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Abstract

We compared foraminifera, flora and geochemical (613C, total organic content and
C:N) analyses to reconstruct the magnitude of coastal subsidence during the
AD1700 great megathrust earthquakes at the Cascadia subduction zone. Four
modern transects collected from three intertidal zones at Siletz Bay, Oregon, USA,
produced three elevation dependent groups in both the foraminifera and
geochemical datasets. Foraminiferal samples from the tidal flat and low marsh are
identified by M. fusca abundances of > 45%, middle and high marsh by M. fusca
abundances of < 45% and highest marsh by T. irregularis abundances > 25%. The
613C values from the geochemically defined groups decrease with increasing
elevation; -24.1 + 1.7%o in the tidal flat and low marsh; -27.3 + 1.4%; in the middle
and high marsh; and -29.6 + 0.8%o in the highest marsh samples. We applied these
modern foraminfera and geochemical distributions to a core that contained the AD
1700 earthquake. Both techniques produced similar results for the coseismic
subsidence (0.88 + 0.39m and 0.71 * 0.56m) suggesting that 613C has potential as a

efficient proxy for use in paleoseismology.

1. Introduction

To evaluate and prepare for the impacts of future great earthquakes along the
Cascadia subduction zone of North America, it is necessary to understand the
magnitude and recurrence interval of previous earthquakes over geological

timescales (Atwater, 1987; Charland and Priest, 1995; Clague, 1997; Wang and
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Clark, 1999; Peterson et al,, 2000; Frankel et al., 2002; Kelsey et al., 2002; Petersen
etal., 2002; Priest et al,, 2010). Estuaries along Cascadia coasts archive stratigraphic
evidence of great earthquakes (M 8-9) during the Holocene as records of abrupt
relative sea-level (RSL) changes (Darienzo and Peterson, 1995; Nelson et al., 1996b;
Shennan et al., 1998; Clague et al., 2000; Kelsey et al., 2002; Witter et al., 2003;
Atwater et al., 2005; Nelson et al., 2006). Microfossil-based reconstructions have the
potential to produced precise estimates of coseismic subsidence (Guilbault et al.,
1995; Hemphill-Haley, 1995; Nelson et al., 1996a; Sherrod, 1999; Hughes et al.,
2002; Nelson et al,, 2008; Hawkes et al., 2011), because of the relationship between
species distributions and elevation with respect to the tidal frame (Horton and

Edwards, 2006).

Salt-marsh foraminifera have been commonly utilized to reconstruct changes in RSL
in tectonically quiescent areas in Europe (Horton, 1999; Gehrels et al., 2001; Horton
and Edwards, 2005; Edwards, 2006) and eastern North America (Scott and Medioli,
1978; Gehrels et al., 2002; Gehrels et al., 2004; Leorri et al.,, 2006; Horton et al.,
2009; Kemp et al,, 2009b; Kemp et al,, 2011; Wright et al., 2011). Quantitative
foraminiferal-based reconstructions such as transfer functions (Kemp etal., 2011)
have a precision of less than + 0.1 m, which has led to similar applications in
tectonic areas such as Cascadia (Guilbault et al., 1995; Guilbault et al., 1996; Nelson
et al,, 2008; Hawkes et al., 2010; Hawkes et al., 2011). Despite the obvious

advantages, this technique is prone to problems associated with the site-specific
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nature of the assemblages (Wright et al.,, 2011) that necessitates the collection of

multiple local datasets (e.g., Horton and Edwards, 2006; Kemp et al.,, 2011).

Stable carbon isotope analyses (613C, total organic carbon (TOC), Carbon to Nitrogen
ratios (C:N) potentially provides the means to produce an alternative proxy for the
reconstruction of past RSL changes (Tornqvist et al., 2004; Gonzalez and Tornqvist,
2009; Kemp et al,, 2010; Kemp et al.,, 2012). Its utility is derived from the
assumption that bulk sediment stable carbon isotope values should reflect the
botanical origin (Chmura and Aharon, 1995; Lamb et al., 2006; Gonzalez and
Tornqvist, 2009; Kemp et al., 2010). Similar to foraminifera, plant species
communities with different isotopic signatures are controlled by the strong
elevational and environmental gradient found along the transition from freshwater
to salt marsh and sub-tidal environments (Chmura et al,, 1987; Goni and Thomas,
2000). The application of stable carbon isotopes in bulk sediments in sea-level
reconstructions is in its infancy, including studies in the UK (Lloyd and Evans, 2002;
Wilson et al,, 2005; Lamb et al., 2007; Mackie et al., 2007), US Atlantic (Kemp et al,,
2010; Kemp et al,, 2012) and US Gulf (Tornqvist et al., 2004; Gonzalez and

Tornqvist, 2009) coasts.

In this study, we investigated the modern distributions of foraminifera, flora and
geochemistry from three salt marshes in Siletz Bay, Oregon that have differing

salinity regimes. We defined elevation dependent ecological zones of foraminifera
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and compared them with §13C, TOC and C:N to offer a method to reconstruct former

sea levels, which we applied to a record of the AD 1700 earthquake at Siletz Bay.

2. Study Area

Siletz Bay is an estuarine system separated from the Pacific Ocean by Salishan spit
(Figure 1B). The bay formed when the river valley was drowned by rising RSL
during the Holocene transgression (Bottom et al., 1979; Peterson et al., 1984). The
Bay drains an area of 524 km? (Seliskar and Gallagher, 1983) and contained 1.07 -
1.46 km? of salt marsh in the early 1970s (Eilers, 1975; Jefferson, 1975), with an
additional 0.4 km? reclaimed from previously dyked pastureland by the Siletz Bay
National Wildlife Refuge in 2003. The Siletz River produces spatially variable
salinity within the estuary with highest values near the inlet to the Pacific Ocean in
the northwest of the Bay (Gallagher and Kibby, 1980). Salinity peaks from August to
October with minimum values from January to March, associated with seasonal
variations in flow (Oglesby, 1968). Salinity from open water measurements taken in
July from surface waters in front of each site were recorded with values of 22 at

Salishan Spit, 16 at Siletz East, and 11 at Millport Slough.

