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CHAPTER 1

INTRODUCTION

Mathematics is a universal tool in the physical sciences, and

much of the insight gained in other fields, especially in systems

engineering, is directly applicable to hydrology (Dawdy, 1969).

Since Modern Control and Estimation Theory have been applied success-

fully to aerospace engineering problems (i.e., satellite tracking,

orbit determination, space navigation, etc...) in the last two

decades, and there exist many similarities between satellite

tracking problems and the identification of unknown parameters of

hydrologic processes (i.e., the models are not known precisely; the

system under study is stochastic and highly non-linear; also, there

is noise in the observations), an attempt to use this new approach

for the study of hydrologic systems is worthwhile to be investigated.

Characteristics of Hydrologic Systems

A hydrologic system may be defined as an interconnection of

physical elements which are related to water in its natural state.

The essential feature of a hydrologic system lies in its role in

generating outputs (i.e., runoff,...) from inputs (i.e., rainfall,

snowmelt, temperature,...), or in interrelating inputs and outputs.

The stochastic nature of the inputs and outputs of hydrologic

systems has been discussed by Yevjevich (1971).

Hydrologic processes are complex time-varying distributed

phenomena, which are controlled by an unknown number of climatic

and physiographic factors. The later descriptors tend to be static

1



or change slowly in relation to the time scale of hydrologic

fluctuations. Observations of results in the laboratory and in the

field also indicate that many of the component processes in hydrol-

ogy are nonlinear due to the following reasons (Amorocho and Orlob,

1961):

(1) the time variability of watersheds due to the natural

processes of weathering, erosion, climatic changes, etc...

(2) the uncertainty with respect to the space and time

distribution of the inputs and outputs of hydrologic systems, and

with respect to the states and characteristics of the interior

elements of the system in time; and,

(3) the inherent nonlinearity of the processes of mass and

energy transfer that constitute the hydrologic cycle.

Thus, for systems engineers, hydrologic processes can be considered

as nonlinear dynamic distributed-parameter systems with partially

known or unknown structures, operated in a continuously changing

environment. The inputs and outputs of these systems are measurable

but the data obtained are imbedded in noises with partially known

or unknown characteristics.

Modeling Problems in Hydrology

Precise mathematical models developed for the study of

hydrologic systems should be nonlinear, dynamic, distributed

parameter models. However, at the present time, because of lack of

data on parameter distribution, the assumption of space invariance is

unavoidable. The subdivision of large watersheds into environmental
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zones, where environmental conditions which affect the behavior

of hydrologic systems can be assumed as uniform, and the use of

lumped-parameter model for each zone, are then required to improve

the modeling situation. By routing the flow spacewise through all

the lumped-parameter models representing the environmental zones

the total simulation of the entire watershed represents a distributed-

parameter system.

Lumped-parameter models of hydrologic systems can be divided

into deterministic and stochastic models. The deterministic approach

often is called parametric modeling. The choice of the model is

determined by the type of problem to be solved. Parametric models

require input data with considerable detail in time, therefore, they

model transient responses well and are most widely used for short-

term simulation or for actual prediction for water management pur-

poses (Dawdy, 1969). Stochastic models have the advantage of

taking into account the chance dependent nature of hydrologic events.

Stochastic synthesis models are concerned with the simulation of the

relationship between input and output data (cross-correlation models)

and between successive values of each data series (serial correla-

tion models). In stochastic simulation models, statistical measures

of hydrologic variables are used to generate future events to which

probability levels are attached. But in this case long term records,

which in many instances are not available, are needed to estimate

the parameters of the stochastic model in order to obtain a proper

representation of their stochastic nature. Stochastic simulation

models usually are used for planning purposes to develop many



"equally likely" long-term traces of monthly streamflow or similar

smoothly varying responses (Fiering, 1967).

Efficient management of water runoff from a watershed requires

that hydrologic systems be described by dynamic models with suffi-

cient accuracy. Since many controlling factors of hydrologic

systems such as weather conditions, soil moisture variations, are

known very little, or unknown, deterministic models do not at

present offer satisfactory results. However, in this case, with

certain reasonable assumptions, one can use random variables to

approximate the stochastic nature of the system, and, then, can

analyze it if one can track these "random" variables with time.

For dynamic systems which are well characterized by finite-

order ordinary differential equations (differential systems) with

additive noise terms, when the analysis in the time-domain is to

be preferred, the use of the so-called state-space approach will

offer a great deal of convenience conceptually, notationally, and,

sometimes, analytically. The use of state-space concepts and modern

control and estimation techniques for the analysis of lumped-para-

meter response models of hydrologic systems, when input and output

data are corrupted by additive noises, will be discussed further in

subsequent chapters.

Identification Problems in Hydrology

Zadeh (1962) defines the problem as

"Identification is the determination, on the basis of input and
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output of a system within a class of systems (models), to which

the system under test is equivalent (in some sense)."

Thus, techniques for system identification must be based on

data. For deterministic models, errors in data are reflected in

the identification results and in errors in predicted outputs from

an incorrect model of the system. An empirical study of the

response of a simulation model of the rainfall-runoff process to

input and output errors has been made by Dawdy, Lichty, and Bergmann

(1972). For their model, they found that the errors of streamflow

estimates are approximately linearly related to errors of rainfall

input data.

Errors in rainfall-runoff data can result from the following

sources (Rao and Delleur, 1971): (a) errors in reading stage

hydrographs, (b) errors inherent in the rating table, (c) errors

associated with the method used in base-flow separation, (d) errors

resulting from an inadequate network of precipitation stations and

(e) errors in the method of determining the rainfall excess. While

the errors associated with reading the stage hydrograph can be

estimated, at present no accurate assessment can be made of the other

errors involved. Since precipitation changes rapidly in time and

space over a watershed and a network of precipitation stations may

not be adequate, point rainfall measurements are unlikely to be

representative of the actual rainfall on the watershed. On the

contrary, the runoff is eventually collected at a single point, the

mouth of the watershed, and the discharge data are usually of very

good quality. It could, therefore, be reasonably assumed that the
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runoff is reasonably noise-free compared to the rainfall. Thus,

techniques that can use the observed outputs to compensate the

disturbance in the inputs (i.e., control the inputs) and at the

same time adaptively learn the characteristics of the unknown noise

in order to get better system identification are needed in the

study of the rainfall-runoff process. These techniques can easily

be derived from modern control and estimation theory, based on

state-space concepts.

For large scale hydrologic systems it is not often possible to

specify the a priori structure or functional form of the model

(Kisiel, 1969). Structural information may be none, partial or

complete. In the complete-information case, the system identification

task reduces to a parameter estimation problem. The study reported in

this thesis deals only with the applications of the state-variable

approach in modern control and estimation theory to the identification

of unknown parameters of nonlinear lumped-parameter response models of

hydrologic systems subject to noisy input-output data.

Advantages of the State-Variable Approach

Modern control theory is based on the state-space concept. The

idea of state as a basic concept in the representation of systems

was first introduced in 1936 by A. M. Turing (Tou, 1964). Later,

the concept was employed by C. E. Shannon in his basic work on

information theory. The application of the state-space concept in

the control field was initiated in the forties by the Russian scien-

tists M. A. Aizerman, A. A. Fel'dbaum, A. M. Letov, A. I. Lur'e
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and others. In the United States the introduction of the concept

of state and related techniques into the optimum design of linear

as well as nonlinear systems is due primarily to R. Bellman. The

basic work of R.E. Kalman in estimation and control theory, and

the extension of his work by others, played an important role in

the advancement of modern control theory.

The state of a dynamic system is defined (Ogata, 1970) as

the smallest set of variables, called state-variables, such that

the knowledge of these variables at t = to together with the

input for t > t completely determines the behavior of the system
-- 0

for any time t > t . The state-space representation of a system

is not unique. In the design of optimum control systems it is

extremely desirable that all the state variables be accessible

for measurement and observation. For a linear system in the linear

filtering problem, Athans (1967) showed that the choice of the

state-variables is not crucial since one can obtain the estimates

of another set of state variables using a simple linear nonsingular

transformation. The same linear transformation also links the error

covariance matrices in the two models.

The advantages of the state-space concept over the conventional

transfer function approach can be listed as follows (Ogata, 1970):

(1) The state-variable formulation is natural and convenient

for computer solutions.

(2) The state-variable approach allows a unified representa-

tion of digital systems with various types of sampling schemes.



(3) The state-variable method allows a unified representation

of single variable and multi-variable systems.

(4) The state-variable method can be applied to certain types

of nonlinear and time-varying systems.

Control Systems Terminology

A system to be controlled, called a plant, has a set of

outputs represented by the vector Y and a set of inputs represented

by the vector U. A priori information about the plant may also be

available, which usually is the desired output and represented by

the vector R.

Definition 1: An open-loop control system is one in which the

control action is independent of the output. In this case, U is

obtained as an operation on R, and the operator is known as an

open-loop controller. The block diagram of an open-loop control

system is illustrated in Figure 1-1.

R ,open-loop U P Y

REFERENCE INPUT controller CONTROLLED CONTROLLED

INPUT OUTPUT

Figure 1-1: Block diagram of an open-loop control system.

Two outstanding features of open-loop control systems are:

(1) Their ability to perform accurately is determined by their

calibration. To calibrate means to establish or re-establish the

input-output relation to obtain a desired system accuracy.

(2) They are not generally troubled with problems of

instability.
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Definition 2: A closed-loop control system is one in which the

control action is somehow dependent on the output. Closed-loop

control systems are more commonly called feedback control systems.

In this case, U is an operation on R and Y, the operator is called

a feedback controller. The block diagram of a feedback control

system is illustrated in Figure 1-2.

R + e Feedback U tPLANT

reference actuating controller controlled controlled

input signal input output

b primary

feedback signal I Feedback

element

Feedback path

Figure 1-2: Block diagram of a feedback control system.

When the summing point is a subtracter, i.e., e = R - b, one

has negative feedback. When it is an adder, i.e., e = R + b, one

has positive feedback.

The most important features the presence of feedback imparts

to a system are the following:

(1) Increased accuracy. For example, the ability to faithfully

reproduce the input.

(2) Reduced sensitivity of the ratio of output to input to

variations in system characteristics.

(3) Reduced effects of nonlinearities and distortion.

(4) Increased bandwidth. The banwidth of a system is that

range of frequencies (of the input) over which the system will

respond satisfactorily.
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(5) Stabilized effect to an unstable system, i.e., without

the addition of feedback, the unavoidable uncertainties in initial

conditions and the inaccuracies in the model that would be used for

determining an open-loop control would render such a system useless.

If everything about the environment and process is known

a priori, the design of the control law is straightforward and can

be accomplished by means of proven techniques. On the other hand,

if the environment or process is poorly defined, more advanced and

sometimes less-proven techniques must be used to design the law.

In the latter situation, control specialists have devised adaptive

control systems and learning control systems.

Definition 3: An adaptive control system is one which is provided

with: (1) a means of continuously monitoring its own performance

relative to desired performance conditions, and (2) a means of

modifying a part of its control law, by closed-loop action, so as

to approach these conditions (Cooper and Gibson, 1960).

A comprehensive survey of adaptive-control systems was

presented by Aseltine et al. (1958). The definition of adaptivity

and characteristics of adaptive control systems have also been

treated by Zadeh (1963), Braun (1959), Donalson and Kishi (1965),

Eveleigh (1967) and Davies (1970).

Definition 4: A learning control system is an improved adaptive

system which can memorize the optimal control function once

established through adaptation and can immediately execute optimal

control without adaptive search when a once experienced situation

takes place again (Tamura, 1971).
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A learning control system, therefore, should have memory

facilities to store pairs of experienced situations and the results

of adaptation. Moreover, it should have the capability to relate a

certain control function with the present situation. A representa-

tive learning control system can be illustrated as in Figure 1-3.

MEMORY

GOAL CIRCUIT IDENTIFIER

LEARNING
NETWORK

input o'utput

Figure 1-3: A representative learning control system.

