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Estimating cognitive or affective states from brain signals is a key but challenging step in the creation of passive brain-computer
interface (BCI) applications. So far, estimating mental workload or emotions from EEG signals is only feasible with modest
classification accuracies, thus leading to unreliable neuroadaptive applications. However, recent machine learning algorithms, notably
Riemannian geometry based classifiers (RGC) and convolutional neural networks (CNN), have shown to be promising for other BCI
systems, e.g., motor imagery-BCIs. However, they have not been formally studied and compared together for cognitive or affective
states classification. This paper thus explores such machine learning algorithms, proposes new variants of them, and benchmarks
them with classical methods to estimate both mental workload and affective states (Valence/Arousal) from EEG signals. We study
these approaches with both subject-specific and subject-independent calibration, to go towards calibration-free systems. Our results
suggested that a CNN obtained the highest mean accuracy, although not significantly so, in both conditions for the mental workload
study, followed by RGCs. However, this same CNN underperformed in both conditions for the emotion data set, a data set with
small training data. On the contrary, RGCs proved to have the highest mean accuracy with the Filter Bank Tangent Space classifier
(FBTSC) we introduced in this paper. Our results thus contributed to improve the reliability of cognitive and affective states
classification from EEG. They also provide guidelines about when to use which machine learning algorithm.

Index Terms—Brain-Computer Interfaces (BCI), Mental Workload, Emotions, Riemannian geometry, Deep Learning, EEG

I. INTRODUCTION

BRAIN-Computer Interfaces (BCIs) enable their users to

interact with computers by using brain activity only,

usually measured with Electroencephalography (EEG) [1]. For

example, BCIs can enable people with severe motor impair-

ment to control a wheelchair with EEG only, e.g., by imagining

left or right hand movements to make the wheelchair turn left

or right [2]. Such BCIs are called active BCIs since users

are actively sending commands to the system [3]. In contrast,

the so-called passive BCIs [3] are not used for direct control,

but to monitor users’ mental states in real-time, to adapt an

application accordingly. For instance, passive BCIs were used

to estimate mental workload [4], i.e., the amount of cognitive

resources currently engaged by subjects, or affective states [5],

i.e., the emotions subjects currently feel.

A. Mental workload estimation from EEG

Passive BCIs were used to study mental workload during

navigation tasks with different input devices [6], during visu-

alization tasks [7] or plane piloting [8]. Workload estimation

was also used to design applications that dynamically adapt to

the users’ states, e.g., video games with adaptive difficulty [9]

or training applications with a sequence of exercises adapted

to the cognitive capabilities of each learner [10]. In general,

estimating mental workload from EEG is extensively used

in the field of Neuroergonomics [11], [12] which consists in

using neuroscience tools and results, e.g., BCIs, to assess the

ergonomic qualities of interactive systems.

However, reliably estimating mental workload from EEG

signals, over time, contexts and subjects is difficult [4]. For

instance, in [4], discriminating low from high workload in

2s epoch of oscillatory EEG activity was possible with a

classification accuracy of only about 69%, using a Filter Bank

Common Spatial Patterns (FBCSP) algorithm [13] coupled

with a Linear Discriminant Analysis (LDA) [14]. In [15],

authors used a Bilinear CSP and a Linear Probabilistic Support

Vector Machine (SVM) to classify 1.1s epochs of oscillatory

EEG activity into four levels and obtained 93% classification

accuracy. In [16], authors applied a SVM to classify two

levels of workload, using N-back tasks. They obtained 84%

classification accuracy on 0.5 to 1.5s long epochs. In [17],

authors extracted features using a wavelet entropy, and then

applied a Multi-Layer Perceptron (MLP) to classify workload

data into 7 levels with 5s long epochs. They obtained 98%

classification accuracy on their own data set, and 83% on

the data set from [18]. Except the last study above, all

classification accuracies have been obtained in offline analysis

settings.

