond degradation219,220. Although 

C-F bond activation has been observed across the transition metal series221–229, early 

transition metals are exceptionally fluorophilic, making them excellent candidates for 

hydrodefluorination reactions. There are numerous examples in which low-valent early 

transition metals can mediate C-F bond activation to generate M-F species, including 

examples with Ti (REFS230–233), Zr (REFS233–239), Hf (REF240), Nb (REFS241–243) and Sc 

(REF244). The challenge in these systems is rendering them catalytic, as the resultant M-F 

species is often a considerable thermodynamic sink245.

In the first demonstration of catalytic C-F bond activation by an early metal, Cp2TiF2 was 

shown to defluorinate perfluorinated cycloalkanes to produce perfluorinated arenes in the 

presence of excess Al0 with HgCl2 (REF246) (FIG. 5c, top). In the same study, it was found 

that Cp2ZrF2 similarly catalyses this reaction in the presence of Mg0 and HgCl2, although in 

a rather exothermic fashion. This result was followed by mechanistic work using Cp*2ZrH2. 

Under an atmosphere of H2, it was found that Cp*2ZrH2 reacted with primary, secondary 

and tertiary C-F bonds to yield the corresponding alkanes and Cp*2ZrHF (REF247). 

Intriguingly, mechanistic evidence supported a radical mechanism in which in situ generated 

Cp*2ZrH abstracted F% despite the fact that the relative rate of C-F reactivity was 1° > 2° > 

3° — the reverse of the pattern seen in typical radical reactions. In support of the radical 

mechanism, added reductant increased the rate of 1-fluorohexene hydrodefluorination 

threefold, while radical inhibitors such as 9,10-dihydroanthracene inhibit the rate of 

defluorination. Radical clock experiments of Cp*2ZrH2 with cyclopropylcarbinyl fluoride 

provided Cp*2ZrHF and ring-opened Cp*2Zr(“Bu)H as opposed to methylcyclopropane. It 
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was suggested that the steric bulk of Cp*2ZrH2 may be the origin of the observed rate 

trends237–247–248.

There are also several notable examples of Nb-catalysedhydrodefluorination. Mixtures of 

NbCl5 and LiAlH4 catalyse the hydrodefluorination of aryl fluorides and benzylic 

fluorides249–250 (FIG. 5c, middle). In these reactions, trifluoromethyl groups were reduced 

fully to methyl groups under mild conditions. In the case of aryl fluoride reductions, it was 

proposed that the reaction proceeds through a (DME)NbCl3(arene) (DME = 1,2-

dimethoxyethane) intermediate that undergoes nucleophilic substitution by hydride, but the 

mechanism of these reductions has not been fully established. Arnold and Bergman recently 

examined a more well-defined system for aryl fluoride hydrodefluorination using a d2 

(BDI)NbIII(N′Bu) fragment251 (FIG. 5c, bottom). Mechanistic studies in this system 

indicate that (BDI)Nbm(N′Bu)(arene) (57) can oxidatively add Ar-F to generate 

(BDI)NbV(N′Bu)F(Ar) (55), which can be transmetallated with silanes, making a strong Si-

F bond and a (BDI)NbV(NfBu)H(Ar) species capable of C-H reductive elimination. In both 

the NbCl5 and (BDI)Nb systems, catalytic turnover is achieved by using a terminal reductant 

(Si, Al) that is more fluorophilic than Nb.

Catalytic single-electron transfer

Single-electron transfers employing low-valent early transition metal reductants are 

frequently used in organic synthesis. The Nugent-RajanBabu reagent24–25, Cp2TiCl, is used 

in radical ring-opening-cyclization cascades and is the most common early transition metal 

reagent for single-electron transfer252. These types of cyclization cascades have been used in 

numerous total syntheses of natural products23–253–254. Cp2TiCl is easily generated via in 

situ reduction of commercially available Cp2TiCl2 by Zn or Mn dust and has recently been 

touted as a ‘greeN′ reagent for chemical synthesis255–257. This reagent typically exists as 

the chloride-bridged dimer, [Cp2TiCl]2, and forms the active monomeric species through a 

solvent-assisted equilibrium258.

