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Abstract—Unlike classical floorplanning that usually handles
only block packing to minimize silicon area, modern very large
scale integration (VLSI) floorplanning typically needs to pack
blocks within a fixed die (outline), and additionally considers
the packing with block positions and interconnect constraints.
Floorplanning with bus planning is one of the most challenging
modern floorplanning problems because it needs to consider the
constraints with interconnect and block positions simultaneously.
In this paper, the authors study two types of modern floorplan-
ning problems: 1) fixed-outline floorplanning and 2) bus-driven
floorplanning (BDF). This floorplanner uses B∗-tree floorplan
representation based on fast three-stage simulated annealing (SA)
scheme called Fast-SA. For fixed-outline floorplanning, the au-
thors present an adaptive Fast-SA that can dynamically change
the weights in the cost function to optimize the wirelength under
the outline constraint. Experimental results show that this floor-
planner can achieve 100% success rates efficiently for fixed-outline
floorplanning with various aspect ratios. For the BDF, the authors
explore the feasibility conditions of the B∗-tree with the bus con-
straints, and develop a BDF algorithm based on the conditions and
Fast-SA. Experimental results show that this floorplanner obtains
much smaller dead space for the floorplanning with hard/soft
macro blocks, compared with the most recent work. In particular,
this floorplanner is more efficient than the previous works.

Index Terms—Floorplanning, physical design.

I. INTRODUCTION

A S THE DESIGN complexity increases dramatically, mod-
ern very large scale integration (VLSI) floorplanning

incurs more sophisticated constraints with the die outline,
interconnect planning, and block positions. As pointed out
by Kahng in [10], modern VLSI design is based on a fixed-
die (fixed-outline) floorplan, rather than a variable-die one.
A floorplan with pure area minimization without any fixed-
outline constraints may be useless because it cannot fit into
the given outline. Unlike classical floorplanning that usually
handles only block packing to minimize silicon area, therefore,
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modern floorplanning should be formulated as a fixed-outline
floorplanning.

The fixed-outline floorplanning has been shown to be much
more difficult than the outline-free floorplanning [2]. Based
on the sequence pair (SP) representation [14], Adya and
Markov [2], [3] first present new objective functions to drive
simulated annealing (SA) and new types of moves that better
guide local search for fixed-outline floorplanning. Lin et al. [13]
apply evolutionary search to handle fixed-outline floorplanning
based on the normalized polish expression [24].

Floorplanning with position constraints is also prevailing in
modern floorplan designs. There are many types of position
constraints in modern floorplanning, such as range, symmetry,
alignment, and bus constraints. Among these position con-
straints, bus-driven floorplanning (BDF) is one of the most
challenging modern floorplanning problems because it needs to
consider the constraints with interconnect and block positions
simultaneously. In particular, the interconnection on the chip
becomes more congested as technology advances and, thus,
bus routing becomes a challenging task. Since buses have
different widths and go through multiple blocks, the positions
of the blocks greatly affect the bus routing. To make the bus
routing easier, we shall consider the bus planning earlier in the
floorplanning stage [26].

Floorplanning with the alignment constraint is closely re-
lated to BDF. The alignment constraint is considered in [23]
and [25]. For the constraint, the alignment blocks are required
to be aligned in a row and abut one by one. However, blocks
involved in a bus do not need to be placed adjacent to each other.
Rafiq et al. [16], [17] proposed a BDF. The bus defined in their
works is composed of wires connecting only two blocks, which
is not general enough to capture real bus designs. The general
BDF that allows a bus to connect multiple blocks is first studied
in [26]. In this work, the buses are placed in the top two layers
and go either horizontally or vertically in one layer. For this
problem, Xiang et al. [26] proposed an algorithm based on the
SP representation. Nevertheless, the SP representation incurs a
larger solution space, and thus it is less efficient to find a high-
quality solution. Note that the solution space for SP is (n!)2,
and the solution space for B∗-tree that we used in this paper is
only O(n!22n/n1.5) [5].

We study in this paper two types of modern floorplanning
problems: 1) fixed-outline floorplanning and 2) BDF. Our
floorplanner uses the B∗-tree floorplan representation [5] and
is based on a fast three-stage SA scheme, called Fast-SA. The
Fast-SA is significantly different from the existing SA schemes
that try to speed up the annealing process, e.g., the well-
known TimberWolf [19]–[21] that uses a two-stage technique
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to control the temperature updating function to reduce the
iterations. Our Fast-SA consists of three stages of temperature
modification. Experimental results show that Fast-SA is suit-
able for block floorplanning; it is more efficient than the clas-
sical and TimberWolf SA to obtain high-quality floorplans.

For fixed-outline floorplanning, we present an adaptive
Fast-SA that can dynamically change the weights in the cost
function under the outline constraint. The adaptive Fast-SA
controls the parameters of the cost function dynamically
according to a set of the most recent floorplan solutions.
Experimental results show that our method achieves a
success rate of 100% for the fixed-outline floorplanning
with a dead space of 10% and various aspect ratios,
compared to the average success rates of 30.3%, 65.5%,
and 99.4% obtained by genetic floorplan algorithm (GFA) [13],
Parquet-4.5 [15] using SP, and Parquet-4.5 using B∗-tree,
respectively. Further, the wirelength with the fixed-outline
constraint is reduced by 6% on average, compared with
Parquet-4.5.

For BDF, we explore the feasibility conditions of the B∗-tree
with the bus constraints, and develop a BDF algorithm based
on the conditions and Fast-SA. Compared with the most recent
work by Xiang et al. [26], our method based on Fast-SA obtains
much smaller dead space for the floorplanning with hard/soft
blocks. In particular, our floorplanner is more efficient than the
previous works.