Siletz Bay has a mixed semidiurnal and diurnal tidal cycle with a tidal range (mean
lowest low water (MLLW) to mean highest high water (MHHW) of 2.64 m (Hawkes
etal,, 2010). Short term tide gauges installed in the bay at Siletz Keys and upriver in

Millport Slough indicated that there was less than 7 cm difference in mean high
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water (MHW) and MHHW elevations relative to North American Vertical Datum

(NAVD) 88(Brophy etal., 2011).

13 species of vascular plants were found in Siletz Bay in zones ranging from tidal
flat, to salt marsh and terrestrial environments (Figure 2; Table 1). Dominant
vegetation types included salt marsh species such as Gaultheria spp., Potentilla
palustris, Juncus spp., Agrostis spp., Salicornia virginica, Distichlis spicata, Scirpus
spp., Carex lyngbyei and Zostera nana and terrestrial taxa such as Picea spp. and

Conium maculatum.

3. Methods

We collected samples from four modern intertidal transects. We established two
transects at Salishan Spit (SS (A to A’) and SS2 (B to B’)) that were 115 and 146 m
long respectively and 3 km from the Pacific Ocean inlet (Figure 1B and 1C). A 123 m
transect 1.2 km inland of Salishan spit was established at Siletz East (D to D’), west
of Route 101 (Figure 1B and 1D). The forth transect was 95 m long at Millport
Slough (E to E”), 1.8 km inland of Siletz East (Figure 1B and 1E). Stations were
positioned along an elevational gradient to capture the full range of environments.
Salt marsh plants at each sampling station were identified from lists of common
species found in Pacific Northwest tidal marshes (Seliskar and Gallagher, 1983). We
ascertained the elevation of each sample using a total station, which was tied to a

local benchmark. The height of the local benchmark was obtained using real time
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kinematic (RTK) satellite navigation and reported relative to NAVD88. Elevations
were converted to MSL to enable the use of site-specific tidal predictions (e.g. mean
high water, MHW) generated for every 3 km of the Oregon coastline (Hawkes et al,

2010).

We collected a sample of 10 cm3 of surface sediment (0-1 cm) at each station for
foraminiferal analysis. The effects of infaunal foraminifera in Oregon marshes has
been shown to be minimal with the highest concentration of living specimens in the
top 1 cm and no live specimens found at depths greater than 5 cm (Hawkes, 2008;
Hawkes et al., 2010). Samples were treated with buffered ethanol after collection
and stained in the field using Rose Bengal to allow differentiation of live and dead
specimens. Only the dead foraminiferal data used in the analysis as they most
accurately reflect the subsurface assemblages (Murray, 1982; Horton, 1999; Culver
and Horton, 2005). Each sample was divided in the laboratory using sieves to isolate
the 63-500 um fraction. The greater than 500 pum fraction was checked for large
foraminifera. We counted the foraminifera using a binocular microscope from a
known proportion until greater than 200 dead individuals were counted, or until the
entire sample had been used. Our taxonomy follows Hawkes et al. (2001) with

Ammobaculites spp. was identified as a single taxon.

We collected an additional 5c¢cm? of surface sediment at each station geochemical
analyses. Samples were prepared for §13C and total organic carbon and nitrogen

following REFS. The samples were washed with 5% hydrochloric acid for 24 hours
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before rinsing with deionised water, then dried at 45°C and ground to a fine powder
using a mortar and pestle. §13C values were obtained using a Costech Elemental
Analyzer, coupled on-line to an Optima dual-inlet mass spectrometer. The values
were calibrated to the Vienna Pee Dee Belemnite (VPDB) scale using cellulose
standard Sigma Chemical C-6413 that was included within the runs. Sample %C and
%N were calculated on the same instrument with C:N ratios calibrated through an
acetanilide standard and presented on a weight-to-weight basis. Replicate

measurements on well-mixed samples were never different by greater than 0.2%o.

To describe the distribution of foraminifera and geochemistry (§13C, TOC, C:N), we
used Partitioning Around Medoids (PAM) method (Kaufman and Rousseeuw, 1990;
Kemp et al., In Press) and the ‘cluster’ package in the computer program R
(Maechler et al,, 2005). The most appropriate number of zones is identified by the
highest average silhouette width of all zones. We ran the analysis for all four
individual transects as well as a combined dataset; one foraminiferal and
geochemical transect is shown as an example with the remaining transects in the
appendix. For the foraminiferal data all analysis used percentages with no cutoff

value for taxa inclusion (Kemp et al,, In Press).
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4. Results

4.1 Modern foraminiferal, floral, and stable carbon isotope distributions

4.1.1 Salishan Spit Transect 1 (SS)

At Salishan Spit transect 1 (A-A’, Figure 1C), 12 species were identified in 24
samples (Figure 2; Figure 3). The four highest elevation samples (SS-24 to SS-21)
associated with highest marsh floral environments of Gaultheria spp. and Juncus
spp. mixed with Picea spp. and ferns (Table 1) were dominated by Trochamminita
irregularis (> 65%). This zone was associated with low §13C values (-29 to -29.5%o),
high TOC (12.2 to 28.8%) with C:N ratios from 14.3 to 16.9 (Figure 4). The high
marsh of Agrostis spp., Juncus spp., S. virginica and D. spicata (SS-20 to SS-15) was
characterized by Trochammina inflata (36 to 54%) and Haplophragmoides
manilaensis (12 to 18%). 613C values were greater than the highest marsh (-25.7 to -

28.4%o), with reduced TOC (8.4 to 18.6%) but similar C:N values (11.8 to 13.7).

The S. virginica and D. spicata middle marsh (SS-14 to SS-10) recorded a switch in
the dominance from T. inflata (37 to 0%) to M. fusca (22 to 99%) with decreasing
elevation. The elevation of the middle marsh ranged from 1.14 to 0.67 m MSL. The
input of C4 material from D. spicata may be evident in the §13C values (-23.6 to -
26.2%o), with a further fall in TOC (4.9 to 12.4%) but similar C:N values (10.6 to
13.7) compared to the high marsh. The low marsh, vegetated by Scirpus spp. (SS-9 to
SS-5) was characterized by near-monospecific Milliammina fusca assemblage (89 to
99%). 613C values continue to increase with further marine influence (-21.1 to -

24.2%0), associated with a fall in TOC (0.3 to 1.5%) and C:N (1.7 to 8.7) . The Z. nana
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tidal flat (SS-4 to SS-1) was also dominated by M. fusca (83 to 89%) but with the
addition of Reophax spp. (5 to 10%). Despite the presence of the Cs4 Z. nana, §13C
values are similar to the low marsh (-23.2 to -23.6%0). TOC (1.0 to 1.4%) and C:N

ratios (9.0 to 9.4) are also comparable to the low marsh.