Gansäuer expanded the use ofthe Nugent-RajanBabu reagent in the context of radical ring 

opening of epoxides by developing a catalytic procedure that uses a weak acid (2,4,6-

collidine hydrochloride) to protonate the generated titanium alkoxide (59) and a reductant 

(Zn or Mn) to regenerate Cp2TiCl (REF35) (FIG. 6a, left). 2,4,6-Collidine hydrochloride is 

an ideal acid for epoxide reactions; it is strong enough to protonate the Ti-alkoxide bonds 

but weak enough to not open the epoxide ring independently. Furthermore, the liberated 

2,4,6-collidene conjugate base is sterically congested, disfavouring association with titanium 

that would hinder catalysis. In their initial report, Mn was the preferred reductant in this 

reaction, as the MnCl2 by-product is insufficiently Lewis acidic to promote epoxide ring 

opening, although later catalytic applications have successfully used Zn. With appropriate 

solvent and counteranion choice, cationic [Cp2Ti] fragments can also be used as catalysts259. 

This catalytic single-electron reduction of epoxides has been used to functionalize arenes, 

alkenes and alkynes259–263 (FIG. 6a, right). Remarkably, these radical reactions are able to 

proceed enantioselectively when using large, terpene-derived cyclopentadienyl ligands (60) 

on titanium263.
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Cp2TiCl can also be used to catalyse redox umpolung reactions for the coupling of nitriles or 

activated alkenes with carbonyls or imines73,264–274 (FIG. 6b). These reactions share similar 

mechanistic features to classical epoxide and azirine ring-opening reactions; owing to the 

oxophilicity of Ti, treatment of many types of carbonyl derivatives with TiIII species results 

in the formation of TiIV carbonyl radicals. These Ti carbonyl radicals can further react with 

myriad electrophiles273,275. In a detailed mechanistic study of a TiIII-catalysed acyloin-type 

cross-coupling of ketones and nitriles, it was found that a bimolecular and bimetallic radical 

recombination mechanism that circumvented free radical intermediates was operational274 

(FIG. 6b, bottom). Umpolung-like conjugate additions have also been achieved with 

hemiaminals, yielding quaternary carbons-a to amines, and coupling or reduction of α,β-

unsaturated carbonyls is also possible276–278.

Combining the above approaches, both Gansauer and Lin have each demonstrated that three-

membered ring rupture can also be promoted by a-carbonyl reduction in N-acyl 

aziridines279,280 and cyclopropylketones281 (FIG. 6c). In the case of N-acyl aziridines (61), 

treatment with TiIII sources results in ring opening that, in contrast to typical aziridine ring 

openings, produces the more substituted carbon radical 62. These reactions take advantage 

of the biradical character282–288 of the resulting TiIV azaenolate or enolate 62; radical 

reductive couplings of the ring-opened azaenolate or enolate with alkene electrophiles can 

be performed catalytically in the presence of reductant (Mn0 or Zn0) and weak organic acid 

(collidine HBr or NEt3HCl) to form amines (path A), while redox-neutral [3+2] 

cycloadditions with electrophilic alkenes can also be achieved in a catalytic fashion (path B).

Cp2TiIII pinacolates, generated through Cp2TiClpromoted pinacol coupling of benzaldehyde 

followed by further reduction, undergo facile deoxygenation to form alkenes. This reaction 

challenges the classical McMurry coupling mechanism, in which TiII or Ti0 complexes were 

thought to promote carbonyl coupling and/or olefination289.

Single-electron strategies in small-molecule activation and photoredox catalysis.

Reduced early transition metal complexes have historically been excellent platforms for 

small-molecule activation because of their strong reduction potentials and propensity to form 

thermodynamically stable metal-ligand multiple bonds. However, these same features 

become a challenge when attempting to render these reactions catalytic. There are myriad 

examples of stoichiometric N2 activation with low-valent early transition metals. Given that 

this field has been thoroughly reviewed4–17, here, we focus on only several examples that 

highlight emerging new strategies toward catalytic applications of small-molecule activation 

— in particular, proton-coupled electron transfers (PCETs) in early transition metals and 

their applications toward N2 reduction and water oxidation.

Recent work using group 4 metallocene amide derivatives has found PCET to be a 

promising route to ammonia formation via M-N hydrogenolysis290,291 (FIG. 7a). This route 

has the potential to overcome the incredible free energy inefficiency of nitrogen reduction 

involving separated sources of protons and electrons (for example, [HOEt2] + [BArF24] + 

KC8). Experimental and computational studies have demonstrated that coordination of NH3 

to (η5-C5Me4SiMe3)2M (M = Ti, Zr) fragments decreases the N-H bond dissociation free 

energy (BDFE) by >40 kcal mol−1 compared with free NH3. In general, the degree of N-H 
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BDFE lowering is a function of the early transition metal redox couple, in which higher 

energy redox couples (for example, ZrIV/ZrIII in 64 or TiIII/TiII in 65) lead to greater 

activation than lower energy couples (for example, TiIV/TiIII in 63). This allows for 

thermodynamically favourable PCET to occur from (η5-C5Me5)(py-Ph)RhH (68) — which 

has a weak Rh-H bond (52.3 kcal mol−1) but is nonetheless able to split molecular H2 — to 

(η5Me4SiMe3)2TiCl(NR2) derivatives (R = H, Me, NH2, NMe2) (BDFEs ^ 60 kcal mol−1). 

