
Statistics Complements to

Modern Applied

Statistics with S­Plus
Third edition

by

W. N. Venables and B. D. Ripley

Springer (1999). ISBN 0­387­98825­4

27 May 2000

These complements have been produced to supplement the third edition of

MASS. They will be updated from time to time. The definitive source is

http://www.stats.ox.ac.uk/pub/MASS3/ .

c© W. N. Venables and B. D. Ripley 1997–2000. A licence is granted for personal

study and classroom use. Redistribution in any other form is prohibited.

Selectable links are in this colour.

Selectable URLs are in this colour.

http://www.stats.ox.ac.uk/pub/MASS3/

Introduction

These complements are made available on­line to supplement the book making

use of extensions to S-PLUS in user­contributed library sections.

The general convention is that material here should be thought of as following

the material in the chapter in the book, so that new sections are numbered following

the last section of the chapter, and figures and equations here are numbered

following on from those in the book.

All the libraries mentioned are available for Unix and for Windows. Compiled

versions for Windows (for S-PLUS 3.2, 3.3, 4.0, 4.5 and 2000) are available

from either of the URLs

http://www.stats.ox.ac.uk/pub/SWin/

http://lib.stat.cmu.edu/DOS/S/SWin/

Compiled versions of most for S-PLUS 6.0 for Windows are available via

http://www.stats.ox.ac.uk/pub/MASS3/Winlibs

Most of the Unix sources are available at

http://lib.stat.cmu.edu/S/

and more specific information is given for the exceptions where these are intro­

duced. In most cases some modifications are needed for use with S-PLUS 5.x

and 6.0: try the migration tools.

i

http://www.stats.ox.ac.uk/pub/SWin/
http://lib.stat.cmu.edu/DOS/S/SWin/
http://www.stats.ox.ac.uk/pub/MASS3/Winlibs
http://lib.stat.cmu.edu/S/

Contents

Introduction i

5 Distributions and Data Summaries 1

5.6 Density estimation . 1

6 Linear Statistical Models 6

6.5 Robust and resistant regression 6

7 Generalized Linear Models 11

7.6 Over­dispersion in binomial and Poisson GLMs 11

7.7 Gamma models . 14

8 Non­linear Models 18

8.5 Profiles . 18

9 Smooth Regression 23

9.1 Additive models and scatterplot smoothers 23

9.4 Neural Networks . 28

10 Tree­based Methods 30

10.4 Tree­structured survival analysis 30

11 Multivariate Analysis and Pattern Recognition 38

11.3 Correspondence analysis . 38

11.10 Factor analysis . 39

12 Survival Analysis 49

12.1 Estimators of survival curves 49

12.5 Non­parametric models with covariates 52

12.6 Expected survival rates . 57

13 Time Series 59

ii

Contents iii

13.1 Second­order summaries . 59

13.7 Multiple time series . 60

13.8 Other time­series functions . 65

14 Spatial Statistics 67

14.5 Module S+SPATIALSTATS . 67

References 72

Index 75

Chapter 5

Distributions and Data Summaries

5.6 Density estimation

Spline fitting to log­densities

There are several closely­related proposals1 to use a univariate density estimator

of the form

f(y) = exp g(y; θ) (5.7)

for a parametric family g(·; θ) of smooth functions, most often splines. The fit

criterion is maximum likelihood, possibly with a smoothness penalty. The ad­

vantages of (5.7) is that it automatically provides a non­negative density estimate,

and that it may be more natural to consider ‘smoothness’ on a relative rather than

absolute scale. It is necessary to ensure that the estimated density has unit mass,

and this is most conveniently done by taking

f(y) = exp g(y; θ)/
∫

exp g(y; θ) dy (5.8)

The library logspline 2 by Charles Kooperberg implements one variant3 on

this theme by Kooperberg & Stone (1992). This uses a cubic spline for g in (5.8),

with smoothness controlled not by a penalty (as in smoothing splines) but by the

number of knots selected. There is an AIC­like penalty; the number of the knots

is chosen to maximize

n∑

i=1

g(yi; θ̂) − n log
∫

exp g(y; θ̂) dy − a× number of parameters (5.9)

The default value of a is log n (sometimes known as BIC) but this can be set

as an argument of logspline.fit . A Newton method is used to maximize the

log­likelihood given the knot positions. The initial knots are selected at quantiles

of the data and then deleted one at a time using the Wald criterion for significance.

Finally, (5.9) is used to choose one of the knot sequences considered.

We first try out our two running examples:

1 see Simonoff (1996, pp. 67–70, 90–92) for others.
2 logsplin on Windows.
3 although a later version described in Stone et al. (1997) has been long promised to replace it, it

has not appeared.

1

5.6 Density estimation 2

duration

1 2 3 4 5 6

0
.0

0
.4

0
.8

1
.2

bootstrap samples

20.0 20.5 21.0 21.5 22.0

0
1

2
3

4

• •

•

•

•

• •

••

•

• • • • • •• •

•

•

•

• •

•

•

•

• • •
• • •

Figure 5.15: Histograms and logspline density plots of (left) the Old Faithful eruptions

data and (right) bootstrap samples of the median of the galaxies dataset. Compare with

Figures 5.9 (on page 136) and Figure 8.5 (page 262).

library(logspline) # logsplin on Windows

attach(geyser)

geyser.ls <- logspline.fit(duration, lbound=0)

x <- seq(0.5, 6, len=200)

truehist(duration, nbins=15, xlim=c(0.5,6), ymax=1.2)

lines(x, dlogspline(x, geyser.ls))

detach()

truehist(tperm, xlab="diff")

tperm.ls <- logspline.fit(tperm)

x <- seq(-5, 5, len=200)

lines(x, dlogspline(x, tperm.ls))

sres <- c(sort(tperm), 5); yres <- (0:1024)/1024

plot(sres, yres, type="S", xlab="diff", ylab="cdf")

lines(x, plogspline(x, tperm.ls))

par(pty="s")

x <- c(0.0005, seq(0.001, 0.999, 0.001), 0.9995)

plot(qt(x, 9), qlogspline(x, tperm.ls),

xlab="Quantiles of t on 9 df", ylab="Fitted quantiles",

type="l", xlim=c(-5, 5), ylim=c(-5, 5))

points(qt(ppoints(tperm), 9), sort(tperm))

The functions dlogspline , plogspline and qlogspline compute the den­

sity, CDF and quantiles of the fitted density, so the final plot is a QQ­plot of the

data and the fitted density against the t9 density. The final plot shows that the

t9 density is a better fit in the tails; the logspline density estimate always has

exponential tails. (The function logspline.plot will make a simple plot of the

density, CDF or hazard estimate.)

We can also explore density plots of the bootstrapped median values from

page 142 (which we recall actually has a discrete distribution).

truehist(res, nbins=nclass.FD(res), ymax=4,

5.6 Density estimation 3

diff
-4 -2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

diff

c
d

f

-4 -2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Quantiles of t on 9df

F
it
te

d
 q

u
a

n
ti
le

s

-4 -2 0 2 4

-4
-2

0
2

4

•
•

•
••••

•••
••••••••••••••

•••••••••••••••••••
••••••••••••••••••••
••••••••••••••••••••

•••••••••••••••••••••••••
•••••••••••••••••••••••

•••••••••••••••••••••••
••••••••••••••••••••••••

••••••••••••••••••••••••
•••••••••••••••••••••••••

••••••••••••••••••••••••••
•••••••••••••••••
•••••••••••••••••••••

•••••••••••••••••••••••••
•••••••••••••••

•••••
•••
••••

•
•

•

Figure 5.16: Plots of the logspline density estimate of the permutation dataset tperm .

The three panels show the histogram with superimposed density estimate, the empirical

and fitted CDFs and QQ–plots of the data and the fitted density against the conventional t9
distribution.

xlab="bootstrap samples")

x <- seq(20, 22, length=500)

res.ls <- logspline.fit(res)

lines(x, dlogspline(x, res.ls))

points(res.ls$knots, dlogspline(res.ls$knots, res.ls))

res.ls <- logspline.fit(res, penalty=2)

lines(x, dlogspline(x, res.ls), lty=3)

points(res.ls$knots, dlogspline(res.ls$knots, res.ls))

Changing the penalty a to the AIC value of 2 has a small effect. The dots show

where the knots have been placed. (The function logspline.summary shows

details of the selection of the number of knots.)

The results for the galaxies data are also instructive (Figure 5.17).

x <- seq(8000, 35000, 200)

plot(x, dlogspline(x, logspline.fit(galaxies)), type="l",

xlab="velocity of galaxy", ylab="density")

lines(density(galaxies, n=200, window="gaussian",

width=width.SJ(galaxies)), lty=3)

Maximum­likelihood methods and hence logspline.fit can easily handle

censored data (see page 49).

Local polynomial density estimation

The local regression approach of loess can be extended to local likelihood

estimation and hence used for density estimation. One implementation is the

function locpoly in library KernSmooth 4. This uses a fine grid of bins on the

x axis and applies a local polynomial smoother to the counts of the binned data.

4 ksmooth on Windows. The current Unix sources are at

http://www.biostat.harvard.edu/~mwand

http://www.biostat.harvard.edu/~mwand

5.6 Density estimation 4

velocity of galaxy

d
e
n
s
it
y

10000 15000 20000 25000 30000 35000

0
.0

0
.0

0
0
0
5

0
.0

0
0
1
0

0
.0

0
0
1
5

0
.0

0
0
2
0

0
.0

0
0
2
5

0
.0

0
0
3
0

Figure 5.17: Logspline (solid line) and kernel density (dashed) estimates for the galaxies

data. The bandwidth of the kernel estimate was chosen by width.SJ .

Loader (1997) introduces his implementation in the locfit package; the

theory for density estimation is in Loader (1996). The default is that log f(y) is

fitted by a quadratic polynomial: to estimate the density at x we maximize

n∑

i=1

K
(

yi−x
b

)
g(yi; θ(x)) − n log

∫
K

(
y−x

b

)
exp g(y; θ(x)) dy

that is, (5.9) localized near x , and with a quadratic polynomial model for g(y; θ) .

The function K is controlled by the argument kern ; by default it is the tricubic

function used by loess ; kern="gauss" gives a Gaussian kernel with bandwidth

2.5 times5 the standard deviation. The documentation with the package is sparse:

the Web site

http://cm.bell-labs.com/stat/project/locfit

has the sources but the help there refers to the much older R version, and the various

on­line documents have been removed. Unfortunately many of our examples no

longer work in the current (June 1999) release of locfit , so our remaining

examples should be seen as indicative only.

We can use locfit on the duration data by

library(locfit)

geyser.lf <- locfit(~ duration, data=geyser, flim=c(0.5, 6))

plot(geyser.lf, get.data=T, mpv=200, ylim=c(0,1))

where get.data adds the rug and mpv evaluates at 200 points to ensure a smooth

curve. (The flim parameter asks for a fit to cover that range of x values.)

As for loess we have to choose how much to localize, that is to choose the

bandwidth h , possibly as a function of x . This is done in locfit by choosing

the larger of a nearest­neighbour­based estimate and a fixed bandwidth. Loader

(1997) suggests

5 density and hence our account in Chapter 5 uses 4× .

http://cm.bell-labs.com/stat/project/locfit

5.6 Density estimation 5

duration

d
e

n
s
it
y

1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 5.18: locfit density estimates for the duration from the geyser dataset.The

solid line is the default, the dashed line is the adaptive bandwidth chosen by Loader (1997).

geyser.lf1 <- locfit(~ duration, data=geyser, flim=c(0.5,6),

alpha=c(0.15, 0.9))

lines(geyser.lf1, m=200, lty=3)

but without explaining where these numbers came from. (The default is

c(0.7, 0) . The notes on the Web site hadc(0.1, 0.8) . Clearly this is

not an automated choice!) The first number is equivalent to the span parameter

of loess ; set it to zero to remove the adaptive part of the bandwidth choice. The

second number is a fixed bandwidth; there is also a third argument related to the

penalty in (5.9).

Chapter 6

Linear Statistical Models

6.5 Robust and resistant regression

Median polish

Consider a two­way layout. The additive model is

ŷij = µ+ αi + βj , α· = β· = 0

The least squares fit corresponds to choosing the parameters µ , αi and βj so

that the row and column sums of the residuals are zero.

Means are not resistant. Suppose we use medians instead. That is, we

seek a fit of the same form, but with median (αi) = median (βj) = 0 and

mediani (eij) = medianj (eij) = 0 . This is no longer a set of linear restrictions,

so there may be many solutions. The median polish algorithm (Mosteller & Tukey,

1977; Emerson & Hoaglin, 1983) is to augment the table with row and column

effects as
e11 · · · e1c a1

...
. . .

...
...

er1 · · · erc ar

b1 · · · br m

where initially eij = yij , ai = bj = m = 0 . At all times we maintain

yij = m+ ai + bj + eij

In a row sweep for each row we subtract the median of columns 1, . . . , c from

those columns and add it to the last column. For a column sweep for each column

we subtract the median of rows 1, . . . , r from those rows and add it to the bottom

row.

Median polish operates by alternating row and column sweeps until the changes

made become small or zero (or the human computer gets tired!). (Often just two

pairs of sweeps are recommended.) The answer may depend on whether rows

or columns are tried first and is very resistant to outliers. Using means rather

medians will give the least­squares decomposition without iteration.

6

6.5 Robust and resistant regression 7

An example

The table below gives specific volume (cc/gm) of rubber at four temperatures

(◦C) and six pressures (kg/cm 2 above atmo). These data were published by

Wood & Martin (1964, p. 260), and used by Mandel (1969) and Emerson & Wong

(1985).

Pressure

Temperature 500 400 300 200 100 0

0 1.0637 1.0678 1.0719 1.0763 1.0807 1.0857

10 1.0697 1.0739 1.0782 1.0828 1.0876 1.0927

20 1.0756 1.0801 1.0846 1.0894 1.0944 1.0998

25 1.0786 1.0830 1.0877 1.0926 1.0977 1.1032

The default trim=0.5 option of twoway performs median polish. We have,

after multiplying by 104 ,

Pressure

Temperature 500 400 300 200 100 0 ai

0 7.0 4.5 1.5 ­1.5 ­6.5 ­9.0 ­96.5

10 3.0 1.5 0.5 ­0.5 ­1.5 ­3.0 ­32.5

20 ­3.0 ­1.5 ­0.5 0.5 1.5 3.0 32.5

25 ­4.5 ­4.0 ­1.0 1.0 3.0 5.5 64.0

bj ­111.0 ­67.5 ­23.5 23.5 72.5 125.0 m = 10837.5

This is interpreted as

yij = m+ ai + bj + eij

and the body of the table contains the residuals eij . These have both row medians

and column medians zero. Originally the value for temperature 0, pressure 400

was entered as 1.0768; the only change was to increase the residual to 94.5×10−4

which was easily spotted.

Note the pattern of residuals in the table; this suggests a need for transforma­

tion. Note also how linear the row and column effects are in the factor levels.

Emerson & Wong (1985) fit Tukey’s ‘one degree of freedom for non­additivity’

model

yij = m+ ai + bj + eij + kaibj (6.11)

by plotting the residuals against aibj/m and estimating a power transformation

yλ with λ = 1 −mk estimated as −6.81 . As this is such an awkward power,

they thought it better to retain the model (6.11).

6.5 Robust and resistant regression 8

Brownlee’s stack loss data

We consider Brownlee’s (1965) much­studied stack loss data, given in the S

datasets stack.x and stack.loss . The data are from the operation of a

plant for the oxidation of ammonia to nitric acid, measured on 21 consecutive

days. There are 3 explanatory variables (air flow to the plant, cooling water inlet

temperature, and acid concentration) and the response, 10 times the percentage of

ammonia lost.

> summary(lm(stack.loss ~ stack.x), cor=T)

Residuals:

Min 1Q Median 3Q Max

-7.24 -1.71 -0.455 2.36 5.7

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -39.920 11.896 -3.356 0.004

stack.xAir Flow 0.716 0.135 5.307 0.000

stack.xWater Temp 1.295 0.368 3.520 0.003

stack.xAcid Conc. -0.152 0.156 -0.973 0.344

Residual standard error: 3.24 on 17 degrees of freedom

> lqs(stack.x, stack.loss, method="lms", nsamp="exact")

Coefficients:

(Intercept) Air Flow Water Temp Acid Conc.

-34.2 0.714 0.357 0

Scale estimates 0.551 0.48

> summary(lqs(stack.x, stack.loss, method="lms",

nsamp="exact")$residuals)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-7.89 -0.25 0.107 1.08 1.39 9.46

> lqs(stack.x, stack.loss, method="lts", nsamp="exact")

Coefficients:

(Intercept) Air Flow Water Temp Acid Conc.

-35.8 0.75 0.333 0

Scale estimates 0.848 0.865

> summary(lqs(stack.x, stack.loss, method="lts",

nsamp="exact")$residuals)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-8.36 -0.361 0.306 0.976 1.31 9.31

Function lqs normally uses a random search, but here we can afford an exhaustive

search.

Now consider M­estimators:

6.5 Robust and resistant regression 9

> stack.rl <- rlm(stack.loss ~ stack.x)

> summary(stack.rl, cor=F)

Residuals:

Min 1Q Median 3Q Max

-8.92 -1.73 0.0617 1.54 6.5

Coefficients:

Value Std. Error t value

(Intercept) -41.027 9.807 -4.183

stack.xAir Flow 0.829 0.111 7.460

stack.xWater Temp 0.926 0.303 3.052

stack.xAcid Conc. -0.128 0.129 -0.992

Residual standard error: 2.44 on 17 degrees of freedom

> round(stack.rl$w, 2)

[1] 1.00 1.00 0.79 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[13] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.37

> summary(rlm(stack.loss ~ stack.x, method="MM"), cor=F)

Residuals:

Min 1Q Median 3Q Max

-10.5 -1.44 -0.0908 1.03 7.23

Coefficients:

Value Std. Error t value

(Intercept) -41.523 9.307 -4.461

stack.xAir Flow 0.939 0.106 8.898

stack.xWater Temp 0.579 0.288 2.012

stack.xAcid Conc. -0.113 0.122 -0.923

Residual standard error: 1.91 on 17 degrees of freedom

The component w returned by rlm contains the final weights in (6.6). Although

all methods seem to agree about observation 21, they differ in their view of the

early observations. Atkinson (1985, pp. 129–136, 267–8) discusses this example

in some detail, as well as the analyses performed by Daniel & Wood (1980). They

argue for a logarithmic transformation, dropping acid concentration and fitting

interactions or products of the remaining two regressors. However, the question

of outliers and change of model are linked, since most of the evidence for changing

the model comes from the possible outliers.