The state-of-the-art of learning control theory and applica-

tions have been given by Gibson (1963), Fu et al. (1963), Mosteller

(1963), Sklansky (1966), and Mendel and Zapalac (1968). In their

studies, various learning control models have been discussed and an

extensive bibliography on the subject was presented.

Objectives

The main objective of the study reported in this report is.

the introduction of two approaches, namely adaptive control and

sequential non-linear estimation, for the identification of the state

and unknown parameters of a nonlinear hydrologic system response model.
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A state-space implementation of these techniques was used

for the analysis of the Prasad equation for the rainfall-

runoff process. The algorithms developed are a Kalman filtering

scheme with adaptive estimation of the error-covariance matrices

and secondly, an interated extended Kalman filter. Two rather

general computer programs were developed during the investiga-

tion and are discussed in detail.

Report Outline

Following is the outline of the contents of each chapter

in this report. Chapter 2 is devoted to a review of parameter

identification techniques used in hydrology in the past. These

techniques range from optimum search, recursive least-squares,

to a few more sophisticated optimization methods using sensi-

tivity analysis and quasi-linearization to identify unknown

time-invariant parameters in a nonlinear model. Chapter 3

presents the formulation of the identification problem, first,

as a regulator problem in stochastic control theory, and then,

as an optimum sequential estimation problem in a noisy

situation; both methods use state-space concepts. The results

of this chapter are two adaptive identification algorithms which

can track unknown parameters in a nonlinear model with noisy

observations. Finally, the implementation of the two proposed

approaches to the study of the rainfall-runoff processes in a
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selected watershed and a discussion of the results are presented

in Chapter 4. Chapter 5 presents a summary of the study and

some recommendations for further investigation. The derivation

of the necessary equations mentioned in various chapters and

a description of the computer programs that were written to

implement the two approaches are presented in the attached

appendices.
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CHAPTER 2

REVIEW OF PARAMETER IDENTIFICATION TECHNIQUES IN HYDROLOGY

When the structure of the model of a hydrologic system is

known, the system identification problem becomes the problem of

estimation of unknown parameters in the model. The following devel-

opment summarizes the various approaches proposed in the past to

solve the parameter identification problem in hydrology.

Optimum Search Techniques

Search techniques are very useful for engineers and hydrologists

to solve optimization problems when it is impossible or impractical

to solve them directly by analytical optimization techniques. The

only requirements are that a value of the function can be determined

for any given set of variables and that, when a global extremum is

sought, the function has no unbounded or multiple peaks (well-behaved

functions). When constraint equations on the variables are

associated with a given problem, the objective or cost function may

be augmented by penalty functions such that the extremum of the

augmented but otherwise unconstrained functions converge to the

contrained extremum of the cost function in the limit, and the usual

search techniques may be applied with little modifications. This

very useful penalty function concept was first introduced by Courant

(1943) and later modified by Carroll (1961) and by Goldstein and

Kripke (1964). The penalty argument has the defect that it may

yield fictitious solutions when the problem is ill-posed. More
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discussion on this subject has been given by Beltrami (1970). A

great number of search techniques have already been proposed in the

past. One can easily find them in various textbooks or reports on

optimization theory and control engineering (Davidson, 1959; Norris,

1960; Wilde, 1964; Leon, 1966; Pierre, 1969), or in various technical

journals dealing with computational methods in optimization (Brooks,

1959; Rosenbrock, 1960; Powell, 1964; Shah et al., 1964; Fletcher,

1965; Young, 1965).

Search techniques can be grouped into two broad categories:

deterministic search and random search. Techniques belonging to the

latter category are superior in solving optimization problems of

complex nonlinear hydrologic systems, such as rainfall-runoff

processes, where discontinuities of the first derivatives and noise

in the system can cause deterministic algorithms to become inefficient

or to fail. Practical algorithms for random search have been proposed

or discussed by Brooks (1958), Hooke (1958), Gurin and Rastrigin

(1965), Gurin (1966), Schumer and Steiglitz (1968), Zakharev (1969)

and Hill (1969). Good survey papers on random search methods were

also given by Karnopp (1963) and White (1972). For general comparison

purposes, search techniques can be divided into two classes: those

techniques which utilize derivatives of the performance measure, and

those techniques which do not. In general, the best sequential

search techniques are more efficient than the best nonsequential

ones, and the best sequential methods which utilize the gradient are

more efficient than those which do not (Pierre, 1969). Search

techniques, especially gradient methods, were used very often by
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hydrologists for fitting parameters in a conceptual model of

catchment hydrology. Ibbitt (1970) has tested eight deterministic

optimum search methods and one random search method for application

to hydrologic models. Among deterministic optimum search methods, he

found that Rosenbrock's method was the best for the following

reasons: (a) it was the most efficient among the methods tested;

(b) it had an extremely flexible constraint technique; (c) its

demands for computer storage were small; and (d) it could be applied

to any type of objective function.

Least-Squares Procedure

Identification techniques based on least-squares procedure are

applicable to both linear and nonlinear systems. The method of

least-squares was initiated by Karl Friedrich Gauss in 1795 but

detailed description of this method was not published by Gauss until

1809, in his book Theoria Motus Corporum Coelestium. Some basic

ideas of Gauss about the method of least-squares are:

(1) minimum number of observations are required for the determi-

nation of the unknown parameters;

(2) model equations must be exact descriptions of real systems;

(3) observation errors are unknown; and

(4) the estimates of the unknown parameters must satisfy the

observations in the most accurate manner possible.

The best estimates of the unknown parameters are defined as the set

of values that minimizes the sum of the squares of the observation

residuals. Based on the least-squares concept, a recursive least-

squares approximation algorithm can be formulated as follows (Duong, 1970).
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Given a time-invariant nonlinear hydrologic model

Yc = f(X,P) 
(2-1)

where ye is the computed output (scalar) from the model;

X is the set of state variables of the system; and

P is the set of unknown parameters to be identified;

let yo be the observed output from the system. The output residual

at sampled time t. is defined to be
1

Ayi = oi - (ci (2-2)

The best estimates of all unknown parameters of the model

are computed at the same time by proceeding as follows:

After guessing initial values, PO, for the unknown parameters,

one writes y.i in terms of the corrections Apj, related to the

parameters pj, as

Ay = A( ] (2-3)

i  Aji

where n is the total number of unknown parameters to be identified.

In the least-squares regression method, the best corrections Apt

to the a priori known values of the parameters will minimize the

function

J = (AY - AAP*)T(AY - AAP*) (2-4)

where the superscript T denotes the transpose of a matrix, AY

is the output residual vector whose elements are the Ayi , and A

is the matrix of the partial derivatives of dimension N x n (N is

the number of observations, N>n), with elements
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a.. = ) * ; i=1,2,...,N ; j=1,2,...,n (2-5)

Minimization of the function (2-4) relative to AP* leads to the

unique solution, if ATA is non-singular,

* T -1 T
AP = (ATA) ATAY (2-6)

and the best estimates pj of the unknown parameters pj are given by

* o *
P = P + AP (2-7)

The pj are then substituted back into equation (2-1) and the

(Yc)i are computed again. New residuals are formed from equations

(2-2) and new corrections to the pj are computed from equation

(2-6), which provides the next approximations to the parameters.

One important assumption of least-squares regression technique is

that the unknown parameters must be independent. If this assumption

is not satisfied, i.e., the "independent" variables are not truly

independent, then the correction Ap. will not be uniquely associated

with pj and convergence of the method cannot be insured.

To account for the difference in accuracy that might exist

between various measured outputs and possible relations between them,

*
the values pj (best estimates of the pj) to minimize the function

J = (AY - AAP*) W (AY -AAP*) (2-8)

are often sought, where W is an NxN weighting matrix and it is

assumed to be symmetric and known. In general, W is chosen to be

the inverse of the covariance matrix of the errors. If ATW A is

non-singular, the unique solution for the optimization problem
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will then be given by

AP = (ATW A)-1 ATWAY (2-9)

The method of least-squares has been used extensively in

hydrology during the last two decades for fitting parameters of

parametric models of hydrologic systems. The recursive least-

squares approach and the method of differential correction introduced

to hydrologists by Snyder (1962) and later refined by Decoursey and

Snyder (1969) to optimize hydrologic parameters are part of a more

general theory on sensitivity analysis originated by Bode (1945).

The mathematical background of the theory of sensitivity analysis of

dynamic systems was treated by Tomovic (1962) and can be found in

many textbooks in control engineering (i.e., Perkins, 1972) and

therefore is omitted here. Sensitivity analysis has been used by

Vemuri et al. (1967, 1969) in the analysis of ground-water systems.

Quasi-linearization

In this section, we consider the possibility of solving a

non-linear hydrologic system problem by first transforming it into

a related linear system problem whose solution is then modified to

obtain the desired solution. Only one such indirect computational

method for solving system identification problems is treated here.

This technique is known as quasi-linearization and has been used by

hydrologists in the identification of a non-linear hydrologic

system response (Labadie, 1968) and of unconfined aquifer parameters

(Yeh and Tauxe, 1971).
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The quasi-linearization technique, which is often referred

to as a generalized Newton-Raphson technique, was originally

presented by Bellman and Kalaba (1965). Sage and Burt (1965), Sage

and Smith (1966), Sage and Melsa (1971) and Graupe (1972) have

examined the application of discrete and continuous quasi-lineari-

zation to system identification problems. Following is the summary

of the development of the continuous quasi-linearization technique.

Consider a non-linear hydrologic system described by a vector

differential equation of the form

X = F(X,P,U) (2-10)

where X is an n-dimensional state-vector;

P is an r-dimensional unknown parameter-vector to be identified;

and

U is an m-dimensional input-vector.

The n+r boundary conditions of the equation (2-10) are assumed to

be linear and known, and the elements of P are stationary, i.e.,

P = 0 (2-11)

The two equations (2-10) and (2-11) can be combined to have the

form

Z(t) = G[Z(t),U(t)] (2-12)

with boundary conditions:

H(t)Z(t) = B(t) (2-13)
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where Z is the new (augmented) state vector defined by

T

Z(t) [= x(t),...,xn(t) ;pl, . ,pr (2-14)

Expanding GZ(t),U(t)] in a Taylor series about the ith estimate

of the state vector, Z (t), the (i+l)th estimate of the state is

then given by

Zi+1t) = G+Zi bG Z (t),t] i+1(t) - Zi(t)l
Z t) = zi(t)

+ higher order terms. (2-15)

Assuming that the initial estimate is close to the predicted value,

and dropping the higher order terms in equation (2-15), one obtains

Zi+1(t) = [GIZi(t),t] i+l(t) +G[Zi(t)t -

G z i(t),t] zi )+ Zi(t) }

This equation has the form:

Zi+l = A i+l(t) + vi(t (2-16)
Z (t) A (t)Z +VWt1

where

Ai (t) GZi (t),t (2-17)

(zi(t)

(t) = Z(t(t) (2-18)
S1Z(t)
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The general solution of equation (2-16) has the form

i+l i+l i+l i+l
zi+(t) = i+(t,to)Z (to) + Q i+(t) (2-19)

where i+(t,t o) is the fundamental solution of equation (2-16),

given by

i+
with i+ (t ,to) = I (2-21)

and Q i+(t) is the particular solution of equation (2-16),

satisfying

*i+1 i i+l iQ (t) = A (t)Q (t) + V (t) (2-22)

with Qi+l (t ) = 0 (2-23)

Substituting the general solution (2-19) into the boundary conditions

(2-13), one obtains

H(t) [ (i+l(t,t )Zi+l(t ) + Qi+l(t)] = B(t) (2-24)

or H(t) i+1(t,to )Zi+l(to) = B(t) - H(t)Qi+l(t) (2-25)

which is of the form

ii+l+l
AZ (to) = B (2-26)

where A = H(t)i (t,to) (2-27)

i+l
B = B(t) - H(t)Q (t) (2-28)
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Thus, the solution for Z i+(t) has been reduced to a set of linear

initial condition problems given by Eqns. (2-26) which are easily

solved.