PAM identified three foraminiferal groups (Figure 3): Group SS-Ia (average
silhouette width 0.81) is dominated by T. irregularis; Group SS-Ib (average
silhouette width 0.70) is identified by T. inflate and Group SS-1I (average silhouette
width 0.80) is dominated by M. fusca. PAM identified two geochemical groups.
Group SS-G-I had an average silhouette width of 0.53 with 613C value of -27.5 *
1.4%o, TOC of 14.5 = 5.6% and C:N of 13.3 £ 1.5. Group SS-G-II (average silhouette
width 0.73) is associated with §13C values of -23.2 + 1.1%o, TOC of 1.7 +1.5% and
C:N of 8.4 + 2.5. Group SS-G-I is associated with T. inflata and T. irregularis whilst SS-

G-11 is dominated by M. fusca.

4.1.2 Salishan Spit Transect 2 (SS2)

At Salishan Spit transect 2 (B-B’; Figure 1C), 14 species were identified in 27
samples (Figure 2; Supplementary Figure 1). The three highest elevation samples
(SS2-1 to SS2-3) taken in the transition between highest marsh communities (P.
palustris and Gaultheria spp.) and terrestrial environments (C. maculatum and
ferns) did not contain any foraminifera. The §13C are -27.5 to -28.4%o with TOC
ranging from 34.6 to 39.6% and C:N ratios of 21.0 to 29.2 (Figure 4). The highest

sample with foraminifera (SS2-4) was dominated by T. irregularis (59%) with a low

10
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concentration (790 per 10cm3) and associated with Juncus spp. vegetation. The
Agrostis spp., S. virginica, Juncus spp., D. spicata and P. palustris vegetated high
marsh (SS2-4 to SS2-13) was dominated by T. inflata (maximum 66%) with
contributions from Jadammina macrescens (maximum 23%) and H. wilberti
(maximum 35%). 613C values in this zone ranged from -28.5 to -24.8%o and are

associated with high TOC (9.1 to 29.9%) and C:N (11.6 to 19.2) values.

The middle marsh (SS2-14 to SS2-18) was vegetated by D. spicata and S. virginica
and associated with increasing M. fusca (2 to 64%) and decreasing T. inflata (4 to
60%) over an elevation range from 0.83 to 1.15 m MSL. §13C values were lower than
the high marsh (-21.3 to -24.6%o), with an associated decrease in TOC (3.6 to 7.1%)
but similar C:N ratios (10.2 to 17.2). This vegetation zone is associated with
increasing M. fusca and decreasing T. inflata abundances (0.83 to 1.15 m MSL). The
Scirpus spp. low marsh (SS2-19 to SS2-22) is dominated by M. fusca (68 to 92%).
613C values are similar to the middle marsh (-22.2 to -23.6%o0) but with a decrease in
TOC (0.7 to 2.1%) and C:N ratios (8.5 to 9.6) The Z. nana vegetated tidal flat samples
(SS2-23 to SS2-27) are also dominated by M. fusca (79 to 92%) with the addition of
Reophax spp. (1-6%). 613C values are similar to the low marsh (-23.1 to -24.2%o).

TOC values remain stable (0.8 to 1.9%) as do C:N ratios (8.8 to 9.9).

PAM identified two foraminiferal groups (Supplementary Figure 1): Group SS2-1 had
an average silhouette width of 0.51 and was dominated by T. inflate; and Group SS2-

I1 (average silhouette width 0.79) is identified by high abundances of M. fusca. PAM

11
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also identified two geochemical groups. Group SS2-G-1 had an average silhouette
width of 0.74 with §13C value of -28.0 £ 0.5%o, TOC of 35.5 * 4.2% and C:N of 25.5 =
4.4. Group SS2-G-II (average silhouette width 0.71) is associated with §13C values of
-24.3 £ 2.0%o0, TOC 0of 6.2 £ 5.9% and C:N of 11.8 + 2.8. Group SS2-G-1 is associated
with samples absent of foraminifera or dominated by T. irregularis whilst SS2-G-I1 is

dominated by T. inflata and M. fusca.

4.1.3 Siletz East Transect (SE)

At Siletz East (C-C’; Figure 1D), 11 species were identified in 17 samples (Figure 2;
Supplementary Figure 2). The highest marsh vegetation identified at the Salishan
Spit transects was absent at Siletz East. The Agrostis spp., Juncus spp. and D. spicata
high marsh zone (SE1 to SE3) was characterized by T. inflata (4 to 30%), J.
macrescens (16 to 54%), Balticammina pseudomacrescens (3 to 28%) and H. wilberti
(8 to 53%). 613C values are consistent with input from C3 vegetation (-25.2 to -
26.9%0). TOC (2.1 to 5.6%) and C:N ratios (10.6 to 14.0) are similar to the bordering
low marsh (Figure 4). The middle marsh vegetation zone seen at Salishan Spit is
absent at Siletz East. The low marsh dominated by C. Iyngbyei (SE4 to SE8) is
associated with increasing M. fusca abundances (54 to 97%) with decreasing
elevation (from 0.91 to 0.67 m MSL). 8§13C are lower than the high marsh (-23.8 to -
28.1%o), with a fall in TOC (1.8 to 6.3%) and C:N ratios (8.4 to 14.0) with decreasing
elevation. The unvegetated tidal flat (SE9 to SE17) was almost monospecific M.
fusca (82 to 97%). 813C were greater than the low marsh (-22.3 to -25.4%o), a trend

also seen in TOC (1.4 to 2.9%) and C:N ratios (7.9 to 11.6).