Rather than fit a parametric model we examine the points in the air flow –

water temp space, using the robust fitting option of loess ; see Figure 6.10.

x1 <- stack.x[,1]; x2 <- stack.x[,2]

stack.loess <- loess(log(stack.loss) ~ x1*x2, span=0.5,

family="symmetric")

stack.plt <- expand.grid(x1=seq(50,80,0.5), x2=seq(17,27,0.2))

stack.plt$z <- as.vector(predict(stack.loess, stack.plt))

dupls <- c(2,7,8,11)

contourplot(z ~ x1*x2, stack.plt, aspect=1,

6.5 Robust and resistant regression 10

xlab="Air flow", ylab="Water temp",

panel = function(x, y, subscripts, ...){

panel.contourplot(x, y, subscripts, ...)

panel.xyplot(x1, x2)

text(x1[-dupls] + par("cxy")[1] ,

x2[-dupls] + 0.5* par("cxy")[2],

as.character(seq(x1)[-dupls]), cex=0.7)

})

This shows clearly that the ‘outliers’ are also outlying in this space. (There are

duplicate points; in particular points 1 and 2 are coincident.)

-1 -1 0 1 2 2

 3

 4 5 5 6 6
1

3

4

5

69

10

12

13

14

1516

1718

19 20 21

18

20

22

24

26

50 55 60 65 70 75 80

Air flow

W
a
te

r
te

m
p

Figure 6.10: Fitted surface for Brownlee’s stack loss data on log scale using loess .

Chapter 7

Generalized Linear Models

7.6 Over­dispersion in binomial and Poisson GLMs

The role of dispersion parameter ϕ in the theory and practice of GLMs is often

misunderstood. For a Gaussian family with identity link and constant variance

function the moment estimator used for ϕ is the usual unbiased modification of

the maximum likelihood estimator (see equations (7.6) and (7.7)). For binomial

and Poisson families the theory specifies that ϕ = 1 , but in some cases we

estimate ϕ as if it were an unknown parameter and use that value in standard error

calculations and as a denominator in approximate F ­tests rather than use chi­

squared tests. This is an ad hoc adjustment for over­dispersion (or ‘heterogeneity’,

see Finney (1971) who seems to have proposed the technique originally) but the

corresponding likelihood may not correspond to any family of error distributions.

(Of course, for the Poisson family the negative binomial family introduced in

Section 7.4 provides a parametric alternative way of modelling over­dispersion.)

In this section we discuss that ad hoc adjustment further.

We begin with a warning. A common way to ‘discover’ over­ or under­

dispersion is to notice that the residual deviance is appreciably different from the

residual degrees of freedom, since in the usual theory the expected value of the

residual deviance should equal the degrees of freedom. This can be seriously

misleading. The theory is asymptotic, and only applies for large nipi for a

binomial and for large µi for a Poisson. Figure 7.3 shows the exact expected

value, calculated by

x <- 0:100

plik <- function(lambda)

sum(dpois(x, lambda) * 2 *

((lambda - x) + x * log(pmax(1,x)/lambda)))

lambda <- c(0.01, 0.05, seq(0.1, 5, 0.1))

plot(lambda, sapply(lambda, plik), type="l", ylim=c(0, 1.4),

ylab = "E(deviance)")

abline(h=1)

and for a binomial

11

7.6 Over­dispersion in binomial and Poisson GLMs 12

lambda

E
(d

e
v
ia

n
c
e
)

0 1 2 3 4 5

0
.0

0
.4

0
.8

1
.2

p

E
(d

e
v
ia

n
c
e
)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

1
.2

Figure 7.3: Plots of the expected residual deviance against (left) the parameter of a Poisson

and (right) the p for a binomial(n, p) for n = 1, 2, . . . , 10, 25 .

n <- 1

blik <- function(p, n)

{

y <- (0:n)/n

devy <- sum(dbinom(1:n, n, p) * y[-1] * log(y[-1])) +

sum(dbinom(1:n, n, 1-p) * y[-1] * log(y[-1]))

devmu <- sum(dbinom(0:n, n, p) * (y * log(p) + (1-y)*log(1-p)))

2 * n * (devy - devmu)

}

p <- seq(0.01, 0.99, 0.01)

plot(p, sapply(p, blik, n=n), type="l", ylim=c(0, 1.4),

ylab = "E(deviance)")

for(n in 2:10) lines(p, sapply(p, blik, n=n), type="l",

lty= 2 + (n-2)%%4)

lines(p, sapply(p, blik, n=25), type="l")

abline(h=1)

The estimate of ϕ used by summary.glm (if allowed to estimate the dis­

persion) is the (weighted) sum of the squared pearson residuals divided by the

residual degrees of freedom (equation (7.8) on page 215). This has much less

bias than the other estimator sometimes proposed, namely the deviance (or sum

of squared deviance residuals) divided by the residual degrees of freedom.

Many authors (for example Finney, 1971; Collett, 1991; Cox & Snell, 1989;

McCullagh & Nelder, 1989) discuss over­dispersion in binomial GLMs, and

Aitkin et al. (1989) also discuss over­dispersion in Poisson GLMs. For bino­

mial GLMs, the accounts all concentrate on sampling regimes that can give rise

to over­dispersion in a binomial (n, p) observation Y for n > 1 . Suppose that

p is in fact a random variable θ with mean p : this might arise if there were

random effects in a linear logistic model specifying p . Then if we assume that

var θ = φp(1 − p) we find that

EY = np, varY = np(1 − p)[1 + (n− 1)φ]

One example occurs if θ has a beta (α, β) distribution, in which case p = E θ =
α/(α + β) , and var θ = p(1 − p)/(α + β + 1) .

7.6 Over­dispersion in binomial and Poisson GLMs 13

In the special case that the ni in a binomial GLM are all equal, we have

varY = np(1 − p)[1 + (n− 1)φ] = ϕnp(1 − p)

say, so this appears to provide an explanation for the ad hoc adjustment. However,

there are problems with this.

• It is not applicable for n ≡ 1 , a common circumstance in which to observe

over­dispersion.

• There is an upper bound on φ and hence ϕ . The most extreme distribution

for θ has θ = 1 with probability p and θ = 0 with probability 1 − p ,

hence variance p(1−p) . Thus φ 6 1 and ϕ 6 n . Plausible beta­binomial

models will lead to much lower bounds, say n/5 .

• If this model is accepted, the ad hoc adjustment of the GLM fit is not

maximum likelihood estimation, even for the regression parameters.

McCullagh & Nelder (1989, pp. 125–6) prefer a variation on this model, in

which the n data points are assumed to have been sampled from k clusters,

and there is independent binomial sampling within the clusters (whose size now

varies with n), but the clusters have probabilities drawn independently from a

distribution of the same form as before. Then it is easy to show that

EY = np, var Y = np(1 − p)[1 + (k − 1)φ]

This does provide an explanation for the ad hoc adjustment model for variable

n , but the assumption of the same number of (equally­sized) clusters for each

observation seems rather artificial to us.

Asymptotic theory for this model suggests (McCullagh & Nelder, 1989) that

changes in deviance and residual deviances scaled by ϕ have asymptotic chi­

squared distributions with the appropriate degrees of freedom. Since ϕ must

be estimated, this suggests that F tests are used in place of chi­squared tests

in, for example, the analysis of deviance and addterm and dropterm . At the

level of the asymptotics there is no difference between the use of estimators (7.7)

and (7.8), but we have seen that (7.8) has much less bias, and it is this that is used

by anova.glm and addterm and dropterm .

Another explanation that leads to the same conclusion is to assume that n
trials that make up the binomial observations are exchangeable but not necessarily

independent. Then the results for any pair of trials might have correlation δ , and

this leads to

varY = np(1 − p)[1 + (n− 1)δ] = ϕnp(1 − p)

say. In this model there is no constraint that δ > 0 , but only limited negative

correlation is possible. (Indeed, var Y > 0 implies δ > −1/(n − 1) , and

assuming that the trials are part of infinite population does require δ > 0 .)

All these explanations are effectively quasi­likelihood models, in that just the

mean and variance of the observations are specified. We believe that they are

7.7 Gamma models 14

best handled as quasi models. However, one has to be careful as they have

been implemented otherwise. For a long time S-PLUS was inconsistent in that

the dispersion was (by default) fixed at one for binomial and Poisson models

in summary.glm but estimated in functions such as predict.glm that applied

lm ­based methods. Our MASS library has for a long time supplied a workaround

for predict.glm that was incorporated in S-PLUS 2000.

Over­dispersion is handled slightly differently in R as from version 1.1.0.

The binomial and Poisson families never allow ϕ to be estimated, but there are

additional families quasibinomial and quasipoisson for which ϕ is always

estimated. (As quasi models have no true likelihood, they have no AIC either,

and so stepAIC will not work for them.)

7.7 Gamma models

The role of dispersion parameter ϕ for the Gamma family is rather different. This

is a parametric family which can be fitted by maximum likelihood, including its

shape parameter α . Elsewhere we have taken its density as

log f(y) = α log λ+ (α− 1) log y − λy − log Γ(α)

so the mean is µ = α/λ . If we re­parametrize by (µ, α) we obtain

log f(y) = α(−y/µ − log µ) + α log y + α logα − log y − log Γ(α)

Comparing this with the general form in equation (7.1) (on page 223) we see

that the canonical link is θ = −1/µ and ϕ = 1/α is the dispersion parameter.

For fixed ϕ , fitting by glm gives the maximum likelihood estimates of the

parameters in the linear predictor (which do not depend on the fixed value of ϕ),

but ϕ is estimated from the sum of squares of the pearson residuals, which may

(but need not) approximate the maximum likelihood estimator. Note that ϕ̂ is

used to estimate the standard errors for the parameters in the linear predictor, so

appreciable differences in the estimate can have practical significance.

Some authors (notably McCullagh & Nelder, 1989, pp. 295–6) have argued

against the maximum likelihood estimator of ϕ . The MLE is the solution to

2n [logα − ψ(α)] = D

where ψ = Γ′/Γ is the digamma function and D is the residual deviance. Then

the customary estimator of ϕ = 1/α is D/(n−p) and the MLE is approximately1

D̄(6 + D̄)/(6 + 2D̄) where D̄ = D/n . Both the customary estimator (7.7) and

the MLE are based on the residual deviance

D = −2
∑

i

[log(yi/µ̂i) − (yi − µ̂i)/µ̂i]

1 for large α̂

7.7 Gamma models 15

and this is very sensitive to small values of yi . Another argument is that if the

gamma GLM is being used as a model for distributions with a constant coefficient

of variation, the MLE is inconsistent for the true coefficient of variation except

at the gamma family. These arguments are equally compelling for the customary

estimate; McCullagh & Nelder prefer the moment estimator

σ̂2 = 1
n−p

∑
[(yi − µ̂i)/µ̂i]

2
(7.11)

for the coefficient of variation σ2 which equals ϕ under the gamma model. This

coincides with ϕ̃ as quoted by summary.glm (see (7.8) on page 215).

The functions glm.shape and glm.dispersion in library MASS compute

the MLEs of α and ϕ respectively from a fitted Gamma glm object. We illustrate

these with an example on clotting times of blood taken from McCullagh & Nelder

(1989, pp. 300–2).

> clotting <- data.frame(

u = c(5,10,15,20,30,40,60,80,100),

lot1 = c(118,58,42,35,27,25,21,19,18),

lot2 = c(69,35,26,21,18,16,13,12,12))

> clot1 <- glm(lot1 ~ log(u), data=clotting, family=Gamma)

> summary(clot1, cor=F)

Coefficients:

Value Std. Error t value

(Intercept) -0.016554 0.00092754 -17.848

log(u) 0.015343 0.00041496 36.975

(Dispersion Parameter for Gamma family taken to be 0.00245)

> clot1$deviance/clot1$df.residual

[1] 0.00239

> gamma.dispersion(clot1)

[1] 0.0018583

> clot2 <- glm(lot2 ~ log(u), data=clotting, family=Gamma)

> summary(clot2, cor=F)

Coefficients:

Value Std. Error t value

(Intercept) -0.023908 0.00132645 -18.024

log(u) 0.023599 0.00057678 40.915

(Dispersion Parameter for Gamma family taken to be 0.00181)

> clot2$deviance/clot2$df.residual

[1] 0.0018103

> gamma.dispersion(clot2)

[1] 0.0014076

The differences here are enough to affect the standard errors, but the shape pa­

rameter of the gamma distribution is so large that we have effectively a normal

distribution with constant coefficient of variation.

7.7 Gamma models 16

These functions may also be used for a quasi family with variance pro­

portional to mean squared. We illustrate this on the quine dataset. We adjust

the response slightly, as a response of zero would have a zero variance and the

quasi­likelihood would not be properly defined.

> gm <- glm(Days + 0.1 ~ Age*Eth*Sex*Lrn,

quasi(link=log, variance=mu^2), data=quine)

> summary(gm, cor=F)

Coefficients: (4 not defined because of singularities)

Value Std. Error t value

(Intercept) 3.06105 0.39152 7.818410

AgeF1 -0.61870 0.52528 -1.177863

AgeF2 -2.31911 0.87546 -2.649018

AgeF3 -0.37623 0.47055 -0.799564

....

(Dispersion Parameter for Quasi-likelihood family taken

to be 0.61315)

Null Deviance: 190.4 on 145 degrees of freedom

Residual Deviance: 128.36 on 118 degrees of freedom

> gamma.shape(gm, verbose=T)

Initial estimate: 1.0603

Iter. 1 Alpha: 1.23840774338543

Iter. 2 Alpha: 1.27699745778205

Iter. 3 Alpha: 1.27834332265501

Iter. 4 Alpha: 1.27834485787226

Alpha: 1.27834

SE: 0.13452

> summary(gm, dispersion = gamma.dispersion(gm), cor=F)

Coefficients: (4 not defined because of singularities)

Value Std. Error t value

(Intercept) 3.06105 0.44223 6.921890

AgeF1 -0.61870 0.59331 -1.042800

AgeF2 -2.31911 0.98885 -2.345261

AgeF3 -0.37623 0.53149 -0.707880

....

In this example the McCullagh–Nelder preferred estimate is given by

> sum((residuals(gm, type="resp")/fitted(gm))^2)/gm$df.residual

[1] 0.61347

which is the same2 as the estimate returned by summary.glm , whereas (7.7) gives

2 up to the convergence tolerance: set epsilon=1e-10 in the call glm to get equality to 7 decimal

places..

7.7 Gamma models 17

> gm$deviance/gm$df.residual

[1] 1.0878

> gamma.dispersion(gm)

[1] 0.78226

There will also be differences between deviance tests and the AIC used by

step.glm and likelihood­ratio tests and the exact AIC. Making the necessary

modifications is left as an exercise for the reader.

Chapter 8

Non­linear Models

8.5 Profiles

Measures of local curvature

It is convenient to separate two sources of curvature, that of the solution locus

itself, the intrinsic curvature, and that of the coordinate system within the solution

locus, the parameter­effects curvature. The intrinsic curvature is fixed by the data

and solution locus, but the parameter­effects curvature additionally depends upon

the parametrization.

Summary measures for both kinds of relative curvature were proposed by Beale

(1960) and elegantly interpreted by Bates & Watts (1980, 1988). (The measures

are relative to the estimated standard error of y and hence scale free.) The two

measures are denoted by cθ and cι for the parameter­effects and intrinsic root­

mean­square curvatures respectively. If F is the Fp,n−p critical value, Bates

& Watts suggest that a value of c
√
F > 0.3 should be regarded as indicating

unacceptably high curvature of either kind. Readers are referred to Bates & Watts

(1988) or Seber & Wild (1989, §4.3) for further details.

Calculating curvature measures requires both first and second derivatives of

the solution locus with respect to the parameters at each observation. The second

derivatives must be supplied as an n × p × p array where the i th p × p “face”

provides the symmetric matrix of second partial derivatives ∂2ηi(β)/∂βj∂βk .

This may be supplied as a hessian attribute of the value of the model function

along with the gradient . (Unfortunately the nls fitting function can make no

use of any hessian information.)

The function rms.curv supplied with our library can be used to calculate and

display cθ
√
F and cι

√
F . The only required argument is an nls fitted model

object, provided the model function has both gradient and hessian attributes.

Consider our weight loss example.

> expn3 <- deriv3(~ b0 + b1*2^(-x/th), c("b0","b1","th"),

function(x, b0, b1, th) {})

> wtloss.he <- nls(Weight ~ expn3(Days, b0, b1, th),

wtloss, start = coef(wtloss.gr))

> rms.curv(wtloss.he)

18

8.5 Profiles 19

Parameter effects: c^theta x sqrt(F) = 0.1679

Intrinsic: c^iota x sqrt(F) = 0.0101

Although this result is acceptable, a lower parameter­effects curvature would be

preferable (see Exercise 8.4 for a way to achieve this).

Profile traces

Profiles for non­linear regression models are discussed in Sections 8.4 and 8.5.

To calculate a profile log­likelihood we hold one parameter fixed and maximize

the log­likelihood with respect to all others. If we think of the fixed parameter as

the independent variable, the profile log­likelihood is a function of it, but so too

are the conditional maximum likelihood estimates of all other parameters. These

conditional MLEs as a function of the fixed parameter we call the profile traces.

The generic function profile generates profile objects from non­linear

model objects by varying each parameter up and down from its maximum likeli­

hood value until a suitable cutoff value for the log­likelihood below the maximum

is reached on either side. The profile object contains both the profile likelihoods

and the traces for each parameter.

The standard S-PLUS library contains profile methods for nls and ms

objects and plot methods for the objects that shows a particular view of the

profile likelihood. The quantity actually plotted is the non­linear t ­statistic,

τ (θ) , defined in equation (8.5) on page 251.1

In the MASS library2 there is a simple profile method for glm objects as

well as (we claim) a better plot method for the objects produced, as well as a

pairs method for displaying the profile traces.