The quasi-linearization technique for system identification

often requires a good initial estimate of the states in order to

converge. The computational effort in identification by this

technique is considerable, and the approach is limited mainly to

cases where only some states (not necessarily the same states) are

accessible at different times (Graupe, 1972).

Summary

In this Chapter, a review of various techniques for the identi-

fication of unknown parameters of lumped-parameter models of hydrolo-

gic systems is presented. These techniques range from optimum

search methods, least-squares procedure to more sophisticated optimi-

zation techniques using sensitivity analysis and quasi-linearization

to identify unknown parameters in a non-linear model of a hydrologic

process. Most of these techniques are suited for the analysis of

linear or non-linear deterministic time-invariant systems; some of

them can be used when the inputs are imbedded in noise; but none of

them are good for the analysis of non-linear time-varying systems

with noisy observations. For this case, adaptive learning control

techniques and nonlinear filtering approaches, using state-space

concepts, might be more suitable. Two such techniques will be

presented in the next Chapter.
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CHAPTER 3

STATE-SPACE APPROACH FOR THE IDENTIFICATION OF NONLINEAR

HYDROLOGIC SYSTEMS FROM NOISY OBSERVATIONS

As already mentioned in Chapter 2, techniques used in the

past for the determination of the instantaneous unit hydrograph and

the identification of unknown parameters in a conceptual model of

a hydrologic process are not adequate. The main reasons for this

come from the fact that the input and output hydrologic data are

imbedded in noise, the hydrologic processes are more or less non-

linear, and the changing of the environmental conditions with time

may affect the model output. In this chapter, a new approach using

state-space concept is investigated, and techniques for optimal

adaptive identification of unknown parameters and of the control

inputs are presented.

Problem Formulation

A general nonlinear lumped-parameter model for a hydrologic

system can be represented by the following vector differential

equation

X(t) = f [X(t),U(t),tJ + w(t) (3-1)

where X(t) is the actual (nxl) state-vector of the system, U(t) is

the noisy forcing input (i.e., rainfall), f(.) is the nonlinear

mapping from En into En , and w(t) is an (nxl) noise term which is

assumed to be a zero-mean white noise process with covariance
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matrix

E jw(t)w(T)
T = W (t - (3-2)

where 6(.) is the Dirac-delta function and superscript T indicates

transpose.

In most cases one cannot measure the state directly and

precisely, but one can measure a vector Y which represents the

output (i.e., runoff) of the system, and is related to the state

by the following equation

Y(t) = h [X(t)] +v(t) (3-3)

where h(.) is the nonlinear mapping from E
n into El , and v(t) is

the observation noise which is again assumed to be a zero-mean white

noise process with covariance matrix

E Iv(t)v(T)T = V 6(t - r) (3-4)

The identification problem can now be stated as follows:

Given the system model (3-1), the observation equation (3-3),

the noise characteristics defined by Eqns. (3-2) and (3-4), and the

set of noisy input-output pairs lUi. and IYi. ; from the initial

conditions of the state and the estimation-error covariance matrix,

find the best estimate of the state of the process under some

optimality criterion (i.e., minimization of the mean-square-error of

the estimate).

Two approaches for solving this problem are presented. In the

first approach the given problem is treated as a regulator problem

in stochastic control theory. In the second approach a non-linear
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filter will be used to estimate the state and unknown parameters

of the system under noisy observations.

A Linear Stochastic Control Problem

In order to apply linear stochastic control theory to the

identification problem formulated above, one must linearize the

given nonlinear system equations and the observation model to get

the linearized model of the system.

Let the nominal values of the state and the input be denoted

by X (t) and U (t) respectively and the deviations of the actual

state and the input from nominal values be represented by

6x(t) = X(t) - X (t)

* (3-5)
6u(t) = U(t) - U (t)

The linearized equations of the system about the nominal values

are then given by

6x(t) = F(t) 6x(t) + G(t) 6u(t) + e(t) (3-6)

where the elements of the matrices F(t) and G(t) are partial

derivatives of f with respect to X(t) and to U(t) evaluated about

the nominal values,

F(t) = [f(X,U,t)
S X=X ,U=U (3-7)

G(t) = [f(X,U,t)] ,

I )U X=X ,U=U

and e(t) denotes random disturbances which are used to model such

effects as unknown dynamics and truncation errors. It is assumed
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that e(t) is a zero-mean white noise process with covariance matrix

E je(t)e()TI = N6(t - T) (3-8)

From now on, the vectors 6x(t) and 6u(t) will be referred to as

the state and the control input, respectively, for the linear

perturbation model.

For calculations with digital computers, Eqn.(3-6) has to

be converted into a difference equation. To that end one needs to

have a state transition matrix 1(tn+l,tn) which satisfies the

homogeneous part of the differential equation (3-6); i.e.,D(tn+l,t )

is defined by

D(tn+l't n ) = F(tn )  (tn+l',t n )  (3-9)

with the initial condition

D(t n'tn ) = I for all tn (3-10)

where I denotes the unit matrix having the same dimension as the

matrix F.

The difference equation of the system, derived from the differ-

ential equation (3-6) for the time interval (tn,tn+1l), will have the

following form

6x(t ) = 4(t ,t )6x(t n) +Jn+l (tn+l, T)G(T)6u(tn)dT

n+ n+l n n n+t n

nn++l

n
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or, in abbreviated notations,

6x = g, Sx+ 1 6
u + w (3-11)6Xn+l = n+l,n n n+l,n n n+1 (3-11)

The covariance matrix of the process noise w then becomes
n

wT = 
n + l  NTt

E {w wT (tn+ ,T) N T(t i) dT 6

LJ n J

nm ftn+ n+1 m

n+1 6nm (3-12)

where 6 is the Kronecker delta.
nm

Similarly, linearizing the observation equation (3-3) about

the nominal states and converting the result into a difference

equation, one obtains:

6y = H 6x + v (3-13)
n n n n

where 6yn represents the deviation of the measured output from the

nominal value, i.e.,

6yn = Yn - Y n  
(3-14)

the elements of the mapping matrix Hn are partial derivatives of

h with respect to X evaluated at the nominal values:

Sh (X)

H = (3-15)
n X *

X=X

H is often called the observation matrix; and v is the observationn n

noise which is again assumed to be a zero-mean white noise process

with covariance matrix

E {vn } = R 6 (3-16)nm n nm
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In general, the Q and R are considered to be positive definite
n n

and assumed to be given in advance. For complex systems, Qn might

be very hard to get. In this case, technique for adaptive estimation

of Qn is very useful and will be discussed later in subsequent

sections.

The control vector 6u in this optimal stochastic control

problem is to be selected so that the performance index

E {JN  = El (6xT A. 6x. + uT_ B Sujl) (3-17)
j=N I 3 u-1 B j_ I -1

is minimized; where N is the total number of measurements made

during the identification period, and the matrices A. and B. are

arbitrary non-negative definite, symmetric weighting matrices. An

approximate choice of these matrices must be made to obtain good

results for the given problem. A choice that often turns out to be

quite reasonable is (Bryson and Ho, 1969)

A.1 = n(tf-to)xmaximum acceptable value of diag 6x(t)6x T(t);

B-. = m(t -t )xmaximum acceptable value of diag 6u(t)6u (t);

where n and m are dimensions of the state-vector and the control

input vector, respectively.

The Optimum Controller

In the above formulation, the equations (3-11),(3-12),(3-13) and

(3-16) represent a linear time-varying system with Gaussian statistics.

one can separate the solution of this optimum stochastic control

problem into a deterministic optimum control problem and an optimum
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estimation problem (Sorenson, 1968). The proof of the Separation

Principle is given in Appendix A. The optimum stochastic control

law is described by

6dN-k-i =- A N-k DN-k,N-k-1 6tN-k-l (3-18)

where ANk is obtained from the solution of the deterministic

control problem, and 6 N-k-l is the optimum estimate of the state

6XN-k-1 obtained by solving the optimum estimation problem. The

N-k are given by the following recursive 
formulas:

P- F T F + B IFT L
=-k N-k,N-k-,N N-k N-k N-k,N-k-1 N-k-1 N-k,N-k-1 N-k

(3-19)

LN-k N-k+l,N-kLN-k+ N-k+,N-k + AN-k (3-20)

1 1

LN-k = LN-k - LN-k rN-k,N-k-1 N-k (3-21)

k = 0,1,2,...,N-1.

To start the iteration process, one can assume that LN+1 = 0 and

then proceed the calculations backwards in time to the initial

control time to. The LN-k and AN-k are often called the control

cost matrix and the control gain matrix, respectively.

Identification of State-Variables

The optimum feedback control law defined by Eqn. (3-18)

depends on the optimum estimate of the state at each stage of the

process under study. This optimum estimate can be obtained through
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the well-known Kalman filter (Kalman, 1960) which is the best

linear minimum variance estimator since the estimate 6x , defined
n

as the conditional expectation of 6xn given the available data

set Zn at time tn, i.e., 6 = E {6x Zn }, is chosen to minimize

the mean-square-error

E{(6x n- 6x ) (6 - 6x)} = trace E{(6x - 6x )(6x - 6x )T
n n n n n n n

(3-22)

The derivation of the standard Kalman filter is omitted here

since one can easily find it in any textbook on estimation theory

(Sorenson, 1966; Sage and Melsa, 1971). Following is a summary of

the filter algorithms for discrete cases where the state equation

and observation model are given in the form of Eqns. (3-11) and

(3-13), with noise covariance matrices defined by Eqns. (3-12) and

(3-16).

one-stage x + (3-23)

prediction Xn+/n n+l,n n n+l,n n

a priori , Ta priori = P T + Q (3-24)
variance n+l/n n+l,n n n+l,n n+l

Kalman , T ] T -1

Kalman K = P HT H P' HT + R -l (3-25)
gain n+l n+l/n n+ n+l/n n+l n+l

Filter 6' + K 6

algorithm n+1= n+/n n+ n+n+1[6 l - 16x+l/nJ (3-26)

a posteriori

variance n+l = ( - Kn+ Hn+ )P'n+l/n (3-27)
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The initial conditions 6x and P must be given, also the exact
o o

values of Qn and Rn must be known. After each observation, the

optimum estimate of the state X is then given by

X = X + 6R (3-28)

The most important properties of a Kalman filter can be

summarized as follows:

(1) The filter estimates are all variables of the state vector

in the least-mean-square-error sense.

(2) The estimation is based upon statistical data of all error

sources and is completely carried out in the time domain.

(3) The filter formulae satisfy minimum variance criteria for

all problem parameters.

(4) The formulae implemented are recursive. This means that

the optimum estimate at the present time can be computed from the

previous estimate and the current observation without recourse to

earlier estimates or observations.

(5) The recursive formulae are well suited to digital computers.

The use of the Kalman filter to estimate the unknown parameters

in a lumped-parameter model of a hydrologic system is discussed in

the next section, and the application of this approach to the analysis

of rainfall-runoff is presented in Chapter 4.

Parameter Identification

Consider an unknown parameter a which is slowly varying in time.

One could model its behavior satisfactorily by the random walk model

an+l = an (Wa)n (3-29)
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where (W-) is-a zero mean white noise sequence with covariance

matrix (Qa)n. Equation (3-29) combined with Eqn. (3-11) gives an

augmented state equation of the form

6x x U6xn +  wn

62 n Laj [
jn+ 1 n 0 w- n (3-30)

The observation model is also modified as

6Yn = Hn 0 + v (3-31)
n n a n n

One could then apply the Kalman filtering algorithms mentioned above

to estimate the unknown parameter along with values of the previous

state variables of the system, using the augmented state equation

and observation model defined by Eqns. (3-30) and (3-31).