12
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PAM identified two foraminiferal groups (Supplementary Figure 2): Group SE-I
(average silhouette width 0.46) is composed of T. inflata, . macrescens, B.
pseudomacrescens, and H. wilberti; Group SE-II (average silhouette width 0.87) is
dominated by M. fusca. Similarly, PAM identified two geochemical groups. Group SE-
G-I had an average silhouette width of 0.70 with §13C values of -27.7 + 0.7%o, TOC of
5.4 +£1.0% and C:N of 13.9 £ 0.2. Group SE-G-II (average silhouette width 0.63) is
associated with 613C values of -24.9 £ 1.1%o, TOC of 2.2 £ 0.7% and C:N of 10.2 + 1.0.
Group SE-G-I is associated with J. macrescens, B. pseudomacrescens and H. wilberti

whilst SE-G-II is dominated by M. fusca and T. inflata.

4.1.4 Millport Slough Transect (MS)

At Millport Slough (D-D’; Figure 1E), 11 species were identified in 11 samples
(Figure 2; Supplementary Figure 3). Sample MS-4, the highest elevation sample on
the transect (1.39 m MSL) associated with C. maculatum did not contain
foraminifera. The Picea spp. swamp (MS-11 to MS-10) was associated with a mixed
assemblage of T. irregularis (26 to 38%), H. wilberti (2 to 27%), B. pseudomacrescens
(14 to 16%) and J. macrescens (14 to 31%). §13C values were low (-29.1 to -29.6%0)
with high TOC (29.6 to 31.0%) and C:N ratios (20.7 to 21.9) (Figure 4). The high
marsh was vegetated by P. palustris, Triglochin maritima and Juncus spp. (MS-9 to
MS-5) and characterized by increased abundances of T. irregularis (30 to 61%), M.
petilla (0 to 18%), H. manilaensis (3 to 24%), H. wilberti (2 to 35%), and B.

pseudomacrescens (1 to 24%). §13C was greater than in the Picea spp. swamp (-29.6
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to -30.8%o0) but with decreasing TOC (13.4 to 39.0%) and C:N ratios (14.1 to 28.0).
The elevation ranged from 1.27 to 1.30 m MSL. Middle marsh vegetation is absent at
this site. The C. lyngbyei low marsh (MS1 to MS3) is dominated by M. fusca (46 to
93%) with J. macrescens (5 to 20%) and H. wilberti (1 to 17%). 613C are lower
relative to the Picea spp. swamp and high marsh (-27.5 to -28.1%o), a trend also

seen in the lower TOC values (5.4 to 6.4%) and C:N ratios (13.2 to 15.3).

PAM identified two foraminiferal groups (Supplementary Figure 3): Group MS-I
(average silhouette width 0.61) is dominated by T. irregularis; and Group MS-II
(average silhouette width 0.57) is composed primarily of M. fusca. PAM also
identified two geochemical groups. Group MS-G-I had an average silhouette width of
0.61 with 613C value of -29.9 + 0.6%o, TOC of 30.2 = 5.5% and C:N of 21.4  4.0.
Group MS-G-II (average silhouette width = 0.70) is associated with 613C values of -
28.8 + 1.1%o, TOC 0f 9.9 + 4.7% and C:N of 14.5 + 0.7. Group MS-G-I is associated
with T. irregularis, B. pseudomacrescens and H. wilberti whilst MS-G-1I is dominated

by M. fusca, . macrescens, H. wilberti and T. irregularis.

4.1.5 Combined Siletz Bay Dataset

We recorded 14 taxa (12 agglutinated and 2 calcareous) in the dead assemblage of
79 samples from four modern surface transects at three sites in Siletz Bay.
Foraminifera were absent in four samples, all of which occurred at greater than 1.39

m MSL in areas of upland vegetation. The assemblages are dominated by
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agglutinated species including B. pseudomacrescens, H. manilaensis, H. wilberti, J.

macrescens, M. fusca, T. inflata and T. irregularis (Table 1).

PAM identified three foraminiferal groups in the combined Siletz Bay dataset
(Figure 5). Group SB-Ia (average silhouette width 0.44) is dominated by T.
irregularis (Figure 5D). This foraminiferal assemblage is associated with highest
high marsh environments at Salishan Spit transects 1 and 2 and the high marsh and
Picea spp. swamp environments at Millport Slough. Group SB-Ib (average silhouette
width 0.47) is dominated by T. inflata with H. wilberti and J. macrescens present in
all samples. This foraminiferal group is associated with high and middle marsh
vegetation. Group SB-II has the highest average silhouette width of 0.82 and is

dominated by M. fusca and occurred at all sites.

We recorded 613C, TOC and C:N for 71 samples of bulk sediment (Figure 4). All §13C
measurements were less than -21.0%o (range of -21.1 to -30.8%u0). As expected, TOC
was lowest in tidal flat environments and increased in vegetated environments

(range of 0.3 to 39.0%). C:N values ranged from 1.7 to 28.0.

PAM identified three groups in the geochemistry of the combined Siletz Bay dataset
(Figure 6). Group SB-G-I (average silhouette width = 0.64) is associated with §13C of
-29.6 + 0.8%o, TOC of 30.0 = 4.6% and C:N of 20.4 + 3.7. Group SB-G-II (average

silhouette width = 0.45) has 8§13C of -27.3 + 1.4%o, TOC of 12.4 + 4.0% and C:N of
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13.6 + 1.4. Group SB-G-III (average silhouette width = 0.60) is characterized by §13C

of -24.1 £ 1.7%o0, TOC of 2.5 + 1.8% and C:N of 10.4 + 2.7.

5. Discussion

5.1 Modern distribution of foraminifera in Siletz Bay

We have used PAM to quantitatively sub-divide 79 modern samples of foraminifera
from Siletz Bay into three faunal groups, which reflect the highest high marsh (SB-
[a), high and middle marsh (SB-Ib) and low marsh and tidal-flat (SB-1I)
environments. Previous studies of foraminifera along the Cascadia coastline (Figure
7) have presented similar foraminiferal assemblages (Jennings and Nelson, 1992;
Guilbault et al,, 1996; Hawkes et al., 2010) though there are some noticeable site-

specific differences.