We will illustrate the tools available for investigating profiles and profile traces

using a familiar example: the Stormer data and its non­linear regression model

introduced on page 253. The non­linear regression model is written as

T =
β1v

w − β2
+ ε

Note that this can also be written in the form

T =
1

γ1z1 + γ1z2
+ ε

where, say, γ1 = 1/β1 , z1 = w/v , γ2 = 1/β2 and z2 = −1/v . So the model

may also be fitted as a generalized linear model, as noted in Exercise 8.3. It

is interesting to see how much this non­linear transformation of the parameters

affects the parameter effects curvature.

First consider fitting the model as a non­linear regression and displaying both

views of the profile object.

1 Note that this is not a true profile likelihood unless the variance is known.
2 From some as yet unpublished (but widely used) work of D. M. Bates and WNV.

8.5 Profiles 20

-4

-2

0

2

4

28 30 32

b1

0 1 2 3 4

b2

ta
u

Time ~ (b1 * Viscosity)/(Wt - b2)

b1

28

30

32

28 30 32 0 1 2 3 4

28

30

32

28 30 32

0

1

2

3

4

b2

0 1 2 3 4

0

1

2

3

4

Figure 8.9: Profile and pairs­profile plots for the Stormer data example fitted as a non­linear

regression model.

> library(MASS, first = T)

> storm.nls <- nls(Time ~ b1*Viscosity/(Wt - b2), stormer,

start = c(b1=28, b2=2.2), trace = T)

1443.01 : 28 2.2

825.052 : 29.4012 2.21929

825.051 : 29.4013 2.21827

> storm.nls.pro <- profile(storm.nls)

> plot(storm.nls.pro)

> pairs(storm.nls.pro)

The results are shown in Figure 8.9. The straight lines in the first display reassure

us that the profile likelihood is very nearly quadratic in those directions so the

large­sample approximations are probably safe. With the pairs­profile plots note

that again the straightness of the lines indicate no serious bivariate departure from

normality of the estimates but the narrow angle between them suggests a very high

correlation between the estimates, which is certainly the case.

Another interpretation of the profile traces displayed in the pairs­profile plot

can be obtained by looking at Figure 8.3 on page 255. The profile traces are the

8.5 Profiles 21

-4

-2

0

2

4

.030 0.032 0.034 0.036 0.038

I(Wt/Viscosity)

0.0 0.05 0.10 0.15

I(-1/Viscosity)

ta
u

Time ~ I(Wt/Viscosity) + I(-1/Viscosity) - 1

I(Wt/Viscosity)

0.030

0.032

0.034

0.036

0.038

0.030 0.034 0.038 0.0 0.05 0.10 0.15

0.030

0.032

0.034

0.036

0.038

0.030 0.034 0.038

0.0

0.05

0.10

0.15

I(-1/Viscosity)

0.0 0.05 0.10 0.15

0.0

0.05

0.10

0.15

Figure 8.10: Profile and pairs­profile plots for the Stormer data example with the model

fitted as a GLM.

lines that would join up the points where the contours have horizontal and vertical

tangents respectively, and the fine ‘hairs’ cutting the lines in the pairs plot are an

indication of those tangents. In this way the pairs­profile plot gives a hint of how

the bivariate region might look, though only through what would be called the

conjugate axes of the elliptical contours (if they were indeed exactly elliptical).

The software also has methods for glm objects, and after fitting the model

as a GLM the procedure is essentially identical. We will turn on the trace when

calculating profiles, though, as it shows the discrete steps taken by the algorithm

and the way in which the log­likelihood falls below its global maximum value as

it does so. (The details are omitted here.)

> storm.glm <- glm(Time ~ I(Wt/Viscosity) + I(-1/Viscosity) - 1,

quasi(link=inverse), stormer, trace = T)

....

> storm.nls.pro <- profile(storm.nls)

> storm.glm.pro <- profile(storm.glm, trace=T)

....

> plot(storm.glm.pro)

> pairs(storm.glm.pro)

8.5 Profiles 22

The results are shown in Figure 8.10. The non­linear t ­statistics plots are again

quite straight indicating that even though this is a highly non­linear transformation

of the original parameters, for these, too, the assumption of marginal normality

of the estimates is probably quite reasonable, leading to symmetric confidence

intervals.

Not surprisingly the pairs plot shows us the high correlation between these

functions of the original parameters as well, though the sign has changed. Again

the lines are quite straight indicating no serious departure from bivariate normality

of the estimates, but only in so far as this kind of diagram can indicate.

Curvature questions can be important for GLMs, as we pointed out on page 225,

so the glm method of profile can be a useful exploratory tool.

Chapter 9

Smooth Regression

9.1 Additive models and scatterplot smoothers

Scatterplot smoothing

The methods expounded by Wand & Jones (1995) are implemented in Wand’s

library KernSmooth 1. We can apply their local polynomial smoother to the

simulated motorcycle example by

library(KernSmooth) # ksmooth on Windows < 6.0

attach(mcycle)

plot(times, accel)

lines(locpoly(times, accel, bandwidth=dpill(times,accel)))

lines(locpoly(times, accel, bandwidth=dpill(times,accel),

degree=2), lty=3)

detach()

This applies first a local linear and then a local quadratic fit. The bandwidth is

chosen by the method of Ruppert et al. (1995).

Fitting additive models

Other ways to fit additive models in S-PLUS are available from the contributions

of users. These are generally more ambitious than gam and step.gam in their

choice of terms and the degree of smoothness of each term, and by relying heavily

on compiled code can be very substantially faster. All of these methods can fit to

multiple responses (by using the total sum of squares as the fit criterion).

Library mda of Hastie and Tibshirani provides functions bruto and mars .

The method BRUTO is described in Hastie & Tibshirani (1990); it fits additive

models with smooth functions selected by smoothing splines and will choose

between a smooth function, a linear term or omitting the variable altogether.

The function mars implements the MARS method of Friedman (1991) briefly

mentioned on page 341 of the book. By default this is an additive method, fitting

1 ksmooth on Windows. The current Unix sources are at

http://www.biostat.harvard.edu/~mwand

23

http://www.biostat.harvard.edu/~mwand

9.1 Additive models and scatterplot smoothers 24

••••• ••• •••• •••••
• •••

•
••
•
•

•

•
•

••

•

••

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•••
•

•

•

•

•

•
•
•

•

•
•

• •
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•
•

•

•
•

•

•

•

•

•
• •

•

•

•

•

•

•

•

••

•

•

•

•
•
•

•
•

•

•

•

•

•

•

••

• •

•

• •

•

•

•

•

•

•

•

times

a
c
c
e
l

10 20 30 40 50

-1
0
0

-5
0

0
5
0

Figure 9.9: Smooths by locpoly of the mcycle data. The solid line is a locally linear

fit and the dashed line a locally quadratic one.

splines of order 1 (piecewise linear functions) to each variable; again the number

of pieces is selected by the program so that variables can be entered linearly,

non­linearly or not at all.

The library polymars of Kooperberg and O’Connor implements a restricted

form of MARS (for example, allowing only pairwise interactions) suggested by

Kooperberg et al. (1997).

An example: the cpus data

We consider BRUTO and MARS models. These need matrices (rather than

formulae and data frames) as inputs.

Xin <- as.matrix(cpus0[samp,1:6])

library(mda)

test2 <- function(fit) {

Xp <- as.matrix(cpus0[-samp,1:6])

sqrt(sum((log10(cpus0[-samp, "perf"]) -

predict(fit, Xp))^2)/109)

}

cpus.bruto <- bruto(Xin, log10(cpus0[samp,7]))

test2(cpus.bruto)

[1] 0.21336

cpus.bruto$type

[1] excluded smooth linear smooth smooth linear

cpus.bruto$df

syct mmin mmax cach chmin chmax

0 1.5191 1 1.0578 1.1698 1

examine the fitted functions

par(mfrow=c(3,2))

Xp <- matrix(sapply(cpus0[samp, 1:6], mean), 100, 6, byrow=T)

for(i in 1:6) {

9.1 Additive models and scatterplot smoothers 25

xr <- sapply(cpus0, range)

Xp1 <- Xp; Xp1[,i] <- seq(xr[1,i], xr[2,i], len=100)

Xf <- predict(cpus.bruto, Xp1)

plot(Xp1[,i], Xf, xlab=names(cpus0)[i], ylab="", type="l")

}

The result (not shown) indicates that the non­linear terms have a very slight

curvature, as might be expected from the equivalent degrees of freedom that are

reported.

We can use mars to fit a piecewise linear model with additive terms.

cpus.mars <- mars(Xin, log10(cpus0[samp,7]))

showcuts <- function(obj)

{

tmp <- obj$cuts[obj$sel,]

dimnames(tmp) <- list(NULL, dimnames(Xin)[[2]])

tmp

}

> showcuts(cpus.mars)

syct mmin mmax cach chmin chmax

[1,] 0 0.0000 0.0000 0 0 0

[2,] 0 0.0000 3.6021 0 0 0

[3,] 0 0.0000 3.6021 0 0 0

[4,] 0 3.1761 0.0000 0 0 0

[5,] 0 0.0000 0.0000 0 8 0

[6,] 0 0.0000 0.0000 0 0 0

> test2(cpus.mars)

[1] 0.21366

examine the fitted functions

Xp <- matrix(sapply(cpus0[samp, 1:6], mean), 100, 6, byrow=T)

for(i in 1:6) {

xr <- sapply(cpus0, range)

Xp1 <- Xp; Xp1[,i] <- seq(xr[1,i], xr[2,i], len=100)

Xf <- predict(cpus.mars, Xp1)

plot(Xp1[,i], Xf, xlab=names(cpus0)[i], ylab="", type="l")

}

> cpus.mars2 <- mars(Xin, log10(cpus0[samp,7]), degree=2)

> showcuts(cpus.mars2)

syct mmin mmax cach chmin chmax

[1,] 0 0.0000 0.0000 0 0 0

[2,] 0 0.0000 3.6021 0 0 0

[3,] 0 1.9823 3.6021 0 0 0

[4,] 0 0.0000 0.0000 16 8 0

[5,] 0 0.0000 0.0000 0 0 0

> test2(cpus.mars2)

[1] 0.21495

> cpus.mars6 <- mars(Xin, log10(cpus0[samp,7]), degree=6)

> showcuts(cpus.mars6)

syct mmin mmax cach chmin chmax

[1,] 0.0000 0.0000 0.0000 0 0 0

9.1 Additive models and scatterplot smoothers 26

syct
1.5 2.0 2.5 3.0

1
.4

1
.6

1
.8

2
.0

2
.2

mmin
2.0 2.5 3.0 3.5 4.0 4.5

1
.8

1
.9

2
.0

2
.1

mmax
2.0 2.5 3.0 3.5 4.0 4.5

1
.0

1
.5

2
.0

cach
0 50 100 150 200 250

1
.8

1
.9

2
.0

2
.1

2
.2

2
.3

chmin
0 10 20 30 40 501

.6
0

1
.6

5
1

.7
0

1
.7

5
1

.8
0

1
.8

5

chmax
0 50 100 150

1
.4

1
.6

1
.8

2
.0

2
.2

Figure 9.10: Plots of the additive functions used by cpus.mars .

[2,] 0.0000 1.9823 3.6021 0 0 0

[3,] 0.0000 0.0000 0.0000 16 8 0

[4,] 0.0000 0.0000 0.0000 16 8 0

[5,] 0.0000 0.0000 3.6990 0 8 0

[6,] 2.3979 0.0000 0.0000 16 8 0

[7,] 2.3979 0.0000 3.6990 16 8 0

[8,] 0.0000 0.0000 0.0000 0 0 0

> test2(cpus.mars6)

[1] 0.20604

Allowing pairwise interaction terms (by degree=2) or allowing arbitrary inter­

actions make little difference to the effectiveness of the predictions.

Local likelihood models

Local likelihood provides a different way to extend models such as GLMs to

use smooth functions of the covariates. In the local likelihood approach the

prediction at x is made by fitting a fully parametric model to the observations

in a neighbourhood of x . More formally, a weighted likelihood is used, where

the weight for observation i is a decreasing function of the ‘distance’ of xi from

x . (We have already seen this approach for density estimation.) Note that in this

approach we are compelled to have predictions which are a smooth function of all

the covariates jointly and so it is only suitable for a small number of covariates,

9.1 Additive models and scatterplot smoothers 27

age

P
r{

lo
w

}

15 20 25 30 35 40 45

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

age

lw
t

15 20 25 30 35 40 45

1
0

0
1

5
0

2
0

0
2

5
0

0.1

0.10.20.30.40.5

o

o

o oo

o
o

o

o

o

o

o

o

o
oo

oo o o

o

o

oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

oo

o

o

o
oo

o

o
o o

o

o

o o

o

o
o

o

o

o

o

o

o

o

oo

o

o

o
o

o

o

o

o

o

o
oo

o

o

o

o
oo

o

o

o o

o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

oo
o

o

o

o o

o

o o

o

o

o
o

oo

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o o

o

o
o

o

o

o

o

o
o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

Figure 9.11: Probability of low birthweight in dataset birthwt . Left: Against mother’s

age, by sm.logit , with pointwise confidence intervals shown by dashed lines. Right:

Against mother’s age and last weight, by locfit .

usually not more than two. In principle the computational load will be daunting,

but this is reduced (as in loess) by evaluating the prediction at a judiciously

chosen set of points and interpolating.

The library sm 2 of Bowman & Azzalini (1997) implements this approach

for a single covariate in functions sm.logit (a binomial log­linear model) and

sm.poisson (a Poisson log­linear model). For example, we can consider the

effect of the mother’s age on the probability of a low birthweight in the dataset

birthwt by

library(sm)

attach(birthwt)

sm.logit(age, low, h=5, display="se")

detach()

Here the bandwidth h is the standard deviation of the Gaussian kernel used.

Loader’s library locfit provides a function locfit with much greater

flexibility. It can fit Gaussian, binomial, Poisson, gamma and negative binomial

GLMs with identity, log, logit, inverse and square root links and one or more (in

practice, two or three) covariates. We can try this for the joint response to age

and lwt in birthwt .

library(locfit, first=T)

bwt.lf <- locfit(low ~ age+lwt, data=birthwt, family="binomial",

deg=1, scale=0, alpha=c(0,5))

plot(bwt.lf, get.data=T)

Note that the use of scale=0 is essential as in density estimation. We chose

a local linear fit as the data are few and quadratic fitting (the default) has little

theoretical advantage over linear fitting.

As a second example, consider the dataset Pima.tr of diabetes on 200 Pima

Indians. Previous studies (Wahba et al., 1995; Ripley, 1996) have suggested that

2 available from http://www.stats.gla.ac.uk/~adrian/sm and

http://www.stat.unipd.it/dip/homes/azzalini/SW/Splus/sm.

http://www.stats.gla.ac.uk/~adrian/sm
http://www.stat.unipd.it/dip/homes/azzalini/SW/Splus/sm

9.4 Neural Networks 28

glu

b
m

i

60 80 100 120 140 160 180 200

2
0

2
5

3
0

3
5

4
0

4
5

0.2

0.2

0.4

0.6
0.6

0.8o

o

o

o

o

o
o

o

o

o o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

oo

o

o

o

o

o o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o
o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o o

o
o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

oo

o
o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o
o

o
o

60
80 100 120 140 160180

glu20

25

30

35

40

45

bmi

 0
0
.2

0
.4

0
.6

0
.8

1
I(

ty
p
e
 =

=
 "

Y
e
s
")

Figure 9.12: Plots of the probability surface fitted to the Pima.tr dataset by locfit

using a local logistic regression.

the two continuous variables glu (plasma glucose level) and bmi (body mass

index) have the most discriminatory effect. We consider a local logistic regression

on these two variables

pima.lf <- locfit(I(type=="Yes") ~ glu + bmi, data=Pima.tr,

family="binomial", scale=0, alpha=c(0,5))

par(mfrow=c(1,2), pty="s")

plot(pima.lf, get.data=T); plot(pima.lf, type="persp")

shown in Figure 9.12.

9.4 Neural Networks

Internal details of nnet.default

The C code on which nnet.default is based is quite general and can in fact be

used for networks with an arbitrary pattern of feed­forwardconnections. Internally

the nodes are numbered so that all connections are from lower to higher numbers;

the bias unit has number 0, the inputs numbers 1 to m , say, and the output units are

the highest­numbered units. The code in summary.nnet shows how to ‘unpack’

the connections. These are stored in vectors, so the weights are stored in a single

vector. The connections are sorted by their destination so that all connections to

unit i precede those to unit i + 1 . The vector conn gives the source unit, and

nconn is an index vector for the first connection to that destination. An example

will make this clearer:

> rock.nn$nconn

[1] 0 0 0 0 0 4 8 12 19

> rock.nn$conn

[1] 0 1 2 3 0 1 2 3 0 1 2 3 0 4 5 6 1 2 3

9.4 Neural Networks 29

> summary(rock.nn)

a 3-3-1 network with 19 weights

options were - skip-layer connections linear output units

decay=0.001

b->h1 i1->h1 i2->h1 i3->h1

4.47 -11.16 15.31 -8.78

b->h2 i1->h2 i2->h2 i3->h2

9.15 -14.68 18.45 -22.93

b->h3 i1->h3 i2->h3 i3->h3

1.22 -9.80 7.10 -3.77

b->o h1->o h2->o h3->o i1->o i2->o i3->o

8.78 -16.06 8.63 9.66 -1.99 -4.15 1.65

Unit 0 is the bias ("b"), units 1 to 3 are the inputs, 4 to 6 the hidden units and 7 the

output. The vectors conn and nconn follow the C indexing convention, starting

with zero. Thus unit h1 (4) has connections from units 0, 1, 2 and 3. The vector

nconn has a final element giving the total number of connections.

These connection vectors are normally constructed by the function add.net ;

this automatically adds a connection to a bias unit whenever a unit gets its first

incoming connection.

Chapter 10

Tree­based Methods

10.4 Tree­structured survival analysis

Survival data are usually continuous, but are characterized by the possibility

of censored observations. There have been various approaches to extending

regression trees to survival data in which the prediction at each leaf is a survival

distribution.