If the secular variation in a parameter an is rapid it can be

decomposed into the product of a known, non-singular and rapidly

time-varying transformation matrix, Tn, and an unknown but fixed or

only slowly varying parameter a n. Thus,

a =T 
n n n

and from Eqn. (3-29):

an a n-+ (w)n (3-32)

-1
where = T T and = T . One then uses Eqn. (3-32) to form ana nn-l a n

augmented state equation and new observation model, and proceeds

as mentioned earlier.
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Estimation of Error-Covariance Matrices

In most practical situations, complete knowledge of the

hydrologic process and measurement noise statistics is hard to get.

The use of wrong a priori statistics in the design of a Kalman filter

can lead to large estimation errors or even to a divergence of

errors. The covariance matrix becomes unrealistically small and

optimistic; the filter gain thus becomes small, and subsequent

measurements are ignored. The state and its estimate then diverge,

due to model errors in the filter. Analyses of error divergence

in the Kalman filter have been performed by Heffes (1966), Schlee et

al. (1967), Nishimura (1967), Price (1968) and Fitzgerald (1971).

Several approaches have been proposed for preventing filter

divergence. Horlick and Sward (1965) investigated the technique of

filter reset to keep the diagonal elements of the state covariance

matrix above a specified value. Peschon and Larson (1965) proposed

to include a random variable at the model input to account for any

unrealistic assumptions made about the system model. Schmidt (1967)

suggested two methods. In one method an estimate of the state is

computed as a linear combination of the estimate given all prior

data with the estimate given no prior data. Past information is

degraded. The other method assumes a priori lower bounds on certain

projections of the covariance matrix. Schmidt et al. (1968) also

designed the modified Kalman filter equations by including an addi-

tive gain matrix to the conventional gain matrix of the Kalman

filter to prevent divergence of the filter resulting from unmodeled

and computational errors. Recently, Tarn and Zaborszky (1970)
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used a scalar weighting factor s for the observation error-variance

and came up with a non-diverging filter which reduces to the

standard Kalman filter for s = 1.

The most interesting approach to prevent filter divergence

is probably to cover model errors with noise and adaptively

estimate the noise levels. The purpose of an adaptive filter is,

then, to reduce or bound the noise by adapting the Kalman filter

to the real data. A number of approaches to adaptive filtering has

been proposed in the past few years. Good survey papers in this

area were presented by Sage and Husa (1969), Weiss (1970) and

Mehra (1972). Following are some adaptive schemes for estimating

the observation error covariance matrix R and the process error

covariance matrix Q.

1/Estimation of R

One approach to reduce the effect of earlier measurement as

new measurements are included is to replace the finite time

averaging operation by exponentially weighted past averages. This

technique, applied to the estimation of R , is expressed as

R = (l-W )R + W R' (3-33)
n n n-1 n n

where R' is the predicted value of R at the n measurement; i.e.,n n

R' = (6y - Hx' /n)(y - H x'/n )T  (3-34)n n n n/n-1 n n n/n-1

This method has been applied successfully to satellite tracking

problems, R is assumed to be constant during the sample period
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t <t<tN. For these problems, Tapley and Born (1971) proposed

the following expression for the weighting coefficient Wn :

W = (n-l)(n-2) ... (n-k)/nk+l (3-35)
n

in which k is an integer. Wn is zero for all n<k, and as n-m,

Wn approaches 1/n. Hence, for n<k the value of R is not changed

from the a priori value. The choice of k will depend upon how well

RO is known, i.e., the more accurate Ro the larger k may be.

In the case of a rainfall-runoff process, there are typically

few data points obtained for one storm. By using the weighting co-

efficient defined by Eqn. (3-35) one might not get the correct value

for R. At the end of the observation period, the estimate R might
n

still depend very much upon its initial guess. For this case, it

is suitable to choose the weighting coefficient W as
n

Wn c (3-36)
S 1-(1-_ c)n

where d is a positive constant, normally less than 0.1 (Young, 1965).

This choice of the weighting coefficient also assures that new data

continues to have some effect on the estimate of R as long as the

observation of the process is still going on.

2/Estimation of Q

Let rn+1/n denote the predicted measurement residual, i.e.,

rn+l/n n+1 - Hn+ 1 6t+l/n (-7)
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one then has

T T
E {r r I= H P' H + R

E n+l/n n+/n n+l n+l/n n+l n+l

T T T
H 4 P H + H Q H +R
n+1 n+l,n n n+l,n n+1 n+1 n n+1 n+1

(3-38)

Assume Qn has the form

n n n

where q is a scalar; then, for the case of single output, Eqn. (3-38)

can be written as

2 T T TT
E{r n = H P T  H + q H SSH + R

n+1/n n+l n+l,n n n+l,n n+l n+l n n n+l n+l

(3-39)

To determine q, Jazwinski (1971) suggested that one finds the q

value which satisfies the requirement

max p {r n+/n (3-40)

q 0

or, when the probability density p is normal and has zero-mean,

2 2
r -n+/n E r n+l/n} (3-41)

Equation (3-41) represents the consistency requirement for the

estimates of q. From Eqns. (3-39) and (3-41), the following adaptive

scheme is derived:

2 T T
r 2 -H P H - R
rn+1/n n+l n+l,n n n+l,n n+l n+l , if positive

qn+l H S STH
T

n+l n n n+l (3-41)

0 , otherwise
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Since the estimate of q is based on only one residual, the

estimator (3-41) will respond to (large) measurement noise samples

as well as large residuals caused by model errors. One approach to

remedy this defect is to apply the exponential smoothing technique

described in the previous section, i.e.,

Sn+l "n+l' " n ' "n+l n+l -

An Adaptive Control Algorithm

From the material in the above sections, the following

algorithm can be set up to estimate the values of the state variables

and unknown parameters of a time-varying system in a noisy situation.

(1) Set initial conditions:

6xl/0 = o o (usually set equal to zero)

P/0 = P  = V
1/0 o o

(2) Compute (off-line) the optimum control law by Eqns. (3-19),

(3-20) and (3-21) from nominal values of the states.

(3) Set n = 1. Start the sequential estimation process.

(4) Adjust the observation error covariance matrix R by
n

Eqns. (3-33) and (3-36).

(5) Compute the filter gain Kn by Eqn. (3-25).

(6) Process the observation 6yn by Eqn. (3-26) to get the best

estimate 6i of the state.
n

(7) Replace 6x'/n_ by 6i and return to step (4) to re-estimate

R and 62.
n n
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(8) Continue step (7) until one gets stable values for Rn and

6 . Hence,
n

X = X + 6*
n n n

(9) Compute the a posteriori error variance Pn of the estimates

by Eqn. (3-27).

(10) Adjust the model-error covariance matrix Qn by Eqns. (3-41)

and (3-42).

(11) Compute the predicted state 6x'+/nby Eqn. (3-23).
n+l/n

(12) Compute the predicted error variance Pn+o/n of the estimates

by Eqn. (3-24).

(13) Set n = n+l and return to step (4).

Three remarks can now be made about the above algorithm.

First, during computation one must somehow design a technique

to maintain the positive definiteness and symmetry of the matrix Pn+l

to avoid filter divergence. One way to maintain the desired property

of the matrix P n+l is to replace Eqn. (3-27) by an equivalent form

S' T R K T .(3-43)
n+l= [I n+l Jn+l/n n+l Hn+ + Kn+l n+ Kn+l

This equation is the sum of two symmetric positive definite matrices,

and, when these are added, the sum will also be positive definite;

therefore it is better conditioned for numerical computations than

the previously mentioned expression (3-27).

Secondly, one could improve the above algorithm by correcting

the nominal values after each new estimate of the state was obtained,

i.e., one takes the new nominal value X as
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X = X +6k = X (3-44)n n n n

the new deviation of the state at stage n becomes

6Rn = 0 (3-45)

This process is often called trajectory rectification. As a conse-

quence of relinearization, large initial estimation errors are not

allowed to propagate through time, and, therefore, the linearity

assumptions are less likely to be violated.

Lastly, in order for the above algorithm to be called adaptive

control, at each iteration step the new estimate of the state must

somehow be used to alter the control law. However, the recursive

equations used to compute the control history run backward in time.

To update such a control law, the gains over the entire control

interval would have to be recomputed each time a new estimate of the

state was made available. The computational requirements of such a

technique are enormous. A sub-optimum control law can be obtained

as follows: first, the control law is computed off-line from nominal

value of the state and the values of the matrix L are stored. Then,

as each new estimate of the state is obtained, the control is updated

by using new values of the matrices D and F. The adaptive control

algorithm can now be summarized as illustrated in Figure 3-1.

When applying the above algorithm to the determination of

unknown parameters in rainfall-runoff processes, the disturbance

from rainfall data will be compensated by the optimum value of the

control term, Pn+l n 60 , computed at each observation from then+l,n n
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Compute control histor START
from nominal values of 6 P();{L
the state. /006o= 0;PI/00=P°=

Compute Kn

Update gn A

if E6()-6(i-1) (E 9
n n No X/ 1 6n

and I R( i ) R( i - 1 ) II-

Yes

Xk* = X = X* + 6 n

Compute Pn

Any observation left? No

Yes

Compute (Pn+l,n' n+l,n

Update control gain An

A d j u s t  
Qn+I

Comp
u t e 6x'/n, Pn+/n

Set 6x^i =  
write output

I n = n+ll STOP

Figure 3-1: Block diagram of Adaptive Control Algorithm.
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estimate of the state of the system and from Eqns. (3-18), (3-19),

(3-20) and (3-21). The adjustment for noise in rainfall data by this

adaptive control approach is effective if the system is not highly non-

linear, since the estimation of the best value for the state and the

derivation of the optimum control law are all based on the validity

of the linearized model. For this reason, another method for the iden-

tification of unknown parameters in nonlinear lumped-parameter models

of hydrologic systems, using nonlinear estimation techniques, is

presented in the following section. The comparison of results of the

two approaches, when applying to the identification of rainfall-

runoff processes, is discussed in Chapter 4.

A Nonlinear Filtering Problem

A lumped-parameter model for the rainfall-runoff system is

represented by Eqns. (3-1),(3-2),(3-3) and (3-4). Since rainfall data

are noisy, one can approximate the correct rainfall input U(t) in

the model (3-1) by

U(t) = U (t) + wU*(t) (3-46)

where U (t) represents the actual rainfall data, w U*(t) is the

rainfall measurement noise which is assumed to be a zero-mean white

noise process with covariance matrix

E {wU*(t) wU*(-)T = W U6(t - T)

The process equation is then written as

X(t) = f [x(t),U (t),t] + Q(t) (3-47)
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where w(t) is the combined noise term in the model which includes

errors due to unknown dynamics and noise in input data. The form of

t(t) depends on the form of w(t) and the relation of U (t) in the

model equation. Assume that a(t) is also a zero-mean white noise

process, having new covariance matrix defined by

E {(t) w(T)
T } = W (t - T) (3-48)

Since U (t) is a given scalar at time t, Eqn. (3-47) can be written

simply as

X(t) = f [X(t),t] + a(t) (3-49)

The identification problem of the rainfall-runoff system then becomes

the estimation of the state of a nonlinear system defined by the Eqns.

(3-49),(3-48),(3-3) and (3-4), given the initial conditions X(0) and

E{X(0)X(O) T } = P(0).

Optimal estimation in the nonlinear case involves the solution

of an infinite-dimensional process, as shown by Kushner (1967). Since

the computational aspects of the truly optimum nonlinear filter are

prohibitive, several approaches to sub-optimal filtering have been

proposed in the past few years (Friedland and Bernstein, 1966;

Schwartz and Stear, 1968; Athans et al.; 1968; Sage and Melsa, 1971).

These algorithms can be roughly subdivided into the so-called first-

order filters and higher-order filters with increasing complexity

and computational requirements. Because in hydrology the estimate of

the state of a system is usually not required to be highly accurate,

only the extended (first-order) Kalman filter is considered here.
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This filter is simple but effective and has been used very often in

similar problems in the aerospace field.