B. Affective states estimation from EEG

Passive BCIs estimating affective states are called affective

BCIs (aBCIs) [5]. Examples of aBCI work include studies

that found neurophysiological responses to differentiate be-

tween frustration and boredom in e-learning [19] and between

frustration and normal game play [20]. Moreover, Rani et al.

[21] showed that both players’ enjoyment and skills increased

when tasks were adapted to their affective states rather than

to their performances. In [22], players could modulate their

affective states to influence games’ parameters. Affective BCIs

can also be used for automatic media recommendation [23],

or real-world emotions detection [24].
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Despite an increasing number of aBCIs studies, defining and

clustering emotion dimensions remains challenging. There are

multiple main approaches to define emotion classes [5]: the

most popular one, and the one used in our study, is the circum-

plex model of Russell [25], which assumes that any affective

state can be localized on a two-dimensional plane. The first

axis of this plane is the valence, ranging from positive feelings

to negative ones, and the second axis represents arousal,

ranging from calm to excited. In [23], they used an SVM for

a 3-class problem with 15s long epochs, for valence (low vs

neutral vs high, 50% accuracy) and arousal (low vs neutral vs

high, 62%). [26] studied valence and arousal (low vs high) as

well, but with 6s EEG epochs. They respectively obtained 77%

and 74% classification accuracy by using a combination of

wavelet entropy and average wavelet coefficient coupled with

an SVM. [27] used SVMs, Deep Neural Networks or Random

Forest to classify data from the DEAP data set [28] (presented

in the Methods section of this paper), using a 2-class problem

with 60s long epochs. They respectively obtained 79%, 49%

and 56% classification accuracy. However, the Deep Learning

method was not described in this paper, making it difficult to

assess the validity and superiority of this approach. [29] used

a Logistic Regression (LR) to discriminate valence levels (low

vs high), and obtained 71% accuracy on 6s epochs. In [28],

which introduced the DEAP data set we use here, they applied

a Naive Bayes Classifier for 2-class discrimination (low vs

high) for both valence and arousal dimensions (60 s epochs).

They obtained 57% and 62% of accuracy for the valence

and arousal dimensions, respectively. Other studies used Deep

Learning methods to optimize affective states classification

(see supplementary material).

Most studies proved that classifying affective states from

EEG remains really challenging since results hardly go over

chance level accuracy. Some studies were even unable to

obtain better than chance results when reproducing previous

works with statistically rigorous evaluation methods [30].

Finally, confounding factors due to electromyography (e.g.,

facial muscles activity during emotion expression) have likely

played a role in the performances obtained in many studies.

However, other studies have obtained better accuracies when

using different EEG patterns. For instance, [31] obtained 81%

classification accuracy using evoked potentials for a 4-class

valence/arousal classification. Note that this paper focuses on

oscillatory activity, as this can classify cognitive and affective

states from continuous EEG, without the need for stimulus-

locked response, which evoked potentials do need.

C. Paper objectives

Thus, the classification accuracies obtained so far - mostly

around 70% for workload, and around 60-65% for emotions in

oscillatory-based studies - revealed the need for more robust

and accurate EEG classification algorithms. Therefore, we

propose here to study algorithms that proved efficient either

in recent active BCI classification competitions [13], [32],

notably Riemannian geometry classifiers, or in other fields

of artificial intelligence, such as Deep Learning [33], [34].

Note that such algorithms have been mostly explored for EEG

classification of motor tasks, but not systematically studied

and compared for workload/affective states estimation. Here

we formally study and compare these various algorithms as

well as two new variants we proposed, for both workload,

arousal and valence classification from EEG signals1. We

also propose guidelines about which algorithm to use in

which context. As baseline, we use two standard methods

for studying workload levels/affective states classification: 1)