The deviance approach needs a common survival distribution with just one

parameter (say the mean) varying between nodes. As the survival distribution

has otherwise to be known completely, we would need to take, for example, a

Weibull distribution with a specific α . Thus this approach has most often been

used with an exponential distribution (it goes back at least to Ciampi et al., 1987

and is expounded in detail by Davis & Anderson, 1989).

Another family of approaches has been via impurity indices, which we recall

measure the decrease in impurity on splitting the node under consideration. This

can be replaced by a ‘goodness­of­split’ criterion measuring the difference in

survival distribution in the two candidate daughter nodes. In regression trees

the reduction in sum of squares can be seen as a goodness­of­split criterion, but a

more natural candidate might be the unpooled (Welch) t ­test between the samples

passed to the two daughters. Given this change of viewpoint we can replace the

t ­test by a test which takes censoring into account and is perhaps more appropriate

for the typical shape of survival curves. The split selected at a node is then the

candidate split with the most significant test of difference.

Library rpart

Library rpart has two further options selected by its method argument:

"poisson" in which the response is the number of events Ni in a specified

duration ti of observation. Deviance­based criteria are used to splitting

and for pruning, assuming a Poisson­distributed number of events with

mean λtti where the rate depends on the node t . The response is specified

as either a two­column matrix of (Ni, ti) or just a vector of Ni (in which

case the time intervals are taken to be of unit length for all observations).

30

10.4 Tree­structured survival analysis 31

•

•

•
•

•
•

•
•

•

cp

X
-v

a
l
R

e
la

ti
v
e

 E
rr

o
r

0
.6

0
.8

1
.0

1
.2

Inf 0.13 0.056 0.035 0.026 0.02 0.018 0.014 0.012

1 2 3 4 6 8 9 10 11

size of tree

Figure 10.12: Plot by plotcp of the rpart object VA.rp .

"exp" A survival tree in which the response must be a survival object, normally

generated by Surv . This is a variant of the "poisson" method. Suppose

that an exponential distribution was appropriate for the survival times. Then

by the duality between views of a Poisson process the observed number of

events (0 or 1) in the duration to censoring or death can be taken to be Poisson

distributed, and the "poisson" method will give the correct likelihood. In

general the exponential distribution is not appropriate, but it can perhaps

be made so by non­linearly transforming time by the cumulative hazard

function, and this is done estimating the cumulative hazard from the data1.

This gives a proportional hazards model with the baseline hazard fixed as

the estimated marginal hazard.

We use the VA cancer dataset cancer.vet considered in Chapter 12 to

illustrate a survival example.

> set.seed(123)

> VA.rp <- rpart(Surv(stime, status) ~ ., data=VA, minsplit=10)

> plotcp(VA.rp)

> printcp(VA.rp)

....

Root node error: 158/137 = 1.15

CP nsplit rel error xerror xstd

1 0.1923 0 1.000 1.014 0.1034

2 0.0829 1 0.808 0.830 0.1071

1 Note that this transformation is of the marginal distribution of survival times, although an expo­

nential distribution would normally be assumed for the distribution conditional on the covariates. This

is the same criticism as we see for the HARE / HEFT methodology in Chapter 12 of these complements.

RPart follows LeBlanc & Crowley (1992) in this ‘one­step’ approach.

10.4 Tree­structured survival analysis 32

3 0.0380 2 0.725 0.766 0.1067

4 0.0319 3 0.687 0.787 0.1102

5 0.0210 5 0.623 0.820 0.1045

6 0.0189 7 0.581 0.848 0.1060

7 0.0164 8 0.562 0.828 0.0982

8 0.0123 9 0.546 0.809 0.0966

9 0.0110 10 0.533 0.825 0.0999

> print(VA.rp, cp=0.09)

node), split, n, deviance, yval

* denotes terminal node

1) root 137 160 1.0

2) Karn>45 99 81 0.8 *

3) Karn<45 38 46 2.5 *

Here yval is the relative hazard rate for that node; we have a proportional hazards

model and this is the estimated proportional factor.

In our experience it is common for tree­based methods to find little structure in

cancer prognosis datasets: what structure there is depends on subtle interactions

between covariates.

Library tssa

This approach is outlined by Segal (1988), who considers a family of statistics in­

troduced by Tarone & Ware (1977) which includes the log­rank (Mantel­Haenszel)

and Gehan tests and Prentice’s generalization of the Wilcoxon test. His approach

is implemented in the tssa library of Segal and Wager. This uses tssa as the

main function, and generates objects of class "tssa" which inherits from class

"tree" . A member of the family of test statistics is selected by the argument

choice . Splitting continues until there are maxnodes nodes (default 50) or no

leaf has as many as minbuc cases (default 30) and a proportion at least propn

(default 15%) of uncensored cases.

We consider the VA lung cancer data of Section 12.4. Since tssa cannot

currently handle multi­level factors, we have to omit the variable cell .

> library(tssa, first=T)

> VA.tssa <- tssa(stime ~ treat + age + Karn + diag.time + prior,

status, data=VA, minbuc=10)

> VA.tssa

node), split, (n, failures), km-median, split-statistic

* denotes terminal node, choice is Mantel-Haenzel

1) root (137,128) 76.5 6.67

2) Karn<45 (38,37) 19.5 2.71

4) diag.time<10.5 (28,27) 21.0 2.08

8) age<62.5 (14,13) 18.0 *

9) age>62.5 (14,14) 33.0 *

10.4 Tree­structured survival analysis 33

5) diag.time>10.5 (10,10) 8.0 *

3) Karn>45 (99,91) 110.5 2.74

6) Karn<82.5 (90,84) 104.0 2.22

12) age<67.5 (74,69) 111.5 1.34

24) prior<1.5 (50,48) 104.0 1.55

48) age<59 (24,23) 110.0 1.22

96) age<46.5 (13,13) 99.0 *

97) age>46.5 (11,10) 127.0 *

49) age>59 (26,25) 95.0 0.91

98) diag.time<3.5 (11,11) 91.0 *

99) diag.time>3.5 (15,14) 98.5 *

25) prior>1.5 (24,21) 139.5 1.10

50) treat<1.5 (14,13) 122.0 *

51) treat>1.5 (10,8) 145.5 *

13) age>67.5 (16,15) 72.0 *

7) Karn>82.5 (9,7) 234.5 *

> summary(VA.tssa)

Survival tree:

tssa(formula = stime ~ treat + age + Karn + diag.time + prior,

delta = status, data = VA, minbuc = 10)

Number of terminal nodes: 11

> tree.screens()

> plot(VA.tssa)

> text(VA.tssa)

> km.tssa(VA.tssa)

> close.screen(all=T)

It can be helpful to examine more than just the mean at each node; the function

km.tssa will plot the Kaplan­Meier estimates of survival curves for the two

daughters of a non­terminal node. Interactive exploration2 shows that there is

very little difference in survival between nodes at (Figure 10.13) or below node 6.

The change from a goodness­of­fit to a goodness­of­split view is not helpful

for pruning a tree. Segal (1988) replaced optimizing a measure of the fit of the

tree (as in cost­complexity pruning) with a stepwise approach.

(i) Grow a very large tree.

(ii) Assign to each non­terminal node the largest split statistic in the subtree

rooted at that node. (This can be done in a single upwards pass on the tree.)

(iii) Obtain a sequence of pruned trees by repeatedly pruning at the remaining

node(s) with the smallest assigned values.

(iv) Select one of these trees, perhaps by plotting the minimum assigned value

against tree size and selecting the tree at an ‘elbow’.

This is implemented in prune.tssa . Like snip.tree (and snip.tssa), a

value is selected by a first click (on the lower screen), and the tree pruned at that

value on the second click. For our example we can use

2 this relies on erase.screen which is broken in some versions ofS-PLUS 4.x.

10.4 Tree­structured survival analysis 34

|Karn<45

diag.time<10.5

age<62.5

Karn<82.5

age<67.5

prior<1.5

age<59

age<46.5 diag.time<3.5

treat<1.5

13 / 14 14 / 14

10 / 10

13 / 13 10 / 11
11 / 11 14 / 15

13 / 14 8 / 10

15 / 16

7 / 9

8 9

5

96 97
98 99

50 51

13

7

1

2

4

3

6

12

24

48 49

25

8 9

5

96 97
98 99

50 51

13

7

1

2

4

3

6

12

24

48 49

25

0 200 400 600 800 1000

0
.0

0
.4

0
.8

 12 13

Figure 10.13: Tree fitted by tssa to the cancer.vet dataset. The bottom screen shows

the output from km.tssa when node 6 was selected.

tree.screens()

plot(VA.tssa)

prune(VA.tssa)

close.screen(all=T)

The only clear­cut pruning point (Figure 10.14) is at a single split. There is

a function post.tssa the equivalent of (and modified from) post.tree for

tssa trees.

Library survcart

The library survcart 3 is sparsely documented, but appears to implement the

strategy of LeBlanc & Crowley (1993). Like Segal, LeBlanc & Crowley use a

goodness of split criterion for growing the tree, in this case the log­rank statistic

with some adjustment for selecting the maximal statistic over all possible splits of

continuous variables. However, the pruning strategy differs from tssa . Associate

to each non­terminal node the goodness­of­split statistic G(ℓ) , taking G to be zero

at the terminal nodes. Then LeBlanc & Crowley apply cost­complexity pruning

to the measure of fit

R(T) = −
∑

ℓ∈T

G(ℓ)

3 also known as CART SD . Not available for S-PLUS 6 as it uses obselete language features.

10.4 Tree­structured survival analysis 35

|

8 9

5

96 97
98 99

50 51

13

7

1

2

4

3

6

12

24

48 49

25

•••••
••

••

•

Number of Terminal Nodes

S
p

lit
-s

ta
ti
s
ti
c

2 4 6 8 10

1
2

3
4

5
6

4925482412
46

23

1

Figure 10.14: Tree fitted by tssa to the cancer.vet dataset. The bottom screen shows

the prune sequence from prune.tssa .

This is not a sum over cases, but as it is defined additively over branches the

standard pruning algorithm (Breiman et al., 1984; Ripley, 1996) is still justified.

(The ‘deviance’ quoted by prune.survtree is
∑

ℓG(ℓ) .) The measure of fit

can be computed on a validation set based down the optimally pruned tree sequence

(Tr) , but as it is not a measure of performance there is no justification for then

choosing the best fit; indeed R(T) decreases monotonically as the tree is grown,

since G(ℓ) > 0 . The suggestion of LeBlanc & Crowley is to choose the pruning

minimizing Rα(T) on the validation set for α ∈ [2, 4] . (LeBlanc & Crowley

also discuss using bootstrapping to bias­correct R(T) computed on the training

set prior to pruning.)

Library survcart can be very memory­hungry: it comes with an informative

demonstration that needs over 50Mb4 of virtual memory to run.

We can try our VA cancer example by

library(survcart, first=T)

VA.st <- survtree(stime ~ treat + age + Karn + diag.time +

cell + prior,

data=VA, status, fact.flag=c(F,T,T,T,F,F))

plot(prune.survtree(VA.st))

The argument fact.flag says which variables should be regarded as not factors

and included in the adjustment of the log­rank statistic for continuous variates

4 on each of S-PLUS 3.3 for Windows and S-PLUS 3.4 on Sun Solaris; over 100Mb on S-PLUS 4.0

for Windows

10.4 Tree­structured survival analysis 36

(although a factor with many levels will give rise to very many more possible

splits). The ‘deviance’ is −R(Tk) − αk(|Tk| − 1) !

We can reserve a validation set and use this for pruning by

set.seed(123); tr <- sample(nrow(VA), 90)

VA1 <- VA[tr,]; VA2 <- VA[-tr,]

VA.st1 <- update(VA.st, data=VA1)

VA.st1.pr <- prune.survtree(VA.st1, newdata=VA2,

zensor.newdata=VA2$status)

VA.st1.pr

$size:

[1] 12 11 10 9 8 5 4 3 2 1 0

$dev:

[1] 36.6986 36.0633 35.1245 24.2267 24.2514 13.5163

[7] 15.7134 15.5296 -16.7492 -8.2354 0.0000

$k:

[1] 0.000000 0.033653 0.048377 0.709060 0.733988 2.595874

[7] 2.692954 3.346168 12.984497 13.469285 19.090138

Note that the size is the number of splits, one less than the number of leaves. We

need to convert this to a split­complexity measure:

attach(VA.st1.pr)

dev <- dev + k*size

> dev - 2*size

[1] 12.6986 14.4335 15.6082 12.6082 14.1233 16.4956 18.4853

[8] 19.5681 5.2198 3.2339 0.0000

> dev - 4*size

[1] -11.3014 -7.5665 -4.3918 -5.3918 -1.8767 6.4956

[7] 10.4853 13.5681 1.2198 1.2339 0.0000

detach()

which suggests a tree with three splits

> prune(VA.st1, k=4)

1) root 90 19

2) cell:2,3 49 13

4) prior:0 40 0 *

5) prior:10 9 0 *

3) cell:1,4 41 13

6) Karn<45 8 0 *

7) Karn>45 33 0 *

Note how the selection penalty on continuous variables such as Karn reduces

their prominence.

We can explore the spread of predictions over splits in a manner similar to

km.tssa by picking values of k in

VA.st.tmp <- prune.survtree(VA.st, k=2)

plot(surv.fit(VA$stime, VA$status, factor(VA.st.tmp$where)))

10.4 Tree­structured survival analysis 37

This shows the Kaplan­Meier estimates of survival at all the leaves, and by succes­

sively reducing k we can see when the range of variation is no longer essentially

covered.

The function graph.survtree allows various aspects of the tree model to

be plotted. The following call plots the median survival by node

graph.survtree(prune(VA.st, k=3.5), VA$stime, VA$status,

xtile=0.5, interactive=F)

but it can also show the survival probability at a fixed time.

.

. .

.

.

.

. .

.

.

.

.

. .

.

time with survival-rate 0.5

0 50 100 150 200 250

1 : 137

2 : 38 3 : 99

6 : 48

12 : 26

24 : 13

48 : 5 49 : 8

25 : 13

13 : 22

7 : 51

14 : 39

28 : 5 29 : 34

15 : 12

Karn<45
Karn>45

cell:2,3
cell:1,4

treat:1
treat:2

diag.time<4.5
diag.time>4.5

Karn<65
Karn>65

age>65.5
age<65.5

age<40.5
age>40.5

Figure 10.15: Plot of median survival by graph.survtree .

Chapter 11

Multivariate Analysis and

Pattern Recognition

11.3 Correspondence analysis

Multiple correspondence analysis

Multiple correspondence analysis (MCA) is (confusingly!) a method for visual­

izing the joint properties ofp > 2 categorical variables that does not reduce to

correspondence analysis (CA) for p = 2 , although the methods are closely related

(see, for example, Gower & Hand, 1996, §10.2).

Suppose we have n observations on the p factors with ℓ total levels. Consider

G , the n × ℓ indicator matrix whose rows give the levels of each factor for each

observation. Then all the row sums are p . MCA is often (Greenacre, 1992)

defined as CA applied to the table G , that is the singular­value decomposition of

D
−1/2
r (G/

∑
ij gij)D

−1/2
c = UΛV T . Note that Dr = pI since all the row sums

are p , and
∑

ij gij = np , so this amounts to the SVD of p−1/2GD
−1/2
c /pn .1

An alternative point of view is that MCA is a principal components analysis

of the data matrix X = G(pDc)
−1/2 ; with PCA it is usual to centre the data but

it transpires that the largest singular value is one and the corresponding singular

vectors account for the means of the variables. Thus a simple plot for MCA is to

plot the first two principal components of X . It will not be appropriate to add

axes for the columns of X as the possible values are only {0, 1} , but it is usual

to add the positions of 1 on each of these axes, and label these by the factor level.

(The ‘axis’ points are plotted at the appropriate row of (pDc)
−1/2V .) The point

plotted for each observation is the vector sum of the ‘axis’ points for the levels

taken of each of the factors. Gower and Hand seem to prefer (e.g. their figure

4.2) to rescale the plotted points by p , so they are plotted at the centroid of their

levels. This is exactly the asymmetric row plot of the CA of G , apart from an

overall scale factor of p
√
n .

We can apply this to the example of Gower & Hand (1996, p. 75) by

1 Gower & Hand (1996) omit the divisor pn .

38

11.10 Factor analysis 39

farms.mca <- mca(farms, abbrev=T) # Use levels as names

plot(farms.mca, cex=rep(0.7,2))

-0.15 -0.10 -0.05 0.0 0.05 0.10 0.15

-0
.1

0
-0

.0
5

0
.0

0
.0

5
0

.1
0

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1920

M1

M2

M4

M5

BF
HF

NM

SF

U1

U2

U3

C0

C1

C2

C3

C4

Figure 11.21: Multiple correspondence analysis plot of data on 20 farms on the Dutch

island of Terschelling. Numbers represent the farms and labels levels of moisture, grassland

usage, manure usage and type of grassland management.

Sometimes it is desired to add rows or factors to an MCA plot. Adding

rows is easy: the observations are placed at the centroid of the ‘axis’ points for

levels that are observed. Adding factors (so­called supplementary variables) is

less obvious. The ‘axis’ points are plotted at the rows of (pDc)
−1/2V . Since

UΛV T = X = G(pDc)
−1/2 , V = (pDc)

−1/2GTUΛ−1 and

(pDc)
−1/2V = (pDc)

−1GTUΛ−1

This tells us that the ‘axis’ points can be found by taking the appropriate column of

G , scaling to total 1/p and then taking inner products with the second and third

columns of UΛ−1 . This procedure can be applied to supplementary variables

and so provides a way to add them to the plot. The predict method for class

"mca" allows rows or supplementary variables to be added to an MCA plot.

11.10 Factor analysis

We return to discovering structure from the data matrix X alone, without prede­

termined groups. Factor analysis seeks linear combinations xa of the variables,

called factors, which represent underlying fundamental quantities of which the

observed variables are expressions. The examples tend to be controversial ones

such as ‘intelligence’ and ‘social deprivation’, the idea being that a small number

of factors might explain a large number of measurements in an observational study.