The Extended Kalman Filter

This filter is the result of the relinearization procedure

mentioned in the previous section. If, initially one linearizes the

model equation (3-49) about X(to), then

Gi(to) = 0

The predicted deviation, given by

6x'(tl/t ) = 6(tlto) 6x(t )

is therefore equal to zero.

Since one subsequently linearizes about X(t)
,

6R(tl) = 0

it follows that 6x'(t 2 /tl) = 0

Thus, in general,

6x'(t/t n ) = 0 t < t < t n+ for all n ; (3-50)

that is, the best estimate of the state between observations is the

nominal value of the state. Accordingly, one has

x (t/t) = f [X'(t/tn),t ]  (3-51)

Since 6 = X - X
n+l n+l n+l/n
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in view of relinearization, and using Eqn. (3-50), the correction

to the estimate at an observation (Eqn. (3-26)) leads to

Xn+l = X n+l + Kn+l [n+l - h(X n+l/ntn+)] (3-52)

Thus, the extended Kalman filter can be summarized in the following

operations:

A priori X n+/n Xn + f [X(t ),t] dt (3-53)

Pn/n= nl(Xn) P T (X) + Q
+l/n n+,n n n n+l,n(n ) + Qn+l (3-54)

A posteriori = ' + [Yn+- h
estimate n+l Xn+1 /n Kn+l(Xn+1/n) n+- hn+(Xn+/n

(3-55)

Pn+l [I -KH H (X )I
n+ l ( Xn+l/n ) Hn+l ( Xn+/n ) ]  Pn+l/n

X' )H T
I - Kn+ l ( n+l/n n+l ( Xn+ l / n

' T 
+K X )R K (X) (3-56)

n+l(Xn+l/n )  n+l Kn+(Xn+l/n)

Kalman K ( T

gain n+l n+l/n n+l/n n+l n+l/n

.[Hn+l(Xn+/n) n+l/n Hn+l(Xn+l/n

+ Rn+11 -1 (3-57)

The matrices and H are those of the linearized system defined by

6X n+ = n+l,n (Xn) 6Xn + Wn (3-58)
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6yn  = H (X ) 6x + v (3-59)
n n n n n

The Iterated Extended Kalman Filter

To improve the performance of the extended Kalman filter, one

can use the technique derived by Denham and Pines (1966) to reduce

the effect of measurement function (h) nonlinearity which occurs

very often in hydrology when output data from a hydrologic system

are imbedded in noise. This technique is a local iteration algorithm

based on the relinearization about the new estimate.

Consider the estimator, Eqn. (3-55), in the extended Kalman

filter. It was obtained by evaluating the correction to the estimate

* *
Xn+1 = 6X /n+ Kn+(Xn+l)[yn+1- Hn+1 (Xn+ 1 ) 6xn+ 1 /n (3-60)

* v
about Xn+l = Xn+l/n. Then, processing the observation Yn+l via Eqn.

(3-55) one gets Xn+1 . Assuming that Xn+1 is closer to the true state

than Xn+l/n' one then would expect to get a better result by re-

linearizing the system equation about Xn+l and recomputing the

estimate. Thus, the iterated extended Kalman filter consists of Eqns.

(3-53) - (3-57) with Eqn.(3-55) replaced by

^(i+l) (k(i) Y - (i))

n+l n+1/n n+l n+l hn+l(n+l

- H + (X ) n+/n - X ) i 1,2,...., (3-61)n+l n+l n+l/n

wher~n+l = Xn+/n This local iteration terminates when there is

no significant difference between consecutive iterations. The covari-

ance matrix in.Eqn. (3-56) is then computed based on the last estimate
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of Xn+

Combining the sequential estimation of error-covariance matrices

mentioned in the previous section with the above iteration for the

improvement of the estimate of the state, the following algorithm is

formed as illustrated in Figure 3-2.

The local iteration process mentioned in this algorithm is

designed for measurement nonlinearities and does not improve the

previous nominal value chosen for the state on the interval Itn'tn+l).

To include the nominal value in the iteration loop, one needs to

smooth back the new estimate at tn+1 to tn to get an improved nominal

value for prediction to tn+1 . The linearized smoother is given by

Jazwinsky (1970) as

Xn/n+l= n + S(i)[n+l - 6n+l/nI

with S (5i) = Pn T+ln ) [P +l/n 1  (3-62)

or, using the smoothed estimate as Ei+l'

i rx(i) '
= Xn + Sn (c) [n+l - Xn+l/n (3-63)

The iteration starts with i = X and (1 = X
1 n n+l n+l/n

This iterated linear filter-smoother, as named by Jazwinsky

(1970), was apparently first derived by Wishner et al. (1968) in a

different way, and was called by these authors a "single state

iteration filter". Although the performance of this algorithm was

shown (Wishner et al., 1968) to be better than the iterated extended
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Figure 3-2: Block diagram of the Iterated Extended Kalman Filter.
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Kalman filter, the amount of computer time required is also two or

three times greater. Hence this technique is suitable for those cases

when one has only a small set of observation data and wishes to come

up with acceptable estimates for the state of the system. For large

data sets, the other algorithms can, hopefully, give the desired

values for the estimates after processing all the data with a reason-

ably small computer time.

Summary

In this Chapter, two approaches are presented for the estimation

of the state and unknown parameters in a nonlinear lumped-parameter

model of a hydrologic system. The optimum linear stochastic control

approach is suitable for those cases when the error-covariance matrix

of the input disturbances is unknown. The nonlinear estimation approach

is simpler and more powerful, but requires knowledge about input noise

characteristics. Subsequent chapters are devoted to the implementation

of these techniques to the study of a particular model of the rainfall

-runoff system.
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CHAPTER 4

IMPLEMENTATION AND RESULTS

Nonlinear Lumped-Parameter Models for Rainfall-Runoff

The nonlinearity of the rainfall-runoff relationship has been

of concern only in the last decade; however, the concept of non-

linearity and its methods of analysis are still very limited (Chow,

1967). Following are two nonlinear lumped-parameter models that have

been used quite often by hydrologists in the past, namely the

Kulandaiswamy model and the Prasad model.

The Kulandaiswamy Model

Direct runoff may be considered as the result of the transform-

ation of rainfall excess by a basin system. The physical process of

this transformation is very complex, depending mainly upon the storage

effects in the basin. Kulandaiswamy (1964) derived the following

general expression for the storage

N dn M dmR
S = an(Q,R) dtn 5 bm(Q,R) m (4-1)

n= dtn m= dt

where S is the storage, t is the time, N and M are integers, and

an(Q,R) and bm(Q,R) are parametric functions of the direct runoff Q

and the excess rainfall R. To apply Eqn. (4-1) to the study of the

rainfall-runoff process in a particular watershed, the values of N

and M must be determined. Both Q(t) and R(t) are available in the

form of curves and differentiation has to be done by numerical
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approximation techniques. Taking into consideration the nature of

the curves representing Q(t) and R(t) and the magnitude of error

likely to be introduced by numerical differentiation, the values of

N = 1 and M = 0 have been adopted in Kulandaiswamy's study. Eqn.

(4-1) reduces to

S = a (Q,R) Q + al(Q,R) + bo(Q,R) R (4-2)
o dt 0

Plots of ao , al and bo versus Qp , the peak discharge,for Willscreek

Basin are illustrated in Figure 4-1. Kulandaiswamy found that al and

b vary from storm to storm, but do not show any well defined trend

in the variations; hence, he took these two parameters as constants

(Kulandaiswamy and Subramanian, 1967). The storage equation can now

be written as

S = a (Q) Q + a +  b R (4-3)
o 1 dt o

With the continuity equation

dS = R(t) - Q(t) (4-4)
dt

the rainfall-runoff process can be represented by the following

differential equation

a d2Q + A(Q) + Q 
= 

R - b (4-5)
1 2  dt o dt
dt

da

where A(Q) = a + Q
o dQ

A plot of Q versus A(Q) was made for various basins and two types of

regions could be differentiated. The system equations for these
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regions are

(1) Non-linear region:

a1  2 + (c + mQ) + Q = R - b -R (4-6)
1 dt2  1 dt o dt

(2) Linear region:

a d2Q + c + Q = R- b dR (4-7)
1 dt2 2 dt o dt
dt

The general nonlinear storage equation (4-1) proposed by

Kulandaiswamy has been accepted by many hydrologists in the simulation

of the rainfall-runoff process by lumped-parameter response models,

but the approach used in the determination of the model parameters

has also been criticized (Eagleson, 1967). Kulandaiswamy used

characteristics of the surface runoff hydrograph at peak discharge

(dQ/dt = 0), on the falling limb (R = 0), and on the rising limb up

to the end of rainfall excess to get various plots of a , a1 and bo

vs. Qp and Q vs. A(Q); then from these plots the values of al, Cl, m,

b and c2 were determined. The evaluation of a from a single
o o

discharge ( the peak discharge ) and al, bo from a portion of the

surface runoff hydrograph should be replaced by some other means

that can evaluate the model coefficients over the full range of

observed discharges.

The Prasad Model

A simplification of the above model by retaining only two terms

of the general nonlinear storage equation was proposed by Prasad

(1967); in this case the storage equation is
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S = K QN + K2dt (4-8)

in which K2 may be a complicated function of several variables

affecting the wedge-storage as well as the storage-discharge relation-

ship. In his study, Prasad assumed that K1, K2 and N are constant

for a particular hydrograph. Using the continuity equation (4-4), one

gets the following differential equation for the rainfall-runoff

process

K2 Q + KN QN- + Q = R . (4-9)2 dt2 dt

Comparing the Prasad model for nonlinear storage (Eqn. (4-8)) with

the Kulandaiswamy model defined by Eqn. (4-3), one can recognize

that a (Q) and al have been taken as K1QN-1 and K2, respectively,

and b = 0.
o

In the Prasad model, the time-invariant coefficients K1, K2

and N were evaluated by a trial-and-error method which is computation-

ally inefficient and requires the knowledge of the initial conditions

with sufficient accuracy. These coefficients were later computed by

Labadie (1968) using quasi-linearization technique which has two

main inherent weaknesses: (1) Initial approximations must be within,

or at least close to, the convex region surrounding the optimal

solution, or convergence is not attained. (2) If convergence does

not result for a particular set of initial approximations, it is not

possible to determine systematically a better set of initial approxi-

mations from these results.

All the above approaches for estimating the model coefficients

are suitable only for deterministic models and not suitable for the
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analysis of real input-output data where the values to be used in

the model are imbedded in partially known or unknown noise. The two

methods proposed in Chapter 3 are very useful in solving parameter

identification problems in this case.

Since the Prasad model for rainfall-runoff is typically non-

linear and the data set made available to the author was related to

Prasad's work, only the Prasad model will be used in the investigation

of the proposed identification schemes' performances.

Reformulation of the Prasad Model in State-Space

Eqn. (4-9) can be written as

d 1 N- d 1 1
2 (K2)K1N dt )Q + ( )R . (4-10)

dtdt 2 2 2

Using the transformation

X1  Q

2 
=

X3 = K1  (4-11)

4  = 1/K
2

X5 = N

and the assumption that the model coefficients are time-invariant,

Eqn. (4-10) can be written in the following form

1 X5-1 2

2 -X3 4X5X1 X2 + X4 (R - X1)

3  
0 , (4-12)

x4  
0

k5 0
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or, in abbreviated notation,

X(t) = f [X(t),R(t)J . (4-13)

Eqn. (4-13) is the model equation in state-space. Let Y(t) denote the

measured runoff which is embedded in noise, one then has

fr Xl

X
2

Y(t) = [ 0 0 0 00] X3  + v(t) , (4-14)

X4
x 5

or, in abbreviated notation,

Y(t) = h [X(t)] + v(t) (4-15)

where v(t) represents the noise term.

Eqns. (4-12), (4-13), (4-14) and (4-15) are the basis for

further development.

