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Abstract

Diatom, chrysophyte cyst, benthic cladocera, planktonic cladocera, and chironomid assemblages were studied
in the surface sediments of 68 small lakes along an altitudinal gradient from 300 to 2350 m in Switzerland. In
addition, 43 environmenta variables relating to the physical limnology, geography, catchment characteristics,
climate, and water chemistry were recorded or measured for each lake. The explanatory power of each of these
predictor variables for the different biological data-sets was estimated by a series of canonical correspondence
analyses (CCA) and the statistical significance of each model was assessed by Monte Carlo permutation tests. A
minimal set of environmental variables was found for each biological data-set by a forward-selection procedure
within CCA. The unique, independent explanatory power of each set of environmental variableswas estimated by a
series of CCAs and partial CCAs. Inference models or transfer functionsfor mean summer (June, July, August) air
temperature were developed for each biological data-set using weighted-averaging partial least squares or partial
least squares. The fina transfer functions, after data screening, have root mean sgquared errors of prediction,
as assessed by leave-one-out cross-validation, of 1.37 °C (chironomids), 1.60 °C (benthic cladocera), 1.62 °C
(diatoms), 1.77 °C (planktonic cladocera), and 2.23 °C (chrysophyte cysts).

Introduction biotic and abiotic systems. Moreover, they can yield

information about the reaction of these systems to dif-

Sediments are among the few continuous proxy
archives that provide information about past environ-
ments over time periods of single years to millennia.
Palagoecological and palaeolimnological studies of
lacustrinedepositscan providethelong time-seriesthat
are needed not only to reconstruct past environmental
conditions but also to assess the natural variability of

ferent perturbations and, given a good time-control, it
ispossibleto estimate phases and amplitudes of distur-
bances. Despite this potential, palaeoecological stud-
ies have often been descriptive and narrative (Birks,
1992, 1993). Processes driving observed patterns in
the proxy records have to be inferred. Changesin past
environmental conditions are often only described in
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Figure 1. Map of Switzerland showing the location of the 68 sampled lakes. Numbers refer to lakesin Table 1.

a qualitative way. To test hypotheses concerning past
environmental changes and also to evaluate biological
and climate models, it is necessary to quantify palaeo-
ecological proxy data (Birks, 1995).

Early attempts to quantify climatic variables such
as temperature from palaeoecological data were car-
ried out by lversen (1944). However, it was only
in the 1970s that mathematical methods began to be
applied to the reconstruction of palaeoenvironmentsin
arigorous and quantitative way (e.g. Imbrie & Kipp,
1971). Diatoms have played an important role in the
development of quantitative methods for environmen-
tal reconstruction: early work concentrated ontherela-
tionship between diatom assemblages and lake-water
pH using linear regression techniques (e.g. Renberg
& Hellberg, 1982). In the late 1980s much effort was
put into the development of numerically robust and
ecologically realistic mathematical methods for envi-
ronmental reconstruction as well as for reliable error
estimation (e.g. ter Braak & Barendregt, 1986; ter
Braak, 1987; ter Braak & Looman, 1986, 1987; ter
Bragk & van Dam, 1989; Birks et al., 1990). Most
of the required protocoals, inferentia techniques, and

quality control guidelines were developed in connec-
tion with lake acidification studies (e.g. Munro et d.,
1990; Charles, 1990; Birks et al., 1990; Birks, 1995)
and can now be directly transferred to other studies
of past environmental change. In recent years, sev-
era studies have used aquatic organisms to estimate
palaeo-temperatures (e.g. Walker et al., 1991a, 1997,
Levesque et al., 1993, 1994; Cwynar & Levesque,
1995).

High-latitude and high-altitude sites have recently
become a focal point for research with respect to the
expected future warming of the earth’s climate. A bet-
ter understanding of the reaction of these ecosystems
to environmental change in the past (e.g. Fritz, 1996)
will greatly enhance the ability to predict future envi-
ronmental change. In mountainous regions, however,
such as the Alps of central Europe with their complex
topography and climate, quantitative reconstructions,
especialy climatic reconstructions, need amuch more
refined scale of investigationthanis currently available
at a broad continental scale (e.g. Huntley & Prentice,
1988, 1993).



This study was undertaken to assess the potential
of using different aguatic organisms, such as diatoms,
cladocera, chironomids, and chrysophytes, as environ-
mental indicators for quantitative palaeoenvironmen-
tal reconstructionsin Late-Glacial and Holocenetime-
series in the geographical region of Central Europe
with particular reference to the Alps. In this paper, we
focus on the different modern training-sets, and their
guantitative relationship to present-day climate in the
Alps. Inaddition, we outlinethe statistical basesfor the
numerical regression and calibration methods used. In
a second, separate contribution we concentrate on the
relationship of these data-sets to trophic state (L otter
etd., in press).

Sites, environmental variablesand microfossils
studied

We sampled the surficial sediments of 68 small lakes
(Figure 1) of similar size between 1993 and 1994.
These lakes are situated along an atitudinal gradient
from 300 to 2350 m above sea level (asl.), whichis
also amajor climatic gradient (Table 1). To minimize
the effects of low pH that might override effects of
other important environmental variables on the aquatic
organisms, only lakes in calcareous bedrock regions
were chosen.

At each lake several echo-soundingtrackswere car-
ried out to locate the deepest part of the basin and water
chemistry was determined (Table 1 and Miller et al.,
in press). Four short sediment cores were taken with
amodified Kagjak corer (6.2 cm diameter) in the deep-
est part of each lake. The top 5 cm of two of the
cores were extruded in 1-cm increments in the field,
the third core was cut open longitudinally in the lab,
photographed, and checked for stratigraphical consis-
tency of the uppermost sediment, and the remaining
core has been archived in a cold room. For this study
the topmost one centimetre was used for analysis.

Geographical lake and catchment data are given in
Table 1. Lakes and catchments were digitized from
1:25000 topographic maps. On the basis of different
GIS maps of Switzerland with a spatial resolution of
100 x 100 mthe areacovered by glaciers, loose rocks,
carbonaceous, siliceous, and mixed bedrock was esti-
mated for each catchment. Land-use for each catch-
ment was subdivided into areas covered by agricultur-
al land, urban areas, wooded areas, unwooded green
areas, and bare ground. Climatic variables estimat-
ed for each lake were the number of growing degree
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days (>5 °C), mean annual as well as mean monthly
values for temperature and precipitation. Mean sea-
sonal temperatures (winter: December, January, Feb-
ruary; spring: March, April, May; summer: June, July,
August; autumn: September, October, November) as
well aswinter and summer precipitation were also cal-
culated (Table 2).

All organisms have been analysed by one analyst
only, thus providing data sets with a consistent taxon-
omy and nomenclature (Birks, 1995).

Samples for diatom and chrysophyte cyst analysis
comprised ca 0.5 cm? and were treated with hot 30%
H,0, and 10% HCI before mounting on slides with
Naphrax. For each slide, a minimum of 500 diatom
valveswas counted at amagnification of 1250 x, using
al eitzDM microscopewith phase contrast. For diatom
identification, thefloras of Krammer & Lange-Bertalot
(1986-1991) were used. The taxonomy of the centric
diatoms, especially the Cyclotella species, largely fol-
lows Wunsam et al. (1995).