11.10 Factor analysis 40

This aim seems close to that of principal component analysis, but the statistical

model differs. For a single common factor f we have

x = µ + λf + u (11.6)

where λ is a vector known as the loadings and u is a vector of unique (or specific)

factors for that observational unit. To help make the model identifiable, we assume

that the factor f has mean zero and variance one, and that u has mean zero and

unknown diagonal covariance matrix Ψ . For k < p common factors we have a

vector f of common factors and a loadings matrix Λ , and

x = µ + Λf + u (11.7)

where the components of f have unit variance and are uncorrelated and f and u

are taken to be uncorrelated. Note that all the correlations amongst the variables

in x must be explained by the common factors; if we assume joint normality the

observed variables x will be conditionally independent given f .

Principal component analysis also seeks a linear subspace like Λf to explain

the data, but measures the lack of fit by the sum of squares of the ui . Since

factor analysis allows an arbitrary diagonal covariance matrix Ψ its measure of

fit of the ui depends on the problem and should be independent of the units of

measurement of the observed variables. (Changing the units of measurement of

the observations does not change the common factors if the loadings and unique

factors are re­expressed in the new units.)

Equation (11.7) and the conditions on f express the covariance matrix Σ of

the data as

Σ = ΛΛT + Ψ (11.8)

Conversely, if (11.8) holds, there is a k ­factor model of the form (11.7). Note that

the common factors GT f and loadings matrix ΛG give rise to the same model

for Σ , for any k×k orthogonal matrix G . Choosing an appropriate G is known

as choosing a rotation. All we can achieve statistically is to fit the space spanned

by the factors, so choosing a rotation is a way to choose an interpretable basis for

that space. Note that if

s = 1
2p(p + 1) − [p(k + 1) − 1

2k(k − 1)] = 1
2 (p− k)2 − 1

2 (p + k) < 0

we would expect an infinity of solutions to (11.8). This value is known as the

degrees of freedom, and comes from the number of elements in Σ minus the

number of parameters in Ψ and Λ (taking account of the rotational freedom

in Λ since only ΛΛT is determined). Thus it is usual to assume s > 0 ; for

s = 0 there may be a unique solution, no solution or an infinity of solutions

(Lawley & Maxwell, 1971, pp. 10–11).

The variances of the original variables are decomposed into two parts, the

communality h2
i =

∑
j λ

2
ij and uniqueness ψii which is thought of as the ‘noise’

variance.

Fitting the factor analysis model (11.7) is performed by the S-PLUS function

factanal . The default method (‘principal factor analysis’) dates from the days

11.10 Factor analysis 41

of limited computational power, and is not intrinsically scale invariant—it should

not be used. The preferred method is to maximize the likelihood over Λ and Ψ
assuming multivariate normality of the factors (f ,u) , which depends only on

the factor space and is scale­invariant. This likelihood can have multiple local

maxima; this possibility is usually ignored but factanal compares the fit found

from five separate starting points. It is possible that the maximum likelihood

solution will have some ψ̂ii = 0 , so the i th variable lies in the estimated factor

space. Opinions differ as to what to do in this case (sometimes known as a

Heywood case), but often it indicates a lack of data or inadequacy of the factor

analysis model. (Bartholomew, 1987, Section 3.6, discusses possible reasons and

actions.)

The data matrix X can be specified as the first argument to factanal as a

matrix or data frame, or via a formula with a null left­hand side. Let us consider

the data on Swiss cantons in matrix swiss.x .

> swiss.FA <- factanal(swiss.x, factors=2, method="mle")

Sums of squares of loadings:

Factor1 Factor2

1.9384 1.2923

....

Test of the hypothesis that 2 factors are sufficient

versus the alternative that more are required:

The chi square statistic is 2.97 on 1 degree of freedom.

The p-value is 0.0847

....

The ‘Sums of squares of loadings’ are the
∑

i λ
2
ij , which do depend on the rotation

chosen, although their sum does not. The test statistic is a likelihood ratio test2

of the fit, and may be used to help select the number of factors; here the fit is

marginal with two factors, the maximum possible with five original variables. The

summary method gives both more and less information:

> summary(swiss.FA)

Importance of factors:

Factor1 Factor2

SS loadings 1.93843 1.29230

Proportion Var 0.38769 0.25846

Cumulative Var 0.38769 0.64615

The degrees of freedom for the model is 1.

Uniquenesses:

Agriculture Examination Education Catholic Infant Mortality

0.40764 0.19008 0.20264 0.00014068 0.96878

2 with a Bartlett correction: see Bartholomew (1987, p. 46) or Lawley & Maxwell (1971, pp. 35–

36). For a Heywood case (as here) Lawley & Maxwell (1971, p. 37) suggest the number of degrees of

freedom should be increased by the number of variables with zero uniqueness.

11.10 Factor analysis 42

Loadings:

Factor1 Factor2

Agriculture -0.713 0.290

Examination 0.777 -0.453

Education 0.893

Catholic -0.161 0.987

Infant Mortality 0.170

The function loadings gives just the loadings Λ , the smallest numbers in which

have been suppressed in the print method. This output is not quite what it appears,

as the original variables have been re­scaled to unit variance (with divisor n ;

equivalently, Σ in (11.8) has been replaced by the correlation matrix), and so

the loading Λ and uniquenesses Ψ refer to the rescaled variables. Bartholomew

(1987, p. 49) refers to this as the standard or scale­invariant form of the parameters

Λ and Ψ . The component scale of the returned object relates3 the output to the

original variables.

The scale­invariant output does show that the Catholic variable is very

nearly explained by the common factors, and Infant Mortality variable is

poorly explained. In fact the uniqueness ψii for the Catholic variable is being

estimated as zero as tightening the convergence criteria shows:

> factanal(swiss.x, factors=2, method="mle",

control=list(iter.max=100, unique.tol=1e-20))$uniq

Agriculture Examination Education Catholic Infant Mortality

0.40764 0.19008 0.20264 2.8792e-09 0.96878

This confirms that the Catholic variable lies in the factor space, so we have

a Heywood case. (In this example religion is a plausible candidate for a latent

factor.) As the fit is marginal, it is instructive to consider Σ − Λ̂Λ̂T − Ψ̂ :

> A <- loadings(swiss.FA) %*% t(loadings(swiss.FA)) +

diag(swiss.FA$uniq)

> round(cor(swiss.x) - A, 3)

Agriculture Examination Education Catholic Mortality

Agriculture 0.000 -0.001 0.000 0 -0.145

Examination -0.001 0.000 0.000 0 0.001

Education 0.000 0.000 0.000 0 -0.054

Catholic 0.000 0.000 0.000 0 0.000

Mortality -0.145 0.001 -0.054 0 0.000

Most of the lack of fit comes from just one correlation.

Note that unlike principal components, common factors are not generated one

at a time, and the two­factor space will usually not contain the single­factor space.

If we ask for one common factor (the default) rather than two we obtain

> swiss.FA1 <- factanal(swiss.x, method="mle")

> swiss.FA1

....

3 This is a vector x such that original variable j was divided by xj .

11.10 Factor analysis 43

Test of the hypothesis that 1 factor is sufficient

versus the alternative that more are required:

The chi square statistic is 17.53 on 5 degrees of freedom.

The p-value is 0.00359

....

> summary(swiss.FA1)

....

Uniquenesses:

Agriculture Examination Education Catholic Infant Mortality

0.52866 2.2139e-06 0.51222 0.67184 0.987

Loadings:

Factor1

Agriculture -0.687

Examination 1.000

Education 0.698

Catholic -0.573

Infant Mortality -0.114

This time the Examination variable is fitted almost exactly. Thus the one­factor

solution is the Examination variable, and it is easy to check that this is not in

the subspace spanned by the two­factor solution.

It is hard to find examples in the literature for which a factor analysis model fits

well: many do not give a measure of fit, or have failed to optimize the likelihood

well enough and so failed to detect Heywood cases. We consider an example from

Smith & Stanley (1983) as quoted by Bartholomew (1987, pp. 61–65)4. Six tests

were give to 112 individuals, with covariance matrix

general picture blocks maze reading vocab

general 24.641 5.991 33.520 6.023 20.755 29.701

picture 5.991 6.700 18.137 1.782 4.936 7.204

blocks 33.520 18.137 149.831 19.424 31.430 50.753

maze 6.023 1.782 19.424 12.711 4.757 9.075

reading 20.755 4.936 31.430 4.757 52.604 66.762

vocab 29.701 7.204 50.753 9.075 66.762 135.292

The tests were of general intelligence, picture completion, block design, mazes,

reading comprehension and vocabulary. Both factanal and princomp can use

covariance matrices as input using a covlist argument

> ability.cl <- list(cov=ability.cov, center=rep(0,6), n.obs=112)

> ability.FA <- factanal(covlist=ability.cl, method="mle")

> ability.FA

....

The chi square statistic is 75.18 on 9 degrees of freedom.

....

> ability.FA <- update(ability.FA, factors=2)

4 Bartholomew gives both covariance and correlation matrices, but these are inconsistent. Neither

are in the original paper.

11.10 Factor analysis 44

> ability.FA

....

The chi square statistic is 6.11 on 4 degrees of freedom.

The p-value is 0.191

....

> summary(ability.FA)

....

Uniquenesses:

general picture blocks maze reading vocab

0.45523 0.58933 0.21817 0.76942 0.052463 0.33358

Loadings:

Factor1 Factor2

general 0.501 0.542

picture 0.158 0.621

blocks 0.208 0.859

maze 0.110 0.467

reading 0.957 0.179

vocab 0.785 0.222

Remember that the first variable is a composite measure: it seems that the first

factor reflects verbal ability, the second spatial reasoning. The main lack of fit is

that the correlation 0.308 between picture and maze is fitted as 0.193 .

Factor rotations

There are many criteria for selecting rotations of the factors and loadings matrix;

S-PLUS implements 12. There is an auxiliary function rotate which will rotate

the fitted Λ according to one of these criteria, which is called via the rotate

argument of factanal . The default varimax criterion is to maximize

∑

i,j

(dij − d·j)
2 where dij = λ2

ij/
∑

j λ
2
ij (11.9)

and d·j is the mean of the dij . Thus the varimax criterion maximizes the sum over

factors of the variances of the (normalized) squared loadings. The normalizing

factors are the communalities which are invariant under orthogonal rotations.

The usual aim of a rotation is to achieve ‘simple structure’, that is a pattern of

loadings which is easy to interpret with a few large and many small coefficients.

The effect of normalization is to rescale the variables so the variance explained by

the common factors is one for each variable. Normalization makes this rotation

criterion scale­invariant; this is not the case for all the criteria, but the S-PLUS

functions work with the scale­invariant loadings.

Not all the ‘rotations’ are orthogonal, for example the promax criterion seeks

factors (such as arithmetical and verbal reasoning skills in psychology) that might

be expected to be correlated. It is constructed by a least­squares fit of Λ to

Q = [|λij |4sign(λij)] , and so tends to increase in magnitude large loadings

relative to small ones. An initial value of Λ is needed, by default the varimax

solution. For our example we have

11.10 Factor analysis 45

> rotate(swiss.FA, rotation="promax")

Sums of squares of loadings:

[1] 1.9796 1.2511

....

Test of the hypothesis that 2 factors are sufficient

versus the alternative that more are required:

The chi square statistic is 2.97 on 1 degree of freedom.

The p-value is 0.0847

....

> rotate(loadings(swiss.FA), rotation="promax")

$rmat:

[,1] [,2]

Agriculture -0.720923 0.269493

Examination 0.789990 -0.431096

Education 0.892821 0.015316

Catholic -0.189352 0.981838

Infant Mortality -0.053304 0.168463

....

Note that not all rotation methods produce objects of class loadings describing

the rotated factors (the rmat component). so the print method for loadings is not

always used, as here. Some care is needed to interpret these oblique rotations, as

the rotated factors are no longer uncorrelated; for example (11.8) has to modified.

The oblimin criterion is another idea to produce oblique rotations: it min­

imizes the sum over all pairs of factors of the covariance between the squared

loadings for those factors. We can illustrate this on the intelligence test data.

> loadings(rotate(ability.FA, rotation="oblimin"))

Factor1 Factor2

general 0.379 0.513

picture 0.640

blocks 0.887

maze 0.483

reading 0.946

vocab 0.757 0.137

Component/Factor Correlations:

Factor1 Factor2

Factor1 1.000 0.356

Factor2 0.356 1.000

We can illustrate the oblique rotation graphically; see Figure 11.22.

par(pty="s")

L <- loadings(ability.FA)

eqscplot(L, xlim=c(0,1), ylim=c(0,1))

identify(L, dimnames(L)[[1]])

oblirot <- rotate(loadings(ability.FA), rotation="oblimin")

naxes <- solve(oblirot$tmat)

arrows(rep(0,2), rep(0,2), naxes[,1], naxes[,2])

11.10 Factor analysis 46

•

•

•

•

•
•

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

maze

picture

blocks

general

vocab

reading

Figure 11.22: The loadings for the intelligence test data after varimax rotation, with the

axes for the oblimin rotation shown as arrows.

It is also possible to rotate the loadings from a princomp fit, but care is

needed as these are not the usual definition (Basilevsky, 1994, p. 258) of loadings

for rotation.

Estimating the factor scores

Once factors have been fitted and perhaps interpreted, it may be of interest to

estimate the scores of future individuals on the factors. Suppose that the observed

vector of observations on a future individual is x0 , and the sample mean is

x . Bartlett suggested the use of (weighted) least squares, that is to regress the

observations on the fitted loadings treating the ui as random N(0, Ψ̂) terms and

f as the parameters, giving

f̂ = [Λ̂T Ψ̂−1Λ̂]−1Λ̂T Ψ̂−1(x0 − x) (11.10)

On the other hand, Thomson noted that if the factors are treated as random variables

(as they are in the statistical model),

E[f |x0] = ΛT [ΛΛT + Ψ]−1(x0 − µ) = ΛT Σ−1(x0 − x)

which suggests the use of

f̂ = Λ̂T Σ̂−1(x0 − x) (11.11)

The function predict.factanal uses the type of "weighted.ls" for the

Bartlett approach, and "regression" for the Thomson approach (its default).

The scores for the data are the scores component of a factanal object, of

type specified by the type argument to factanal (with Thomson scores as the

default).

11.10 Factor analysis 47

Comparisons with principal component analysis

Despite the many protestations in the literature of a fundamental difference, factor

analysis continues to be confused with principal component analysis. Selecting

the first k principal components fits the model (11.7) with criterion
∑ ‖ui‖2 =∑

i,j u
2
ij . By contrast, maximum­likelihood factor analysis uses the criterion

− traceΣ−1S + log |Σ−1S|

which matches the observed covariances (or correlations) S to Σ = ΛΛT +Ψ , and

there is no assumption that the specific factors u need be small, just uncorrelated.

Nevertheless, we often find that if the variables have been suitably scaled, for

example scaled to unit variance, factor analysis chooses Ψ so that either one (or

more) Ψ̂jj = 0 or the Ψ̂jj are fairly similar and quite small. Then either the factor

analysis solution is a subspace containing one or more of the variables or it is likely

to be rather similar to the subspace spanned by the first k principal components.

(Theoretical support is given by Gower, 1966, and Rao, 1955.) Although in theory

the interest in factor analysis is in explaining correlations not variances, this is

belied by the output of factor analysis functions (summary.factanal indicates

the importance of the factors by the proportions of variance explained) and by

the way case studies are explained. (See, for example, Sections 8.3 and 8.4 of

Reyment & Jöreskog, 1993.)

The fundamental difference is that factor analysis chooses the scaling of the

variables via Ψ̂ whereas in principal component analysis the scaling must be

chosen by the user. If the user chooses well, there may be little difference in the

factors found.

Rotation of principal components

The usual aim of both PCA and factor analysis studies is to find an interpretable

smaller set of new variables that explain the original variables. Factor rota­

tion is a very appealing way to achieve interpretability, and it can also be ap­

plied in the space of the first m principal components. The S-PLUS function

rotate.princomp applies rotation to the output of a princomp analysis. For

example, if we varimax rotate the first two principal components of ir.pca

(page 383 of the text) we find

> loadings(rotate(ir.pca, n=2))

Comp. 1 Comp. 2 Comp. 3 Comp. 4

Sepal.L 0.596 0.324 0.709 0.191

Sepal.W 0.935 -0.331

Petal.L 0.569 -0.102 -0.219 -0.786

Petal.W 0.560 -0.583 0.580

Note that only the first two components have been rotated, although all four are

displayed.

It is important to consider normalization carefully when applying rotation to

a principal component analysis, which is not scale­invariant.

11.10 Factor analysis 48

(a) Using argument cor=T to princomp ensures that the original variables are

rescaled to unit variance when the principal components (PCs) are selected.

(b) The ‘loadings’ matrix given by princomp is the orthogonal matrix V which

transforms the variables X to the principal components Z = XV , so X =
ZV T . This is not the usual loadings matrix considered for rotation in principal

component analysis (Basilevsky, 1994, p. 258), although it is sometimes used

(Jolliffe, 1986, §7.4). The loadings of a factor analysis correspond to a set of

factors of unit variance; normalizing the principal components to unit variance

corresponds to X = Z∗AT for A = V Λ and Z∗ = ZΛ−1 . where (as on

page 304) Λ denotes the diagonal matrix of singular values. The matrix A is

known as the correlation loadings. since Aij is the correlation between the

i th variable and the j th PC (provided the variables were normalized to unit

variance). Orthogonal rotations of Z∗ remain uncorrelated and correspond

to orthogonal rotations of the correlation loadings.

(c) The S-PLUS default for rotations such as varimax is to normalize the loadings

as at (11.9) so the sum of squares for each row (variable) is one. Thus

(standardized) variables which are fitted poorly by the first m PCs are given

the same weight as those which are fitted well. This seems undesirable for

PCs (Basilevsky, 1994, p. 264), so it seems preferable not to normalize.

Taking these points into account we have

> A <- loadings(ir.pca) %*% diag(ir.pca$sdev)

> dimnames(A)[[2]] <- names(ir.pca$sdev)

> B <- rotate(A[, 1:2], normalize=F)$rmat

> print.loadings(B)

Comp. 1 Comp. 2

Sepal.L 0.963

Sepal.W -0.153 0.981

Petal.L 0.924 -0.350

Petal.W 0.910 -0.342

which does have a clear interpretation as dividing the variables into two nearly

disjoint groups. It does seem that one common use of rotation in both principal

component and factor analysis is to cluster the original variables, which can of

course also be done by a cluster analysis of XT .