Common Spatial Pattern (CSP) spatial filters with an LDA

classifier and 2) the FBCSP [13], which is a CSP extension that

won numerous active BCI competitions. Then, we studied two

Riemannian approaches, manipulating and classifying EEG

signals as covariance matrices: Minimum Distance to the

Mean with Fisher geodesic filtering classifier (FgMDM) and

Tangent Space Classifier (TSC). Such methods have recently

won six international brain signals competitions [32]. We then

propose to improve these Riemannian approaches by working

on a bank of band-pass filters such as the ones used for

FBCSP, instead of using a unique band-pass filter. We name

these new approaches FBFgMDM and FBTSC. Finally, we

used a Convolutional Neural Network (CNN), i.e., a Deep

Learning algorithm, which recently obtained promising results

for many machine learning problems [34]. We studied the

CNN developed in [33], since it obtained promising results

for motor imagery-based BCIs.

In this paper, we first present the workload and emotion

EEG data sets used, before describing each machine learning

algorithm. We perform two evaluation studies: 1) a subject-

specific study, with each algorithm trained on data specific

to each subject, and then tested on other data from the same

subject. This is the standard way current BCIs are designed,

given the large between-subject variability [14]; 2) a subject-

independent study, with each algorithm trained on all data

recorded from all subjects except that of the target subject, on

which algorithms are tested. This is much more challenging,

but if successful, would enable BCI-based monitoring without

requiring any calibration for new subjects.

II. METHODS

A. Mental workload EEG data set

The data set used comes from [4]. Signals from 28 EEG

electrodes (active electrodes in a 10/20 system without T7,

T8, Fp1, and Fp2) were recorded from 22 users [4]. To induce

mental workload variations, N-back tasks were used: the user

had to indicate whether a letter displayed on screen was the

same one as the letter displayed N letters before, in a stream

of successively displayed letters. Here, 2-sec trials from a 0-

back task were labeled as ”low” workload, while those from

a 2-back were labelled as ”high” workload. In total, 720

trials were available for each workload level and user. See

the supplementary material for more information.

As introduced previously, we studied both subject-specific

and subject-independent calibrations. For subject-specific cali-

bration, the first half of each user’s trials was used for training

and the second half for testing. For the subject-independent

1Preliminary results on mental workload data only, and with a few existing
algorithms only, was published as an extended conference abstract in [35]
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calibration, the training set comprised all trials of all users

except the current user used for testing, i.e., around 21*1440

= 30240 training trials. To allow for comparisons between

calibration types, the testing set of each user was the same

testing set as with subject-specific calibration, i.e., the second

half of the trials (720 testing trials) from this user.

B. Emotion EEG data set

The data set used for studying emotions was the ”DEAP”

database [28]. It used music-video clips to influence two types

of emotion dimensions - valence and arousal, according to

the circumplex model of Russell [25]. The data set contains

40 trials, corresponding to 40 music video-clips, recorded

on 32 participants. EEG were recorded using 32 electrodes

(placed according to the international 10-20 system). Valence

and arousal levels were measured using Russell’s valence-

arousal scale directly after each videos, by clicking on a 1-9

continuous scale. This self-assessment system on a continuous

scale makes the classes definition more complex: in DEAP

[28] as well was in our study, 5 was kept as a threshold

to split trials into two classes - low and high - for both

”emotion-arousal” and ”emotion-valence” data sets, making

classes unbalanced. All the classifiers used were able to deal

with unbalanced classes, except the CNN for which we up-

sampled the minority class by randomly duplicating trials from

this class in order to obtain balanced classes.

For the subject-specific study, given the low number of

trials, we performed a ”leave-one-out” cross-validation. Thus,

we used 40 models for each subject, each model being trained

on 39 trials and tested on 1 trial. For the subject-independent

study, we kept all trials of all subjects to compose the training

set, except the current subject used for testing (i.e., 31*40 =

1240 trials for the training set). The testing set of each subject

was composed of all trials of this subject, i.e., 40 trials.