The chrysophyte cyst to diatom ratio (C/D) was
determined by counting the number of cysts occurring
together with the first 1000 diatom valves. Samples
having aC/D ratio higher than 0.02 were further exam-
ined. A minimum of 125 cysts or at least 1000 fields
of view, whichever came first, were analysed. Cyst
taxonomy follows Duff et al. (1995).

Sample sizes for zoologica microfossil analysis
ranged from 0.6 to 27.2 g dry weight (mean=6.8 g).
The sediment was treated with 10% KOH on a mag-
netic stirrer. For cladoceran analysis, the remains of
Bosminidae and Chydoridaewere examinedin the sep-
arate fractions >100 pm and 55-100 pm. Subsamples
equivalent to 0.009-3.4 g dry weight (mean=0.3 Q)
were counted under a microscope at 100 x magnifi-
cation. As different fragments of the animals such as
shells, head shields, and post-abdomens are general-
ly well-preserved, only the most abundant component,
which in most casesis the shell, is taken into account
(Frey, 1986). Densities were calculated as numbers
per gram dry weight. If chydorid numbers per sample
were <100, additional non-quantitative samples were
counted. For identification, the keys by Frey (1958,
1959), Flossner (1972), and Lieder (1983) were used.
Nomenclature follows Flossner (1972). Identification
of Bosmina (Eubosmina) remained unclear in several
cases. Bosmina (Eubosmina) morphs with avery long
mucro and a very short mucro are called Bosmina sp.
A and Bosmina sp. B, respectively. In the chydorids,
a quantitative separation of the small Alona speciesis
difficult. Asidentification is mainly based on the pores
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Table 1. Continued

Biology

Geology

Land-use
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Abbre- Eleva- Lati-
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inFig.1

GlaciersLooseCarbonateSiliceousMixed Dia- Chryso-Clado- Chiro-

unwooded [%]

[%]

Winter  Spring

Longi- MaximumOpen
depth

tude
[E]

rock bedrock bedrock bedrock tom phyte cera nomid

[%)

[%]

tempera- tempera- tempera- tempera- tempera days precipita-land culture[%]

water area streams  area

[km?]

vigiontion tude

taxa taxa

[%] [%] taxataxa

[%)

o o o
[mm] (%] [%]

o

ture[o Clture[ C]ture[ CJture[ CJture[ C]

[km?]

[m]

[mas][N]

18
15
18
20
11
20
18
21

15

52 na

0
0

92
57

20
158

10 490 224 255

583 257

10999 1200

72
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of the head shield, species such as Alona rustica are
possibly underestimated.

For chironomid analysis, the fractions >200 pm
and 100-200 um were examined separately under
a stereo microscope at 20-25 x magnification. The
results of both analyses were then combined for the
numerical treatment of the data. The larval head-
capsules were picked out, dehydrated in 96% alcohal,
and mounted in Euparal (Hofmann, 1986). The head
capsules were identified at 200400 x magnification.
Densities were calculated as numbers per gram dry
weight. In 46 of the 68 lakes, numbers of specimens
per sample were <50 and examination of the topmost
2 cm of sediment was therefore necessary. For iden-
tification, the keys by Hofmann (1971), Wiederholm
(1983), and Moller Pillot (1984) were used. Nomen-
clature follows Wiederholm (1983). The Pentaneuri-
ni were separated by the positions of the pores SSm,
$9, S10, and VP on the submental surface (Kowa
lyk, 1985). With respect to pore arrangement, Penta-
neurini sp. A, B, and C correspond to Paramerina-,
Zavrelimyia-, and Telopel opia-types, respectively. The
distinction of Orthocladius with six lateral mentum
teeth from Cricotopusis uncertain: brownish head cap-
sules in which the lateral mentum teeth were equal in
size are associated with Orthocladius. Orthocladius
sp. A has more than six pairs of lateral mentum teeth
and refers to the subgenus Euorthocladius. Tanytarsus
sp. A ischaracterized by ashort, distally rounded spur
at the antennal pedestal.

Numerical analyses

To determine whether to use linear- or unimodal-
based numerical techniques (ter Braak & Prentice,
1988), each biological data-set was initially analysed
by detrended correspondence anaysis (DCA; Hill
& Gauch, 1980) with detrending-by-segments, non-
linear rescaling, and downweighting of rare taxa to
estimate the lengths of the compositional gradients
in each data-set. As al the data-sets have composi-
tional gradient lengths of 2 or more standard devia-
tion units, al subsequent numerical analyses involved
techniques that are based on an underlying uni-
modal species-response model (ter Braak & Prentice,
1988; Birks, 1995), namely canonical correspondence
analysis (CCA), detrended CCA, weighted-averaging
(WA) regression and calibration, and WA-partial least
squares regression (WA-PLS; ter Braak & Juggins,
1993).
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Table 2. Percentage variance explained by each environmental variable in CCA (999 unrestricted Monte Carlo permutations) when that
environmental variable was the sole constraining variable. x significant at the 95% level (p < 0.05)

Variables Diatoms  Chrysophytes Benthic cladocera  Planktonic cladocera  All cladocera  Chironomids
Limnology

Maximum water depth 2.5¢ 35 4.1* 11.2* 4.4* 29
Open water area 16 33 5.5* 42 3.5* 24
Number of inflows 14 21 0.9 23 11 17
Catchment area 17 16 0.7 0.3 0.7 13
Fish farming 18 24 3.7 10 15 18
Hydroelectric power 17 32 19 12.9* 4.5* 19
Lake restoration 2.9* 22 18 12 11 12
Karst outflow 18 4.5% 17 0.8 16 15
Geography

Elevation 6.6 7.7* 6.7* 21.6* 14.9* 10.4*
Longitude 13 2.6 13 0.2 0.3 2.0
Latitude 2.0 31 22 12 14 20
Catchment

Areaof glaciers 3.6* 35 5.8% 32 15 4.9*
Areaof loose rocks 15 32 15 24 17 18
Areaof carbonate bedrock 1.9 18 0.9 0.8 0.7 0.9
Area of silicate bedrock 12 2.7 2.0 4.6* 2.7 2.7
Area of mixed bedrock 29 24 3.3* 0.1 0.6 44
Areaof agricultural land 19 22 0.7 0.4 16 11
Areaof urban land 15 0.2 15 16 20 14
Wooded areas 11 14 14 14 15 11
Unwooded green areas 14 15 1.2 19 0.9 1.0
Areaof bare ground 3.8* 5.4% 4.3* 12.6* 0.7 5.3*
Climate

Mean annual temperature 6.2* 6.8* 6.3* 21.1* 14.1* 9.5¢
Mean winter temperature 6.2* 6.7* 6.2* 20.6* 13.8* 9.5%
Mean spring temperature 6.4* 7.2* 6.4* 21.7* 14.5* 9.9*
Mean summer temperature  6.3* 6.9* 6.3* 21.4* 14.2* 9.5*
Mean autumn temperature  6.0* 6.3* 6.1* 20.1* 13.4* 9.1*
Number of degree days 6.3* 6.1* 6.1* 19.9* 12.9* 9.0*
Annual precipitation 3.6* 5.1* 5.3* 8.3* 5.1* 4.5*
Winter precipitation 4.3* 5.6% 5.1* 8.5* 6.0% 5.4*
Summer precipitation 2.5¢ 4.1* 4.1* 5.9* 3.2* 2.7*
Chemistry