Computation of the System State-Transition Matrix

The crucial problem in applying the proposed estimation schemes

to continuous systems with discrete measurements is the evaluation of

the state-transition matrix.

It is known that tto can be obtained from the coefficient
t,to

matrix F(t) by the differential equation

tt = F(t) tt (4-16)

with the initial condition
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S = I (4-17)

to't o

In the general case an explicit closed form solution of Eqn.

14-16) is not possible, but an infinite series can be derived which

:onverges uniformly in t for every matrix F(t). This solution is

,iven as follows, by the use of the Peano-Baker method of integration

'Pipes, 1963)

St,+t I + F(l)dT 1 + F(T1 )  1 F(T2)dr2d'l +

(11 F f 2 F(T 3)dT 3d2drl1 + ... (4-18)

[f the matrix F(t) satisfies the commutativity condition, i.e.,

F(t ) F(t2) = F(t2) F(tl) for all tl and t2  ,

:hen the state-transition matrix is given by (DeRusso, Roy and Close,

L967)

tt = exp F(T)dT

= I + F(T)dr + 21 [ F(T)dT]

+ 3![ F(T)dt ] + ...... (4-19)
t(4-19)

xpansion of each term and rearrangement yield:

2 3 3

S+ At.F +!(F )+ [F+ (F F + F F ) + F]
tt 2! 0 3! 0o 2 00 0

+ ...... (4-20)

here F = F(t ) and At = t - t .
0 0 0
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The computation of Eqn. (4-20) contains only a sufficient

number of terms so that additional terms are negligible by comparison

with the partial sum to that point. However, there are some diffi-

culties associated with attempting to use a truncated form of this

expansion. These stem from the impracticality of obtaining the first-

and higher-order derivatives of F(t), if second- or higher-order

accuracy is required. In these cases, it is better to subdivide the

interval (t - to) and to consider F as a constant matrix during

these partial intervals. The partial transition matrix can now be

computed by

2 At2  FAtN

tI + F AtN + F + .... = e (4-21)

where AtN = (At)/N and N is the number of sub-intervals. The state-

transition matrix 0tto over the whole interval (t - to ) is simply

the product of the partial matrices 4
ti,ti-1

=t t .... t t (4-22)

t,t o  t tp tp-1 tpl'tp_2  t2't I  tl't o

t=t >t > t > > t > tp p-1  p-2 "' t o

For fast time-varying systems, it is better to use small sub-

intervals and consider only the linear term in the expansion (4-21)

than use bigger sub-intervals and include higher-order terms in the

computation of 0t,to (Unger and Ott, 1970).

The formulation of the estimation schemes for estimating

system parameters with noisy input-output data have been implemented

for the study of the rainfall-runoff process. The data to be used

were from the storm of April 10, 1953, on South Fork Vermilion River
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Basin above Catlin, Illinois. The following results are obtained

from computer programs written in EXTENDED FORTRAN for use on the

CDC 6400 digital computer at Colorado State University.

Adaptive Control Approach

The matrices F(t) and G(t) in the linearized expression of

Eqn. (4-12) have the following forms

0 1 0 0 0

X5-1 X5-1E1  -X3XXX1 -X24X5XX5-1 E2  E

F(t) = 0 0 0 0 0 (4-23)

0 0 0 0 0

0 0 0 0 0

X5 - 2
where E1 = -X2X3X X5 (X5-1)X 1  - X

X5-1

E2 = R-X -X2X3X5X1

E3 = -X2X3X X1 2X3X4X5X1 Log(X 1)

G(t) = 0 X4 0 0 01 0 (4-24)

The error term e(t), used to model the truncation error, is

chosen to be a zero-mean white noise process with covariance matrix

.01

Q = 0
0

0

The observation matrix derived from Eqn. (4-14) has the following

form
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H = 0 0 0 0 (4-25)

the observation noise v(t) is also assumed to be a zero-mean white noise

process with variance

R = .0001

R is taken to be much smaller than Q because the observed outputs

of the rainfall-runoff system are relatively noise-free compared to the

inputs; also, there are errors in the model equations due to the incom-

plete knowledge of the nature of the system.

The following initial conditions are assumed for starting the

adaptive control algorithm:

x (0) = X2(0) = 0.

X3 (0) = 10. , x4(0) = .1 , X5(0) = 1.

6ki(0) = 0. , i = 1, 2, 3, 4, 5

10 1
10
10

P = 10

L 10

The initial estimation-error variances are chosen somewhat arbitrarily;

the important thing is that they must be large enough so that the

filter will forget the initial values as more data arrive.

For this linear stochastic control problem, the state-transition

matrix must be computed carefully to avoid introducing further errors

into the model equations; therefore, in the study, second-order terms

are also taken into the computation of 4. Since the state variables
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of the rainfall-runoff system vary relatively slowly with time, a

sub-interval of the order of a few minutes is sufficient for the system

to be considered as time-invariant during this period of time. Thus,

the interval between two consecutive observations (1 hour) is subdivided

into only 10 sub-intervals to avoid excessive computational requirements,

and the value of D is computed from the approximation formulae (4-20)

and (4-21).

Based on nominal values of the state, the control gains are

computed first by the Subroutine ADAPT. A sample listing of these

gains is given in Table 4-1. Later, values of the control gains are

updated as soon as new values of the estimates are obtained. The

values of the time-invariant parameters in the model converge relatively

quickly to their optimal estimates after only 10 iterations, as shown

in Fig. 4-2. The optimal estimates are:

K = 19.99 = 0.16 , N = 1.18
1 K

Thus, using the same coefficients as those used by Labadie (1968), one

has K1N 1
A = = 3.77 A2 = = 0.16 , N = 1.18
1 K2  2 K

These values are not very much different from those obtained by Prasad,

using numerical integration of the nonlinear equation along with a

trial and error procedure; Prasad obtained the values 3.79, 0.076 and

1.27 for Al, A2 and N, respectively. Labadie, using the quasi-

linearization technique, obtained 4.473, 0.0943 and 1.27, respectively.

The differences are mainly due to noise terms introduced into the model

equations to make them more realistic and conform with the nature of the

rainfall-runoff data.



CONTROL GAINS

.539454116E-01 .668759662E-01 -.408799974E-05 .819002790E-04 -.252710147E-04

.534591990E-01 .668278519E-01 -.225537746E-05 .411390483E-04 .163041946E-03

.529202102E-01 .667745150E-01 .667714257E-07 -.577832919E-05 -.138525250E-04

.523227319E-01 .667153902E-01 .195283176E-05 -.424874495E-04 -.145489795E-03

.516604359E-01 .666498512E-01 .196881815E-05 -.390819943E-04 -.140989337E-03

.509263138E-01 .665772045E-01 .180376887E-05 -.358057368E-04 -.129816408E-03

.501126047E-01 .664966820E-01 .164561338E-05 -.326663210E-04 -.119019061E-03

.492107153E-01 .664074335E-01 .149424528E-05 -.296616348E-04 -.108598278E-03

.482111331E-01 .663085175E-01 .134958663E-05 -.267901305E-04 -.985568599E-04

.471033289E-01 .661988922E-01 .121158868E-05 -.240508404E-04 -.888995269E-04

.458756508E-01 .660774046E-01 .108023272E-05 -.214433929E-04 -.796330341E-04

.445152074E-01 .659427788E-01 .955531026E-06 -.189680315E-04 -.707662904E-04

.430077393E-01 .657936038E-01 .837527969E-06 -.166256367E-04 -.623104887E-04

.413374776E-01 .656283193E-01 .726301129E-06 -.144177481E-04 -.542792452E-04

.394869901E-01 .654452000E-01 .621962609E-06 -.123465907E-04 -.466887482E-04

.374370114E-01 .652423397E-01 .524660405E-06 -.104151020E-04 -.395579165E-04

.351662582E-01 .650176321E-01 .434579901E-06 -.862696154E-05 -.329085672E-04

.326512274E-01 .647687515E-01 .351945452E-06 -.698662243E-05 -.267655931E-04

.298659757E-01 .644931306E-01 .277022066E-06 -.549934470t-05 -.211571493E-04

.267818812E-01 .641879369E-01 .210117154E-06 -.417123013E-05 -.161148474E-04

.233673834E-01 .638500475E-01 .151582362E-06 -.300925850E-05 -.116739587E-04

.195877036E-01 .634760206E-01 .101815444E-06 -.202132480E-05 -.787362217E-05

.154045420E-01 .630620663E-01 .612621616E-07 -.121627698E-05 -.475705816E-05

.107757534E-01 .626040140E-01 .304181887E-07 -.603953703E-06 -.237178397E-05

.565500788E-02 .620972797E-01 .983088953E-08 -.195219667E-06 -.769822890E-06
0. .615384615E-01 0. 0. 0.

Table 4-1: Sample values of control gains.
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Figure 4-2: Estimation of time-invariant parameters by

linear adaptive control approach.
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Values of the estimated surface runoff compared with observed

runoff are given in Figure 4-3 for control and without control of

the input disturbance. A sample listing of the results for these

two cases is given in Table 4-2, in which the peak values of the

estimated and observed hydrographs are indicated by small arrows.

From these results, the following remarks can be made:

(1) Adaptive control of the inputs is important for the analysis

of the rainfall-runoff process. Without controlling the rainfall data,

the system identification results would be bad, and, therefore, the

estimation of the surface runoff from these noisy inputs would be

unacceptable.

(2) Controlling the inputs requires additional computer time.

For the particular data set under study, with the same initial conditions

mentioned previously, only 6 secs. are needed to add to 12 secs. which

is the computer time used by the Kalman filtering scheme, including the

adaptive estimation of the error-covariance matrices R and Q.

(3) Even with input-control procedure, the approximation of a

nonlinear system by linearized equations cannot offer good results,

unless the system under study is not highly nonlinear.

The effect of adaptive estimation of the model-error covariance

matrix can be seen from Figure 4-4. In this test case, the Q matrix

can be seen as

100

Q= 0

0
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Figure 4-3: Estimate of direct runoff with and without control.



66

ESTIMATED ESTIMATED MEASURED

.991807573E-07 .991807573E-07 -0.

.421776526E-03 .252270195E-03 .150000000E-03

.134001409E-02 .112551851E-02 .147000000E-02

.197257266E-02 .158049358E-02 .205000000E-02

.206403744E-02 .169617079E-02 .230000000E-02

.218885424E-02 .171930534E-02 .240000000E-02

.216242101E-02 .168333312E-02 .238000000E-02

.210813662E-02 .159430782E-02 .225000000E-02

.195767699E-02 .144564441E-02 .200000000E-02

.177955574E-02 .131368394E-02 .178000000E-02

.160873416E-02 .120310747E-02 .160000000E-02

.137013063E-02 .102278394E-02 .128000000E-02

.113689880E-02 .879052731E-03 .103000000E-02

.941007460E-03 .771580819E-03 .850000000E-03

.777018873E-03 .679555547E-03 .700000000E-03

.652996927E-03 .613792339E-03 .600000000E-03

.521249447E-03 .522779863E-03 .450000000E-03

.426869681E-03 .473724189E-03 .380000000E-03

.374135431E-03 .449590865E-03 .360000000E-03

.310153269E-03 .396322809E-03 .280000000E-03

.240757733E-03 .343625931E-03 .200000000E-03

.184397605E-03 .306895386E-03 .150000000E-03

.133759896E-03 .270461470E-03 .100000000E-03

.100924958E-03 .249638757E-03 .800000000E-04

.659088663E-04 .219309945E-03 .400000000E-04

.298520185E-04 .189475272E-03 -0.

(I) (II)

Table 4-2: Sample results of estimated surface runoff by
linear adaptive control approach:

(I) with control

(II) without control
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Figure 4-4: Effect of adaptive estimation of model-error covariance

matrix.



68

Without adaptive estimation of the Q matrix at each stage, the filter

started to diverge at the 20th observation.