C. Machine learning algorithms explored

The existing algorithms we evaluate here were all studied

on EEG-based motor imagery classification, a widely used

BCI design, and obtained impressive results. Since both motor

imagery, workload and emotions lead to change in EEG oscil-

latory activity, it is likely that methods that proved effective

for motor imagery can prove effective for workload or emotion

classification as well. However, to the best of our knowl-

edge, such methods have never been tested and compared

together neither on workload nor on emotions data sets nor

with subject-independent calibration. We thus propose this

evaluation in this paper. We also propose some new variants of

some of these algorithms. Altogether, we studied 7 algorithms.

First, CSP and LDA were used as a baseline since they are

widely used by the BCI community [14]. We then explored

the FFBCSP and LDA [13], a CNN [33], and four different

methods based on Riemannian geometry: two existing ones,

namely the Fisher geodesic Minimum Distance to the Mean

classifier (FgMDM) and the Tangent Space Classifier (TSC)

[32], and two new extensions we propose here to better exploit

the spectral information, namely the Filter Bank FgMDM

and Filter Bank TSC. For the workload data set, we assess

performances using classification accuracy, i.e., the percentage

of test trials correctly classified. For the emotion data set, we

used balanced accuracy, i.e. the average of recall obtained on

each class, since the classes were unbalanced.

1) Common Spatial Patterns (CSP)

CSP is a widely used algorithm for binary EEG classifi-

cation, for oscillatory activity-based BCI. It has been shown

that changes in both workload [16] and emotions [5] induce

changes in EEG oscillatory activity.The CSP algorithm opti-

mizes spatial filters, i.e., a linear combination of the original

EEG signals. It is done such that the variance of a spatially

filtered signal, i.e. the band power of this signal, is maximized

for one class and minimized for the other class. Formally, CSP

optimizes spatial filter w by either maximizing or minimizing:

JCSP (w) =
wX1XT

1
wT

wX2XT
2
wT

=
wC1w

T

wC2wT
(1)

where T denotes transpose, Xi is the band-pass filtered train-

ing signal matrix for class i (with the samples as columns

and the channels as rows) and Ci the spatial covariance

matrix from class i. In practice, the covariance matrix Ci is

defined as the average covariance matrix of each trial from

class i [14]. The spatial filters w that maximize or minimize

JCSP (w) are the eigenvectors corresponding to the largest

and lowest eigenvalues, respectively, of the Generalized Eigen

Value Decomposition of matrices C1 and C2. In this study,

we used six filters, corresponding to the three largest and three

lowest eigenvalues, as recommended in [14]. Once these filters

are obtained, we use as CSP features f = log(wXXTwT ),
i.e., the band power of the spatially filtered signals. We used

these features as input to an LDA classifier. The CSP requires

EEG signals to be band-pass filtered in a specific narrow

frequency band. The Alpha rhythm (8-12Hz) being known to

vary according to both workload [4] and emotions [28], we

applied CSP after band-pass filtering in 8-12 Hz.

2) Filter Bank Common Spatial Patterns (FBCSP)

The FBCSP is an algorithm that optimizes both spatial and

spectral filters. To do so, FBCSP first filters EEG signals

into multiple frequency bands using a filter bank. Here we

used nine band-pass filters in 4Hz-wide bands (in 4-8 Hz,

8-12 Hz, . . . , 36-40 Hz) as in [13]. Then, for each band-

passed signals, CSP is used to optimize two spatial filter pairs.

From the resulting 36 features (9 bands × 4 CSP filters per

band), the four most relevant ones were selected using minimal

Redundancy Maximal Relevance (mRMR) [36], and used as

input to an LDA. The FBCSP algorithm proved its efficiency

when winning the Fifth International BCI competition [13].

3) Riemannian Geometry

Riemannian approaches represent EEG trials as covariance

matrices, which are symmetric positive definite (SPD) matri-

ces, and manipulate them with an appropriate geometry, the

Riemannian geometry [32], [37]. Classifiers based on such

geometry are called Riemannian Geometry Classifiers (RGC).