Conductivity 5.5* 4.7* 5.5* 12.0* 9.1* 7.5*
pH 2.5* 31 3.4* 4.9* 3.9 2.7
Alkalinity 5.1* 4.5* 5.9* 11.4* 9.1* 6.9
DOC 5.1* 5.1* 4.8* 15.6* 8.7* 6.9*
NO3 2.8 35 20 35 32 3.8*
TN 3.0* 36 24 57 4.4* 4.8*
PO, 3.4* 39 14 10 13 2.7
TP 4.7* 4.4* 3.9* 6.2* 45 5.4*
Ca 4.4* 4.1* 5.5* 11.5* 9.1* 6.9
Mg 3.5* 27 2.8* 44 3.6* 3.7
Na 4.8* 6.6* 3.4* 9.0* 5.8* 4.6*
K 5.9* 6.6* 3.6* 10.0* 7.6* 6.9

S 16 19 2.3 12 12 18




In an attempt to estimate the explanatory power
of each of the 43 environmental variablesindividually
(marginal effects) for each biological data-set, a series
of CCAs (ter Braak, 1986, 1990) were done using
each environmental variable as the sole constraining
variable. The percentage of the variance in the bio-
logical data explained by each variable was calculated
(Table 2) and the statistical significance of each model
was assessed by an unrestricted Monte Carlo permu-
tation test involving 999 unrestricted permutations (ter
Braak, 1990).

As 19-29 environmental variables have statistical-
ly significant marginal relationships with the different
biological data-sets (Table 2), an attempt was made to
find a minimal set of statistically significant environ-
mental variables that explain, in a dtatistical sense,
the biological data ailmost as well as when all 43
environmental variables are used to model the taxon-
environment relationships. A forward-selection pro-
cedure (ter Braak, 1990; ter Braak & Verdonschot,
1995) was used for variable selection, and the statis-
tical significance of each variable added was assessed
by a Monte Carlo permutation test (999 unrestricted
permutations) with a Bonferroni-type adjustment for
significance levels (Manly, 1991; Miller, 1990).

Because a range of environmental predictors (cli-
mate, water chemistry, elevation, limnology, longi-
tude and latitude, catchment variables) were selected
in these CCA models, we assessed the relative sta
tistical strength and independence of the six different
groups of environmental variables (Table 3). Thiswas
doneby aseries of CCAsand partial CCAs (ter Braak,
1988) to estimate the marginal effects of the six groups
of variables and to partition the total variance in each
biological data-set into fractions representing: (a) the
unique, independent contribution of variables reflect-
ing the complex gradients of water chemistry, climate,
elevation, latitude and longitude, catchment character-
istics, and limnological features; (b) the covariancesor
conditional effects between these gradients; and (c) the
unexplained variance (Borcard et a., 1992; Qinghong
& Brékenhielm, 1995; Table 3). Marginal effectsfor a
group of variables (e.g. the eight limnology variables)
were estimated by using this group of variables as the
sole predictor variables in CCA. All other variables
are ignored, hence the variance explained represents
marginal effects. Unique effects for a group of vari-
ables were estimated by using the group of variables
as the sole predictor variables and all other groups of
variablesas covariablesin partial CCA (Borcard et al.,
1992; Qinghong & Brakenhielm, 1995). The statistical
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significance of the marginal and the unique effects of
each group of explanatory variables was assessed by
Monte Carlo permutation tests (99 unrestricted permu-
tations).

Of the various climatic variables considered
(Table 2), we selected summer temperature for our
inference models because it is highly correlated with
the duration of ice-free season and epilimnetic water
temperature (Patalas, 1990; Livingstone & Lotter, in
press). Furthermore, mean summer temperature by
itself explainsthelargest (or nearly the largest) amount
of the variance in the individual data-sets (Table 2).
All the biological percentage data were transformed to
square-roots (Prentice, 1980) in an attempt to optimize
the ‘signal’ to ‘noise’ ratio in the data. The inference
models were developed using WA-PLS (ter Braak &
Juggins, 1993; ter Braak, 1995). The optimal number
of components to include in the model was assessed
by leave-one-out jack-knifing (ter Braak & Juggins,
1993). Thefinal model was selected that gave the low-
est root mean squared error of prediction (RMSEP),
as assessed by jack-knifing, the highest coefficient of
determination (r2) between observed and predicted val -
ues, again assessed by jack-knifing, and the lowest
mean and maximum biases (ter Braak & Juggins, 1993)
in the leave-one-out cross-validations. Ter Braak &
Juggins (1993) and Birks (1995) discuss the important
di stinction between estimated and predicted valuesand
between stati stics based on the observed and estimated
values (‘apparent’ statistics) and on the observed and
predicted values (‘ cross-validation derived’ statistics).
The latter statistics provide more reliable measures of
the true predictive ability of the transfer functions as
they are less biased by sample resubstitution (Birks,
1995). Some of the final transfer functions derived by
WA-PLS only involve one component, in which case
the WA-PLS transfer function is identical to a WA
regression and calibration with inversedeshrinking (ter
Braak & Juggins, 1993).

Large biological and environmental data-sets
invariably contain some samplesthat may show a poor
relationship to the environmental variable of inter-
est. Such outliers or ‘rogue’ observations can strong-
ly affect the transfer function coefficients and may
markedly decrease the predictive ability of the transfer
function (Martens & Naes, 1989; Birks et al., 1990;
Jones & Juggins, 1995). The concept of an outlying
observation is very much model dependent (Hamil-
ton, 1992). An observation may appear as an outlier
in one statistical model but not in another statistical
model. Outliers were first identified as samples hav-
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Table 3. Margina (M) effects of major groups of environmental variables (see Table 2) and partitioning of the total variance for

each organism group into unique (U) effects

Diatoms Chrysophytes?)  Benthic Planktonic Chironomids
cladocera cladocera

Unique Margind M U M U M U M
Limnology 1151«  13.75x 20.32 1097  27.43« 9.62 1521« 11.00 13.52x
Elevation 1.32 6.56x 7.65% 0.08  21.64x 194 6.75% 148 10.43x
Lat. & long. 322 351 5.62 2.78 147 4.59x 3.60 314 3.99x
Catchment 1459«  19.68x 28.49 1360 27.82 1410« 1952« 1637 2252
Climate 1343«  19.18x 27.37x 873 4104« 1316« 21.24« 1459 22.99x
Chemistry 14.60 21.81 36.69 1128 27.13 1521 25.61x 1645 2342
Tota unique effects  58.67 - 47.44 58.62 63.03
Total explained 67.33 84.56 80.14 71.68 71.74
variance (including
covariance between
groups of variables)
Sum of 8.66 - 32.70 13.06 8.71
covariance terms
Unexplained 32.67 15.44 19.86 28.32 28.26
variance

x Statistically significant, p<0.05

1) Because of the small number of samples (37) relative to the number of environmental variables (43), it isnot possible to estimate
the unique contributions of the different groups of environmenta variables for the chrysophyte data.

ing an absolute residual (observed — predicted) higher
than the standard deviation of the environmental vari-
able of interest (Jones & Juggins, 1995). The statisti-
cal influence sensu Hamilton (1992) of each potential
outlier was estimated by Cook’s D, which measures
the change in the regression coefficient if a particular
sample is deleted (Rawlings, 1988). If Cook’s D>4/n,
wherenisthenumber of samples, thesampleisconsid-
ered to have ahigh influence sensu Hamilton (1992). If
asamplehasalarge absoluteresidual and alow Cook’s
D (<4/n), namely thesample hasalow influenceonthe
model, the sample was deleted as an outlier, as it has
biotic assemblages that are poorly related to the envi-
ronmental variableof interest and haslittleinfluenceon
the model coefficients (Jones & Juggins, 1995). Sam-
ples with a large absolute residual, a high influence
(Cook’s D>4/n), and avery high squared residual chi-
squared distance in a CCA (ter Braak, 1990) using
the environmental variable of interest as the sole con-
gtraining variable in the analysis (Birks et al., 1990)
were examined and usually deleted as outliers in the
WA-PL S asthey too appear to have biotic assemblages
that are poorly related to the environmental variable of
interest in the particular statistical model.