Using this strategy, the catalytic hydrogenolysis of TiIV amide complex 66 to the TiIII 

chloride complex 67 has been realized, opening the possibility of incorporating PCET into a 

catalytic N2 reduction cycle with H2 as the terminal reductant.

Similar to the effects seen with NH3, coordination of H2O to Cp2TiIIIX results in 

dramatically reduced H-OH BDEs (Abde ≈ 50 kcal mol−1), enabling water to serve as a H-

atom donor292–294. This important effect can be used in the photochemical splitting of water. 

For example, ansa-titanocene dihydroxido complexes undergo Ti-O bond homolysis under 

visible light to form ansa-titanocene monohydroxido complexes and OH radicals295–297. 

This reaction had been observed with non-tethered titanocenes before298, but the Cp-Ti 

BDFE is typically smaller than the Ti-O BDFE, leading primarily to loss of Cp in those 

systems. A catalytic model system for the photochemical splitting of water has been 

demonstrated using an ansa-titanocene aquo-hydroxo complex 70 (REF 297) (FIG. 7b). 

Currently, this process requires TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl) oxyl) to 

reoxidize the bis(aquo) complex 69 to 70, which can liberate an OH radical upon irradiation. 

While this reaction may be catalytic, a turnover number could not be confirmed. In contrast 

to the above reaction, reaction of Cp*2TiOTf with water results in rapid oxidation to 

Cp*2Ti(OH)(OTf) and hydrogen gas without TEMPO additive299.

Building upon this work showing that Cp2MX2 can undergo ligand-to-metal charge-transfer 

(LMCT) processes to liberate radicals, it has also been shown that early transition metals can 

be used as sensitizers for single-electron photoredox catalysis. For example, metal 

photosensitizers have been designed from π-donor ligands on electron-poor Zr centres (FIG. 

7c). As ZrIV is a d0 metal, these complexes use LMCT processes as opposed to the typical 

metal-to-ligand charge-transfer (MLCT) processes seen in late transition metal 

photosensitizers such as [Ru(bpy)3]2+ (REF 300). Zr is considerably less expensive and more 

earth abundant than the common late metals used in photosensitizers, making it an attractive 

alternative for catalysis. Zr(MePDP)2 (MePDP = 2,6-bis(5-methyl-3-phenyl-1H-pyrrol-2-yl)-

pyridine) (73) has a visible excitation at 528 nm and a photoemission at 594 nm. Cyclic 

voltammetry (CV) experiments show a reversible reduction at −2.16 V, while Rehm-Weller 

analysis estimates an excited-state reduction potential of −0.07 V. This excited-state 

reduction potential is supported by excited-state quenching using weak organic reductants 

such as 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-7-methylbenzo-[d]imidazole (MeBIH). 

Complex 73 is able to catalyse the reductions of ethyl 2-bromo-2,2-difluoroacetate and 

diethyl maleate to ethyl 2,2-difluoroacetate and diethyl succinate, respectively (FIG. 7c, 

right). An in-depth study of the homocoupling of benzyl bromide helped support the 

photoredox mechanism301.
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Group-transfer catalysis

As is the case with small-molecule activation reactions, engendering catalytic reactivity in 

group-transfer reactions is particularly challenging owing to the strength of M-E multiple 

bonds. Classical examples such as methylene transfer in the Tebbe olefination result in the 

formation of strong Ti-O double bonds, precluding practical turnover. Nonetheless, there 

have been several notable advances toward catalytic oxidative group-transfer reactions, in 

particular nitrene transfer. Most of the catalytic early transition metal nitrene transfer 

reactions involve oxidative imination of unsaturated organic functional groups, which stands 

in contrast to late-transition-metal-catalysed nitrene transfers, which often perform C-H 

insertions302–305 or aziridinations306–308.