First, in a Riemannian manifold we can estimate intrinsic

non-Euclidean distances between two SPD matrices, i.e. two

points (here C1 and C2), using the Riemannian distance:

δ2(C1,C2) =
∑

n

log2λn(C
−1

1
C2), (2)
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where λn(M) is the nth eigenvalue of matrix M. The set

of tangent vectors to point G on the manifold defines the

manifold tangent space at G. More generally, any SPD matrix

Ci can be projected onto the tangent space at point G using:

Si = LogG(Ci) = G1/2logm(G−1/2CiG
−1/2)G1/2, (3)

Si being the projection of Ci onto the tangent plane, and

logm(·) denotes the logarithm of a matrix.

In this paper, we studied two existing RGCs - the Mean

classifier (FgMDM) and the Tangent Space classifier (TSC) -

and introduced two new ones - the Filter Bank TSC (FBTSC)

and the Filter Bank FgMDM (FBFgMDM).

Existing methods:

FgMDM [38]: FgMDM projects training matrices Ci onto

the tangent space at point G (the mean of all training data)

using Eq. (3), to obtain matrices Si. Then, a Fisher geodesic

filter is obtained by optimizing an LDA classifier on Svec
i ,

the vectorized upper-triangular elements of Si, to discriminate

classes using such vectors. This results in a matrix of weights

W = LDA(Svec
i ). The projected SPD matrices Si from both

the training & the testing sets are then filtered with weights

W, using Ŝi = W(WT W)−1WT Svec
i , where Ŝi denotes the

geodesic filtered SPD matrices from Si. Then, these filtered

matrices Ŝi are projected back onto the manifold using equa-

tion:

Ĉi = ExpC(Ŝi) = G1/2expm(G−1/2ŜiG
−1/2)G1/2, (4)

where Ĉi are the filtered SPD matrices projected onto the

manifold and expm(M) denotes the exponential of matrix M.

Finally, this approach uses a Minimum Distance to the Mean

classifier to classify testing geodesic filtered matrices Ĉi. To do

so, during the training step, the class centroids Gk of each class

k are computed by averaging the geodesic filtered covariance

matrices Ĉ
k

i from each class k. During testing, the Riemannian

distances between the testing geodesic filtered matrix Ĉj and

each class centroid Gk are first calculated, using Eq. (2). The

matrix Ĉj is assigned class label k for which the centroid Gk

is the nearest. In our study, FgMDM was applied on EEG

band-pass filtered in 8-12Hz, as for the CSP.

TSC: TSC first projects all training SPD matrices Ci

onto the tangent space at point G (the mean of all training

matrices). Then, it uses any classifier such as LDA, SVM or

Logistic Regression (LR) on the vectorized upper-triangular

elements of the projected matrices [39]. We used LR

with L2 regularization (with the default C = 1.0 in scikit-

learn [40]), As for FgMDM, TSC used data filtered in 8-12Hz.

New methods:

Filter Bank FgMDM (FBFgMDM): Contrary to FgMDM

which exploits EEG signals in a single frequency band, this

method applies FgMDM in multiple bands separately, and

combines the resulting distances to exploit additional spec-

tral information. This should possibly improve classification

performances, as FBCSP did to improve CSP. To do so,

FBFgMDM first filters EEG signals in multiple bands using

a filter bank, as for FBCSP. Here we used the same bands

as the FBCSP, i.e., 4-8 Hz, 8-12 Hz, . . . , 36-40 Hz. Then

for the EEG signals in each frequency band j, this method

first uses a regular FgMDM, i.e., it computes the Riemannian

distances δ2(Gkj , Ĉij) between a geodesic filtered SPD matrix

Ĉij and each class centroid Gkj . Then, from all nine bands j,

the four most useful ones for classification are selected with

mRMR feature selection [36] on the Riemannian distances

δ2(Gkj , Ĉij) used as features, on the training set. For testing,

we compute the squared Riemannian distances for the four

bands selected using mRMR only and sum them:

γ2(Gk, Ĉi) =
∑

j∈Ω

δ2(Gkj , Ĉij), (5)

where Ω is the set of frequency bands selected with mRMR.