Group SB-Ia represents the foraminiferal assemblages found at the highest
elevations in salt marshes and into the upland transition. The group elevational
range extends from 1.18 to 1.60 m MSL (1.36 + 0.15 m). This zone is dominated by
T. irregularis (> 25%). This species has previously been identified as occupying the
high marsh and upland floral zones at Salmon River, South Slough and Coquille
River in Oregon (Hawkes et al., 2010) and Tofino, British Columbia (Guilbault et al.,
1996). Trochamminita spp. including T. irregularis and T. salsa appear to be
endemic to the Pacific salt marshes having been found in South America (Jennings et
al,, 1995) and Australasia (Hayward and Hollis, 1994; Callard et al., 2011) as well as

Cascadia (Jennings and Nelson, 1992; Guilbault et al., 1996; Nelson et al., 2008;
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Hawkes et al., 2010), but not along the US Atlantic coast (Gehrels, 1994) or in
Europe (Horton and Edwards, 2006). H. wilberti is also found sporadically in group
SB-la. Haplophragmoides spp. are generally identified as occupants of the high and
middle marsh (Jennings and Nelson, 1992; Guilbault et al., 1996; Scott et al., 1996;
Gehrels and van de Plassche, 1999; Patterson et al., 1999; Horton and Edwards,
2006; Kemp et al., 2009a; Hawkes et al.,, 2010), but it has also been found in similar
highest marsh environments associated with Trochamminita spp. in Oregon
(Hawkes et al., 2010) and British Columbia (Guilbault et al., 1996). T. inflata was
generally absent in this zone, which is similar to the proximal Salmon River
(Hawkes et al., 2010) and Alsea Bay (Nelson et al., 2008] sites, but contrasts with

other Cascadia sites (Sabean, 2004; Hawkes et al., 2010).

Group SB-Ib contains foraminiferal assemblages associated with high and middle
salt marshes. The group elevational range extends from 0.77 to 1.49 m MSL (1.20 +
0.18 m). The group is dominated by T. inflata with B. pseudomacrescens, H. wilberti
and J. macrescens significant contributors to the assemblage. T. inflata has been
found in the high and middle salt marsh in studies from Cascadia (Jennings and
Nelson, 1992; Nelson and Kashima, 1993; Guilbault et al., 1996; Scott et al., 1996;
Nelson et al., 2008; Hawkes et al., 2010), but in contrast to results presented here is
rarely the dominant species in this assemblage. It is also common along temperate
coastlines on the eastern seaboard of North America (Scott and Medioli, 1978;
Culver et al.,, 1996; Horton and Culver, 2008; Kemp et al., 2009a), Europe (Horton

and Edwards, 2006) and Australasia (Horton et al., 2003; Southall et al., 2006;
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Callard et al., 2011). It has previously been suggested that J. macrescens and/or B.
pseudomacrescens (often combined as T. macrescens) form a dominant or
monospecific assemblage at the limit of tidal inundation (Scott and Medioli, 1978;
Scott and Medioli, 1980; Edwards et al., 2004; Hayward et al., 2004; Horton and
Edwards, 2006) in contrast to their presence in the middle and high marsh at Siletz

Bay.

Group SB-II represents the foraminiferal assemblages found in the tidal flat and low
salt marsh environments that is always identified from MHW to below MSL with an
unknown lower limit (elevational range -0.43 to 0.91 m MSL (0.32 + 0.35 m). This
zone is dominated in high abundances by M. fusca (> 45%). This species is found in
all studies along the Pacific coast. In contrast, M. fusca is dominant only in the low
marsh environment along the North American Atlantic coast (Wright et al,, 2011)
and is replaced by calcareous foraminifera on the tidal flats (Kemp et al., 2009a).
This assemblage is also seen in worldwide distributions (Hayward and Hollis, 1994;
Horton, 1999; Murray and Alve, 1999). Calcareous foraminifera represented by
Ammonia parkinsoniana and Elphidium spp. were only present in low abundances (<
10%) in the tidal flats at Siletz Bay. This is consistent with selected published data
from Cascadia (Jennings and Nelson, 1992; Guilbault et al., 1996; Shennan et al.,
1996; Patterson et al., 2005; Nelson et al., 2008; Hawkes et al., 2010) but higher
abundances of calcareous species have been identified in Netarts Bay (Hunger,
1966). Hawkes et al. (2010) have suggested that the absence of\calcareous species

may be due to the low pH of most Oregon intertidal environments. \
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5.2 Stable carbon isotopes in bulk surface sediments

Geochemical proxies potentially have a crucial role to play in elucidating the
depositional environment of a sample. h‘OC (Figure 8a and 8b) demonstrates a
pattern of increasing values from seaward tidal flat and low marsh to highest marsh
communities. This is likely due to both a decreasing input of minerogenic material
with distance from open water, an increase in the total amount of biomass

preservation, due to reduced flushing of the system with decreasing tidal inundation

and in-situ organic growth (Brain et al,, 2011). \C:N ratios also show a relationship - ®.4¢. ¥ s0Wh not just use this
instead of delta carbon...this is

. . . . . simple and chea

with elevation (Figure 8) and 613C (Figure 9), but are not suitable for P P
SEE: IS IT CHRIS? THE PREP IS THE
SAME AS FAR AS I'M AWARE AND I
THINK THE CAVEAT IN THE NEXT

LINE COVERS WHY WE DON'T USE
converge (Goni and Thomas, 2000; Kemp et al., 2010; Kemp et al,, 2012). This may IT OVER 13C

reconstructions due to a tendency for upland and marsh environment values to

be due to marine input of carbon from algae, POC, and DOC (Cifuentes, 1991; Lamb
et al,, 2006) or selective diagenesis of carbon over immobile nitrogen (Chmura et al,,
1987; Ember et al., 1987). This limitation of C:N ratios has previously been observed
at west coast estuarine systems including San Francisco Bay (e.g., Cloern et al,,
2002). Unlike previous studies (CHV please add appropriate refs here) C:N is not
able to distinguish between tidal flat and low marsh sediments; the ranges also
overlap for the low marsh and tidal flat group (SB-G-III) and middle and high marsh

group (SB-G-II).