Finally, performances of the adaptive control algorithm with and

without rectification of the nominal state at each stage are given in

Figure 4-5 for comparison. A description of subroutine ADAPT and the

related working subroutines are given in Appendix B.

Nonlinear Estimation Approach

Since rainfall data are noisy, the continuity equation is written

as

dS
d = R* - Q + w(t) (4-26)

where R* denotes the actual noisy input data and w(t) represents the

input noise which is assumed, as usual, to be a zero-mean white noise

process with covariance matrix

E ( w(t)w(T) T ) = W 6 (t - ) (4-27)

Combining Eqn. (4-26) with the nonlinear storage equation (4-8), one

obtains

d 2  -(1 )KNQN-l + (1 )(R* - Q) + (1 )w
dt K2  K2  K2

(4-28)

Let X1 = Q , X2 = Q X K X4 = K , X5 = N

one then gets the following state equation
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SX-1 2
2 -X4X3X5X1

5 
X2 + X 4(R* 1 ) X4

X3  0 + 0 w

X4 0 0

X5  0 0

(4-29)

or, in abbreviated notations,

X -1
E1 -X3X5X 1 -X2X4X 1 E2 E3

F(t)= 0 0 0 0 0 (4-31)

0 0 0 0 0

0 0 0 0 0

where
X5-2

E1 = X2 X3 X4 X1(X 5 - 1)X - X4

E2 1 R -X-X2X3X5X1

X5-1

E3 = - X2X3X4X1 (1 + X 5 Log(X 1))

Subroutine ITERA was developed using the iterated extended Kalman

filter to estimate the state and unknown parameters in the system.
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Figure 4-5: Effect of rectification of nominal state.
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Assume that the error-covariance matrices have the following

values

R = .001 , W = .01

and the given initial conditions for X.(0) and P(0) are the same
1

as in the previous example. The optimum values of the model para-

meters converge a little faster than in the case of using the adaptive

control algorithm; this is shown in Figure 4-6. These optimum estimates

are

K1 = 19.998 , = 0.162 , N = 1.182.

2

One could expect that these results are better than those obtained

previously, since in this case a nonlinear filter has been used and

therefore model-error has been reduced. This fact is verified by

a better fit of the estimated outflow with the measured outflow for

this case as shown on Figure 4-7. A sample listing of the values of

these estimates is given in Table 4-3. Since the estimates of model

coefficients converge to stable values, one may conclude that these

coefficients are constant or can be approximated by time-invariant

parameters for a particular hydrograph.

The variation of the estimation-error variances of the state

with time is shown in Figure 4-8. The effect of adaptive estimation

of the model-error covariance matrix is also tested in this case.

Using the same set of initial conditions as used previously, the

divergence of the filter was less rapid than in the adaptive control

approach. The result is shown in Figure 4-7.

A description of subroutine ITERA and related working subroutines

are also presented in Appendix B.
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Figure 4-6: Estimation of time-invariant parameters by

iterated extended Kalman filter.
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ESTIMATED MEASURED

.119619071E-15 -0.

.150062718E-03 .150000000E-03

.146647386E-02 .147000000E-02

.205084022E-02 .205000000E-02

.221341347E-02 .230000000E-02

+ .240452681E-02 - .240000000E-02

.236577599E-02 .238000000E-02

.224040644E-02 .225000000E-02

.200300775E-02 .200000000E-02

.180874269E-02 .178000000E-02

.161181444E-02 .160000000E-02

.127554449E-02 .128000000E-02

.103091575E-02 .103000000E-02

.849778807E-03 .850000000E-03

.700038029E-03 .700000000E-03

.599990928E-03 .600000000E-03

.450001643E-03 .450000000E-03

.379999577E-03 .380000000E-03

.359997687E-03 .360000000E-03

.280013859E-03 .280000000E-03

.199952195E-03 .200000000E-03

.150323660E-03 .150000000E-03

.994354885E-04 .100000000E-03

.818362730E-04 .800000000E-04

.364464120E-04 .400000000E-04

.431316959E-04 -0.

Table 4-3: Sample results of estimated surface runoff by nonlinear filter.
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Figure 4-7: Estimate of direct runoff with and without adaptive
estimation of model-error covariance matrix.
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Figure 4-8: Variations of the estimation-error variances of the estimates.



76

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

Summary of the work described in previous chapters

After reviewing various parameter identification techniques

used in hydrology in the past, two new approaches for the analysis

of the rainfall-runoff process are proposed, namely the adaptive

control of input disturbances and the nonlinear estimation of

unknown parameters in a noisy environment. Both techniques are

then applied to the identification of time-invariant parameters

in the Prasad model of rainfall-runoff. The results obtained

are encouraging and conform with previous studies made by Prasad

(1967) and Labadie (1968).

Advantages of the proposed approaches

The identification techniques presented in this report

offer the following advantages:

1) The formulation of the parameter identification problem

is natural and gives more insight to researchers about the

process under study.

2) Both techniques offer a better and systematic way to

analyze the rainfall-runoff process.

3) The identification schemes are sequential and adaptive

and therefore the proposed approaches can handle large data

set which may be imbedded in noise with unknown characteristics.
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4) Both techniques can handle any type of parameters, either

time-invariant or time dependent.

5) They can handle multiple-input - multiple-output systems.

6) The computational requirements are relatively small, since

the algorithms are simple and the computer times needed to process

a set of 26 observations are just 14 sec. and 18 sec. for the

nonlinear estimation approach and the adaptive control approach,

respectively.

LIMITATIONS:

Any approach must have certain operational limitations which stem

from the formulation of the problem and assumptions used to derive

necessary equations for further considerations. Therefore, the

following limitations on the use of the proposed techniques can be

listed:

1) They are restricted to jointly Gaussian variables with

white noise processes or with a certain class of colored noise, i.e.,

noise v(t) which is not white, but can be expressed as

v(t) = A(t) v(t) + E(t)

where A(t) is known and (t) is white.

2) The system under study must be controllable and observable.

This problem of stochastic controllability and observability has been

discussed in detail by Aoki (1967) and Sorenson (1968).
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3) When using linearized equations for the adaptive control

scheme, the initial guess for the value of the state cannot be far

away from the true value, if filter divergence is to be avoided.

Suggestions for Future Research

Possible extensions of the study reported in this report are

suggested as follows:

1) Extend this work to the study of distributed-parameter response

models of hydrologic systems. In this case, the systems will be

represented by partial differential equations and the estimation

algorithms developed in Chapter 3 will need only slight modifications

to include the spatial variations of the states.

2) Investigate the use of the proposed approaches for short-term

streamflow prediction in small watersheds, using only measured runoff

at the mouth of the basins. In this case, the adaptive control scheme

will be used to estimate the unknown input from measured runoff and

good short-term streamflow prediction can be obtained by propagating

the state and the estimation-error covariance matrix forward in time.

3) Investigate the possibility of combining the identification

of lumped-parameter models of various environmental zones of a large

mountaineous watershed in one task, using the proposed identification

techniques and total measured runoff. In this case, routing models

for two adjacent zones must be incorporated into the system equations

and the use of the state-variable approach can give a simple matrix

differential equation representing the response model of the whole

watershed under study. Thus, using total measured runoff, one can
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estimate all unknown parameters in various environmental zones and

in the routing models at the same time.

4) Apply these techniques to the analysis of other hydrologic

processes which can be represented by lumped-parameter response models.

For this task, no further modifications of the proposed approaches

are required because they are derived for use in the general case

of time-invariant or time-dependent, linear or nonlinear lumped-

parameter hydrologic response models.
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APPENDIX A

PROOF OF THE SEPARATION PRINCIPLE FOR

THE LINEAR OPTIMAL STOCHASTIC CONTROL PROBLEM
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Problem:

Given the model

6x = D 6x + 7- 6u + w
n n,n-1Xn + n- n,n-1 n-l n-l (A-l)

6y = H 6x + v (A-2)n n n n

where

E X6 = 0 E i x 6xT= Po

E w = E v = 0 for all n

E wWm = Q 6 , E VnV m  = R 6
n.m n nm m n nm

The various random variables are also assumed to be mutually

uncorrelated, so

E 6x wT E 6xovT= 0 for all n

and E wnvT = 0 for all n, m.

Choose the N control vectors 6u. (i=0,1,2,...,N-1) as functions of
1

the measurements 6yo,6yl''...6Yi so that the performance index

E JN = E (6xA.6x. + 6uj- Bj-16uj - )  '(A-3)

is minimized. 
j

is minimized.
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Separation Principle:

For the model described by Eqns. (A-1), (A-2) and (A-3), the

optimal stochastic control law is described by

6UN-k-- AN-k "N-k,N-k-1 iN-k-l (A-4)

where -k iah e conntrol gain obtained by solving the deterministic"N-k

control problem, 6XNk_1 represents the optimal linear estimate of

the state obtained from the set of measurements 6YN-k-1. In obtaining

the estimate, 6UNk_2 is treated as a deterministic quantity.

Using the definition of expectation, Eqn. (A-3) can be written as

E JN =  
(6x- A6x + uj6YNlBj16u )d(6,6YN_1)9 j=l i J j-i j-i __l)P(6  YN..y (61 N-)

N-1

= (6xTA.6x + 6uTBj_. Su . )p(6XN,6Y )d(6XN,6Y

j=l 3 j- -l )( N-)d( 6YN-1)

+ (6xAN6xN + 6UN_-BN-1 6 uN-1)p( 6 XNp6 YN )d(6XN, 6 YN_-1

(A-5)

where f denotes multiple integrals and

d(6XN,YN-1) = d(6xo)d(6xl)...d(6xN)d( 6yo)d(6yl)...d(6yN_-1)

But by hypothesis, the control 6ui is determined from the measure-

ments 6Y , so the 6xN and 6yN-1 can be integrated out of the first

term of Eqn. (A-5)

E J1 = ( (6x A.6x. + 6uT  B. ,6u j - )p(6X. ,6Y)_2d(6 1,6Y
NJ j J J j- 1 N_ N-2

i=1
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T T
+ (6xA6N + 6UN_-BN-16uN-1)p(6XN6YN-_)d(6XN,6YN-1 (A-6)

Consider the last control interval, only the last term of Eqn. (A-6)

is involved. Using the property of joint probability density function,

one has

p(6XN,6YN-1) = p(6xN 6XN-1,6YN_-1)p(6XN-1 6YN_-1) (A-7)

and

(6XN6YN-1) = p(6x 6 XN-1WN-16YN-l)(wN-11 6XN-1' 6YN-1 )

.p(6XN-1,6YN-1 )dwN_ 1  (A-8)

But the set of measurements 6YN- 1 determines 6UN_1, and 6xN-_,  WN-1

and 6uN_l completely define 6xN by Eqn. (A-1). Thus

P(6XNI6XN-1 WN-1 6uN-1) = 6(6x N- "N,N-16xN-1- FN,N-16uN-1-wN-1)

(A-9)

where 6(.) is the Dirac-delta function.