The rest of this paper is organized as follows. Section II
reviews the B∗-tree floorplanning representation. Section III
presents the Fast-SA scheme. Section IV copes with the fixed-
outline floorplanning based on adaptive Fast-SA. Section V
deals with BDF based on Fast-SA. The experimental results
are reported in Section VI. Finally, we give the conclusion in
Section VII.

II. B∗-TREE REPRESENTATION

A B∗-tree [5] is an ordered binary tree for modeling
nonslicing or slicing floorplans. Given an admissible placement
[9] (in which no blocks can move left or down), we can
construct a unique B∗-tree in linear time to model the
placement. Further, given a B∗-tree, we can also obtain a legal
placement by packing the blocks in amortized linear time with
a contour structure [5].

Fig. 1 shows an admissible placement and its corresponding
B∗-tree. A B∗-tree is an ordered binary tree with its root
corresponding to the block on the bottom-left corner. Similar to
the depth-first search (DFS) procedure, we construct a B∗-tree
T for an admissible placement in a recursive fashion. Starting
from the root, we first recursively construct the left subtree and
then the right subtree. Let Ri be the set of blocks located on
the right-hand side and adjacent to bi. The left child of the node
ni corresponds to the lowest unvisited block in Ri. The right
child of ni represents the lowest block located above and with
its x-coordinate equal to that of bi.

Given a B∗-tree T , its root represents the block on the
bottom-left corner, and thus the coordinate of the block is
(xroot, yroot) = (0, 0). If node nj is the left child of node ni,
block bj is placed on the right-hand side and adjacent to block

Fig. 1. (a) Admissible placement and (b) B∗-tree representing placement.

bi; i.e., xj = xi + wi. Otherwise, if node nj is the right child
of ni, block bj is placed above block bi, with the x-coordinate
of bj equal to that of bi; i.e., xj = xi. Therefore, given a
B∗-tree, the x-coordinates of all blocks can be determined
by traversing the tree once in linear time. Further, each
y-coordinate can be computed by a contour data structure in
amortized constant time [5], making the overall evaluation an
amortized linear-time process.

III. FAST SA

SA [11] is widely used for floorplanning. It is an optimization
scheme with nonzero probability for accepting inferior (uphill)
solutions. The probability depends on the difference of the so-
lution quality and the temperature. The probability is typically
defined by

Prob = min
{

1, e
−∆C

T

}
(1)

where ∆C is the difference of the cost of the neighboring state
and that of the current state, and T is the current temperature.
In the classical annealing schedule, the temperature is reduced
by a fixed ratio λ (say, 0.85 as recommended by most previous
works) for each iteration of annealing.

The excessive running time, however, is a significant draw-
back of the classical SA process. To reduce the running time
of SA for searching for the desired solutions more efficiently,
several annealing schemes of controlling the temperature
changes during the annealing process have been proposed. The
annealing schedule used in TimberWolf [19]–[21] is probably
the most successful scheme reported in the literature. It in-
creases λ gradually from its lowest value (0.8) to its highest
value (approximately 0.95), and then gradually decreases λ
back to its lowest value. (See Fig. 2(a) and (b) for the respective
temperature changes for classical SA and TimberWolf SA as the
search time goes by.)

We propose a Fast-SA scheme. The motivation is that we
try to reduce the number of uphill moves in the beginning.
We observe that it is not efficient and effective to accept too
many uphill moves in the beginning since most of the solutions
are inferior. We resort to greedy search to find a local optimal
faster. Starting with the local optimal, we then switch to normal
SA. By doing so, we can save time for searching for good
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Fig. 2. Temperature versus search time for (a) classical SA, (b) TimberWolf SA, and (c) Fast-SA. Temperature of TimberWolf SA drops faster than that of
classical SA at beginning and ending iterations, but slower in middle iterations. Fast-SA consists of three stages.

solutions. To implement the above ideas, our Fast-SA consists
of three stages:

1) high-temperature random search stage;
2) pseudogreedy local-search stage;
3) hill-climbing search stage.

At the first stage, the temperature is set to a very large
value. According to (1), the probability to accept an inferior
solution approaches one. This can avoid getting trapped in a
local optimal in the very first. At the second stage, we let
the temperature approach zero to accept only a small number
of inferior solutions. At the third stage, the temperature is
raised to facilitate hill climbing to search for better solutions.
The temperature reduces gradually, and very likely it finally
converges to a desirable solution.

Since the new SA scheme saves many iterations to explore
the solution space, it could devote more time to finding better
solutions in the hill-climbing stage. This makes annealing
much more efficient and effective. To implement the annealing
scheme, we derive the temperature T updating function of the
Fast-SA by

Tn =




∆avg
lnP n = 1
T1〈∆cost〉

nc 2 ≤ n ≤ k
T1〈∆cost〉

n n > k.

(2)

Here, n is the number of iterations, ∆avg is the average uphill
cost, P is the initial probability to accept uphill solutions,
〈∆cost〉 is the average cost change (new cost − old cost) for the
current temperature, and c and k are user-specified parameters.
At the first iteration, the temperature is set according to the
given initial accepting probability P and the average uphill cost
∆avg. Since P is usually set close to one, therefore, it performs
random search to find a good solution. Then, it enters the
pseudogreedy local-search stage until the kth iteration. Here, c
is a user-defined parameter to control how low the temperature
is in the second stage. We usually choose a large c to make
T → 0 so that it only accepts good solutions to perform
pseudogreedy searches. After k iterations, the temperature
jumps up to further improve the solution quality. The value
of 〈∆cost〉 affects the reduction rate of the temperature. If the
cost of a neighboring solution changes significantly, 〈∆cost〉 is
larger and, thus, the temperature reduces slower. In contrast, if

〈∆cost〉 is smaller, it implies that the cost of the neighboring
solution only changes a little; for this case, we reduce the
temperature more to reduce the number of iterations. Since
the cost function is normalized to one, therefore, 〈∆cost〉 < 1,
and it ensures the decreasing temperature. The behavior of the
temperature changes is illustrated in Fig. 2(c). The number
of iterations in the second stage can be determined by the
problem size. The smaller the problem size, the smaller the k
value. In our cases, we set c = 100 and k = 7 for floorplanning
problems. Note that the initial temperature for the Fast-SA is
the same as that for the classical SA, i.e., T1 = ∆avg/ lnP .
The initial temperature T1 needs to be kept high to avoid
getting trapped in a local minimum in the very beginning.