If floral zones can be recognized based upon the §13C of bulk sediment, then

geochemistry has potential as a sea-level indicator. Previous research has shown
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that the dominant control on the §13C values of bulk sediment is the proximal
vegetation communities (Chmura and Aharon, 1995; Malamud-Roam and Ingram,
2001; Lamb et al,, 2006; Lamb et al., 2007), although differential decomposition may
produce sediments with lower §13C values than the local vascular plant material
(Buchan et al., 2003; Vane et al., 2003; Lamb et al., 2007). The vegetation
assemblage of geochemical group SB-G-I is solely C3 vascular plants (P. palustris,
Gaultheria spp., Juncus spp., T. maritima, Picea spp., C. maculatum and ferns). The
group elevational range extends from 1.18 to 1.60 m MSL (1.30 = 0.14 m). All
samples within these zones had §13C values less than -28.5%e. This is significantly
lower than has been found at other highest high marsh and freshwater zones in
North America. Bulk sediment from freshwater environments in San Francisco bay
had 613C values from -23.3 to -27.2%o (Cloern et al., 2002), freshwater marshes in
Louisiana had an average value of -27.8%o (Chmura et al., 1987) and four upland
samples from New Jersey ranged from -25.1 to -26.5%o. (Kemp et al., 2012) found
613C values of -22 to -27%o in the brackish transition zone in New Jersey. The values
presented here are even further removed from a result of -24.5%o obtained from
upland border sediments in Massachusetts (Middleburg et al,, 1997). However, the
results are consistent with the §13C values for plant material of the dominant
vegetation types found in the highest high marsh and terrestrial environments at
Siletz that range from -28.3 to -29.6%o (Table 2). This result highlights the
importance of collecting local bulk sediment samples when undertaking
paleoenvironmental reconstructions using §13C. The 613C values for this group are

consistent with those for foraminiferal group SB-Ia (-29.6 + 0.8%o and -29.5 *
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0.6%o, respectively). TOC values (24.5 to 39.0%) are higher than found in 6 samples
from New Jersey (Kemp et al,, 2012) freshwater sediments (<10%) but consistent

with values found at the freshwater/salt marsh boundary (2 to 35%). C:N ratios are
also higher at Siletz Bay(16.9 to 28.0) than found in either of these environments in

New Jersey (12 to 16; Kemp etal,, 2012).

Geochemical group SB-G-II is composed of C3 (Agrostis spp., Juncus spp. and S.
virginica) with sparse presence of C4 (D. spicata) vascular plants. The group
elevational range extends from 0.16 to 1.60 m MSL (1.19 * 0.35 m). A number of
samples that were classified within foraminiferal group SB-Ib are not found in
geochemical group SB-G-II. The effect of this can be seen in the difference between
the bulk sediment §13C for the foraminiferal (-25.6 * 2.0%o) and geochemical (-27.3
* 1.4%o) groups. This is driven by the species D. spicata. Removing samples
dominated by this species (>50%) in the foraminiferal derived groups results in a

bulk 8§13C of -26.7 + 1.8%p in greater agreement with the geochemical group.

Geochemical group SB-G-III is composed of tidal flats (unvegetated or sparsely
covered with Z. nana), low marsh (Scirpus spp. and/or C. lyngbyei) and middle
marsh (D. spicata and S. virginica). The group elevational range extends from -0.43
to 1.24 m MSL (0.48 + 0.44 m). C. lyngbyei plant material has a low §13C value (-
28.0%0 (Wooller et al,, 2007); Table 2). The dominant effect of local vegetation on
bulk sediment §13C values is again seen in this group. Compared to an average bulk

sediment §13C value of -24.1 * 1.7%o, samples not associated with C. [yngbyei have a
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lower value of -23.9 = 1.6%q in contrast to samples in a dominant C. lyngbyei
vegetation zone (-26.6 + 1.6%o). This is also reflected in greater TOC (2.8 + 1.4 and
2.5+ 1.8%) and C:N (11.6 £ 2.0 and 10.3 * 2.7) values although there is significant

overlap.

5.3 Application of salt marsh foraminifera and stable carbon isotopes to
reconstruct coseismic land level change

The coastline of Cascadia is subject to a major seismic hazard as the Juan de Fuca
plate subducts beneath North America (Clague, 1997). This is recorded in coastal
stratigraphic sequences as tidal flats, grading upwards into organic tidal marsh or
upland soil deposits. When the strain builds to a point where the plate boundary
ruptures, the North American plate responds elastically and the coast of Cascadia
subsides almost instantaneously while areas formerly locked rebound. This is
archived at the coastline as an abrupt stratigraphic boundary due to the organic
deposits dropping lower in the tidal frame (Nelson et al., 1996b; Atwater and
Hemphill-Haley, 1997; Kelsey et al., 2002; Witter et al., 2003; Hawkes et al,, 2011).
The plates once again become locked, strain starts to build and the cycle

recommences.

Stable carbon isotopes may provide an alternative solution to microfossil-based
methods to reconstruct the magnitude of coseismic subsidence due to a great

earthquake. To test the utility of this method we compared the reconstructions
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produced by the new geochemical plus qualitative foraminifera method with those
produced using the foraminiferal zonations presented in this paper to a record of

the AD 1700 earthquake (Atwater et al., 2005) from Siletz Bay .