Since w. is uncorrelated with 6x. and 6yi, one has

P(wN-I 6XN-1, YN-1) = P(N- 1 )  
(A-10)

Using Eqns. (A-8), (A-9) and (A-10), E kJ1 can now be written

as

E J1 = (xANxN + 6uN-1BN-16uN-1)

S6(6N - "N,N-16XN-1 - JrN,N-16uN-lwN-l)

Sp(wN-1)p(6XN_ 1 , 6YNl)d(wN 1 , 6XN,6YN_ 1 ) (A-1l)

Integrate Eqn. (A-11) with respect to 6xN and wN_l, then



9Z

E J1 + 2T T

E{Jl =  N- 1 ,N1N NN-16xN-l + xN-1 N,N-1N N,N-16uN-1

T , )
+ 6 N-1 (BN-1 + N N,N-1)6UN-1

+ trace(AQN-1)] p(6_XN-1YN_-)d(6XN-1YN- 1 )  (A-12)

only 6XN_l occurs explicitly in (A-12), so integration will eliminate

6XN- 2 . The control is to be computed as a function of the 6YN-l' so

write

P(6xN-1'6YN-1 ) 
= P(6xN-1 6YN-_ )P( YN_-1

and choose 6u N-1 to minimize

ST T T

6u1 (BN-1  N ,N-1AN N,N-)'uN-1 + 26N-1 N,N-lAN N,N-16uN-1

.P(6xN-1 6YN_) dXN_ l1

=6uN-1(BN-l N,N-1AN fN,N-1)6uN-1 +

+ 2 E6x 1 6YN-1 N,N-lN rN,N-16uN-1 (A-13)

The optimal control 6uN_ 1 is

u-1 = -(BN-1 + N,N-lAN N,N-1- 1  N,N-ANN,N-jN- (A-14)

where 61Ni-1= E fxN-11 6YN- is the minimum variance estimate of 6xN-1

Let A T - T
S(BN l (A-15)= (BN-1 + rN,N-1AN N,N-1 )  

L N,N-AN (A-15)

Eqn. (A-14) then becomes

6UN-1 N N,N-1 6N- 1 (A-16)
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Thus, the separation principle is true for the last stage.

The control (A-16) allows (A-11) to be rewritten as

r *T T T T

E J 1 = lIxN-l N ,N-lANN-T T N-1N_, NlN IN,N-lAN"NNl"'N-l

+ 6XN-1N,N-AN N,N-AN N,N-16N-1J XN-' N-

.d(
6
XN-, 6

YN-_) + trace(ANQN_1). (A-17)

Let 6iN-1 6$N- 6XN-_ represent the error in the estimate, Eqn.

(A-17) can then be rewritten in simpler form as

E J = jxN_.l N,N-lANN, N-1_N- +  N- N ,N-1AN N,N-lNN,N-1~6-N- 1

.p( 6 XN-1,6YN-1)d(6XN1,6YN-1 ) + trace(ANQN-) (A-18)

Using again the property of joint probability density function, one

gets

E J = xN-1 N,N-1AN N,N-16xN-1+ 6xN,N-1 N,N-1AN rN,N-1 N

.0N,N-16 - 6(6 N_-1 - %_16xN_-1 VN-l) (vN-1)

.p( 6 XN-1' 6YN-2 ) d (vN-' ,6xN-16YN-1) (A-19)

The first term of the integrand does not depend upon VN1 and the error

6Ri-1 is not affected by the control 6UN_2, so



94

E J T xT )d( X ~Y
1E Jl = N-1N,N-1AN N,N-16xN-lp(6 N-1'6YN-2 )d( 'N-i' N-2)

+ trace( N,N- AN N,N-l~ N,N-lN-1 + ANQN-1) (A-20)

where E 6xN_ 1 6x N-1 PN-l

Now, consider the last two control intervals

E J2= (6xN-1AN-1 N-1+ 6UN- 2BN-26UN-2) p ( 6XN_ 1 
6 N-2 ) d( 6XN' 6YN-2)

+J ( x N 6UN-1_-1 6UN-1)P(6X, 6YNl)d(6 YN_ )  (A-21)

The principle of optimality allows one to use expression (A-16) for

6uN-l. Thus, with Eqn. (A-20), the above equation becomes

E J2 = xNl(AN N,N-lANN,N-1) xN-+ 6uN-2 BN- 2 6uN-2

.P(6XN-1', 6YN-2 ) d(6XN- 6YN-2)

+ trace(T,N-1AN FN,N-1 'N,N-PN-1+ ANQN-1) (A-22)

Proceeding in a manner analogous to that employed in deriving

Eqns. (A-11) - (A-13), one obtains

6N-2 N-A1N-1,N-26N-2 (A-23)

where AN-1 is determined by

T ' - -l T '

-1 N-, N-2L N1 IN-1,N-2+ BN-2 N1,N2LN- (A-24)

LN- = -1 N-1 + A (A-25)
N,N- N-I NN-



LN-1 = LN-1 - LN-1i N-, N-2AN-1 (A-26)

The cost associated with 
6UN-2 is found to be

E J2  = 6xN- 2 N-1,N-2LN-1 N-1,N-2 6N-2p(6N-2, 6N-3 )d( N-2 YN-3

+ trace N,N-1LN IN-m N ,N-1 N-

TI

N-1,N-2LN-1 PN-1,N-2-,N-NiN-,N-2 N-2

I I

+ LN QN-I + LN-iQN-2 (A-27)

The proof of the general result is done inductively. For any k

one can assume that

uN-k-i = -A N-k N-k,N-k- -k-1 (A-28)

T -1
where Al-k = ( N-k,N-k-LN-k N-k,N-k-i + BN-k-l)

rT

LN-k = N-k+,N-kN-k+l"N-k+,N-k +N- k  (A-0)

I I

LN-k =LN-k - I-k FN-k,N-k-N-k (A-31)

The cost at stage k is

E Jk = xN-k N-k+i,N-kLN-k+1 N-k+ ,N-k6xN-kP(6XN-k' 6N-k-1

.d(6 6Y ) + trace T I
.d(XNk YNk) + trace N-j+,N-jN-j+1 N-j+,N-j

j=1

k ,

N-j-j+ , N-j+,N-N-j + k LN-j+QN-j (A-32)

j=l
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The proof for the (k+l)st stage is accomplished in the same way

so that details shall be omitted. Eqns. (A-28) - (A-32) define the

optimal stochastic control policy. This completes the proof of the

Separation Principle.



9.7

APPENDIX B

PROGRAM DESCRIPTION
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SUBROUTINE ADAPT (MX, MEAS, DELT, NSTEPS, AJ, BJ, OX, R, Q, CP, CONTR, Z)

** This subroutine estimates the state-variables of a linear system

noisy observations using linear stochastic control approach. The

optimal estimates are given by a Kalman filter with adaptive estimation

of the noise covariance matrices **

Working parameters:

MX = number of state-variables,

MEAS = number of observations,

DELT = time-period for sub-intervals,

NSTEPS = number of sub-intervals,

AJ(.,.) = weighting matrix for the state-variables,

BJ = weighting factor for the control input,

OX(.) = set of initial estimates of the state-variables,

R = observation-error variance,

Q(.,.) = model-error covariance matrix,

CP(.,.) = estimation-error covariance matrix,

CONTR(.) = set of inputs,

Z(.) = set of observations.

Subroutines required: STATE, HAD, ADJUSTR, GAIN, STAEST, ERVAR, FPHI,

PREDICT, CGAIN, GAMMA, UPCON.

SUBROUTINE STATE (OX, DELT, CTR)

** This subroutine computes the next value of the state of the

system **

Working parameters: OX, DELT

CTR = the control input.

Subroutines required: None.
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SUBROUTINE HAD (MX, OXP, H)

** This subroutine computes the observation matrix **

Working parameters: MX

OXP(.) = set of predicted state-variables,

H(.) = the observation matrix.

Subroutines required: None

SUBROUTINE ADJUSTR (MX, R, WG, DZ, H, XP, DEL)

** This subroutine adjusts the value of the observation-error variance **

Working parameters: MX, R, H

WG = observation weight,

DZ = measurement residual,

XP(.) = set of predicted state-variables,

DEL = difference between computed and measured residuals.

Subroutines required: None.

SUBROUTINE GAIN (MX, PP, H, R, GK)

** This subroutine computes the Kalman gains **

Working parameters: MX, H, R

PP(.,.) = predicted estimation-error covariance matrix,

GK(.) = vector of Kalman gains.

Subroutines required: None.

SUBROUTINE STAEST (MX, GK, DEL, XP, X)

** This subroutine gives the best estimates of the state-variables. **

Working parameters: MX, GK, DEL, XP

X(.) = set of best estimates of the state-variables.

Subroutines required: None.



100

SUBROUTINE ERVAR (MX, PP, GK, H, R, CP)

** This subroutine updates the estimation-error covariance matrix **

Working parameters: MX, PP, GK, H, R

CP(.,.) = estimation-error covariance matrix.

Subroutine required: None.

SUBROUTINE FPHI (MX, OX, CONTR, DELT, NSTEPS, PHI)

** This subroutine computes the system state-transition matrix. **

Working parameters: MX, OX, CONTR, DELT, NSTEPS

PHI(.,.) = the system state-transition matrix.

Subroutines required: STATE.

SUBROUTINE PREDICT (MX, PHI, GAM, CONGK, CP, Q, X, XP, PP)

** This subroutine computes predicted values of the state-variables

and estimation-error covariance matrix **

Working parameters: MX, PHI, GAM, CONGK, CP, Q, X, XP

PP(.,.) = predicted estimation-error covariance matrix.

Subroutines required: None.

SUBROUTINE CGAIN (MX, MEAS, AJ, BJ, GAMS, PHIS, CGK, OL)

** This subroutine computes the control gains **

Working parameters: MX, MEAS, AJ, BJ, GAMS, PHIS, CGK

OL(.,.,.) = set of control cost matrices.

Subroutines required: None

SUBROUTINE GAMMA (MX, OX, PHI, GAM)

** This subroutine is used to compute the model-error covariance

matrix Q. **

Working parameters: MX, OX, PHI

GAM(.) = control-input matrix.
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Subroutines required: None.

SUBROUTINE UPCON (MX, PHI, GAM, OL, AJ, BJ, CONGK, KK)

** This subroutine is used to update the control law **

Working parameters: MX, PHI, GAM, OL, AJ, BJ, KK

CONGR(.) = set of control gains.

Subroutines required: None.

SUBROUTINE ITERA (MX, MEAS, DELT, NSTEPS, X, R, QEL, CP, CONTR, Z)

** This subroutine estimates the state-variables of a nonlinear system

through the iterated extended Kalman filter with adaptive estimation of

the noise covariance matrices **

Working parameters: MX, MEAS, DELT, NSTEPS, R, CP

X(.) = state-variable vector

QEL = variance element of the model-error covariance matrix.

Subroutines required: ISTATE, IHAD, IADJUSTR, GAIN, STAEST, ERVAR,

IFPHI, IPREDICT, IGAMMA.

SUBROUTINE ISTATE (X, DELT, CONTR)

** This subroutine computes the next value of the state from model

equations **

Working parameters: X, DELT

CONTR = the control input.

Subroutines required: None.

SUBROUTINE IHAD (MX, XP, H, HSM)

** This subroutine computes the observation matrix and its partial

derivatives **

Working parameters: MX, H

XP(.) = set of predicted state-variables,

HSM = h(X) = observation-vector.
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Subroutines required: None.

SUBROUTINE IADJUSTR (MX, R, WG, Z, HSM, H, OXP, SX, X, DEL)

** This subroutine adjusts the value of the observation-error

variance **

Working parameters: MX, R, WG, Z, HSM, H, OXP, X, DEL SX(.) = set of

stored predicted-values of the state-variables.

Subroutines required: None.

SUBROUTINE IFPHI (MX, X, CONTR, DELT, NSTEPS, PHI)

** This subroutine computes the system-state-transition matrix **

Working parameters: MX, X, CONTR, DELT, NSTEPS, PHI.

Subroutines required: ISTATE.

SUBROUTINE IPREDICT (MX, PHI, GAM, CP, QEL, X, NSTEPS, DELT, CONTR,

XP, PP)

** This subroutine computes predicted values of the state-variables

and estimation-error covariance matrix **

Working parameters: MX, PHI, GAM, CP, QEL, X, NSTEPS, DELT, CONTR,

XP, PP.

Subroutines required: None.

SUBROUTINE IGAMMA (MX, X, GAM)

** This subroutine is used to compute the model-error covariance matrix

Q. **

Working parameters: MX, X, GAM.

Subroutines required: None.

SUBROUTINE ADJUSTQ (MX, PHI, H, CP, R, SN, DEL, WG, Q)

** This subroutine adjusts the value of the model-error covariance

matrix Q **
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Working parameters: MX, PHI, H, CP, R, SN, DEL, WG, Q

Subroutines required: None.