In this paper, we use the B∗-tree representation to model a
floorplan. Each B∗-tree corresponds to a floorplan. Therefore,
the solution space consists of all B∗-trees with the given nodes
(blocks). To find a neighboring solution, we perturb a B∗-tree
to get another B∗-tree by the following operations.

1) Op1: Rotate a block.
2) Op2: Move a node/block to another place.
3) Op3: Swap two nodes/blocks.
4) Op4: Resize a soft block.

For Op1, we rotate a block for a B∗-tree node, which does
not affect the B∗-tree structure. For Op2, we delete a node and
move it to another place in the B∗-tree. For Op3, we swap two
nodes in the B∗-tree. For Op4, we adjust the aspect ratio of a
soft block. The soft-block adjustment algorithm is described
in the experimental results. After packing for a B∗-tree, we
obtain a new floorplan. Whether or not we take the new solution
depends on the current temperature and the cost function. The
cost function is defined based on problem requirements. For
example, we may adopt the following cost function to optimize
the wirelength and the area of the floorplan:

Cost = α
A

Anorm
+ (1 − α)

W

Wnorm
(3)

where A is the current area, Anorm is the average area, W is
the current wirelength, Wnorm is the average wirelength, and
α controls the weights for area and wirelength. To calculate
∆avg [in (2)], Anorm and Wnorm [in (3)], we perturb the
B∗-tree for n times to obtain another n floorplans before the
SA process starts. ∆avg is the average of all positive (uphill)
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cost change for these n perturbations. Anorm and Wnorm are the
average area and wirelength of these floorplans, respectively.
The value n is proportional to the problem size (the number
of modules).

IV. FIXED-OUTLINE FLOORPLANNING

In this section, we present an adaptive Fast-SA scheme
that can dynamically change the weights for simultaneous
chip area and wirelength optimization under the fixed-outline
constraint.

A. Fixed-Outline Constraints

For a collection of blocks with the total area A and the given
maximum percent of dead space Γ, we construct a fixed outline
with the aspect ratio R∗, i.e., height/width. The height H∗ and
width W ∗ of the outline are defined by [2]

H∗ =
√

(1 + Γ)AR∗, W ∗ =

√
(1 + Γ)A

R∗ . (4)

B. Algorithm Overview

We use our Fast-SA to search for a desired solution. We ini-
tialize a B∗-tree as a complete binary tree, and perturb a B∗-tree
to another by the operations described in Section III. For some
blocks, they only have one feasible orientation to fit into the
fixed outline. We mark all such blocks as nonrotatable blocks
and set their orientations before performing perturbations. For
Op1, we can only choose a rotatable block. Since we intend
to minimize the wirelength/area of the floorplan, we always
record the floorplan of the minimum wirelength/area during
SA. After the temperature cools down enough, we terminate
the SA process and report the best floorplan.

The researchers in [3] directly penalize the floorplan solution
with the amounts of its height and width violating the outline
constraint by adding max{H −H∗, 0} + max{W −W ∗, 0}
to their cost function. We observe that such a cost function
might not lead to high-quality floorplanning results. The rea-
sons are twofold: 1) If we assign a large weight for the penalty,
it is very easy to get trapped in the local minimum when the
first feasible solution is found and 2) If we give a small weight
for the penalty, in contrast, it might not be easy to obtain a
feasible floorplan that satisfies the outline constraint. Thus, it
is desirable to derive a new cost function for a fixed-outline
floorplanning to remedy these problems.

In addition to the wirelength/area objective, we add an
aspect-ratio penalty to the cost function. The idea is that if the
aspect ratio of the floorplan is similar to that of the outline,
and the dead space of the floorplan is smaller than the max-
imum percentage of dead space Γ, then the floorplan can fit
into the outline. Assume that the current aspect ratio of the
floorplan is R. We define the cost function Φ for a floorplan
solution F by

Φ(F ) = αA+ βW + (1 − α− β)(R−R∗)2 (5)

Fig. 3. Two feasible floorplans. Dotted line is fixed outline, and fixed-
outline aspect ratio R∗ is 0.5. Floorplan aspect ratio R is (a) 0.5
and (b) 1.

where A is the current floorplan area, W is the current wire-
length, R is the current floorplan aspect ratio, R∗ is the desired
floorplan aspect ratio, and α, β are user-defined parameters.
As the example shown in Fig. 3, the best aspect ratio of the
floorplan in the fixed outline may not be the same as that of the
outline. In this case, we shall decrease the weight of aspect-ratio
penalty to concentrate more on the floorplan wirelength/area
optimization. (We will discuss the relationship of weight values
in reporting the experimental results.) Since it is not easy to
determine the weight of the wirelength/area and the weight
of the aspect-ratio penalty, we show in the following how to
adaptively control the weight for different floorplans.

C. Adaptive SA

We focus on area optimization (β = 0) with the fixed-outline
constraint for easier presentation; the technique readily applies
to wirelength optimization as well. Since R∗ and Γ are user-
specified parameters, the weights for the area and the aspect
ratio should be determined by the given values. It is not easy to
determine the best α, and it is not efficient to try every α value
in the cost function. Therefore, we use an adaptive method to
control α according to n most recent floorplans found. The area
weight α is defined by

α = αbase + (1 − αbase)
(nfeasible

n

)
(6)

where nfeasible is the number of feasible solutions in n most
recent floorplan solutions, and αbase (0 < αbase < 1) is deter-
mined by the user, say αbase = 0.5. The range of α is from
αbase to 1.0. The value of α cannot be larger than 1.0 since the
weight of the aspect-ratio penalty is 1 − α. The more feasible
floorplans found, the smaller weight of the aspect ratio is.
The experimental results for using adaptive SA are reported in
Section IV-B.