At Salishan Spit, we sampled a vibracore taken towards the rear of the salt marsh.
Five foraminiferal and geochemical samples (Figure 10) were taken across the AD
1700 contact in core SSV2 in Siletz Bay (Figure 1C). In core SSV2 at 60 cm depth
there is an abrupt (< 1mm) contact between underlying organic sandy silt and an
overlying upward fining silty sand unit interpreted as a tsunami deposit. A silty clay
unit in turn overlies this. The three foraminiferal samples below the contact have
high abundances of agglutinated foraminifera, dominated by B. pseudomacrescens
(60 to 82%) with low to absent M. fusca (0 to 3%) and T. irregularis (0 to 3%). These
indicate that the sample formed in the middle/high marsh environment (SB-Ib).
613C values range from -25.7 to -26.2%o indicating that the marsh formed in
geochemical zone SB-G-II. This is further supported by TOC (11.0 to 11.8%) and C:N
ratios (13.4 to 13.8). The first sample in the silty clay unit is predominantly M. fusca
(59%). This indicates that the sample formed in the low marsh/tidal flat group SB-II.
The 813C increased to -24.6%o0 and TOC reduced to 7.7% indicative of formation in
geochemical zone SB-G-I1I. The C:N ratio (12.6) is inconclusive for this sample. The
magnitude of subsidence for both methods can be calculated by subtracting the

difference between the center points of the elevations of groups. For foraminifera:

Coseismic Subsidence = SB-Ib - SB-II
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=1.20m MSL - 0.32m MSL

=0.88m

The error is calculated by taking the square root of the sum of half the ranges of

groups SB-Ib and SB-II:

Error =Y (0.18m?2 + 0.35m?2)

=%+ 0.39m

And for stable carbon isotopes:

Coseismic Subsidence = SB-G-II - SB-G-III
=1.19m MSL - 0.48m MSL

=0.71m

Error =Y (0.35m2 + 0.44m2)

=+0.56m

Both methods produce estimates that overlap, providing some measure of
confidence in the ability of the carbon isotope technique. Both methods produce
results that equivocally confirm subsidence with minimum estimates greater than
Om (0.49m versus 0.15m) and are above the threshold values of 0.5m (Nelson et al.,

1996a) used to definitively ascribe the subsidence to a megathrust earthquake.
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Indeed, the correlation of the AD 1700 soil and a high tsunami from over 900 km of
the Cascadia coastline (Atwater et al., 1995; Nelson et al., 1995; Clague et al., 2000;
Nelson et al., 2006) allows us to ascribe the subsidence to a megathrust earthquake.
The estimates from both methods are consistent with the previous value obtained
for the Siletz site by Darienzo et al. (1994) of 0.5 to 1.0 m using a qualitative

interpretation based on plant macrofossils and lithology.

6. Conclusions
We documented the distribution of salt-marsh foraminifera and 613C, TOC and C:N

from four transect, at three salt marshes with differing salinity regimes in Siletz Bay,
Oregon. We used PAM to identify elevation-dependent ecological zones, which are
similar to those observed at other sites in Cascadia as well as globally. The highest
marsh occupies a narrow elevational range and is dominated by T. irregularis. High
and middle marsh environments are dominated by T. inflata with B.
pseudomacrescens, H. wilberti and ]. macrescens. Low marsh environments form
near monospecific assemblages with M. fusca. Calcareous taxa are limited in the
tidal flat (< 10%). PAM analysis of the §13C, TOC and C:N also revealed three
elevation dependent zones, which broadly correspond to those identified by
foraminifera. The highest marsh is defined by low §13C (-29.6 + 0.8%o), high TOC (30
+ 4.6%) and high C:N (20.4 + 3.7). The high and middle marsh are identified by 613C
of -27.3 + 1.4%., TOC of 12.4 + 4.0% and C:N of 13.6 + 1.4. The low marsh and tidal
flat had the highest 613C (-24.1 + 1.7%o0), lowest TOC (2.5 * 1.8%) and lowest C:N

(10.4 + 2.7) values. Lower 613C values than are found in similar environments in
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North America highlight the importance of collecting a local dataset of bulk

sediments for geochemical analysis.

The sub-division of the dataset into elevation dependent ecological zones allows the
use of both foraminifera and 613C (supported by TOC and C:N) as indicators of
former sea level that can infer the amount of coseismic subsidence associated with
megathrust earthquakes in Cascadia. We tested this by applying both methods to a
record of the AD 1700 earthquake taken from Salishan spit. Foraminifera and
geochemical analyses produced similar estimates of subsidence (0.88 + 0.39m and
0.71 + 0.56m, respectively), providing a measure of confidence in the new semi-
quantitative 8§13C technique. This approach provides a new method to obtain
estimates of coseismic subsidence quickly before quantitative foraminiferal analysis
and/or when microfossil abundances are not appropriate for quantitative analysis

(e.g., transfer functions).

7. Acknowledgements

This research was supported by an NSF grant (EAR-0842728) to BPH. This paper is
a contribution to IGCP Project 588. The Siletz Bay National Wildlife Refuge and the
Salishan Leaseholders, Inc community are thanked for allowing access to the sites.
Rich Briggs and Harvey Kelsey are thanked for assistance in the field. David Hill

provided the tidal predictions used in this paper.

26



583

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625

Published in Paleo3, (2013) 377,13-27

Figure Captions

Figure 1. Map of (A) the Cascadia subduction zone (USA) showing the location of
Siletz Bay. Black circles mark the sites identified in Figure 5 (B) the location of three
sites within Siletz Bay that were sampled for foraminifera and geochemistry (C)
Salishan Spit, (D) Siletz East, and (E) Millport Slough. A core (SSV2) was collected
from Salishan Spit (C)

Figure 2. Elevation profile of transects at A) Salishan Spit transect 1, B) Salishan Spit
transect 2, C) Siletz East and D) Millport Slough. Vegetation zones correspond to
Table 1. Distribution of dominant foraminifera along each transect in % with only
dominant species being shown. SW = Picea spp. swamp; HHM = highest marsh; HM =
high marsh; MM = middle marsh; LM = low marsh; TF = tidal flat.

Figure 3. Relative abundance of dead foraminifera at Salishan Spit transect 1 (SS).
PAM cluster analysis sub-divides the data into two groups, SS-I (black bars) and SS-
II (white bars). Silhouette plot for PAM clustering of foraminiferal samples
partitioned into two groups. The silhouette plot shows widths between -1 and 1,
where values close to -1 indicate that a sample was incorrectly classified and values
close to 1 indicate that a sample was assigned to an appropriate group.

Figure 4. Elevation profile of transects at A) Salishan Spit transect 1, B) Salishan Spit
transect 2, C) Siletz East, and D) Millport Slough. Vegetation zones correspond to
Table 1. Distribution of 613C, total organic carbon (TOC) and C:N ratios along each
transect are shown. SW = Picea spp. swamp; HHM = highest marsh; HM = high
marsh; MM = middle marsh; LM = low marsh; TF = tidal flat.