We thus obtain k new distances γ2(Gk, Ĉi) to each class k for

each trial i. The classification prediction results in choosing

the class yi for which the summed squared distance to the

centroid is the smallest, i.e., yi = argmink(γ
2(Gk, Ĉi)).

Filter Bank TSC (FBTSC): FBTSC also exploits more

spectral information than TSC, by using a filter bank. FBTSC

indeed projects matrices Cij , band-pass filtered in bands 4-8

Hz, 8-12 Hz, . . . , 36-40 Hz, to the tangent space using Eq.

(3). Then, the probabilities that the vectorized upper-triangular

elements of the projected SPD matrix Sij belongs to class k is

calculated using standard classification algorithms with prob-

abilistic outputs, such as LDA or LR. Here we used LR that

directly provides such probability with its softmax function.

Since we did so for nine frequency bands, in two classes k, we

ended up with nine pairs of probabilities. From these pairs of

probabilities, the four most relevant are selected using mRMR

on the training set. Finally, we multiplied the probabilities

associated to each class k, for the selected bands only, to end

up with two probabilities, using Pki =
∏

j∈Ω
Pkij , where Pki

is the probability of trial i to be part of class k, and Pkij the

probability of a projected SPD matrix Sij , band-pass filtered

in frequency band j, to be part of class k. The classification

prediction results in choosing the class yi for which Pki is the

highest, i.e., yi = argmaxk(Pki).
4) Convolutional Neural Networks (CNN)

Shortly, a CNN is a feedforward neural network with at

least one convolutional layer. This type of network flows

information uni-directionally from the input to the hidden

layers and finally to the output. A recent study presented

a new type of CNN dedicated to motor task classification

in EEG: the Shallow ConvNet [33]. The shallow ConvNet

architecture consists in a 3-layer CNN with parameters that

have been experimentally tested and validated by their authors

[33]. The first layer is a convolutional layer along the temporal

dimension, while the subsequent one is a convolutional layer

along the spatial dimension, i.e., over EEG electrodes. The first

temporal convolution aims at optimizing band-pass filters, and

the spatial convolution aims at optimizing spatial filters. Then,

signals are squared, a mean pooling is performed (to compute

signals band power) and the CNN ends by a fully connected

linear classification layer. Overall this CNN thus processes

EEG data similarly to the FBCSP and LDA. In contrast to

FBCSP, all these filters are optimized simultaneously though,

which made it outperform the FBCSP on motor EEG signals
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[33]. The Shallow ConvNet uses minimally preprocessed EEG

signals as input, so we filtered them in 4-40 Hz.

III. RESULTS

Figure 1 summarizes the mean performance obtained on

each data set. As a reference, the statistical chance levels

[41] were estimated at 50.47% for the mental workload study

(1440 trials and 22 subjects) and 52.27% for the affective

state study (40 trials and 32 subjects). Note that for statistical

tests (ANOVA), we checked the data sphericity, and used

Greenhouse-Geisser (GG) correction in ANOVA if needed.

Fig. 1. Mean classification accuracy for each algorithm. The best performance
of each study is in green, the worst in red.

A. Workload study

Performances obtained by each algorithm on this data set

are reported on Figure 2. We performed a 2-way ANOVA

with repeated measures to evaluate the performances of fac-

tor Algorithm according to factor Calibration Type (subject-

specific vs subject-independent). It revealed a main effect

of Algorithm [GG(1,22)=0.517, p=0.001], and Calibration

Type [F(1,22)=33.308, p ≤ 0.0001], but not for Calibration

Type*Algorithm [GG(1,22)=0.558, p=0.618].

Fig. 2. Classification accuracy of each algorithm on the workload data set.