D. Algorithm

Fig. 4 summarizes our algorithm. First, we mark all
nonrotatable blocks, set their orientations, and initialize a B∗-
tree with input blocks as a complete binary tree. Then, we start
with the adaptive Fast-SA process. After each perturbation, we
perform packing and evaluate the B∗-tree cost. Whether or not
we accept the new B∗-tree is determined by (1). If the floorplan
is better than the current best one, we record it as the best
floorplan. Then, we update the temperature T and update the
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Fig. 4. Adaptive SA for fixed-outline floorplanning.

weights in the cost function. The weights in the cost function
are updated dynamically (adaptively), instead of keeping the
weight as a constant. This process continues to the end of SA,
and the best solution is reported. The time complexity for each
perturbation and evaluation of the fixed-outline floorplanning
is the same as the packing time of one B∗-tree, i.e., O(n),
where n is number of macro blocks.

V. BDF

In this section, we explore the feasibility conditions of the
B∗-tree with the bus constraints and develop a BDF algorithm
based on the conditions and Fast-SA.

A. BDF Formulation

We consider a chip with multiple metal layers, and buses
are assigned on the top two layers. The orientation of buses is
either horizontal or vertical. The problem of BDF is defined as
follows [26].

Given n rectangular macro blocks B = {bi|i = 1, . . . , n}
and m buses U = {ui|i = 1, . . . ,m}, each bus ui has a width
ti and goes through a set of blocks Bi, where Bi ⊆ B and
|Bi| = ki. Decide the positions of macro blocks and buses such
that there is no overlap between any two blocks or between any
two horizontal (vertical) buses, and bus ui goes through all of
its ki blocks. At the same time, the chip area and the bus area
are minimized.

For convenience, let 〈g, t, {b1, . . . , bk}〉 represent a bus u,
where g ∈ {H,V } is the orientation, t is the bus width, and
bi, i = 1, . . . , k, are the blocks that the bus goes through. In
short, a bus is represented by {b1, . . . , bk}. Fig. 5 shows a
feasible horizontal bus.

B. B∗-Tree Properties for Bus Constraints

The blocks that a bus goes through must locate in an align-
ment range, i.e., the vertical or horizontal overlap of the blocks
has to be larger than the bus width. For a B∗-tree, the left child
nj of the node ni represents the lowest adjacent block bj , which
is right to the block bi (i.e., xj = xi + wi). Therefore, the
blocks have horizontal relationships in a left-skewed subtree.

Property 1: In a B∗-tree, the nodes in the left-skewed subtree
may satisfy a horizontal bus constraint.

Blocks are compacted to the bottom and left after packing.
Therefore, the blocks associated with a left-skewed subtree of a
B∗-tree may be aligned together if no block falls down during
packing. We introduce dummy blocks to solve the falling-
down problem. In Fig. 6(a), the blocks b2 and b4 are displaced
because they fall down during packing. We add dummy blocks
right below the displaced blocks. The dummy blocks have the
same x-coordinates as the displaced blocks, and the widths
are also the same. In Fig. 6(b), we adjust the heights of the
dummy blocks to shift the displaced blocks to satisfy the bus
constraint. After adjusting the heights of the dummy blocks, we
can guarantee that the blocks are feasible with the horizontal
bus constraint. The height ∆i of the dummy block Di can be
computed by

∆i =
{

(ymin + t) − (yi + hi), if (ymin + t) > (yi + hi)
0, otherwise

(7)

where xi(yi) is the x(y)-coordinate of block bi, and ymin =
max{yi|i = 1, 2, . . . , k} for bus {b1, . . . , bk}. Fig. 7 shows an
example of a feasible horizontal bus by inserting dummy blocks
D5 and D6.
Property 2: By inserting dummy blocks of appropriate

heights, we can guarantee the feasibility of a horizontal bus
with blocks whose corresponding B∗-tree nodes are in the left-
skewed subtree.

For a B∗-tree, the right child nj of the node ni represents
the closest upper block bj , which has the same x-coordinate as
the block bi (i.e., xj = xi). Therefore, the blocks in the right-
skewed subtree are aligned with the x-coordinate. Assume the
minimum width of the macro blocks that the bus goes through
is larger than the bus width. The structure forms a vertical bus.
In the example shown in Fig. 8, the nodes n3 and n5 are in the
right-skewed subtree of n0, so the blocks b0, b3, and b5 satisfy
the vertical bus constraint.
Property 3: In a B∗-tree, the nodes in the right-skewed

subtree can guarantee the feasibility of a vertical bus.
Note that the vertical bus is not constrained to be at the right

subtree of the node corresponding to the lowest module among
the set. According to property 3, the nodes in the right-skewed
subtree can guarantee the feasibility of a vertical bus, but it is
not always true vice versa.

C. Twisted-Bus Structure

Consider two buses simultaneously, we cannot always fix
the horizontal bus constraints by inserting dummy blocks.
As the example shown in Fig. 9, two buses are considered:
u = {b0, b3} and v = {b2, b6}. We can add the dummy block
D0 (D2) below b0 (b2) to satisfy the horizontal bus u (v).
However, we cannot satisfy two horizontal bus constraints
at the same time since two buses are twisted. The idea to
discard B∗-trees with twisted-bus structures is to reduce the
solution space and make the solution searching more efficient.
Note that it is impossible to fix a twisted-bus structure by
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Fig. 5. Feasible horizontal bus u = 〈H, t, {b1, b2, b3}〉.

Fig. 6. (a) Infeasible floorplan since block-overlap range is less than bus width t and (b) inserting dummy blocks, bus 〈H, t, {b1, b2, b3, b4}〉
is satisfied.