Figure 5. Relative abundance of dead foraminifera when combined into a single
Siletz Bay dataset. PAM cluster analysis sub-divides the data into three groups, SB-Ia
(grey bars), SB-Ib (black bars) and SB-II (white bars). Silhouette plot for PAM
clustering of foraminiferal samples partitioned into three groups. The silhouette
plot shows widths between -1 and 1, where values close to -1 indicate that a sample
was incorrectly classified and values close to 1 indicate that a sample was assigned
to an appropriate group.

Figure 6. Stable carbon isotope values when combined into a single Siletz Bay
dataset. PAM cluster analysis sub-divides the data into three groups, SB-G-I (grey
bars), SB-G-II (black bars) and SB-G-III (white bars). Silhouette plot for PAM
grouping of stable carbon isotope samples partitioned into three groups. The
silhouette plot shows widths between -1 and 1, where values close to -1 indicate
that a sample was incorrectly classified and values close to 1 indicate that a sample
was assigned to an appropriate group.
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Figure 7. Distribution and elevational ranges of dominant foraminifera from Siletz
Bay compared to other studies from Cascadia (Guilbault et al., 1996; Sabean, 2004;
Patterson et al,, 2005; Nelson et al,, 2008; Hawkes et al., 2010). Aspp =
Ammobaculites spp.; Bp = Balticammina pseudomacrescens; Hm = Haplophragmoides
manilaensis; Hw = Haplophragmoides wilberti; Hspp = Haplophragmoides spp.; Jm =
Jadammina macrescens; Mf = Miliammina fusca; Ti = Trochammina inflata; Tm =
Trochammina macrescens; Tr = Trochamminita irregularis; Ts = Trochamminita
salsa. Solid line indicates minimal elevational overlap between groups. A dashed line
indicates overlap between groups. Elevational ranges are shown in detail for the
data presented here. Ranges are presented as box and whisker plots, where the box
is the mean * one standard deviation and the whiskers represent the minimum and
maximum elevation in each group.

Figure 8. (A). The associated mean # one standard deviation in 613C, C:N ratios, total
organic content (TOC), and elevations for the modern samples based on the
foraminiferal groups. (B) The associated mean * one standard deviations in 613C,
C:N ratios, total organic content (TOC), and elevations for the modern samples
based on the geochemistry groups. Ranges are presented as box and whisker plots,
where the box is the mean * one standard deviation and the whiskers represent the
maximum and minimum in each group.

Figure 9. 613C and C:N values in bulk organic sediment from sampling stations in
Siletz Bay, Oregon. Samples are sub-divided by stable carbon isotope groups
identified by PAM.

Figure 10. Stratigraphy (including lithology and type of contact), foraminiferal
assemblages, 613C and results of semi-quantitative foraminifera and geochemistry
analysis reconstruction of the paleomarsh elevations in the sediment sequence
bisecting the AD 1700 earthquake in core SSV2 taken at Salishan Spit in Siletz Bay.
The calculated coseismic subsidence with the error in meters marked on both
reconstructions.
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Table 1. Vascular plant zonations and foraminiferal associations at the three studied
sites in Siletz Bay. Bp = Balticammina pseudomacrescens; Hm = Haplophragmoides
manilaensis; Hw = Haplophragmoides wilberti; Jm = Jadammina macrescens; Mf =
Miliammina fusca; Ti = Trochammina inflata; Tr = Trochamminita irregularis

Site Marsh Type Vegetation Foraminifera
Highest Gaultheria spp., Potentilla
Salishan Spit 9 palustris, Juncus spp. Picea Tr
Marsh
spp., Ferns
Agrostis spp., Salicornia
High Marsh virginica, Juncus spp., Distichlis Ti, Hw, Hm
spicata, Potentilla palustris
Middle Marsh Distichlis sp/cgtg, Salicornia T, Jm. Hw, Mf
virginica

Low Marsh Scirpus spp. Mf

Tidal Flat Zostera nana Mf
Siletz East High Marsh Agrostis spp., Juncus spp., Ti, Jm, Bp, Hw

Distichlis spicata
Low Marsh Carex lyngbyei Mf
Tidal Flat Unvegetated Mf
Millport .
Slough Swamp Picea spp. Tr, Hw, Jm, Bp
High Marsh Potentlll'a'palustr/s, Triglochin Tr, Hw, Hm,
maritima, Juncus spp. Bp, Mp
Low Marsh Carex lyngbyei Mf
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Table 2. Published 613C values for salt marsh species found in the marshes of Siletz
Bay and discussed in this study

Typical 813C Value

Vegetation (%o0) Reference
Zostera nana/japonica -12.4 Thayer et al. 1978
Scirpus maritimus -25.5 Byrne et al. 2001
Carex lyngbyei -28.0 Wooler et al. 2007
Distichlis spicata -12.7 Byrne et al. 2001
Salicornia virginica -27.2 Byrne et al. 2001
Juncus balticus -28.4 Byrne et al. 2001
Agrostis capilaris/gigantea -25.99 Wedin et al. 1995
Triglochin maritima -28.3 Cloern et al. 2002
Potentilla palustris -29.6 Brooks et al. 1997
Gaultheria shallon/salal -29.4 Brooks et al. 1997
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Table 3. Elevational ranges for six environmental groups defined at Siletz Bay on the
basis of foraminifera (SB-Ia, SB-Ib and SB-II) and geochemistry (SB-G-I, SB-G-II and
SB-G-III). MSL = mean sea level.

Group Foraminifera 53C (%0) Elevation (m MSL)
Agglutinated foraminifera of
SB-la which >25% T. irregularis -29.5+ 0.6 1.36 £ 0.15
Agglutinated foraminifera of
SB-1b which <45% M. fusca -25.6 £ 2.0 1.20 + 0.18
Agglutinated foraminifera of
SB-11 which >45% M. fusca -24.4+ 1.8 0.32 + 0.35
Agglutinated foraminifera
SB-G-| present -29.6 £ 0.8 1.30 £ 0.14
Agglutinated foraminifera
SB-G-II present -27.3+ 1.4 1.19 + 0.35
SB-G-111 Not required -24.1+ 1.7 0.48 + 0.44
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