Post-hocs analyses - Student t-test for paired samples - with

Bonferroni adjustments showed no significant differences be-

tween algorithms in the subject-specific or subject-independent

studies. However, performances obtained suggested better (but

non-significantly so) results with the CNN compared to other

algorithms, in both subject-specific and subject-independent

studies. Riemannian geometry classifiers (RGC), in particular

the newly proposed ones (FBfgMDM and FBTSC) provided

the second best performances, just after the CNN. On the other

hand, the baseline CSP+LDA obtained the worst results.

B. Valence

The balanced classification accuracies obtained are reported

on Figure 3. We ran a 2-ways ANOVA for repeated mea-

sures to evaluate the impact of Algorithm on the emotion-

valence data set, regarding the Calibration Type. The results

showed significant differences in Algorithm [GG(1,32)=6.918,

p=0.002], Calibration Type [F(1,32)=21.732, p¡0.0001] and

Calibration Type*Algorithm [GG(1,32)=5.374, p=0.003].

Fig. 3. Balanced classification accuracy on the emotion-valence data set.

Post-hoc analyses - Student t-test for paired samples -

with Bonferroni corrections showed a significant difference

between FBTSC and CNN for subject-specific calibration

[perfFBTSC = 61.09%, perfCNN = 46.32%; p ≤ 0.05]. No

algorithm showed better results than others with the subject-

independent calibration. Overall, FBFgMDM and FBTSC ob-

tained the best accuracy (both about 61%) for subject-specific

calibration, while FBCSP obtained the best performances for

the subject-independent one (55.2%).

C. Arousal

The balanced classification accuracies for the emotion-

arousal data set are reported on Fig. 4. We then performed a 2-

way ANOVA with repeated measures, with factor Algorithms

and Calibration Type. Results revealed significant effects for

Algorithms [GG(1,32)=9.177, p ≤ 0.0001], Calibration Type

[F(1,32)=4.262, p=0.048] and Algorithms*Calibration Type

[GG(1,32)=3.894, p=0.008].

Post-hoc analyses -Student t-test for paired samples- with

Bonferroni corrections showed significant differences with the

subject-specific calibration between CNN and all other classi-

fiers (see results in the supplementary material). No algorithm

showed better results than others with the subject-independent

calibration. Overall the best results were all obtained by RGCs,

FBFgMDM and FBTSC for the subject-specific calibration,

and FgMDM for the subject-independent one.
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Fig. 4. Balanced classification accuracies on the emotion-arousal data set.

IV. DISCUSSION, CONCLUSION AND FUTURE WORK

In this paper, we explored promising classification algo-

rithms, both existing and new ones, to classify mental work-

load and emotions (valence and arousal) from EEG signals,

with both subject-specific and subject-independent calibration.

Altogether we studied CSP+LDA, FBCSP+LDA, four RGCs

(FgMDM, TSC and two new variants proposed here: FBFg-

MDM and FBTSC), and CNN.

The first results to highlight are the CNN classification

performances we obtained across the different conditions and

data sets. Indeed, this algorithm has a higher mean accu-

racy (although non-significantly so) than the original authors’

results, the baseline CSP+LDA, and more importantly than

both FBCSP and Riemannian methods, with both subject-

specific and subject-independent calibrations on the workload

data set. Moreover, obtaining reasonable performances in a

subject-independent calibration from only two seconds of

EEG data and only 21 users for calibration, makes the CNN

particularly interesting to design calibration-free neuroadaptive

technologies in the future. By contrast, this algorithm signifi-

cantly under-performed with both subject-specific and subject-

independent calibrations on both the valence and arousal data

sets. All algorithms indeed outperformed this CNN in all

conditions on the emotion data sets.