Chapter 12

Survival Analysis

12.1 Estimators of survival curves

In the text we concentrated on wholly non­parametric estimators of the survivor

function S and cumulative hazard H ; the resulting estimators were not smooth,

indeed discontinuous. There are analogues of density estimation for survival data

in which we seek smooth estimates of the survival function S , the density f or

(especially) the hazard function h .

Kernel­based approaches

Kernel­based approaches are described by (Wand & Jones, 1995, §6.2.3, 6.3). The

code muhaz 1 implements an approach by Mueller & Wang (1994). This does not

work at all well for small datasets such as gehan , but we can apply it to the

Australian AIDS dataset Aids by

attach(Aids2)

plot(muhaz(death-diag+0.9, status=="D"), n.est.grid=250)

This is slow (takes 30 seconds) and we had to refine the output grid to produce a

fairly smooth result. The result shown in Figure 12.13 is unconvincing.

Likelihood­based approaches

Censoring is easy to incorporate in maximum­likelihoodestimation; the likelihood

is given by (12.1) on page 368. One approach to using a smooth estimator is

to fit a very flexible parametric family and show the density / hazard / survivor

function evaluated at the maximum likelihood estimate. This is the approach of

the logspline library that we considered in Chapter 5 of these complements.

Consider the gehan dataset.

1 available on a good day for Unix from http://odin.mdacc.tmc.edu/anonftp.

49

http://odin.mdacc.tmc.edu/anonftp

12.1 Estimators of survival curves 50

Follow-up Time

H
a
z
a
rd

 R
a
te

0 500 1000 1500 2000

0
.0

0
.0

0
0
5

0
.0

0
1
0

0
.0

0
1
5

0
.0

0
2
0

Figure 12.13: Hazard function fitted to the Aids dataset by muhaz .

0 10 20 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

time

h
a

z
a

rd

0 5 10 15 20 25

0
.0

0
.1

0
0

.2
0

0
.3

0

Figure 12.14: Smooth survival (left, by logspline.fit) and hazard (right, by locfit)

fits to the gehan dataset. The solid line indicates the control group, the dashed line that

receiving 6­MP.

library(logspline) # logsplin on Windows < 6

g1 <- gehan[gehan$treat=="control",]

g2 <- gehan[gehan$treat=="6-MP",]

logspline.plot(

logspline.fit(uncensored=g1[g1$cens==1,"time"],

right=g1[g1$cens==0,"time"], lbound=0),

what="s", xlim=c(0,35))

g2.ls <- logspline.fit(uncensored=g2[g2$cens==1,"time"],

right=g2[g2$cens==0,"time"], lbound=0)

xx <- seq(0, 35, len=100)

lines(xx, 1 - plogspline(xx, g2.ls), lty=3)

As there is no function for plotting lines, we have to add the second group by

hand. Small changes allow us to plot the density or hazard function.

Once again there is a local likelihood approach (see, for example Hjort, 1997)

to hazard estimation, in which the terms are weighted by their proximity to t .

12.1 Estimators of survival curves 51

The full log­likelihood is

∑

ti:δi=1

logh(ti) −
∑

i

∫ ti

0

h(u) du

and we insert weighting terms as before. This is implemented in Loader’s library

locfit : using a locally polynomial (by default quadratic) hazard.

library(locfit)

plot(locfit(~ time, cens=1-cens, data=g1, family="hazard",

alpha=0.5, xlim=c(0, 1e10)),

xlim=c(0, 25), ylim=c(0, 0.3))

lines(locfit(~ time, cens=1-cens, data=g2, family="hazard",

alpha=0.5, xlim=c(0, 1e10)), lty=3)

The xlim=c(0, 1e10) argument sets a lower bound (only) on the support of the

density.

Both there approaches can have difficulties in the right tail of the distribution,

where uncensored observations may be rare. The right tail of a distribution fitted by

logspline.fit necessarily is exponential beyond the last observation. In HEFT

(Hazard Estimation with Flexible Tails; Kooperberg et al., 1995a). a cubic spline

model is used for the log hazard, but with two additional terms θ1 log t/(t + c)
and θ2 log(t+ c) where c is the upper quartile for the uncensored data. Then the

space of fitted hazards includes the functions

h(t) = eθ0tθ1(t+ c)θ2−θ1

which includes the Weibull family and the Pareto density

f(t) =
bcb

(t+ c)b+1

for given c . Thus there is some hope that the tail behaviour can be captured

within this parametric family. This is implemented in function heft.fit in

library heft .2 To illustrate this, let us consider the whole of the Australian AIDS

dataset Aids2 .

library(heft)

attach(Aids2)

aids.heft <- heft.fit(death-diag+0.9, status=="D")

heft.summary(aids.heft)

par(mfrow=c(2,2))

heft.plot(aids.heft, what="s", ylim=c(0,1))

heft.plot(aids.heft)

This is rather slow (20 seconds). The sharp rise at 0 of the hazard reflects the

small number of patients diagnosed at death. Note that this is the marginal hazard

and its shape need not be at all similar to the hazard fitted in a (parametric or Cox)

proportional hazards model.

2 Not ported to S-PLUS 6.0 on Windows.

12.5 Non­parametric models with covariates 52

0 500 1000 1500 2000 2500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 500 1000 1500 2000 2500

0
.0

0
.0

0
0
5

0
.0

0
1
0

0
.0

0
1
5

Figure 12.15: Survivor curve and hazard fitted to Aids by heft.fit .

12.5 Non­parametric models with covariates

There have been a number of approaches to model the effect of covariates on

survival without a parametric model. Perhaps the simplest is a localized version

of the Kaplan­Meier estimator

Ŝ(t |x) =
∏

ti6t,δi=1

[
1 − w(xi − x)∑

j∈R(ti)
w(xj − x)

]

which includes observations with weights depending on the proximity of their

covariates to x . This does not smooth the survivor function, but the function

sm.survival in library sm (Bowman & Azzalini, 1997) plots quantiles as a

function of x by smoothing the inverse of the survival curve and computing

quartiles of the smoothed fit. Following them, we can plot the median survival

time after transplantation in the Stanford heart transplant data heart by

library(sm)

attach(heart[heart$transplant==1,])

sm.survival(age+48, log10(stop - start), event, h=5, p=0.50)

detach()

This shows some evidence of a decline with age, which can also be seen in the

Cox analysis.

The local likelhood approach easily generalizes to localizing in covariate space

too: in locfit this is requested by adding covariate terms to the right­hand­side

of the formula.

library(locfit)

attach(heart[heart$transplant==1,])

td <- stop - start; Age <- age+48

plot(locfit(~ td + Age, cens=1-event, scale=0, alpha=0.5, family="hazard",

xlim=list(td=c(0,1e10)), flim=list(td=c(0,365))),

type="persp")

Gray (1996, 1994) takes a similar but less formal approach, using loess to

smooth a discretized version of the problem. This is implemented in his function

hazcov in library hazcov . First the data are grouped on the covariate values,

12.5 Non­parametric models with covariates 53

age + 48

lo
g
1
0
(s

to
p
 -

 s
ta

rt
)

20 30 40 50 60

0
1

2
3

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

o oo ooo
o oo

ooo
o

o
o oo o

o

o
o

o

o

o

Figure 12.16: Median survival time for the Stanford heart transplant data by

sm.survival .

 0

100

200

300

td

20

30

40

50

60

Age

 0
0
.0

0
0
10
.0

0
0
20
.0

0
0
3 0
.0

0
0
40
.0

0
0
50
.0

0
0
60
.0

0
0
7

d
e
n
s
it
y

500

1000

1500

Time
30

40

50

60

Age

 0
0
.0

0
5

0
.0

1
0
.0

1
5

0
.0

2
H

a
z
a
rd

 R
a
te

Figure 12.17: Smooth hazard functions (in days) as a function of age post­transplantation

in the Stanford heart­transplant study. Left: by locfit and right: by hazcov using

local scoring.

using quantiles of the marginal distributions or factor levels. Then time is divided

into intervals and the number of events and total follow­up time computed for

each interval for each covariate combination. In the default method described

in the 1996 paper, the numbers of events and the follow­up totals are separately

smoothed using loess function, and the hazard estimate formed by taking ratios.

We can try this by

library(hazcov)

heart.hc <- hazcov(Surv(td, event) ~ Age, span=0.5)

plot(heart.hc)

persp.hazcov(Hazard.Rate ~ Time*Age, heart.hc)

The loess span was chosen by guesswork. Gray describes an approximate

version of Cp to help select the span which we can use by

heart.50 <- hazcov(Surv(td, event) ~ Age, span=0.5,

12.5 Non­parametric models with covariates 54

trace.hat="exact")

for(alpha in seq(0.1, 1, 0.1))

{

heart.tmp <- hazcov(Surv(td, event) ~ Age, span=alpha,

trace.hat="exact")

print(c(alpha, wcp(heart.tmp, heart.50)))

}

This indicates a minimum at α = 0.2 , but very little difference over the range

[0.2, 0.5] .

The alternative method (Gray, 1994: ‘local scoring’ invoked by ls=T), the

counts are viewed a independent Poisson variates with mean total follow­up times

hazard, and a local log­linear Poisson GLM is fitted by IWLS, using loess to

smooth the log­hazard estimates.

heart.hc <- hazcov(Surv(td, event) ~ Age, span=0.5, ls=T)

plot(heart.hc)

persp.hazcov(Hazard.Rate ~ Time*Age, heart.hc)

Spline approaches

HARE (HAzard Rate Estimation; Kooperberg et al., 1995a) fits a linear tensor­

spline model for the log hazard function conditional on covariates, that is

log h(t |x) = η(t, x; θ) is a MARS­like function of (t, x) jointly. The fitting

procedure is similar to that for logspline and lspec : an initial set of knots is

chosen, the log­likelihood is maximized given the knots by a Newton algorithm,

and knots and terms are added and deleted in a stepwise fashion. Finally, the model

returned is that amongst those considered that maximizes a penalized likelihood

(by default with penalty logn times the number of parameters).

It remains to describe just what structures are allowed for η(t, x) . This is

a linear combination of linear spline basis functions and their pairwise products,

that is a linear combination of terms like c, t, (t− c)+, xj , (xj − c)+, txj , (txj −
c)+, xjxk, (xjxk − c)+ where the c are generic constants. The product terms

are restricted to products of simple terms already in the model, and wherever a

non­linear term occurs, that term also occurs with the non­linear term replaced by

a linear term in the same variable. Thus this is just a MARS model in the p + 1
variables restricted to pairwise interactions.

The model for the hazard function will be a proportional hazards model if

(and only if) there are no products between t and covariate terms. In any case

it has a rather restricted ability to model non­constant hazard functions, and it

is recommended to transform time to make the marginal distribution close to

exponential (with constant hazard) before applying HARE.

HARE is implemented in library hare 3 by function hare.fit . The paper

contains an analysis of the dataset cancer.vet which we can reproduce by

3 Not ported to S-PLUS 6.0 on Windows.

12.5 Non­parametric models with covariates 55

VA is constructed on page 363

> attach(VA)

> library(HARE)

> options(contrasts=c("contr.treatment", "contr.poly"))

> VAx <- model.matrix(~ treat+age+Karn+cell+prior, VA)[,-1]

> VA.hare <- hare.fit(stime, status, VAx)

> hare.summary(VA.hare)

....

the present optimal number of dimensions is 9.

penalty(AIC) was the default: BIC=log(samplesize): log(137)=4.92

dim1 dim2 beta SE Wald

Constant -9.83e+00 2.26e+00 -4.35

Co-3 linear 2.50e-01 1.08e-01 2.31

Co-5 linear 2.43e+00 4.72e-01 5.15

Co-4 linear -1.39e+00 6.35e-01 -2.20

Time 1.56e+02 Co-5 linear -1.25e-02 4.50e-03 -2.77

Time 1.56e+02 2.45e-02 5.84e-03 4.20

Co-3 2.00e+01 -2.60e-01 1.08e-01 -2.41

Co-3 linear Co-4 linear 3.87e-02 1.12e-02 3.46

Time 1.56e+02 Co-3 linear -4.33e-04 9.58e-05 -4.52

0 200 400 600 800 1000

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

HEFT-transformed

W
e
ib

u
ll-

tr
a
n
s
fo

rm
e
d

0 1 2 3 4 5

0
1

2
3

4
5

Figure 12.18: The marginal distribution of lifetime in the cancer.vet dataset. Left:

Hazard as fitted by heft.fit . Right: Time as transformed by the distribution fitted by

heft.fit and by a fitted Weibull distribution.

We found that an exponential model for the residual hazard was adequate,

but Kooperberg et al. (1995a) explore the marginal distribution by HEFT and

conclude that the time­scale could usefully be transformed. They used

library(HEFT)

VA.heft <- heft.fit(stime, status, leftlog=0)

heft.plot(VA.heft, what="h")

nstime <- -log(1 - pheft(stime, VA.heft))

In fact the transformation used is close to that from fitting a Weibull distribution

survreg(Surv(stime, status) ~ 1, data=VA)

12.5 Non­parametric models with covariates 56

....

Coefficients:

(Intercept)

4.7931

Dispersion (scale) = 1.1736

plot(sort(nstime),

-log(1-pweibull(sort(stime), 1/1.1736, exp(4.9731))),

type="l", xlab="HEFT-transformed", ylab="Weibull-transformed")

It does seem undesirable to ignore the highly significant covariate effects in making

such a transformation; this is illustrated in this example by the change in the

Weibull shape parameter from 1.1736 to 0.928 (page 389) on fitting linear terms

in the survival regression model.

Having transformed time, we can re­fit the model.

> VA.hare2 <- hare.fit(nstime, status, VAx)

hare.summary(VA.hare2)

the present optimal number of dimensions is 10.

penalty(AIC) was the default: BIC=log(samplesize): log(137)=4.92

dim1 dim2 beta SE Wald

Constant -7.06e+00 2.60e+00 -2.72

Co-3 linear 2.72e-01 1.10e-01 2.47

Co-5 linear 5.54e+00 1.15e+00 4.81

Time 2.67e+00 2.24e+00 6.22e-01 3.60

Time 2.67e+00 Co-5 linear -2.00e+00 5.40e-01 -3.70

Time 2.67e+00 Co-3 linear -4.21e-02 9.54e-03 -4.42

Co-4 linear -1.16e+00 6.53e-01 -1.77

Co-3 8.50e+01 -2.73e-01 1.17e-01 -2.33

Co-3 linear Co-4 linear 3.39e-02 1.15e-02 2.94

Co-3 2.00e+01 -2.31e-01 1.08e-01 -2.13

Allowing for the time transformation, the fitted model is quite similar. Covariate

3 is the Karnofsky score, and 4 and 5 are the contrasts of cell type adeno and small

with squamous. It is not desirable to have a variable selection process that is so

dependent on the coding of the factor covariates.

This example was used to illustrate the advantages of HARE / HEFT method­

ology by their authors, but seems rather to show up its limitations. We have

already seen that the marginal transformation of time is quite different from that

suggested for the conditional distribution. In our analysis via Cox proportional

hazards models we found support for models with interactions where the main

effects are not significant (such models will never be found by a forward selection

procedure such as used by HARE) and the suspicion of time­dependence of such

interactions (which would need a time cross covariate cross covariate interaction

which HARE excludes).

12.6 Expected survival rates 57

12.6 Expected survival rates

In medical applications we may want to compare survival rates to those of a

standard population, perhaps to standardize the experience of the population under

study. As the survival experience of the general population changes with calendar

time, this must be taken into account.

Unfortunately, there are differences between versions in how calendar time

is recorded between the versions of the survival analysis functions: the ver­

sion in S-PLUS uses modified versions of functions from the chron library

whereas survival5 uses the format of Therneau’s library date (obtainable

from statlib). Both record dates in days since 1 Jan 1960, but with class

"dates" and "date") respectively. For the S-PLUS version the easiest way

to specify or print calendar dates is the function dates ; for datasets such as

aids.dat with numerical day, month and year data the function julian may be

useful.

For a cohort study, expected survival is often added to a plot of survivor curves.

The function survexp is usually used with a formula generated by ratetable .

The optional argument times specifies a vector at which to evaluate survival,

by default for all follow times. For example, we could add expected survival for

65­year old US white males to the left plot of Figure 12.9 by

year <- dates("7/1/91")

expect <- survexp(~ ratetable(sex="male", year=year, age=65*365.25),

times = seq(0, 1400, 30), ratetable=survexp.uswhite)

lines(expect$time, expect$surv, lty=4)

but as the patients are seriously ill, the comparison is not very useful. As the

inbuilt rate tables are in units of days, all of year , age and times must be in

days.

Entry and date times can be specified as vectors, when the average survival

for the cohort is returned. For individual expected survival, we can use the same

form with cohort=F , perhaps evaluated at death time.

Some explanation of the averaging used is needed in the cohort case. We

can use the cumulative hazard function Hi(t) and survivor function Si(t) of the

exact match (on age and sex) to individual i . There are three possibilities, which

differ in the assumptions on what follow­up would have been.

1. The formula has no response. Then the function returns the average of

Si(t) . This corresponds to assuming complete follow­up.

2. The death times are given as the response. Then the Hi(t) are averaged

over the cases at risk at time t to from a cohort cumulative hazard function

and converted to a survivor function.

3. The potential censoring times for each case are given as the response, and

conditional=F , when the weights in the cohort cumulative hazard func­

tion are computed as Si(t)I(potentially in study at t) . This corresponds

to assuming follow­up until the end of the study.

12.6 Expected survival rates 58

The first is most useful for forecasting, the other two for comparing with the study

outcome. Thus to compare the survival in Figure 12.9 to matched males of the

same ages we might use

expect <- survexp(stop ~ ratetable(sex=1, year=year*365.25,

age=(age+48)*365.25), times = seq(0, 1400, 30),

ratetable = survexp.uswhite, data = heart,

subset = diff(c(id, 0)) != 0, cohort = T, conditional = T)

lines(expect$time, expect$surv, lty=4)

We do need to extract the second record corresponding to transplanted subjects to

get the correct death/censoring time for the cohort matching.