The final screened training sets for summer tem-
perature are characterized in Table 4 by DCCA with

the environmental variable of interest as the only
explanatory variable (detrending-by-segments, non-
linear rescaling, sguare root transformed percentage
data, rare taxa downweighted). The gradient length of
DCCA axis 1 is the gradient length of the environ-
mental variable in standard deviation units (ter Braak
& Juggins, 1993). The gradient length of the second
unconstrained axis is also presented, along with the
eigenvalues and percentage variance of the biological
data explained by each axis, as a guide to the pres-
ence of any large secondary gradientsin the data. The
biological data-sets used in the final training sets are
summarized in terms of the ranges and medians of
the effective number of taxa per sample and the effec-
tive number of occurrences per taxon, as estimated by
Hill’s(1973) N2 diversity measure (ter Braak, 1990; ter
Braak & Verdonschot, 1995). The environmental vari-
able (summer temperature) is characterized in terms
of its range, mean, median, and standard deviation
(Table 4). The transfer function prediction models are
summarized in terms of the optimal number of WA-
PL S components, the apparent r? and RM SE, the jack-
knifed r?> and RMSEP, and the mean and maximum
bias.

The statistical relationship of each individual taxon
inthefinal screened training setsfor thefivetaxonomic
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Table 4. Descriptive statistics for the modern training sets in relation to summer temperature inference models after
screening for outliers

Diatoms Chrysophytes  Benthic Planktonic ~ Chironomids
cladocera  cladocera

Number of samples 64 34 61 48 50
Number of taxa 345 78 30 5 58
N2 for samples
minimum 5.56 2.68 1.18 1.00 3.25
median 18.11 11.60 7.08 1.55 13.12
maximum 48.77 24.55 14.82 3.68 2311
N2 for taxa
minimum 1.00 1.00 1.00 3.05 1.00
median 294 1.99 12.53 12.96 6.62
maximum 40.97 20.12 51.68 42.19 37.81
DCCA axis 1
A1 0.288 0.308 0.129 0.277 0.447
Gradient length (SD) 2.303 2.454 1.460 1.485 2.613
% variance 84 9.4 122 29.0 184
DCA axis2
A2 0.205 0.233 0.119 0.251 0.195
Gradient length (SD) 2.631 2.544 1.976 1.842 2.643
% variance 6.0 51 112 26.3 8.0
A1/ A2 1.405 1.322 1.084 1.104 2.292
Summer temperature (°C)
minimum 7.0 84 6.6 7.0 6.6
mean 13.8 14.3 13.7 14.3 13.0
median 145 155 14.0 15.8 13.7
maximum 20.6 21.8 21.8 20.6 17.3
standard deviation 3.56 331 375 332 351
Prediction model
Number of (WA-)PLS components 2 1 2 2 2
apparent 72 0962  0.789 0.900 0.773 0.930
RMSE (°C) 0.694 1.328 1.191 1.583 0.929
jack-knifed -2 0.799 0.551 0.821 0.715 0.849
RMSEP (°C) 1.619 2.229 1.597 1.773 1.370
mean bias (°C) —0.069 0.124 0.139 0.003 0.006
maximum bias (°C) 3.505 6.486 3.375 2.984 1.668
Taxon response models (maximum likelihood) for all taxain >20% of the samples
Skewed unimodal model 0 0 0 0 1
Symmetric unimodal model 20 4 8 0 12
Sigmoidal model 30 5 8 4 10
Null model 19 13 3 1 7
groups was assessed using a hierarchical set of taxon a monotonically increasing or decreasing sigmoidal
response models (Huisman et al., 1993). This hierar- response model, and a null model of no relationship to
chical set consistsof askewed unimodal response mod- the environmental variable. The simplest statistically

el, asymmetric (Gaussian) unimodal response model, significant response model for each taxon wasfound by
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fitting the most complex model first and progressively
removing parameters from the regression model. This
was done until the model could not be simplified with-
out a significant change (p<0.05) in the deviance of
themodel. Devianceisagoodness-of-fit statistic based
on a likelihood ratio that can be used in F-ratio tests
(Crawley, 1993). Taxon response models were fitted
by maximum likelihood with a Poisson error structure
and a logarithmic link function and were restricted to
all taxawith occurrencesin 20% or more of the sam-
plesin the screened training sets. The number of taxa
in each training set with statistically significant fits to
the four types of response modelsare givenin Table 4.

All DCA, CCA, partial CCA, and DCCAs were
implemented by the program CANOCO version 3.12
(ter Braak, 1987-1992, 1990). The WA-PL S and data-
screening analyses were done by means of the pro-
grams CALIBRATE version 0.61 and WAPLS ver-
sion 1.0 (S. Juggins & C. J. F. ter Braak, unpublished
programs), and the taxon response model ling was done
using the program HOF (J. Oksanen, unpublished pro-
gram).

Results and discussion
Diatoms

The surface-sediment diatom flora of the 68 lakes
includesatotal of 353 taxa. The most abundant diatom
taxa are arranged along the altitudinal gradient in Fig-
ure 2. Below an elevation of 1000 m a.s.l. plankton-
ic taxa dominate the surface-sediment assemblages,
whereasabove 1000-1500ma.s.l. periphytictaxasuch
as Fragilaria spp. become more important. There are,
however, exceptions, mainly involving small centric
taxa such as Cyclotella comensis and C. radiosa (Fig-
ure 2).

After transformation to percentages of tota
diatoms, all taxa were used in the numerical analy-
ses. DCA revealed a compositional gradient length of
3.96 standard deviations (SD) suggesting the use of
unimodal methods. CCA with forward selection and
statistical evaluation by Monte Carlo permutation tests
involving 999 unrestricted permutations shows that
elevation, the presence of glaciers in the catchment,
[PO4], water depth, alkalinity, and the area of bare
ground in the catchment are the minimum set of envi-
ronmental variables that best explain (in a statistical
sense) the variancein the full diatom data.

The groups of environmental variables with the
largest, statistically significant unique or indepen-
dent explanatory powers (Table 3) are the catch-
ment (14.59%, p=0.03) and the climate variables
(13.43%,p=0.01), closely followed by the limnolog-
ical variables (11.51%, p=0.04). Although the set of
chemical variables uniquely explains 14.60% of the
total variance in the diatom data, the resulting mod-
e is not statisticaly significant (p=0.85). A total of
67.33% variance in the diatom data is captured by al
the environmental variables, of which 8.66% consists
of covariances or conditional effects between the vari-
ous groups of predictor variables.