Heyduk has developed several Zr and Ta complexes of aminoquinone-derived redox non-

innocent ligands80,309. In these complexes, multi-electron redox changes needed for group 

transfer take place on the ligand framework instead of at the metal centre, allowing facile, 

low-temperature access to imido complexes that can undergo further reactivity such as 

catalytic nitrene coupling310,311, imide reduction312 and oxidative isocyanide imination 

(FIG. 8a, left). For example, in the (NNN) ZrCl (74)-catalysed isocyanide imination 

reaction, the trianionic (tris)amide (NNN)3−ligand undergoes two-electron oxidation by RN3 

to yield the monoanionic (NNN)1−imido complex 75, which can insert isocyanide to form an 

η2-carbodiimide 76. Upon carbodiimide ligand loss, the NNN ligand framework is again 

reduced to the (NNN)3− form in 74 to close the catalytic cycle313. A related Ti system based 

on a diamide-dimine (dadi) framework has also been reported82. These (dadi) Ti complexes 

can access a large array of ligand oxidation states, thereby realizing a two-electron pathway 

for catalytic azide carbonylation by 77 (FIG. 8a, right). Productive catalysis hinges on weak 

CO binding to Ti resulting from the redox non-innocent ligand; one would expect TiII to 

exhibit strong CO binding due to backdonation into the C-O π* orbital, but because the 

redox events take place on the ligand, the electron density at Ti remains low throughout the 

catalytic cycle and thus Ti is incapable of strong backdonation.

In contrast to the above examples of overt ligand redox non-innocence in nitrene transfer, 

there are several recent examples of formally TiII/TiIV-catalysed oxidative nitrene transfer 

reactions. These reactions yield multi-substituted pyrroles from the coupling of alkynes with 

azobenzene314,315 or α,β-unsaturated imines and α-iminocyclopropanes from the coupling 

of alkynes and alkenes with azobenzene316 (FIG. 8b). The crux of this system is that 

cooperative metal-ligand effects can also stabilize low-valent metals through backbonding 

(classical redox non-innocence) into the reagents (alkynes and diazenes) or products 

(pyrroles and imines), allowing for otherwise challenging reductive events, such as the 

reductive elimination from 82 to 83, to occur with relative ease. Although it was initially 

speculated that azobenzene was a critical reagent for catalytic reoxidation of 83 to 80 
through the hydrazido adduct 84, recent advances have extended this chemistry into other 

nitrene sources such as azides317.

Computational analysis has revealed several additional surprising facets of the reductive 

elimination events that are critical for catalytic turnover in these TiII/TiIV reactions318,319. In 

general, it appears that direct reductive coupling of M-C and M-X σ-bonds from 
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intermediates 82 or 88 is unfavourable relative to other reductive pathways. For example, in 

the pyrrole synthesis, manifold intrinsic bond orbital (IBO) analysis indicates that reductive 

elimination from the six-membered metallacycle 82 is a π-type electrocyclic ring closure 

(FIG. 8b, left). By contrast, in the alkene-alkyne coupling reactions, the six-membered 

metallacycle 88 is semi-saturated (FIG. 8b, right) and thus lacks the requisite π-orbital for 

electrocyclization. This opens up alternative reductive elimination pathways: p-H 

elimination to ultimately form α,β-unsaturated imines (86) or a pericyclic Kulinkovich-like 

cyclopropanation to form a-iminocyclopropanes (87). It is proposed that the α,β-unsaturated 

imines are formed through N-H reductive elimination, which has not previously been 

observed on Ti. Computational studies have proposed a more complex insertion-type 

pathway for the formation of this product, although experimental evidence for either 

pathway is currently lacking320.

In contrast to group 4 metals, group 5 metal imidos tend to be considerably less reactive. To 

counteract this, efforts have been made to synthesize group 5 systems that electronically 

saturate the metal d orbitals (π-loading), thereby increasing the polarizability of the imido 

bonds321. The re-loaded β-diketiminate (BDI) Nb bis(imido) complex 89 can thus perform a 

formally NIII/NbV-catalysed nitrene transfer reaction to generate asymmetric 

dialkylcarbodiimides from azides and isocyanides322 (FIG. 8c).

Outside of catalytic nitrene transfer, there are also many examples of stoichiometric atom-

transfer reactions (As4 (REF.323), S8 (REFS324,325) and P4 (REF.326)). For example, reaction 

of either P4 or As4 with activated zirconocene derivatives results in pnictogen-silicon 

analogues of benzene327 and carbon-phosphorous cage compounds328. The Cummins group 

has also extensively studied P4 transformations329 and synthesized phosphorous-rich organic 

clusters mediated by a NbIII/NbV couple330.