It is possible to use the fit from a coxph model in place of the inbuilt ratetables

to compare the present study to an earlier one.

Chapter 13

Time Series

13.1 Second­order summaries

Spectral analysis

The most common approach to estimating a spectral density is to use a kernel

smoother, as implemented by spectrum , but there are alternatives, including

the use of fitted high­order AR processes (page 448). One promising line is to

use some of the alternative methods of estimating a probability density function

function, since a spectral density is just a finite multiple of a pdf.

The library lspec 1 by Charles Kooperberg implements the logspline ap­

proach described in Section 5.6 of these complements. Its application to spectral

estimation is described in Kooperberg et al. (1995b); note that it is able to estimate

mixed spectra that have purely periodic components. We will illustrate this by

estimating the spectra of our running examples lh and deaths as well as the

accdeaths and nottem series.

For lh we have

> library(lspec)

> lh.ls <- lspec.fit(lh)

> lspec.summary(lh.ls)

Logspline Spectral Estimation

=============================

The fit was obtained by the command:

lspec.fit(data = lh)

A spline with 3 knots, was fitted; there were no lines in the model.

The log-likelihood of the model was 60.25 which corresponds to an

AIC value of -110.96 .

The program went though 1 updown cycles, and reached a stable

solution. Both penalty (AIC) and minmass were the default

values. For penalty this was log(n)=log(24)= 3.18 (as in BIC)

and for minmass this was 0.0329. The locations of the knots were:

1.178 2.749 3.142

> lspec.plot(lh.ls, log="y")

> lspec.plot(lh.ls, what="p")

1 This is particularly hard to port as it uses calls to ompiled code inconsistently.

59

13.7 Multiple time series 60

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

1
0
.0

5

-3 -2 -1 0 1 2 3

0
.0

0
.1

0
0
.2

0
0
.3

0

Figure 13.22: Spectral density (left) and cumulative spectral distribution function (right)

for the series lh computed by library lspec .

(Figure 13.22). Note that rather different conventions are used for the spectrum,

which is taken to run over (−π, π] rather than in cycles, and the amplitude is given

in the normal units, not decibels. The spectral density and cumulative spectrum

can be found by dlspec and plspec respectively.

deaths.ls <- lspec.fit(deaths)

lspec.plot(deaths.ls, log="y", main="deaths")

lspec.plot(deaths.ls, what="p")

accdeaths.ls <- lspec.fit(accdeaths)

lspec.plot(accdeaths.ls, log="y", main="accdeaths")

lspec.plot(accdeaths.ls, what="p")

nott.ls <- lspec.fit(window(nottem, end=c(1936,12)))

lspec.plot(nott.ls, log="y", main="nottem")

lspec.plot(nott.ls, what="p")

(Figure 13.23). Note how lspec.fit finds the discrete component at frequency

π/12 in all three cases, but is fooled by harmonics in the last two. We can

allow lspec.fit to fit more discrete components by reducing the value of its

argument minmass (whose default can be found from lspec.summary). In the

accdeaths example we can pick up all but one of the harmonics by

lspec.plot(lspec.fit(accdeaths, minmass=7000), log="y")

lspec.plot(lspec.fit(accdeaths, minmass=1000), log="y")

but reducing minmass introduces discrete components at non­harmonic frequen­

cies (Figure 13.24).

The functions clspec and rlspec compute the autocovariance (or autocor­

relation) sequence corresponding to the fitted spectrum and simulate a Gaussian

time series with the fitted spectrum respectively.

13.7 Multiple time series

The second­order time­domain properties of multiple time series were covered in

Section 13.1. The function ar will fit AR models to multiple time series, but

ARIMA fitting is confined to univariate series. Let Xt denote a multiple time

13.7 Multiple time series 61

deaths

0.0 0.5 1.0 1.5 2.0 2.5 3.0

5
0
0
0

6
0
0
0

7
0
0
0

9
0
0
0

2
0
0
0
0

•

-3 -2 -1 0 1 2 3

0
1
0
0
0
0
0

2
0
0
0
0
0

3
0
0
0
0
0

accdeaths

0.0 0.5 1.0 1.5 2.0 2.5 3.0

5
0
0
0

1
0
0
0
0

5
0
0
0
01

0
0
0
0
0

5
0
0
0
0
0

•

-3 -2 -1 0 1 2 3

0
2
0
0
0
0
0

4
0
0
0
0
0

6
0
0
0
0
0

8
0
0
0
0
0

nottem

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.5

1
.0

5
.0

•

-3 -2 -1 0 1 2 3

0
2
0

4
0

6
0

Figure 13.23: Spectral density (top) and cumulative spectral distribution function (bottom)

for the series deaths , accdeaths and nottem .

0.0 0.5 1.0 1.5 2.0 2.5 3.0

5
0
0
0

1
0
0
0
0

5
0
0
0
01

0
0
0
0
0

5
0
0
0
0
0

•

0.0 0.5 1.0 1.5 2.0 2.5 3.0

5
0
0
0

1
0
0
0
0

5
0
0
0
0
1
0
0
0
0
0

5
0
0
0
0
0

•

• •

•

0.0 0.5 1.0 1.5 2.0 2.5 3.0

5
0
0
0

1
0
0
0
0

5
0
0
0
0

1
0
0
0
0
0

5
0
0
0
0
0

•

• •
•

• • •

Figure 13.24: Spectra for nottem with minmass as (left to right) 77 000, 7000 and 1000.

13.7 Multiple time series 62

series, and ǫt a correlated sequence of identically distributed random variables.

Then a vector AR(p) process is of the form

Xt =

p∑

i

AiXt−i + ǫt

for matrices Ai . Further, the components of ǫt may be correlated, so we will

assume that this has covariance matrix Σ . Again there is a condition on the

coefficients, that

det [I −
p∑

1

Aiz
i] 6= 0 for all |z| 6 1

The parameters can be estimated by solving the multiple version of the Yule–

Walker equations (Brockwell & Davis, 1991, §11.5), and this is used by ar.yw ,

the function called by ar . (The other method, ar.burg , also handles multiple

series.)

Spectral analysis for multiple time series

The definitions of the spectral density can easily be extended to a pair of series.

The cross­covariance is expressed by

γij(t) =
1

2π

∫ π

−π

eiωt dFij(ω)

for a finite complex measure on (−π, π] , which will often have a density fij so

that

γij(t) =
1

2π

∫ π

−π

eiωtfij(ω) dω

and

fij(ω) =
∞∑

−∞

γij(t)e
−iωt

Note that since γij(t) is not necessarily symmetric, the sign of the frequency

becomes important, and fij is complex. Conventionally it is written as

cij(ω) − i qij(ω) where c is the co­spectrum and q is the quadrature spec­

trum. Alternatively we can consider the amplitude aij(ω) and phase φij(ω)
of fij(ω) . Rather than use the amplitude directly, it is usual to work with the

coherence

bij(ω) =
aij(ω)√

fii(ω)fjj (ω)

which lies between zero and one.

The cross­periodogram is

Iij(ω) =

[
n∑

s=1

e−iωsXi(s)

n∑

t=1

eiωtXj(t)

]
/
n

13.7 Multiple time series 63

frequency

s
p
e
c
tr

u
m

0 1 2 3 4 5 6

3
0

3
5

4
0

4
5

5
0

Series: mdeaths
 Smoothed Periodogram

 bandwidth= 0.173472 , 95% C.I. is (-3.68829 , 6.45504)
frequency

s
p
e
c
tr

u
m

0 1 2 3 4 5 6

2
0

2
5

3
0

3
5

4
0

Series: fdeaths
 Smoothed Periodogram

 bandwidth= 0.173472 , 95% C.I. is (-3.68829 , 6.45504)

squared coherency

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

phase spectrum

0 1 2 3 4 5 6

-3
-2

-1
0

1
2

3

Figure 13.25: Coherence and phase spectra for the two deaths series, with 95% pointwise

confidence intervals.

and is a complex quantity. It is useless as an estimator of the amplitude spectrum,

since if we define

Ji(ω) =
n∑

s=1

e−iωsXi(s)

then

|Iij(ω)|/
√
Iii(ω)Ijj(ω) = |Ji(ω)Jj(ω)∗|/|Ji(ω)| |Jj(ω)| = 1

but smoothed versions can provide sensible estimators of both the coherence and

phase.

The function spec.pgram will compute the coherence and phase spectra

given a multiple time series. The results are shown in Figure 13.25.

spectrum(mdeaths, spans=c(3,3))

spectrum(fdeaths, spans=c(3,3))

mfdeaths.spc <- spec.pgram(ts.union(mdeaths, fdeaths),

spans=c(3,3))

plot(mfdeaths.spc$freq, mfdeaths.spc$coh, type="l",

ylim=c(0,1), xlab="squared coherency", ylab="")

gg <- 2/mfdeaths.spc$df

se <- sqrt(gg/2)

coh <- sqrt(mfdeaths.spc$coh)

13.7 Multiple time series 64

lines(mfdeaths.spc$freq, (tanh(atanh(coh) + 1.96*se))^2, lty=3)

lines(mfdeaths.spc$freq, (pmax(0, tanh(atanh(coh) - 1.96*se)))^2, lty=3)

plot(mfdeaths.spc$freq, mfdeaths.spc$phase, type="l",

ylim=c(-pi, pi), xlab="phase spectrum", ylab="")

cl <- asin(pmin(0.9999, qt(0.95, 2/gg-2)*

sqrt(gg*(coh^{-2} - 1)/(2*(1-gg)))))

lines(mfdeaths.spc$freq, mfdeaths.spc$phase + cl, lty=3)

lines(mfdeaths.spc$freq, mfdeaths.spc$phase - cl, lty=3)

These confidence intervals follow Bloomfield (1976, §8.5). At the frequency of

1/year there is a strong signal common to both series, so the coherence is high

and both coherence and phase are determined very precisely. At high frequencies

there is little information, and the phase cannot be fixed at all precisely.

It is helpful to consider what happens if the series are not aligned:

mfdeaths.spc <- spec.pgram(ts.union(mdeaths, lag(fdeaths, 4)),

spans=c(3,3))

plot(mfdeaths.spc$freq, mfdeaths.spc$coh, type="l",

ylim=c(0,1), xlab="coherency", ylab="")

gg <- 2/mfdeaths.spc$df

se <- sqrt(gg/2)

coh <- sqrt(mfdeaths.spc$coh)

lines(mfdeaths.spc$freq, (tanh(atanh(coh) + 1.96*se))^2, lty=3)

lines(mfdeaths.spc$freq, (pmax(0, tanh(atanh(coh) - 1.96*se)))^2, lty=3)

phase <- (mfdeaths.spc$phase + pi)%%(2*pi) - pi

plot(mfdeaths.spc$freq, phase, type="l",

ylim=c(-pi, pi), xlab="phase spectrum", ylab="")

cl <- asin(pmin(0.9999, qt(0.95, 2/gg-2)*

sqrt(gg*(mfdeaths.spc$coh^{-2} - 1)/(2*(1-gg)))))

lines(mfdeaths.spc$freq, phase + cl, lty=3)

lines(mfdeaths.spc$freq, phase - cl, lty=3)

coherency

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

phase spectrum

0 1 2 3 4 5 6

-3
-2

-1
0

1
2

3

Figure 13.26: Coherence and phase spectra for the re­aligned deaths series, with 95%

pointwise confidence intervals.

13.8 Other time­series functions 65

The results are shown in Figure 13.26. The phase has an added component of

slope 2π ∗ 4 , since if X2(t) = X1(t − τ) ,

γ12(t) = γ11(t+ τ), f11(ω) = f11(ω)e−iτω

For more than two series we can consider all the pairwise coherence and phase

spectra, which are returned by spec.pgram .

13.8 Other time­series functions

S-PLUS has a number of time­series functions which are used less frequently and

we have not yet discussed. This section is only cursory.

Many of the other functions implement various aspects of filtering, that is

converting one times series into another while emphasising some features and

de­emphasising others. A linear filter is of the form

Yt =
∑

j

ajXt−j

which is implemented by the function filter . The coefficients are supplied, and

it is assumed that they are non­zero only for j > 0 (sides=1) or −m 6 j 6 m
(sides=2 , the default). A linear filter affects the spectrum by

fY (ω) =
∣∣∣
∑

ase
−isω

∣∣∣
2

fX (ω)

and filters are often described by aspects of the gain function |∑ ase
−isω| . Kernel

smoothers such as ksmooth are linear filters when applied to regularly­spaced

time series.

Another way to define a linear filter is recursively (as in exponential smooth­

ing), and this can be done by filter , using

Yt =
ℓ∑

s=1

asYt−s

in which case ℓ initial values must be specified by the argument init .

Converting an ARIMA process to the innovations process ǫ is one sort of

recursive filtering, implemented by the function arima.filt .

A large number of smoothing operations such as lowess can be regarded as

filters, but they are non­linear. The functions acm.filt , acm.ave and acm.smo

provide filters resistant to outliers.

Complex demodulation is a technique to extract approximately periodic com­

ponents from a time series. It is discussed in detail by Bloomfield (1976, Chapter 7)

and implemented by the function demod .

13.8 Other time­series functions 66

Some time series exhibit correlations which never decay exponentially, as they

would for an ARMA process. One way to model these phenomena is fractional

differencing (Brockwell & Davis, 1991, §13.2). Suppose we expand ∇d by a

binomial expansion:

∇d =
∞∑

j=0

Γ(j − d)

Γ(j + 1)Γ(−d)B
j

and use the right­hand side as the definition for non­integer d . This will only

make sense if the series defining ∇dXt is mean­square convergent. A fractional

ARIMA process is defined for d ∈ (−0.5, 0.5) by the assumption that ∇dXt is

an ARMA(p, q) process, so

φ(B)∇dX = θ(B)ǫ, so φ(B)X = θ(B)∇−dǫ

and we can consider it also as an ARMA(p, q) process with fractionally integrated

noise. The spectral density is of the form

f(ω) = σs

∣∣∣∣
θ(e−iω)

φ(e−iω)

∣∣∣∣
2

× |1 − e−iω|−2d

and the behaviour as ω−2d at the origin will help identify the presence of fractional

differencing.

The functions arima.fracdiff and arima.fracdiff.sim implement

fractionally­differenced ARIMA processes.

Chapter 14

Spatial Statistics

14.5 Module S+SPATIALSTATS

The first release of the S-PLUS module S+SPATIALSTATS was released in mid­

1996. That has a comprehensive manual (published as Kaluzny & Vega, 1997),

which we do not aim to duplicate, but rather to show how our examples in

Chapter 14 can be done using S+SPATIALSTATS.

The module S+SPATIALSTATS is attached and made operational by

module(spatial)

which we will assume has been done. Unfortunately the name is the same as our

library (as are some of the function names); modules take priority over libraries.

Kriging

The kriging functions use a slight extension of the model formula language. The

function loc is used to specify the two spatial coordinates of the points, which

are used to find the covariance matrix in kriging. Universal kriging is specified by

adding other terms to form a linear model. Thus we can specify the model used

in the bottom row of Figure 14.5 by

> topo.kr <- krige(z ~ loc(x, y) + x + y + x^2 + x*y + y^2,

data=topo, covfun=exp.cov, range=0.7, sill=770)

> topo.kr

....

Coefficients:

constant x y x^2 xy y^2

808.3 -12.896 -64.486 62.137 1.6332 6.3442

....

> prsurf <- predict(topo.kr, se.fit = T,

grid = list(x=c(0, 6.5, 50), y=c(0, 6.5, 50)))

> topo.plt1 <- contourplot(fit ~ x*y, data=prsurf, pretty=F,

at=seq(700, 1000, 25), aspect=1,

panel = function(...){

panel.contourplot(...)

67

14.5 Module S+SPATIALSTATS 68

points(topo)

})

> topo.plt2 <- contourplot(se.fit ~ x*y, data=prsurf, pretty=F,

at=c(20, 25), aspect=1)

> print(topo.plt1, split=c(1,1,2,1), more=T)

> print(topo.plt2, split=c(2,1,2,1))

(The sill value is explained below.) We can of course obtain a least­squares

trend surface by giving a covariance function that drops to zero immediately, for

example exp.cov with range = 0 , but there seems no simple way to obtain a

trend surface fitted by GLS. The predict method for krige objects takes either

a newdata argument or a grid argument as used here. The grid argument

must be a list with two components with names matching those given to loc

and specifying the minimum, maximum and number of points. (This is passed to

expand.grid to compute a data frame for newdata .)

Analogues of the fits shown in Figure 14.7 may be obtained by

topo.kr2 <- krige(z ~ loc(x, y) + x + y + x^2 + x*y + y^2,

data = topo, covfun = gauss.cov,

range = 1, sill = 600, nugget = 100)

topo.kr3 <- krige(z ~ loc(x, y), data = topo,

covfun = gauss.cov, range = 2, sill = 6500, nugget = 100)

Various functions are provided to fit variograms and correlograms. We start

by fitting a variogram to the original data.

topo.var <- variogram(z ~ loc(x, y), data=topo)

model.variogram(topo.var, gauss.vgram, range=2,

sill=6500, nugget=100)

The function model.variogram plots the variogram object (which may also

be plotted directly) and draws a theoretical variogram. It then prompts the user

to alter the parameters of the variogram to obtain a good fit by eye. It this

case range = 3.5 seems indicated. The parametrization is that nugget is the

increment at the origin, and sill is the change over the range of increase of the

variogram. (In geostatistical circles the sum of ‘nugget’ and ‘sill’ is called the

sill.) Thus the alph of our covariance functions is nugget/(sill + nugget) .