Out of the 68 sites initially used for the diatom-
summer temperature-inference model, two sites have
high absolute residuals and low leverage (FAL, HAG)
and werethereforedel eted as outliers. Two sites (TRU,
MON) have high residuals and high leverage values
(Cook’s D). As TRU also has a very high squared
residual distancein a CCA with mean summer temper-
ature as the only constraining variable, it was deleted
along with MON. The WA-PLS model of square-root
transformed diatom percentage data and summer tem-
peraturethusincludes 64 sites and 345 taxa (Figure 7).
It has arf;, 4 =0.799, @ RMSEP 4.1 =1.619 °C,
a maximum bias of 3.505 °C, and a mean bias of
—0.069 °C (Table 4).

In the final diatom-summer temperature training
set, summer temperature explains 8.4% of the vari-
ance in the diatom data (Table 4). Summer tempera-
ture clearly is a major gradient (eigenvalue=0.288),
as the second, unconstrained axis is smaller (eigen-
value=0.205) than the first constrained axis. There
are, however, large secondary gradientsin the diatom
data. As catchment and limnology variables have sta-
tigtically significant large marginal effects (Table 3),
it is likely that factors such as water depth, nutrients,
competition, or UV radiation may form important sec-
ondary gradients (e.g. Kilham et al., 1996; Vinebrooke
& Leavitt, 1996).

Based on palaeolimnological studies, severa
authors have suggested that diatoms may be used as
indirect palaeoclimatic indicators through changes in
salinity (e.g. Fritzet a., 1991) or through the extent of
icecover (e.g. Smol, 1988). Furthermore, an atitudinal
zonation in diatom assemblageshas al so been observed
(e.g. Servant-Vildary, 1982; Arzet, 1987; Vyverman
& Sabbe, 1995; Wunsam et al., 1995) which suggests
some rel ationship between the occurrence and relative
abundance of diatoms and water temperature. Simi-
lar studies on latitudinal climatic gradients strongly
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support the importance of some temperature relation-
ship in diatoms (Pienitz et al., 1995a, b; Weckstrom
et a., 1997). Furthermore, Psenner & Schmidt (1992)
have suggested that shiftsin air temperature can affect
the composition of diatom assemblages indirectly via
changesin alkalinity and pH at high-elevation sites in
the Alps.

There are at present only two available quantita-
tive inference models for diatoms and surface-water
temperature: Wunsam et al.’s (1995) data-set from the
Alps includes 86 lakes but only using 26 Cyclotella
taxa it yields an apparent r>=0.62 and a bootstrap
RMSEP=1.32 °C, whereas Pienitz et a.'s (1995h)
data-set from Canada includes 56 surface sediments
with 126 taxa that yield an apparent r>=0.63 and
a bootstrapped RMSEP=1.84-2.0 °C. Our alpine
inference model for summer air temperature with
its apparent r°=0.96, a jack-knifed r>=0.79, and
a RMSEP 1) =1.62 °C (Table 4) compares very
favourably with these two data-sets. Further temper-
ature calibration sets from Fennoscandia (Weckstrom
et a., 1997) are currently being assembled and evalu-
ated.

Chrysophyte cysts

Cyst types were analysed in 37 samples in which the
C/D ratio was higher than 0.02. A minimum of 50
cysts were counted. Chrysophyte cysts were classi-
fied according to morphol ogical featuressuch ascollar,
pore, surface texture, spines, etc. following the taxon-
omy proposed by Duff et al. (1995). One morphotype
not described in this flora has been newly described by
Marchetto (1995). A total of 104 morphotypes were
identified using scanning electron microscopy. How-
ever, 14 of these morphotypes had to be amalgamated
with other taxa because Duff et al. (1995) report these
morphotypes not to be distinguishable using the light
microscope. Twelve samples were excluded because
they included only asingle taxon. Relative abundances
for 78 morphotypeswere estimated and thesewerethen
used for numerical analyses. Figure 3 shows the dis-
tribution of the most abundant chrysophyte cyststypes
in relation to the atitudinal gradient.

Trophic state as well as the length of the growing
season have been suggested to be factors that influ-
ence the C/D ratio (Smol, 1985). In our data-set, the
C/D ratio shows a significant (Kendall test, p<0.01)
positive correlation with altitude and a negative cor-
relation with temperature, alkalinity, conductivity, and
[TN]. Using aparametric test, thelogarithm of C/D till
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Figure3. Distribution of chrysophyte cysts along the altitudinal gradient of thelakes. Only selected taxa are shown. Thelakes are ordered according to their elevation and the lake abbreviations

are given in Table 1. Nomenclature follows Duff et al. (1995).



shows a correlation with altitude and summer temper-
ature (Figure 4), but the relationship is weak (r =0.26
and —0.24, respectively). The correl ation between C/D
and temperature agrees with results by Zeeb & Smol
(1993) from Elk Lake, where high C/D ratios were
observed during the ‘Little Ice Age' and before 8500
years BP, when colder conditions have been inferred
from the terrestrial vegetation record. High C/D ratios
were also found by Smol (1985) in three southern
Ontario lakes during the early Holocene. From our
data-setitis, however, not possibleto ascertain whether
the observed relationshipis directly dueto temperature
effects or due to a higher proportion of chrysophyte
cystsin high mountainlakes. Facher & Schmidt (1996)
observed a high abundance of chrysophytecystsin the
sediment of Alpine lakes, whereas in the sediment of
the large deep lakes on the southern dope of the Alps
virtually no cystscan befound (Marchetto, 1995). Rea-
sons for the high abundance of chrysophytesin many
high mountain lakes in the Alps may be related to low
water temperature, but other factors such as oligotro-
phy, morphometry, under-ice growth (e.g. Rott, 1988;
Pugnetti & Bettinetti, 1995), or the ability of flagellate
cellsto avoid photo-inhibition may also play animpor-
tant role (Cronberg, 1986; Duff et al., 1995; Smol,
1995). Furthermore, because of their similarity Alpine
lakes may share the presence of periphytic chryso-
phytes with arctic lakes (Douglas & Smol, 1995).

Theflorigtic gradient length in the chrysophytecyst
datais4.37 SD units. CCA with forward selectioniden-
tifies elevation and the area of bare ground in the catch-
ment as the two environmental variables that explain
most of the variance in this data set. In the Alps the
area of bare ground is closely related to atitude.

It was not possible to estimate the unique contri-
butions of the six groups of environmental variables
in explaining the observed patternsin the chrysophyte
cystsbecausethere wereless sampleswith cystsin suf-
ficient quantity than environmental variables. When
al environmental variables are included in a CCA
(Table 3), 84.56% of the variance in the cyst data is
explained. The climatic variables form a statistically
significant model (p=0.02) and explain 27.37% (mar-
gina effect). Elevation, not surprisingly, also has a
statistically significant marginal effect (p=0.01) that
explains 7.65%. None of the other groups of environ-
mental variables have statistically significant marginal
effects (Table 3).