O-atom transfer is an incredibly challenging target to achieve with oxophilic early transition 

metals because the strong metal-oxo bond is a thermodynamic sink. In order to circumvent 

this problem, Nb nitride 90 has been used to perform outer-sphere O-atom transfer from 

CO2 (FIG. 8d). CO2 binds to the terminal anionic nitride in 90, and the resulting oxide ion in 

91 can then be transferred to a RC(O)Z (Z = halide, OAc) acceptor to form 92, an N-bound 

cyanate. Subsequent oxidation and reduction steps liberate CO from the bound cyanate in 

93, regenerating 90. While this system is not catalytic, it remains a rare example of a closed 

synthetic cycle to achieve CO2 reduction331.

Summary and outlook

The field of low-valent early transition metal synthesis, reactivity and catalysis has 

undergone a resurgence of activity in recent years. Many of these new reactions and 

applications can be split into three categories: reactions providing a modern twist on classic 

low-valent organometallic transformations, such as catalytic ring-opening reactions and 

substrate-directed reductive couplings; reactions that push low-valent early transition metals 

into new, emerging fields, such as PCET, photoredox catalysis and catalyst-controlled 

radical reactions; and new modes of low-valent inorganic and organometallic reactivity, such 

as oxidative nitrene transfer catalysis and reversible end-on ScII N2 binding.
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Each of these categories illustrates that early transition metals play a rich and evolving role 

in a broad array of chemical applications, and that there likely remains substantially more to 

discover as the field of low-valent early metal chemistry is revisited through the lens of 

modern organometallic chemistry. For example, accessing low-valent intermediates under 

mild conditions (using, for example, organosilane reductants or photoredox chemistry) is 

only beginning to have an impact in the field and should help to overcome many of the 

chemical compatibility issues associated with the strong reductants previously used to access 

low-valent early transition metals.

While many of the reactions discussed here are catalytic in nature, it would be unwise to 

neglect the importance of fundamental and stoichiometric reactivity with the early transition 

metals — not only can these later provide the basis for catalytic reactions (as seen in many 

of the examples discussed above), but the early metals are incredibly earth abundant, 

environmentally friendly and inexpensive and often have practical utility even in 

stoichiometric quantities.
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Inner-sphere reductants

Reagents that act as reductants after first forming a bond to the complex of interest.

Umpolung reactions

Reactions that proceed through polarity inversion of the given functional group.

Redox non-innocent ligands

Ligands bound to a metal complex in which the oxidation state is ambiguous, wherein 

oxidation or reduction of the ligands may occur in tandem with or instead of metal 

oxidation or reduction.
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Fig. 1 |. Relative abundance of the valence states of early transition metal organometallic 
complexes.
Reduced early transition metal complexes become increasingly rare as one proceeds from 

group 5 to earlier groups and also from period 3 to period 5. Data adapted from REF26.
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Fig. 2 |. Examples of synthetic routes to low-valent early transition metal complexes.
a | Classical reduction routes involving strong reductants. b | Representative examples of 

modern low-valent metal synthesis. c | New organosilane reductants for low-valent metal 

synthesis and catalysis. These routes demonstrate the diverse array of reduction methods 

available and the common ability of π-accepting ligands to stabilize low-valent early 

transition metal complexes. Red-coloured metals are in their highest oxidation state, orange-

coloured metals are one-electron reduced, and teal-coloured metals are two-electron 
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reduced. hv, irradiation; Dipp, 2,6-diisopropylphenyl; E1/2, half-wave potential; Fc, 

ferrocene; THF, tetrahydrofuran; TMSCl, trimethylsilyl chloride.
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Fig. 3 |. Recent advances in two-electron reductive coupling reactions proceeding through 
titanacyclopropane and titanacyclopropene intermediates from Ti(OiPr)4/RM and related 
species.
a | Catalytic KuLinkovich cydopropanation reactions, in which ester C = O bond insertion 

into the Ti bond precedes pericycLic metaLLacycLe collapse. b | Stoichiometric arrested 

KuLinkovich-de Meijere-Like cyclopropanations, in which metaLLacycLe collapse is 

prevented through steric (top) or electronic (bottom) blocking. c | Alkoxide-directed 

regiospecific and stereospecific reductive couplings that bias regiospecific metaLLacycLe 

formation and subsequent insertion steps through covalent Ti-O bonding. DCE, 
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dichLoroethane; DME, dimethoxyethane; equiv., equivalents; THF, tetrahydrofuran; TMS, 

trimethyLsiLyL.
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Fig. 4 |. Examples of new reductive coupling reactions.
a | Isocyanide insertion into metaiiacydopentenes can result in imido extrusion and formal 