There are functions correlogram and covariogram which can be used in

the same way (including with model.variogram).

topo.cov <- covariogram(z ~ loc(x, y), data=topo)

model.variogram(topo.cov, gauss.cov, range=2,

sill=4000, nugget=2000)

We can now explain how we chose the the parameters of the exponential

covariance in the first plot. An object of class "krige" contains residuals, so we

can use

14.5 Module S+SPATIALSTATS 69

0

2000

4000

6000

8000

0

0 1 2 3 4

90

0 1 2 3 4

distance

g
a
m

m
a

0

500

1000

1500

0

0 1 2 3 4

90

0 1 2 3 4

distance

g
a
m

m
a

Figure 14.10: Directional variograms for the topo dataset. The top pair is for the raw

data, the bottom pair of residuals from a quadratic trend surface. The left plots are vertical

variograms, the right plots are horizontal ones. (The strip coverage is misleading, only

showing the positive part of the angular tolerance.)

topo.ls <- krige(z ~ loc(x, y) + x + y + x^2 + x*y + y^2,

data=topo, covfun=exp.cov, range=0)

topo.res <- residuals(topo.ls)

topo.var <- variogram(topo.res ~ loc(x, y), data=topo)

model.variogram(topo.var, exp.vgram, range=1, sill=1000)

This suggests a sill of about 800. The kriging predictions do not depend on the

sill, and our spatial library relies on this to work throughout with correlograms

and to fit the overall scale factor when plotting the standard errors. Knowledge of

our code allowed us to read off the value 770. It would be a good idea to repeat

the forming of the residuals, this time from the GLS trend surface. We can choose

the covariogram for the Gaussian case in the same way.

topo.var <- covariogram(topo.res ~ loc(x, y), data=topo)

model.variogram(topo.var, gauss.cov, range=1, sill=210,

nugget=90)

Spatial anisotropy

The geostatistical functions in S+SPATIALSTATS have considerable support for

studying anisotropy of smooth spatial surfaces, and to correct for geometrical

anisotropy (anisotropy which can be removed by ‘squeezing’ the plot in some

direction). The function loc has two additional parameters angle and ratio

to remove geometrical anisotropy. The functions variogram , correlogram and

14.5 Module S+SPATIALSTATS 70

covariogram all allow multiple plots for pairs of distances in angular sectors.

For example

plot(variogram(z ~ loc(x, y), data=topo, azimuth = c(0, 90),

tol.azimuth = 45), aspect=0.7, layout=c(2,1))

plot(variogram(topo.res ~ loc(x, y), data=topo,

azimuth = c(0, 90), tol.azimuth = 45),

aspect=0.7, layout=c(2,1))

They show vertical and horizontal variograms (for pairs within a tolerance of

±45◦) of the raw topo data and then the residuals from the quadratic trend

surface. (As these produce and print Trellis plots, none of the normal ways to

put two plots on one page are possible and Figure 14.10 is assembled from two

S-PLUS plots.)

Point process functions

Spatial point patterns are objects of class "spp" , with constructor function spp .

We can convert our pines.dat to a spp object by

library(spatial) # our library, for next line only.

pines <- data.frame(ppinit("pines.dat")[c("x", "y")])

pines <- spp(pines, "x", "y", bbox(c(0,9.6), c(0, 10)), drop=T)

attributes(pines)

$class:

[1] "spp" "data.frame"

$coords:

[1] "x" "y"

$boundary:

$boundary$x:

[1] 0.0 0.0 9.6 9.6

$boundary$y:

[1] 10 0 0 10

An object of class "spp" is a data frame with two attributes, "coords" declares

which columns give the spatial coordinates, and "boundary" which gives the

boundary of a polygon within which the pattern was observed. (This defaults to

the bounding rectangle aligned with the axes, but the use of that is not advisable.)

We can reproduce Figure 14.9 quite closely by

par(pty = "s", mfrow=c(2,2))

plot(pines, boundary = T)

Lhat(pines, maxdist = 5)

Lenv(pines, 25, process = "binomial", maxdist=5)

Lhat(pines, maxdist =1.5)

Lenv(pines, 100, process = "Strauss", maxdist = 1.5,

cpar = 0.2, radius = 0.7)

14.5 Module S+SPATIALSTATS 71

As this code shows, Lenv can simulate from several point process models: it

does so by calling the function make.pattern whose functionality is equivalent

to that of our functions Psim , SSI and Strauss plus certain Poisson cluster

processes.

There is no way to estimate parameters of point process models in the current

release of S+SPATIALSTATS, but it does have functions Fhat and Ghat to use

nearest neighbour methods, and function intensity to estimate the intensity

function of a heterogeneous point process. (This is closely related to bivariate

density estimation.)

References

Aitkin, M., Anderson, D., Francis, B. and Hinde, J. (1989) Statistical Modelling in GLIM.

Oxford: Oxford University Press. [12]

Atkinson, A. C. (1985) Plots, Transformations and Regression. Oxford: Oxford University

Press. [9]

Bartholomew, D. J. (1987) Latent Variable Analysis and Factor Analysis. London: Griffin.

[41, 42, 43]

Basilevsky, A. (1994) Statistical Factor Analysis and Related Methods. New York: John

Wiley and Sons. [46, 48]

Bates, D. M. and Watts, D. G. (1980) Relative curvature measures of nonlinearity (with

discussion). Journal of the Royal Statistical Society, Series B 42, 1–25. [18]

Bates, D. M. and Watts, D. G. (1988) Nonlinear Regression Analysis and Its Applications.

New York: John Wiley and Sons. [18]

Beale, E. M. L. (1960) Confidence intervals in non­linear estimation (with discussion).

Journal of the Royal Statistical Society B 22, 41–88. [18]

Bloomfield, P. (1976) Fourier Analysis of Time Series: An Introduction. New York: John

Wiley and Sons. [64, 65]

Bowman, A. and Azzalini, A. (1997) Applied Smoothing Techniques for Data Analysis:

The Kernel Approach with S­Plus Illustrations. Oxford: Oxford University Press. [27,

52]

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984) Classification and

Regression Trees. Monterey: Wadsworth and Brooks/Cole. [35]

Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods. Second Edition.

New York: Springer­Verlag. [62, 66]

Brownlee, K. A. (1965) Statistical Theory and Methodology in Science and Engineering.

Second Edition. New York: John Wiley and Sons. [8]

Ciampi, A., Chang, C.­H., Hogg, S. and McKinney, S. (1987) Recursive partitioning: A

versatile method for exploratory data analysis in biostatistics. In Biostatistics, eds I. B.

McNeil and G. J. Umphrey, pp. 23–50. New York: Reidel. [30]

Collett, D. (1991) Modelling Binary Data. London: Chapman & Hall. [12]

Cox, D. R. and Snell, E. J. (1989) The Analysis of Binary Data. Second Edition. London:

Chapman & Hall. [12]

Daniel, C. and Wood, F. S. (1980) Fitting Equations to Data. Second Edition. New York:

John Wiley and Sons. [9]

Davis, R. and Anderson, J. (1989) Exponential survival trees. Statistics in Medicine 8,

947–961. [30]

72

References 73

Emerson, J. D. and Hoaglin, D. C. (1983) Analysis of two­way tables by medians. In

Understanding Robust and Exploratory Data Analysis, eds D. C. Hoaglin, F. Mosteller

and J. W. Tukey, pp. 165–210. New York: John Wiley and Sons. [6]

Emerson, J. D. and Wong, G. Y. (1985) Resistant non­additive fits for two­way tables. In

Exploring Data Tables, Trends and Shapes, eds D. C. Hoaglin, F. Mosteller and J. W.

Tukey, pp. 67–124. New York: John Wiley and Sons. [7]

Finney, D. J. (1971) Probit analysis. Third Edition. Cambridge, England: CUP. [11, 12]

Friedman, J. H. (1991) Multivariate adaptive regression splines (with discussion). Annals

of Statistics 19, 1–141. [23]

Gower, J. C. (1966) Some distance properties of latent roots and vector methods used in

multivariate analysis. Biometrika 53, 325–338. [47]

Gower, J. C. and Hand, D. J. (1996) Biplots. London: Chapman & Hall. [38]

Gray, R. J. (1994) Hazard estimation with covariates: algorithms for di­

rect estimation, local scoring and backfitting. Technical Report 784Z,

Dana­Farber Cancer Institute, Division of Biostatistics. [Available from

ftp://farber.harvard.edu/stats/gray/784Z.ps.Z]. [52, 54]

Gray, R. J. (1996) Hazard rate regression using ordinary nonparametric regression

smoothers. J. Comp. Graph. Statist. 5, 190–207. [52]

Greenacre, M. (1992) Correspondence analysis in medical research. Statistical Methods in

Medical Research 1, 97–117. [38]

Hastie, T. J. and Tibshirani, R. J. (1990) Generalized Additive Models. London: Chapman

& Hall. [23]

Hjort, N. L. (1997) Dynamic likelihood hazard rate estimation. Biometrika 84, xxx–xxx.

[50]

Jolliffe, I. T. (1986) Principal Component Analysis. New York: Springer­Verlag. [48]

Kaluzny, S. and Vega, S. C. (1997) S+SPATIALSTATS. New York: Springer­Verlag. [67]

Kooperberg, C., Bose, S. and Stone, C. J. (1997) Polychotomous regression. Journal of the

American Statistical Association 92, 117–127. [24]

Kooperberg, C. and Stone, C. J. (1992) Logspline density estimation for censored data.

Journal of Computational and Graphical Statistics 1, 301–328. [1]

Kooperberg, C., Stone, C. J. and Truong, Y. K. (1995a) Hazard regression. J. Amer. Statist.

Assoc. 90, 78–94. [51, 54, 55]

Kooperberg, C., Stone, C. J. and Truong, Y. K. (1995b) Logspline estimation for a possible

mixed spectral distribution. Journal of Time Series Analysis 16, 359–388. [59]

Lawley, D. N. and Maxwell, A. E. (1971) Factor Analysis as a Statistical Method. Second

Edition. London: Butterworths. [40, 41]

LeBlanc, M. and Crowley, J. (1992) Relative risk trees for censored survival data. Biometrics

48, 411–425. [31]

LeBlanc, M. and Crowley, J. (1993) Survival trees by goodness of split. Journal of the

American Statistical Association 88, 457–467. [34, 35]

Loader, C. R. (1996) Local likelihood density estimation. Annals of Statistics 24, 1602–

1618. [4]

Loader, C. R. (1997) Locfit: An introduction. Statistical Computing and Graphics Newslet­

ter [Available from http://cm.bell-labs.com/stat/project/locfit]. [3, 4,

5]

ftp://farber.harvard.edu/stats/gray/784Z.ps.Z
http://cm.bell-labs.com/stat/project/locfit

References 74

Mandel, J. (1969) A method of fitting empirical surfaces to physical or chemical data.

Technometrics 11, 411–429. [7]

McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models. Second Edition.

London: Chapman & Hall. [12, 13, 14, 15]

Mosteller, F. and Tukey, J. W. (1977) Data Analysis and Regression. Reading, MA:

Addison­Wesley. [6]

Mueller, H. G. and Wang, J. L. (1994) Hazard rates estimation under random censoring

with varying kernels and bandwidths. Biometrics 50, 61–76. [49]

Rao, C. R. (1955) Estimation and tests of significance in factor analysis. Psychometrika

20, 93–111. [47]

Reyment, R. and Jöreskog, K. G. (1993) Applied Factor Analysis in the Natural Sciences.

Cambridge: Cambridge University Press. [47]

Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge: Cambridge

University Press. [27, 35]

Ruppert, D., Sheather, S. J. and Wand, M. P. (1995) An effective bandwidth selector for

local least squares regression. Journal of the American Statistical Association 90,

1257–1270. [23]

Seber, G. A. F. and Wild, C. J. (1989) Nonlinear Regression. New York: John Wiley and

Sons. [18]

Segal, M. R. (1988) Regression trees for censored data. Biometrics 44, 35–47. [32, 33,

34]

Simonoff, J. S. (1996) Smoothing Methods in Statistics. New York: Springer­Verlag. [1]

Smith, G. A. and Stanley, G. (1983) Clocking g : relating intelligence and measures of

timed performance. Intelligence 7, 353–368. [43]

Stone, C. J., Hansen, M., Kooperberg, C. and Truong, Y. K. (1997) Polynomial splines and

their tensor products in extended linear modelling. Annals of Statistics 25, 1371–1470.

[1]

Tarone, R. E. and Ware, J. (1977) On distribution­free tests for the equality of survival

distributions. Biometrika 64, 156–160. [32]

Wahba, G., Gu, C., Wang, Y. and Chappell, R. (1995) Soft classification a.k.a. risk es­

timation via penalized log likelihood and smoothing spline analysis of variance. In

The Mathematics of Generalization, ed. D. H. Wolpert, pp. 331–359. Reading, MA:

Addison­Wesley. [27]

Wand, M. P. and Jones, M. C. (1995) Kernel Smoothing. Chapman & Hall. [23, 49]

Wood, L. A. and Martin, G. M. (1964) Compressibility of natural rubber at pressures below

500 kg/cm 2 . Journal of Research National Bureau of Standards 68A, 259–268. [7]

Index

Entries in this font are names of S objects.

accdeaths, see Datasets

acm.ave, 64

acm.filt, 64

acm.smo, 64

additive models, 22

addterm, 13

Aids, see Datasets

anova.glm, 13

ar, 59, 61

ar.burg, 61

ar.yw, 61

ARIMA models

filtering by, 64

fractional, 65

arima.filt, 64

arima.fracdiff, 65

arima.fracdiff.sim, 65

birthwt, see Datasets

bruto, 22, 23

cancer.vet, see Datasets

clspec, 59

co­spectrum, 61

coherence, 61

confidence intervals for, 63

communality, 39, 43

complex demodulation, 64

correlogram, 67

correlogram, 67, 68

correspondence analysis, 37

multiple, 37

covariogram, 67, 69

coxph, 57

cross­periodogram, 61

Datasets

accdeaths, 58–60

Aids, 48, 49, 51

Aids2, 50

birthwt, 26

cancer.vet, 30, 33, 34, 53, 54

deaths, 58, 60

galaxies, 2–4

gehan, 48, 49

geyser, 1, 5

heart, 51, 56

lh, 58, 59

mcycle, 22, 23

nottem, 60

Pima, 26

quine, 15

stack.loss, 7

stack.x, 7

swiss.x, 40

topo, 66, 68, 69

dates, 56

deaths, see Datasets

demod, 64

density estimation

local polynomial, 3, 4

logspline, 1–3

digamma function, 14

dispersion parameter, 11, 14

dlogspline, 2

dlspec, 59

dropterm, 13

erase.screen, 32

exchangeable trials, 13

expand.grid, 67

expected survival, 56–57

factanal, 39, 42, 43

factor analysis, 38–46

rotation, 39, 43

scores, 45

Fhat, 70

filter, 64

75

Index 76

galaxies, see Datasets

gamma family, 14

gehan, see Datasets

generalized linear models

gamma family, 14

geyser, see Datasets

Ghat, 70

glm.dispersion, 15

glm.shape, 15

graph.survtree, 36

hare.fit, 53

hazcov, 51, 52

heart, see Datasets

heft.fit, 50, 51, 54

Heywood case, 40

julian, 56

km.tssa, 32, 33, 35

krige, 66

kriging, 66

ksmooth, 64

Lenv, 70

lh, see Datasets

library

chron, 56

date, 56

hare, 53

hazcov, 51

heft, 50

KernSmooth, 3, 22

ksmooth, 3, 22

locfit, 4, 26, 50

logspline, 1, 48

lspec, 58, 59

MASS, 14, 15, 18

mda, 22

muhaz, 48

polymars, 23

rpart, 29

sm, 26, 51

survcart, 33, 34

tssa, 31

loadings, 39–41, 43, 44, 47

correlation, 47

rotation of, 43

loadings, 41, 44

loc, 66, 68

locfit, 4, 5, 26, 27, 49–52

locpoly, 3, 23

loess, 9, 10, 26, 51

logspline.fit, 1, 3, 49, 50

logspline.plot, 2

logspline.summary, 3

lowess, 64

lspec.fit, 58, 59

lspec.plot, 58

lspec.summary, 59

mars, 22, 24

mca, 37

mcycle, see Datasets

median

polish, 6, 7

model formulae, 66

in survival analysis, 56

model.variogram, 67

muhaz, 49

neural networks, 27

nnet.default, 27

nottem, see Datasets

oblimin rotation, 44

over­dispersion, 11

periodogram

cross­, 61

Pima, see Datasets

plogspline, 2

plotcp, 30

plspec, 59

point processes, 69

polish, median, 6, 7

post.tssa, 33

predict, 67

predict.factanal, 45

predict.glm, 14

principal component analysis, 39

princomp, 42, 46, 47

profile, 18, 21

promax rotation, 43

prune.survtree, 34

prune.tssa, 32, 34

qlogspline, 2

quadrature spectrum, 61

rlm, 9

Index 77

rlspec, 59

rms.curv, 17

rotate, 43

rotate.princomp, 46

rotation

in principal components, 46

rotation of loadings, 39, 43

oblimin, 44

promax, 43

varimax, 43

S+SPATIALSTATS, 66–69

scatterplot smoothers, 22

sm.logit, 26

sm.poisson, 26

sm.survival, 51, 52

spec.pgram, 64

spectral analysis, 58, 59

multiple series, 61

spectrum

co­, 61

quadrature, 61

spectrum, 58

splines, 1–3, 22, 58, 59

spp, 69

statlib, 56

summary.glm, 14, 15

Surv, 30

survexp, 56

survival

expected rates, 56–57

survival analysis

tree­structured, 29, 31–34

swiss, see Datasets

time series

complex demodulation, 64

filtering, 64

multiple, 59–64

spectral analysis, 58, 59

topo, see Datasets

trees, 29

in survival analysis, 29–34

pruning, 32, 33

tssa, 31, 33, 34

two­way layout, 6

twoway, 7

uniqueness, 39

Unix, i, 3, 22, 48

VA, see Datasets, cancer.vet

varimax rotation, 43

variogram, 67

variogram, 68

Windows, i, 1, 3, 22, 34, 50, 53

Yule–Walker equations, 61

	Introduction
	Contents
	Distributions and Data Summaries
	Density estimation

	Linear Statistical Models
	Robust and resistant regression

	Generalized Linear Models
	Over-dispersion
	Gamma models

	Non-linear Models
	Profiles

	Smooth Regression
	Additive models and scatterplot smoothers
	Neural Networks

	Tree-based Methods
	Tree-structured survival analysis

	Multivariate Analysis and Pattern Recognition
	Correspondence analysis
	Factor analysis

	Survival Analysis
	Estimators of survival curves
	Non-parametric models with covariates
	Expected survival rates

	Time Series
	Second-order summaries
	Multiple time series
	Other time-series functions

	Spatial Statistics
	Module S+SpatialStats

	References
	Index