Three samples were deleted as outliers as they
had residuals higher than the standard deviation of
mean summer temperature (MUZ, END) or had a
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high leverage value and the highest squared residu-
al distances in a CCA with mean summer temper-
ature as the only constraining variable (HAG). This
screening left 34 samples in the WA-PLS model of
square-root transformed chrysophyte cyst percentage
data and summer temperature (Figure 8), giving a
riack) = 0-551, @ RMSEP 1) =2.229 °C, a maxi-
mum bias of 6.486 °C, and a mean bias of 0.124 °C
(Table 4).

With the current knowledge of fossil chrysophyte
taxonomy it isoften not possibleto attribute certain cyst
typestoindividual species. Moreover, itispossiblethat
thesamecyst typemay originatefrom several taxawith
different ecological preferences. In particular, thecom-
mon types characterized by little or no ornamentation
are probably produced by several chrysophyte species
(Duff et a., 1995). This fact may explain the high
proportion (60%) of common cysts whose distribution
follows the null response model (Table 4). Further-
more, some important morphological features are not
visible in the light microscope (Duff et al., 1995) and
22 types had to be amalgamated into 8 counting units
(Figure 3). These two important factors may decrease
the ecological indicator value of our chrysophytedata-
set. Additionally, the selection of samples with high
C/D ratios may largely bias the data-set towards lakes
in which chrysophytes have a competitive advantage
over diatoms.

Cladocera

The cladoceran assemblages in the surface sediments
of 67 lakes include 35 taxa, of which 30 taxa are ben-
thic chydoridsand 5 are planktonic (Bosmina spp. and
Daphnia). The dtitudinal zonation of the cladoceran
assembl agesindicatesthe major compositional change
between 1000-1500 m a.s.l. (Figure 5).

The compositional gradient length for the entire,
unscreened cladoceran data-setis3.22 SD, whereasitis
only 2.34 SD for the benthic cladoceraand 1.59 SD for
the planktonic cladocera. For the cladocera-summer
temperature inference models, these two life-forms
have been analysed separately.

A CCA with forward selection for the entire clado-
ceran data-set suggests that the area of bare ground
in the catchment, the area of open water, the area of
silicate bedrock, and lake-water Ca concentration best
explain the variance in the total cladocera data. For
the benthic cladocera, elevation, area of glaciers in
the catchment, presence of fish farming, water depth,
winter precipitation, number of degree days, pH, lat-
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in the surface sediments of the 68 sampled |akes. Note the logarithmic scale on the y-axes.

itude, and annual temperature are the best predictors,
whereas for planktonic cladocerait is spring tempera-
ture, hydroelectric use of the lake, water depth, area of
silicate bedrock, and longitude.

None of the groups of environmenta variables
have a statistically significant unique relationship with
the benthic cladocera (Table 3), even though eleva-
tion and the climatic and limnological variables al
have statistically significant (p=0.01) marginal effects.
Although all the environmental variables together
explain 80.14% of the variance in the benthic clado-
cera, alargepart of this(32.7%) consistsof conditional,
covarianceterms, leaving only 47.44% of the variance
explained by unique, independent groups of variables.

Climate and catchment variables and latitude and
longitude have statistically significant (p=0.01, 0.03,
0.02, respectively), unique, independent relationships
with the planktonic cladoceran data. A total of 71.68%
of the variance is explained by all the environmental
variables, consisting of 58.62% unique components
and 13.06% covariance terms between the different
groups of environmental variables (Table 3).

For the derivation of temperature inference mod-
els, the percentages of benthic cladocerawere square-
root transformed. One lake (TSC) did not contain
any benthic cladocerans and six lakes showed high
absolute residuals (ORI, SEE, BLA, RET, LAM,
TUR) and were thereforedel eted. WA-PL Sfor benthic
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cladocera and summer temperatures for the remain-
ing 61 sites (Figure 9) gave a rfjack) =0.821, a
RMSEP k) =1.597 °C, and a maximum bias of
3.375°C, and amean bias of 0.139 °C (Table 4).

Planktonic cladocera were present in 61 of the 68
lakes. The compositional gradient length of these 61
lakes is 1.59 SD as assessed by DCCA, suggesting
the use of linear models (Birks, 1995). After square-
root transformation of their percentage values, screen-
ing for outliersindicated 14 lakes with high absolute
residuals (MUZ, BUR, BLA, RET, SAL, GRO, SEW,
TAY, NER, WAN, LUT, MON, SEG, LIO). These
were deleted. The remaining 48 lakes were used
in a linear PLS model of planktonic cladocera and
mean summer temperature (Figure 10; rf ack) = 0.715;
RMSEP 4ck) =1.773 °C; maximum bias=2.984 °C,
mean bias=0.003 °C, Table 4).

Although there are large secondary gradientsin the
benthic and planktonic cladocera (Table 4) unrelated
to mean summer temperature, the summer tempera-
ture gradient is larger than the remaining secondary
gradients in both data-sets, with eigenvalues of 0.129
(benthic) and 0.277 (planktonic) for DCCA axis1 com-
pared to 0.119 (benthic) and 0.251 (planktonic) for the
first unconstrained secondary gradient (DCA axis2in
Table 4).

DeCogta (1964) found a latitudinal pattern in the
present-day distribution of chydorid cladoceraspecies.
In astudy on Canadian lakes, Patalas (1990) conclud-
ed that climate isthe single most important factor con-
trolling zooplankton diversity. George& Harris(1985)
showed astrong correl ation between water temperature
and crustacean zooplankton biomass in Windermere,
whereas Stemberger et al. (1996) found a decrease in
small cladocera species richness as a reaction to cli-
matic cooling. According to their latitudinal affinities,
Harmsworth (1968) characterized European chydorid
speciesas ‘arctic’, ‘sub-arctic’, ‘ north temperate’, and
‘south temperate’. In contrast to chironomids, clado-
cera taxa predominating under arctic/subarctic condi-
tions may frequently occur under temperate condi-
tions as well. Hence, they may not be regarded as
cold stenothermal but as cold-tolerant taxa (Meijer-
ing, 1983). Under conditions of a cool climate, chy-
dorid speciesdiversity iscommonly low because of the
absence of less cold-tolerant taxa. Several palagoeco-
logical case studies of temperate lakes have shown
that chydorid assemblages consisted only of a few
species generally associated with arctic/subarctic con-
ditions (Harmsworth, 1968) during the Late-Glacial
(Hofmann, 1987; Frey, 1988). In the case of Belauer

See (Northern Germany), climatic cooling during the
Younger Dryas coincided with aminimum of chydorid
species diversity (Hofmann, 1993). Throughout the
Pleniglacial of a French maar lake, only two taxa of
thearctic elementswere present (Hofmann, 1991). Cli-
matic warming at the onset of the Hol oceneisindicated
by an increase in species diversity due to the appear-
ance of less cold-tolerant taxa (Hofmann, 1987; Frey,
1988).

As there are no true stenotherms among the chy-
dorids which could be used as indicators, qualitative
pal aeoecol ogical interpretationsshould not bebased on
single taxa but on the overall structure and composi-
tion of the assemblage, e.g. species diversity and pres-
ence/absence of temperate species. Quantitative tem-
perature reconstructions using the entire assemblage,
however, take account of these features. The present
surface-sediment cladocera assemblages provide the
first modern quantitative cladoceran training-set and
show that these animal s have considerable potential as
guantitative climate indicators.