Multiple factors could explain the observed algorithm per-

formances. First, the number of trials that are used for training

models is important. In [33], authors tested the Shallow Con-

vNet on multiple motor-imagery data sets (from 288 to 1168

trials), and often obtained significantly better performances

with the CNN than with FBCSP. In our study, the workload

data set contained 720 training trials whereas both valence

and arousal data sets contained 39 training trials only (with

cross validation calibration). This might suggest that the CNN

could be useful for mental state classification, but only when

large amount of training trials are available (around 700 in

our study), which is not always possible. However, other

factors also differ between both data sets studied and could

also explain differences in CNN performances, including the

EEG epochs length (2s epochs for workload and 60s epochs

for emotions), and the nature of the mental states studied

(workload vs emotions). Indeed, emotions are thought to

originate from deep brain areas [5] and are thus known as

being difficult to estimate from EEG. In the future, deeper

analyses would thus be needed to fully disentangle these

factors, by systematically varying the mental states studied,

the EEG epoch length and the number of training trials.

Another relevant result is the promising classification per-

formances of the proposed RGCs. Indeed, FBTSC and FBFg-

MDM outperformed the results from the data sets’ authors in

most conditions/data sets. Moreover, FBFgMDM with subject-

specific calibration, and FBFgMDM and FBTSC with subject-

independent calibration, reached higher mean accuracies than

all other algorithms, except the CNN on the workload data

set. More interestingly, the low number of trials in the

emotion data sets did not seem to affect their performances

since they also reached the highest mean accuracies on both

the emotion-valence and emotion-arousal data set, both with

subject-specific calibration. These promising results compared

to standard RGCs (TSC and FgMDM), are probably due to

the extra spectral information extracted with the filter bank,

and our study enabled us to quantify this gain.

Finally, FBCSP+LDA obtained a higher mean accuracy than

CSP+LDA, although not significantly so, in all conditions/data

sets, and the higher overall mean accuracy for valence classi-

fication with subject-independent calibration. However, it did

not obtain higher mean accuracies than others in any other

condition. It should be noted that such results reflect the

performances obtained in offline evaluation. As such they are

likely to be similar to performances obtained in offline or

open-loop mental state monitoring, e.g., for noeuroergonomics

(ex: mental workload monitoring) or neuromarketing (ex:

emotion monitoring). The performances are likely to change

in closed-loop applications, with neuroadaptive technologies,

and will thus need to be evaluated in this context as well.

Such results enable us to suggest guidelines about which

algorithm to use for mental states classification from EEG.

First, the CNN is recommended for mental workload clas-

sification with both subject-specific and subject-independent

calibration, but seems to need a large amount of training

trials (at least several hundreds). It should thus probably be

avoided for data sets with little training data (i.e., a few

dozens). Second, Filter Bank RGCs (FBTSC and FBFgMFM)

should also be recommended to obtain good classification

performances notably with subject-specific calibration, for

both workload and emotion classification, whatever the amount

of training data. However, such methods do not seem suit-

able for subject-independent classification with little training

data and/or for emotion classification. They seem suitable

for subject-independent classification of workload with large

amount of training data though. Our results also confirmed that

passive BCIs with subject-independent calibration is possible

but very challenging and with much lower accuracies. Simi-

larly, affective state classification in EEG is possible but much

more challenging than workload estimation. However, those

suggestions imply computational costs that will differ from an

algorithm to another. Indeed, using the FB RGCs or the CNN

will require a long calibration time, when the testing phase

might also be time consuming and has to be considered before
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to go towards online uses. See the supplementary material for

more information.

For the emotion data set, we labelled trials as in the original

paper to allow comparisons, i.e., with a global subject-

independent partition between low/high valence/arousal trials,

based on the SAM ratings. Note that better methods for

partitioning low/high trials in a per-subject basis can also be

used [42] in the future, to limit the class imbalance. Still in

the future, other deep learning architectures, notably Recurrent

Neural Networks (RNN) [34] may prove promising for EEG

classification and passive BCIs as well. It would also be

interesting to study whether CNN and RGCs can be used

to estimate robustly other cognitive states such as fatigue,

curiosity or engagement, and how well the proposed RGCs

perform on motor imagery data for active BCIs. Altogether,

our results suggested that CNN and the proposed filter bank

RGCs are valuable machine learning tools for scientists aiming

at decoding cognitive and affective states from EEG signals.
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