Fig. 7. (a) B∗-tree with left-skewed subtree after inserting dummy nodes and (b) corresponding feasible horizontal bus 〈H, t, {b3, b5, b6}〉.

inserting dummy blocks. Discarding such a configuration will
not remove any feasible solutions. We directly examine the
twisted-bus structure by checking the B∗-tree nodes. Consider
two buses u and v. If one node of bus u is in the right-skewed
subtree of one node of bus v, and one node of bus v is in
the right-skewed subtree of one node of bus u, then it will
incur a twisted-bus structure. Therefore, we shall discard a
B∗-tree with such an infeasible tree topology during solution
perturbation. Note that not all potential twisted-bus structures
are checked through the aforementioned procedure. Fig. 9
shows a twisted-bus structure, where n3 is in the right-skewed
subtree of n2, and n6 is in the right-skewed subtree of n0.

D. Bus Overlapping

When multiple buses are considered, we need to avoid over-
laps between buses. For example, in Fig. 10, two horizontal

buses are to be assigned. The buses u = {b0, b4} (v = {b2, b3})
are feasible when we consider only one bus. However, the
vertical space is not large enough for fitting two buses. In this
case, we compute the minimum shifting distance for the block
b2, and insert a dummy block D2 right below b2. Thus, the two
buses can be assigned at the same time by inserting the dummy
block. In our implementation, we check the buses one by one
using the order in the benchmark. When one bus is examined,
we also allocate the space for the bus according to the bus
width and the block positions. If we find the space of one bus
overlapping with another bus, we will let the new bus be on top
of the other and insert dummy blocks to avoid overlaps.

E. Fixed I/O Ports

Sometimes buses are connected to I/O ports that are fixed on
the boundary. If the I/O ports to which the bus connects are at
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Fig. 8. (a) Right-skewed subtree and (b) corresponding feasible vertical bus
u = 〈V, t, {b0, b4, b5}〉.

Fig. 9. Infeasible floorplan for two buses u = {b0, b3} and v = {b2, b6}.
(a) Twisted-bus structure, where n3 is in right subtree of n2, and n6 is in
right subtree of n0. (b) Corresponding floorplan. Two twisted buses cannot be
satisfied simultaneously by inserting dummy blocks.

the top/bottom side of the chip, only the vertical bus may be
feasible. Similarly, if the I/O ports to which the bus connected
are at the left/right side of the chip, only the horizontal bus
may be feasible. Thus, the directions of the buses can be fixed,
and we do not need to check the directions when deciding
the bus locations. To avoid the block-falling-down problem
with fixed I/O ports, we need to set the heights of the dummy
blocks considering the positions of fixed I/O ports. We can
directly set ymin in (7) to the y-coordinate value of the fixed
I/O port to which the bus connects. By doing so, it will try to
align the blocks with the fixed I/O port to make the horizontal
bus feasible.

Fig. 11 shows an example of inserting dummy blocks,
considering a fixed I/O port F . The heights for the dummy
blocks D3, D5, and D6 are (yF + t) − (y3 + h3), (yF + t) −
(y5 + h5), and (yF + t) − (y6 + h6), respectively, where yi is
the y-coordinate of block i, and t is the bus width. The bus
{b3, b5, b6, F} is feasible after inserting dummy blocks.

F. Algorithm

Our BDF algorithm applies Fast-SA based on the B∗-tree
representation. Fig. 12 summarizes our algorithm. First, we
initialize B∗-tree as a complete binary tree, and start with the
Fast-SA process. After each perturbation and nondummy block
packing, we check if there exists a “twisted-bus structure” in
the B∗-tree. If any, we simply discard the current solution and
perturb the B∗-tree again. This checking can save time to find

Fig. 10. Two horizontal buses u = {b0, b4} and v = {b2, b3}. (a) Two buses
overlap. (b) By inserting dummy block, we can get feasible floorplan without
bus overlapping.

feasible solutions. If there is no twisted-bus structure in the
B∗-tree, we insert the dummy blocks to the appropriate nodes
to fix the horizontal bus constraints and bus overlapping. After
adjusting the heights of the dummy blocks, we pack the B∗-tree
again. Then, we decide the bus locations so that there is no over-
lap between buses. After adjusting the heights of the dummy
blocks and repacking the floorplan, some buses still may not be
feasible. We refer to these buses as unassigned buses.

Since the objective function of BDF is to satisfy all bus
constraints so that the chip area and the total bus area are
minimized, we define the cost function Ψ for a floorplan
solution F with the set of buses U as follows:

Ψ(F,U) = αA+ βB + γM (8)

where A is the chip area, B is the bus area, M is the number
of unassigned buses, and α, β, and γ are user-specified
parameters.

In the SA process, we record the floorplan solution with the
most number of feasible buses and the lowest cost. After the SA
process stops, we report the lowest cost with the least number of
unassigned buses. Thus, we can find the desired floorplan with
the most feasible buses.

Suppose we are given m buses and n blocks. According
to Fig. 12, the combination of the pseudocode from line 4 to
line 13 makes one perturbation and evaluation of the B∗-tree.
Line 4 takes O(1) time for perturbation, and line 5 takes O(n)
time for B∗-tree packing. In line 6, the time complexities for
fixing horizontal bus constraints and bus overlap checking are
O(mn) and O(m2n), respectively. Line 9 takes O(n) time
for packing, line 10 takes O(m2n) time for deciding the bus
locations, and lines 11–13 take O(1) time. Thus, the total time
complexity is O(m2n).



644 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 4, APRIL 2006

Fig. 11. Horizontal bus connects to fixed I/O port F , u = {b3, b5, b6, F}. (a) B∗-tree after inserting dummy nodes and (b) corresponding feasible
horizontal bus.

Fig. 12. BDF algorithm.