Chironomids

The atitudinal zonation of the chironomid assem-
blages (Figure 6) reveals major changes above
ca. 1500 m a.s.l. The chironomid faunain the surface
sediments of all 68 investigated lakesincludes 68 taxa.
However, only 58 surface samples contained more
than 45 occurrences and were used for the numerical
analyses. DCA gaveacompositional gradient length of
4.95 SD units. Elevation is the environmental variable
in CCA with forward selection that explains most of
the variance in the chironomid data-set.

None of the groups of environmental variables
make a statistically significant unique contribution to
explaining the total variance in the chironomid data
(Table 3). Elevation, latitude and longitude, and the
limnological and climatic variablesall have statistical-
ly significant (p < 0.05) marginal effects, but when the
effects of all the other groups of environmental vari-
ables are partialled out, none of the resulting models
are statistically significant (p=0.17-0.95). All envi-
ronmental variables explain 71.74% of the total vari-
ance in the chironomid data. This includes 8.71% of
covariances between the various groups of environ-
mental variables.

The percentage data were sguare-root transformed
for the chironomid-summer temperature inference
model. Seven samples (MUZ, BLA, RET, SEB,
SEG, MON, END) were deleted as outliers because
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Figure 7. Diatom — mean summer temperature training set: (a)
plot of predicted mean summer temperature against observed mean
summer temperature based on a 2-component WA-PLS model and
(b) plot of residuals (predicted — observed) against observed mean
summer temperature.

of their high absolute residuals, whereas one sam-
ple (TSC) was deleted despite its high Cook’'s D
because of its high residuals and a high squared
residual distance in CCA with mean summer tem-
perature as the only explanatory variable. The WA-
PLS model for chironomids and summer tempera-
ture of the remaining 50 lakes (Figure 11) gave a
rfjack) =0.849, a RMSEP ;1) =1.370 °C, a maxi-
mum bias of 1.668 °C, and a mean bias of 0.006 °C
(Table 4).

Chrysophyte Cysts
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Figure 8. Chrysophyte cyst — mean summer temperature training
set: (a) plot of predicted mean summer temperature against observed
mean summer temperature based on a 1-component WA-PLS model
(=WA with inverse deshrinking) and (b) plot of residuals (predicted
— observed) against observed mean summer temperature.

The gradient of mean summer temperature clearly
reflects a strong gradient in the chironomid data with
the first DCCA axis having an eigenvalue of 0.447
(explaining 18.4% of the variance in the chironomid
data), in contrast to the largest unconstrained axis of
0.195 (8.0% of the variance, Table 4).

On the basis of material from Scandinavian lakes,
Brundin (1949, 1956) concluded that temperature is
an important and often underestimated factor deter-
mining chironomid species distributions. The fau-
na from northern Scandinavia is dominated by true
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cold stenothermal taxa, while in more southern
regions, eurythermal and warm stenothermal taxa
occur. Brundin (1949) defined the * Tanytarsuslugens -
community consisting of ten cold stenothermal, poly-
oxybiontic, and eurybathic species, which are found
in the littoral zone of lakes only under subarctic/arctic
conditions. Intemperatelakes, they arerestrictedto the
profundal zone, i.e. the region below the thermocline.
Thienemann (1954) noted a high degree of similar-
ity between the Scandinavian and Alpine chironomid
faunas due to the boreo-alpine distribution of several
cold-stenotherms. Our resultsindicate that members of
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Figure 10. Planktonic cladocera— mean summer temperature train-
ing set: (a) plot of predicted mean summer temperature against
observed mean summer temperature based on a 2-component WA-
PLS model and (b) plot of residuals (predicted — observed) against
observed mean summer temperature.

the ‘ Tanytarsus lugens -community are most abundant
in high-elevation Swiss lakes. A recent study of the
altitudinal distribution of chironomidsin the Canadian
Cordillera (Walker & Mathewes, 1989), as well as an
Italian study of chironomid distributionsin relation to
stream temperature (Rossaro, 1991), similarly points
to temperature as a major determinant of chironomid
distributions.

Moreover, using CCA, Walker et a. (1991b) found
summer surface-water temperature to be the variable
which best accounted for chironomid distributions
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among lakesin Labrador, Canada. They also present-
ed the first quantitative model for inferring summer
surface-water temperatures from chironomids. Their
latest, expanded training set (Walker et al., 1997)
produces an WA-PLS inference moddl that yields a
jack-knifed r? =0.88 and a RMSEP=2.26 °C, where-
as Olander et al.'s (1997) WA inference model for chi-
ronomidsand July lake water temperature givesajack-
knifedr?=0.58 andaRMSEP=0.12log(temp+ 1) °C.
Our results from the Alps with ajack-knifed r> =0.84
and a RMSEP=1.37 °C (Table 4) compare well with

both of these chironomid-based inference models.
Hann et a. (1992), however, were highly critical of
Walker et a.s (1991b) original study. They argued
that the results and interpretation of the CCA tended
to overestimate the importance of temperature rela-
tive to other factors, such as depth, transparency, tur-
bidity, and sediment composition. Hann et al. (1992)
also argued that chironomids from below the thermo-
cline should have been excluded from the analysis. In
responding to these criticisms, Walker et al. (1992)
indicated the importance of scale, noting that temper-
ature was probably most important in regulating the
broad-scale geographic distribution of chironomids,
but that other factors were likely to be more impor-
tant at finer scales (e.g., within asmall lake, or among
lakes within a small geographic region). They noted
that it was not feasible to separate littoral from profun-
dal head capsules.

Palaeoecol ogical studies have reveal ed that Brund-
in's ‘ Tanytarsus lugens -community were more abun-
dant in Maar lakes during the Weichselian Pleniglacial
(Hofmann, 1990, 1991) and also more abundant in
lakesduringthe L ate-Glacial (Hofmann, 1988; Walker,
1995), particularly in sediments deposited prior to the
Allergd, aswell asin sediments of Younger Dryas age
(e.g. Walker etal., 19914, 1997). Inthetemperate zone,
they disappeared from shall ow |akes at the beginning of
the Holocene and were confined to the profundal zone
in the case of dimictic lakes (Hofmann, 1988; Walker,
1995). These patterns support the contention that tem-
perature has a strong influence, directly or indirectly
on chironomid distributions, but only to the extent that
these climatic episodes are well-documented through
independent evidence.

Where chironomids have been used as quantita-
tive palaeotemperature indicators (e.g. Walker et al.,
19914, b; Levesgue et a., 1993, 1994; Cwynar &
Levesque, 1995), the inferred temperatures are gener-
ally consistent with other lines of evidence. Our evi-
dence provides a further indication that chironomids
can serve as useful palaeoclimateindicators. This may
not end the discussion, but asWalker (1995) states, ‘ the
controversy will inspire research by a new generation
of palacoecologists .