[4+1] coupling with Ti, while intermediate products can be isolated with the heavier Hf 

congener. b | Nitrile reductive couplings lead to diazatitanacyclopentadienes that can 

undergo further reaction to make new π-conjugated materials. c | A general mechanistic 

scheme for early-transition-metal-catalysed cyclotrimerization catalysis (left) and new 

advances in selective heterocyclization catalysed by simple reduced Nb complexes. DCE, 
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1,2- dichloroethane; DME, 1,2-dimethoxyethane; equiv., equivalents; THF, tetrahydrofuran; 

TM, transition metal; TMS, trimethylsilyl
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Fig. 5 |. Catalytic (de)hydrofunctionalizations.
a | Well-defined Nb-catalysed (Z)-selective alkyne semi-hydrogenation catalysed by Nb 

imido complexes (top) and Ti-catalysed transfer hydrogenation (bottom). b | Selective, 

catalytic alkane dehydrogenation using phosphorus ylides as terminal oxidants. c | Catalytic 

examples of hydrodefluorination that take advantage of the formation of strong Al–F or Si–F 

bonds as a driving force for defluorination. Δ, heat; BDI, β-diimine; DME, 

dimethoxyethane; equiv, equivalents; THF, tetrahydrofuran; TON, turnover number.
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Fig. 6 |. Single-electron processes catalysed by TiIII complexes.
a | Catalytic epoxide ring opening using weak reductants and acids to drive turnover (Left) 

and examples in selective organic synthesis. b | Single-electron umpolung reactions can 

yield new C-C bonded products through a complex bimetallic radical coupling mechanism. c 
| SingLe-eLectron transfer (SET) from TiIII into carbonyls adjacent to strained rings gives 

access to several new aLkene coupling reactions including cyclization, Michael addition and 

[3+2] cycLoadditions. CoLL-HCL, 2,4,6-coLLidine hydrochloride; equiv, equivalents; e.r., 
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enantiomeric ratio; EWG, eLectron-withdrawing group; TBDPS, tert-butyLdiphenylsiLyL; 

THF, tetrahydrofuran; TMS, trimethyLsiLyL.
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Fig. 7 |. Single-electron strategies in small-molecule activation chemistry.
a | Hydrogenoiysis of metal amides to ammonia via proton-coupled electron transfer 

(PCET), enabled by coordination-induced weakening of the N-H bond. b | Photochemical 

model of H2O splitting with TiIII catalysts, again enabled by coordination-induced 

weakening of O-H bonds. c | Photoredox catalysis via ligand-to-metal charge transfer 

(LMCT) with (MePDP)2Zr complexes, in which charge transfer occurs in a direction 

opposite of state-of-the-art late transition metal photoredox catalysts, which undergo metal-

to-ligand charge transfer (MLCT). hv, irradiation; BDFE, bond dissociation free energy; 
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Cp*, C5Me5
−; Epc, cathodic peak potential; equiv, equivalents; Ered, reduction potential; Fc, 

ferrocene; LED, light-emitting diode; MePDP, 2,6-bis (5-methyl-3-phenyl-1H-pyrrol-2-yl)-

pyridine; TEMPO, (2,2,6,6-tetramethy[piperidin-1-y[)oxy[; THF, tetrahydrofuran; TMS, 

trimethylsilyL; TON, turnover number.
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Fig. 8 |. Group-transfer catalysis mediated by early transition metal complexes.
a | Redox non-innocent ligand frameworks enable nitrene transfer reactions by undergoing 

redox changes at the ligand instead of the metal. b | TiII/TiIV redox catalytic nitrene transfer 

in oxidative amination catalysis — a new mechanism for pyrrole formation (left) — and 

examples in selective synthesis (right). c | Nitrene transfer promoted by a π-loaded 

bis(imido)Nb catalyst, which renders the imido fragment more labile than other group 5 

imido complexes. d | A closed synthetic cycle for ligand-based CO2 reduction to CO that 

avoids the formation of strong M-O multiple bonds. BDI, 2,6 diisopropylbenzene-β 
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diketiminate; dadi, diamide-dimine; equiv, equivalents;THF, tetrahydrofuran; TMS, 

trimethylsilyl; TON, turnover number.
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