G. Extension to Multibend Buses

In our formulation, we only allow the bus with 0 bend. The
cost of a 0-bend bus is smaller than a multibend bus if their
lengths are the same since vias are needed for a multibend bus,
and bus routing becomes harder. However, when the number
of blocks that a bus goes through is large, allowing multibend
buses may lead to better solutions [12].

To extend our method to handle multibend BDF, we can first
divide the blocks of a bus into different groups. These groups
form different segments of the bus. If we allow k bends for a
bus, then we have k + 1 groups for a bus. We add a perturbation
(see line 4 in Fig. 12) to change the current group of a block
for a bus. During the SA, the groups of blocks are decided.
If there are not any blocks in a group for a bus, the bend
number is decreased by one. Therefore, the bend of a bus is
also decided during SA. Note that i-bend buses are also allowed
in j-bend BDF, where i ≤ j. After deciding the locations for
each segment (see line 10 in Fig. 12), a new step is needed
to connect all segments to form a bus. We can simply extend
the length of segments to connect each other. Fig. 13 shows an
example of connecting segments. In Fig. 13(a), bus u is divided
into two groups {b0, b5} and {b3, b4}. The two groups form two

Fig. 13. (a) Two segments u1 and u2 for bus u. (b) After connecting
segments, we obtain one-bend bus u.

TABLE I
DEAD SPACE AND CPU TIME FOR DIFFERENT SA SCHEMES USING GSRC

FLOORPLAN BENCHMARK SUITE. WS IS DEAD SPACE (%)

segments, u1 and u2, of the bus. We stretch the segments to
connect each other to form the 1-bend bus u.

The cost function Ψ′ for a floorplan solution F with the set
of buses U for multibend BDF is defined as

Ψ′(F,U) = αA+ βB + γM + δN + εL (9)

where A is the chip area, B is the bus area, M is the number
of unassigned buses, N is the number of unassigned segments,
L is the number of the bends, and α, β, γ, δ, and ε are user-
specified parameters.

VI. EXPERIMENTAL RESULTS

We conducted extensive experiments to justify the effec-
tiveness and efficiency of the Fast-SA scheme, our fixed-
outline floorplanning algorithm, and our BDF algorithm. Our
floorplanning package is available at http://eda.ee.ntu.edu.tw/
research.htm.
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Fig. 14. Comparison for stability and convergence among classical SA, TimberWolf SA, Fast-SA with k = 1, and Fast-SA with k = 7. Different stages for
Fast-SA are divided using vertical dotted lines (note that initial area is 69.76 mm2, same for four SA schemes, and we focus on results with area smaller than
27 mm2 to examine the effect more closely).

A. Convergence and Stability for Fast-SA

To test the efficiency of Fast-SA, we experimented on
the three largest circuits in the GSRC floorplan benchmark
suite [8], n100, n200, and n300 (which contain 100, 200,
and 300 blocks, respectively). We implemented the classical
SA, TimberWolf SA, and Fast-SA in the C++ programming
language on an Intel Pentium 4 1.6-GHz PC with 256-MB
memory. All of the SA algorithms are based on the B∗-tree
floorplan representation and the same initial temperature. The
initial probabilities of accepting an uphill move are all set to
0.9. The only difference is the annealing schedule. For classical
SA, the updating function for temperature T is

Tnew = λTold, 0 < λ < 1. (10)

The value of λ for classical SA is set to a fixed value 0.85 [18].
The annealing schedule of Fast-SA was described in Section III.
For TimberWolf SA [19], [20] the value of λ is gradually
increased from its lowest value to its highest one, and is then
gradually decreased back to its lowest value. We set the lowest
λ to 0.8, and set the highest λ to 0.95, the same as that used
in [19]. It should be noted that the latest TimberWolf has made
many improvements for its cost function, move selections, etc.
In this paper, however, we focus on the “cooling schedule” of

SA. In TimberWolfMC SA [21], the cooling schedule is deter-
mined experimentally: the value of λ is increased from 0.85
to 0.92, and is then decreased back to 0.80. By doing so, it can
reduce the iterations in the high temperature and the low
temperature, and increase the iterations in the middle
temperature for SA. The cooling schedule is slightly changed
in TimberWolf7.1 SA [22]; however, the methodology remains
the same.

Table I compares the running times of the three different
SA schemes based on comparable solution quality. We list
the times to achieve the similar solution quality (say, around
5% dead space in this experiment) for the three annealing
schemes. For the first Fast-SA, we set k = 1 to remove the
greedy local-search stage. We reduced the running time in
the high-temperature stage (stage 1), and spent more time in
the hill-climbing stage (stage 3). This scheme achieved 5.3×
speedup to generate comparable solutions, compared to the
classical SA. For the second Fast-SA, we set k = 7 to perform
six iterations of greedy local search; therefore, the convergence
speed is even higher. The third stage of Fast-SA can avoid
getting trapped in a local minimum in the second stage of
Fast-SA. On the average, Fast-SA achieved a 12× speedup in
finding the floorplan solutions of comparable areas.

Fig. 14 compares the convergence speed and the stability of
the three SA schemes. For each SA scheme, the area is plotted
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Fig. 15. Dead space versus run time among greedy search, classical SA,
TimberWolf SA, and Fast-SA. Respective final dead spaces are 5.76%,
2.62%, 2.13%, and 2.00% for greedy search, classical SA, TimberWolf
SA, and Fast-SA, respectively.

TABLE II
DEAD SPACES AND RUNTIMES FOR DIFFERENT SA SCHEMES

(NA: NOT AVAILABLE)

as a function of running time. We ran the n100 circuit for ten
times for each SA scheme. The different stages for Fast-SA
are divided using vertical dotted lines. As shown in the figure,
the convergence speed of Fast-SA with the greedy local-search
stage is much faster than Fast-SA without the greedy local-
search stage, and Fast-SA without the greedy local-search stage
is much faster than the classical SA. The TimberWolf SA is
better than the classical SA but worse than Fast-SA. Note that
the initial area is 69.76 mm2, same for the three SA schemes. To
view the convergence more clearly, we only plotted the results
with the area smaller than 27 mm2.