General discussion

Distinct changes in the composition of surface-
sediment assemblages of diatoms, chrysophyte cysts,
cladocera, and chironomids have been observed along
an dtitudinal sampling gradient in the Alps (Figures 2,



3, 5, and 6). The major changesin all the investigated
biota occur around 1500 m a.s.l. Present-day timber-
line in the investigated part of the Alps lies at ele-
vations of between 1900-2000 m a.s.l. This suggests
that the major changes in the assemblage composi-
tions are not related to catchment-related limnol ogical
features, such as, for example, changes in the DOC
content of the water (Pienitz & Smol, 1993). The alti-
tudinal gradient reflects a major climate gradient with
temperature decreasing (Figure 12) and precipitation
increasing with increasing altitude. The overall gra-
dient in summer temperature in our data-set includes
morethan 15 °C (Tables 1 and 3) and isthereforecom-
parable to (Walker et al., 1997), or distinctly larger
than the temperature gradients sampled in other quan-
titative studies (e.g. Wunsamet al ., 1995; Pienitz et al .,
1995b; Weckstrom et al., 1997).

All the above mentioned studies have used summer
surface-water temperatures for their inference mod-
els, whereas we have used mean summer air tempera
tures. Given the day-to-day variability in surface-water
temperatures, the use of mean seasonal air tempera-
tures may be amore reliable measure for remote lakes
where no temperature monitoring data are available.
Moreover, thereis a close linear relationship between
air and surface-water temperatures during the summer
months (e.g. Forester, 1987; Livingstone & Schanz,
1994; Livingstone & Lotter, in press) that helps jus-
tify the use of the more readily available mean air
temperatures. By taking advantage of thisfact, we can
circumvent possible problemsand criticismsarising by
single surface-water temperature measurements(Hann
et al., 1992).

Thereis a strong linear relationship between alti-
tude and mean summer temperature, except for the
five lakes|ocated on the foothills of the southern Alps
(MUZ, ORI, MON, SEG, END, see Figure 12). For
most inference models these five were deleted as out-
liers. Theinsubric climate (high temperaturesand high
precipitation) of the southern Alpineforeland may cre-
ateadifferent environment than themoretemperatecli-
mate on the northern side of the Alps. It is, therefore,
likely that our inference models may not be applicable
to the southern side of the Alps.

Limnological variables such as maximum water
depth or lake surface-area are not significantly corre-
lated with altitude, whereas water chemistry variables
suchas TP, conductivity, and alkalinity (Figure 12), not
surprisingly, show aweak but significant (p<0.01) cor-
relation with altitude (see also Mller et a., in press).
Thismay, to some extent, explain the strong secondary
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gradients present in the diatom and cladocera data-
sets. However, by restricting our modern training-set
to hardwater lakes, effects of pH and pH-related vari-
ables can be excluded. Neverthel ess, unmeasured fac-
tors such as mixing regimes and oxygen concentra-
tions, increasing UV radiation with atitude, length of
ice cover, competition, grazing, and predation may
also strongly influence the distribution and abundance
of the organisms studied.

A consistent feature of the residual (predicted-
observed values) in this study (Figures 7-11) is the
tendency for the predicted values to be over-estimated
at the low end of the sampled gradient and to be under-
estimated at the high end. Thisfeature occurswith sev-
eral other training setswhen WA-PL Sisused for devel-
oping transfer-function models (Birks, unpublished;
ter Braak & Juggins, 1993; Bennion et al., 1996) and
appears to be characteristic of WA-PLS. The likely
explanation for this biasis that WA-PLS and its linear
counterpart PLS use an inverse deshrinking regression
(ter Braak & Juggins, 1993). In classical deshrink-
ing, which is often used in single WA (Birks et a.,
1990) where the initia inferred values are regressed
on the observed values of the environmental variable
being calibrated, the residuals are orthogonal to the
inferred valuesand are thus uncorrelated with the orig-
inal observed values. In contrast, in inverseregression
in WA, where the observed values are regressed on the
initial inferred values, the residuals are orthogonal to
the initial inferred values and not uncorrelated to the
original observed values. Thereis thus a tendency for
the inferred values to be pulled towards the means of
the observed values, leading to an over-prediction at
the low end and an under-prediction at the high end
of the gradient of observed values (ter Braak & Jug-
gins, 1993). In classical deshrinking, which deshrinks
more than inverse regression, the net effect is to pull
the inferred values further away from the mean of the
training set and lower residuals generally arise at the
low and high ends of the sampled gradient. WA-PLS
utilisestheresidual structurein the biological part of a
training set to improve the estimates of the optima of
the taxa in the final transfer function so as primarily
to maximise the predictive power of the model (lowest
RMSEP) and secondarily to reduce, as far as possi-
ble, any bias in the residuals. Inverse deshrinking is,
however, implicit in PLS and WA-PLS (ter Braak &
Juggins, 1993), and thereisthusanin-built bias result-
ing from inverse deshrinking (Martens & Naes, 1989).
In many cases, as in this study, the in-built bias is
not completely removed, even when two components
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areused in the final transfer function. Introducing fur-
ther components often helps to reduce this bias but at
the expense of decreasing the predictive power (higher
RMSEP of the final model). The fina transfer func-
tions (Table 4) are thus, to some degree, acompromise
between the lowest possible RMSEP, as assessed by
cross-validation, and the lowest maximum bias. Other
models (e.g. WA, WA-PLS with 3 or more compo-
nents) have higher RMSEP (WA [classical or inverse
deshrinking], WA-PL S) but lower maximum bias (WA
[classical deshrinking], WA-PLSwith 3 or more com-
ponents) than the models presented in Table 4 and
Figures 7-11.

Conclusions

Our study of surface-sediment assemblages clearly
reveal sthat the abundance of aquatic organismsshows
a strong statistical relationship to climate, especialy
the mean temperature of the summer season. These
data represent the first multi-proxy modern training
set for aguatic organisms available for the Alps. As
each set of organismswas studied by only one analyst,
they form high-quality training sets as are required for
reliable palaeoclimatic reconstructions (Birks, 1994,
1995). In combination with similar pollen-climate
inference modelsthese modern training sets will make
an independent reconstruction of past climatic change
possible. Rigorous numerical and biological evalu-
ations are necessary to quantify the errors inherent
in inferences from all kinds of proxy data and to
assess the dtatistical reliability and ecological realism
of al quantitative palacoenvironmental reconstructions
(Birks, 1995).

Interestingly, over 70% of the taxa (except chrys-
ophyte cysts), that occur in 20% or more of the sam-
ples in the individual training sets, have statisticaly
significant relationships to mean summer temperature
(Table 4), either as unimodal or sigmoidal respons-
es (72.5% diatoms, 84.2% benthic cladocera, 80%
planktonic cladocera, 76.7% chironomids). This com-
pares with diatoms and lake-water pH in the Surface
Water Acidification Project (SWAP) training sets of
167 lakes, where 74% of the diatom taxa had statis-
tically significant relationships with pH (Birks et d.,
1990).

With the available data it is not possible to decide
whether the distribution of these organismsis directly
related to ambient temperature or is indirectly con-
trolled by temperature through changes in physical,
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chemical, and/or biological lake dynamics. Neverthe-
less, one of the basic assumptions of any quantitative
palaeoecological reconstruction is, that ‘the environ-
mental variable to be reconstructed is, or is linearly
related to, an ecol ogically important determinant in the
ecological system of interest’ (Birks, 1995). Thetrain-
ing sets presented here indicate strong empirical rela-
tionshipswith mean summer temperature. The ecolog-
ical explanationsfor suchrelationshipsrequiredetailed
knowledge of the dynamics of the taxa concerned in
response to the multitude of environmental and biot-
ic factors that covary with mean summer temperature
and with altitude. At present, such basic ecological
information is, however, largely lacking.
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