To compare greedy search, classical SA, TimberWolf SA,
and Fast-SA in more detail, we performed an experiment for
these annealing schemes on the Microelectronics Center of
North Carolina (MCNC) benchmark ami49. In Fig. 15, the
dead space is plotted as a function of the running time. As
shown in Fig. 15 and Table II, the convergence speed of the
greedy search is the fastest; it took only 0.234 s to find a
floorplan solution of less than 10% dead space. However, the
final solution for greedy search has a dead space of 5.76%.
The classical (TimberWolf) SA method can further improve
the solution quality until the dead space equals 2.62% (2.13%).
Since Fast-SA combines the pseudogreedy local-search stage
and the hill-climbing stage, its convergence speed is much
faster than that of classical SA. Fast-SA only spent 0.625 s to

TABLE III
SUCCESS PROBABILITY AND AVERAGE DEAD SPACE USING CONSTANT α

AND ADAPTIVE α ON n100, Γ = 10%

obtain a floorplan solution of 5% dead space while classical
SA needed 8.687 s. Fast-SA spent more iterations to find
better floorplan solutions with dead spaces under 5%. Fast-
SA achieved 2.00% dead space at last while classical SA only
achieved 2.62%. Based on the results, the greedy search is not
suitable for handling the floorplanning problems if the solution
quality is a major concern, and Fast-SA is the best choice for
the floorplanning problem addressed here (it achieved 13.9×
speedup over classical SA for finding a floorplan solution of
less than 5% dead space for this case).

B. Fixed-Outline Floorplanning

Table III compares the nonadaptive scheme and the adaptive
scheme for fixed-outline floorplanning with area optimization
alone (i.e., β = 0 in the cost function). We set the fixed-outline
aspect ratio R∗ = 1 and 2, and the maximum percentage of
dead space Γ = 10% for this table.

For the nonadaptive scheme, we chose ten αs between zero
and one. When α is below 0.3, the success probability decreases
because the weight for area optimization is so small that the
dead spaces of the resulting floorplans often exceed 10%. When
α increases, the success probability becomes higher (100%)
because the weight for area optimization is larger and, thus,
the dead space decreases. However, the success probability
decreases again if α is too large. The reason is that the aspect
ratio of the final floorplan is far from the given outline and, thus,
we cannot obtain a feasible solution efficiently. It also shows
that for different R∗s, the optimal α is also different. Note that
when α = 1, it becomes classical outline-free floorplanning
optimization. We found that it is harder to find a feasible
solution by using the classical-floorplanning scheme.

For adaptive SA, we set αbase to 0.5 and used 500 most
recent floorplans found to determine α dynamically, i.e.,
n = 500. From Table III, the average dead space using adap-
tive α is less than that using a constant α. As the results show
that adaptive SA can achieve higher success probability and
superior solution quality simultaneously.
Success Rates for Fixed-Outline Floorplanning: To test

the effectiveness of our fixed-outline floorplanning algorithm,
we set the maximum percentages of dead space Γ to 15%
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TABLE IV
AVERAGE SUCCESS RATES AND RUNTIMES FOR GFA, PARQUET, AND OUR ALGORITHM UNDER DIFFERENT ASPECT RATIOS ON n100

TABLE V
COMPARISON OF WIRELENGTH UNDER FIXED-OUTLINE CONSTRAINT

FOR n100, n200, AND n300 WITH ASPECT RATIO R∗ = 1, 2, 3, 4

and 10%. The expected aspect ratios R∗ of the floorplans are
chosen from the range [1], [3] with interval 0.5. Experiments
were performed on a 1.6-GHz Intel Pentium 4 PC using the
GSRC benchmark circuit n100. The results were averaged for
50 runs for each aspect ratio. We compared with GFA [13] and
Parquet-4.5 [15] based on the same platform. We have tested
Parquet-4.5 with two floorplan representations, SP, and B∗-tree.
Table IV lists the average success rates for GFA, Parquet-4.5
using SP, Parquet-4.5 using B∗-tree, and ours. Our method ob-
tained 100% success rates of fitting into the given fixed outlines
for all runs with dead space Γ = 15% and Γ = 10%. In con-
trast, the success rates when Γ = 10% for GFA, Parquet using
SP, and Parquet using B∗-tree were 30.3%, 65.5%, and 99.4%,
respectively. The dramatic differences reveal the effectiveness
of our approach. Also, our method required the least running
time on average.
Wirelength Optimization for Fixed-Outline Floorplanning:

Since the chip outline is given, the fixed-outline floorplanning
problem should focus more on wirelength. Since GFA does not
have wirelength-optimization mode, we cannot compare with
GFA. We used the default wirelength-optimization parameters
for Parquet. We compared with Parquet using SP representation
since Parquet obtains better results with the SP-representation
mode [4]. For fair comparison, the I/O pads for all circuits are
fixed at the given coordinates in the benchmark. Table V shows
the best wirelength for Parquet and our program. We used the
GSRC benchmarks n100, n200, and n300, which contain 885,
1585, and 1893 nets, respectively, and reported the best results
among ten runs. All the results listed in Table V can fit into
the given outline (i.e., feasible solutions); thus, the dead spaces
are not reported here. Our program can obtain better floorplan
solutions than Parquet for all test cases; our program, on the

average, can reduce the wirelength by about 6% using 11% less
running time compared with Parquet.

All the above results show the efficiency and effectiveness
of Fast-SA. Our method results in very stable and high-quality
floorplan solutions. Fig. 16 shows the resulting floorplans for
n100 with various aspect ratios.

C. BDF

We also performed experiments on BDF. The benchmarks
are provided by Xiang et al. [26]; they are modified from
the MCNC benchmark suite. The number of bus constraints
ranges from 5 to 18. Each bus needs to go through 2–7 blocks
according to the constraints. Our platform is a 2.8-GHz Intel
Pentium 4 PC while the work [26] is on a 2.4-GHz Xeon PC;
the speed difference between the two machines is marginal. The
work [26] only reported dead spaces for the set of benchmarks.
For fair comparisons, we optimized the same cost metric with
area optimization alone.

We also implemented the soft-block resizing algorithm. The
soft-macro-block adjustment is based on a simple, yet effective
approach presented in [7]. Given M blocks, we assume that
block b’s bottom-left coordinate is (b.x1, b.y1) and its top-right
coordinate is (b.x2, b.y2). Each soft block has four candidates
for the block dimensions (i.e., shapes). The candidates are
defined as follows:

1) Rb = e.x2 − b.x1, where e.x2 = min{g.x2|g.x2 >
b.x2, g ∈ M};

2) Lb = d.x2 − b.x1, where d.x2 = max{g.x2|g.x2 <
b.x2, g ∈ M};

3) Tb = a.y2 − b.y1, where a.y2 = min{g.y2|g.y2 >
b.y2, g ∈ M};

4) Bb = c.y2 − b.y1, where c.y2 = max{g.y2|g.y2 <
b.y2, g ∈ M}.

After the candidates of the block shapes are determined, we
may change the shape of a soft block bi by choosing one of the
following five choices during SA:

1) change the width of block bi to Ri;
2) change the width of block bi to Li;
3) change the height of block bi to Ti;
4) change the height of block bi to Bi;
5) change the aspect ratio of block bi to a random value in

the range of the given soft aspect-ratio constraint.

Fig. 17 shows an example of resizing a soft block. Block b3
has four shape candidates, R3, L3, T3, and b3. If we stretch
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Fig. 16. GSRC n100 floorplan results with Γ = 10%, and desired aspect ratios R∗s are (a) 1, (b) 2, (c) 3, and (d) 4. Dead spaces are (a) 5.57%,
(b) 5.06%, (c) 5.03%, and (d) 4.70%. Dotted line is fixed outline.

Fig. 17. Soft-block resizing example. (a) There are four shape candidates for b3 for resizing. (b) Stretch right boundary of b3 to R3, and resulting floorplan
becomes more compact.

the right boundary of b3 to R3, it can generate a more compact
floorplan.

The block shapes could be changed to obtain a more compact
floorplan during SA. Table VI summarizes the BDF results for
the method used in [26], ours using the classical SA and Fast-
SA. Ours using classical SA outperforms the method used in
[26]. Using Fast-SA, we obtained the smallest dead space in
the shortest average running time. For hard blocks, our average
dead space (using Fast-SA) is 4.38% while the work in [26] is
5.51%. We only needed 26 s on average while that in [26]
required 104 s. For soft blocks, since the previous work [26]
resizes the blocks from the existing solutions, 2 s are added
to the average runtime (106 s in total). Our method performs
resizing and floorplanning at the same time; therefore, the
runtimes are longer than hard-block floorplanning alone (but is

still much faster than the work in [26]). The average runtime
is 47 s, and the average dead space is 0.41%, compared to
0.91% required by the previous work. In short, our algorithm
can obtain better bus-driven floorplan solutions for all test cases
in shorter running times. Figs. 18 and 19 show the resulting
floorplans for ami33-2 and ami49-3, respectively.

VII. CONCLUSION

We have proposed algorithms for the modern floorplan-
ning problems with fixed-outline and bus constraints, based
on our new Fast-SA scheme and the B∗-tree representation.
Experimental results have shown that our Fast-SA leads to
faster and more stable convergence to the desired floorplan
solutions. For fixed-outline floorplanning, the new cost function
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TABLE VI
BDF RESULTS. RESULTS OF SP ON 2.4-GHZ INTEL XEON PC, WHILE OURS ARE ON 2.8-GHZ INTEL PENTIUM 4 PC

Fig. 18. Resulting packing of ami33-2 with hard blocks. There are 33 blocks
and 18 buses. Buses are {9, 14, 32}, {14, 32}, {9, 32}, {9, 14}, {12, 19, 21},
{12, 19}, {19, 21}, {1, 2, 3, 4}, {2, 3}, {3, 4}, {2, 3, 4}, {1, 2, 4}, {7, 18}, {15,
16, 30}, {15, 16}, {16, 30}, {24, 25}, and {26, 29}.

considering the aspect-ratio penalty drives SA more efficiently
to find floorplans inside the given chip outline. For BDF, we
have demonstrated that the dummy blocks can fix the vertical
block-falling-down problem during the packing of a B∗-tree.
Thus, the dummy-block inserting technique for B∗-tree can
be effectively used to solve position constraints, especially for
modern floorplanning problems. The experimental results on
both fixed-outline floorplanning and the BDF have shown the
efficiency and effectiveness of our floorplanning algorithms;

Fig. 19. Resulting packing of ami49-3 with soft-block adjustment. There are
49 blocks and 15 buses. Buses are {0, 5, 9, 12, 18}, {1, 10, 21, 25}, {2, 28,
33}, {3, 19, 22, 26, 29, 34}, {4, 23, 27}, {5, 35, 30, 6}, {32, 31, 17}, {11,
14, 15, 32, 33}, {12, 8, 14}, {5, 7, 39}, {2, 8, 9, 10}, {37, 38}, {10, 21, 25},
{22, 23, 24}, and {32, 33}.

for those applications, our results outperform the related recent
works by large margins.

We should note that the proposed three-stage fast annealing
scheme readily applies to other optimization problems. Though
beyond the scope of this paper, we have also implemented the
scheme to handle the classical two-way bipartitioning problem.
Our results show significant speedups over the classical SA
scheme and better solution quality. Research along this direc-
tion is ongoing.
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