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Modern modelling techniques are data hungry: a
simulation study for predicting dichotomous
endpoints
Tjeerd van der Ploeg1,3*, Peter C Austin2 and Ewout W Steyerberg3

Abstract

Background: Modern modelling techniques may potentially provide more accurate predictions of binary outcomes

than classical techniques. We aimed to study the predictive performance of different modelling techniques in relation

to the effective sample size (“data hungriness”).

Methods: We performed simulation studies based on three clinical cohorts: 1282 patients with head and neck cancer

(with 46.9% 5 year survival), 1731 patients with traumatic brain injury (22.3% 6 month mortality) and 3181 patients

with minor head injury (7.6% with CT scan abnormalities). We compared three relatively modern modelling techniques:

support vector machines (SVM), neural nets (NN), and random forests (RF) and two classical techniques: logistic

regression (LR) and classification and regression trees (CART). We created three large artificial databases with 20

fold, 10 fold and 6 fold replication of subjects, where we generated dichotomous outcomes according to different

underlying models. We applied each modelling technique to increasingly larger development parts (100 repetitions).

The area under the ROC-curve (AUC) indicated the performance of each model in the development part and in an

independent validation part. Data hungriness was defined by plateauing of AUC and small optimism (difference

between the mean apparent AUC and the mean validated AUC <0.01).

Results: We found that a stable AUC was reached by LR at approximately 20 to 50 events per variable, followed by

CART, SVM, NN and RF models. Optimism decreased with increasing sample sizes and the same ranking of techniques.

The RF, SVM and NN models showed instability and a high optimism even with >200 events per variable.

Conclusions: Modern modelling techniques such as SVM, NN and RF may need over 10 times as many events per

variable to achieve a stable AUC and a small optimism than classical modelling techniques such as LR. This implies that

such modern techniques should only be used in medical prediction problems if very large data sets are available.

Background

Prediction of binary outcomes is important in medical

research. The interest in the development, validation,

and clinical application of clinical prediction models is

increasing [1]. Most prediction models are based on

logistic regression analysis (LR), but other, more modern

techniques, may also be used. Support vector machines

(SVM), neural nets (NN) and random forest (RF) have

received increasing attention in medical research [2-6],

since these hold the promise of better capturing non-

linearities and interactions in medical data. The increased

flexibility of modern techniques implies that larger sample

sizes may be required for reliable estimation. Little is

known, however, about the sample size that is needed to

generate a prediction model with a modern modelling

technique that outperforms more traditional, regression-

based modelling techniques in medical data.

Usually, only a relatively limited number of subjects is

available for developing prediction models. In 1995, a com-

parative study on the performance of various prediction

models for medical outcomes concluded that the ultimate

limitation seemed due to the availability of the information

in data. This study used the term “data barrier” [7].
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Some researchers aimed to develop a “power law” that

can be used to determine the relation between sample

size and the discriminatory ability of prediction models

in terms of accuracy [8-10]. These studies clarified how

a larger sample size leads to a better accuracy. The

studies revealed that a satisfactory level of accuracy (the

accuracy at infinite sample size +/− 0.01) can be achieved

by sample sizes varying from 300 to 16,000 records,

depending on the modelling technique and the data

structure. The relation between sample size and accuracy

was reflected in learning curves. Similarly, the number of

events per variable (EPV) has been studied in relation to

model performance [11-15].

In the current study, we aimed to define learning

curves to reflect the performance of a model in terms of

discriminatory ability, which is a key aspect of the

performance of prediction models in medicine [16]. We

assumed that the discriminatory ability of a model is a

monotonically increasing function of the sample size,

converging to a maximum at the infinite sample size.

We hypothesized that modern, more flexible techniques

are more “data hungry” [17] than more conventional

modelling techniques, such as regression analysis. The

concept of data hungriness refers to the sample size

needed for a modelling technique to generate a prediction

model with a good predictive accuracy. For fair comparison,

we generated reference models with each of the modelling

techniques considered in our simulation study.

Methods

Patients

We performed a simulation study, based on three patient

cohorts.

The first cohort consisted of patients with head and

neck cancer who were followed during 15 years for

survival (“HNSCC cohort”) [18]. The cohort contained 7

predictor variables (2 dichotomous, 4 categorical and 1

continuous) and a dichotomous (0/1) outcome with an

incidence of 601/1282 (46.9%) (Table 1).

The second cohort consisted of patients with traumatic

brain injury (“TBI cohort”) [19]. The cohort contained

10 predictor variables (4 dichotomous, 1 categorical and 4

continuous) and a dichotomous outcome with an incidence

of 386/1731 (22.3%) (Table 1).

The third cohort consisted of patients suspected of head

injury who underwent a CT-scan (“CHIP cohort”) [6]. This

cohort contained 12 predictor variables (9 dichotomous, 1

categorical and 2 continuous) and a dichotomous (0/1)

outcome with an incidence of 243/3181 (7.6%) (Table 1).

We generated artificial cohorts by replicating the

HNSCC cohort 20 times, the TBI cohort 10 times and

the CHIP cohort 6 times. This resulted in an artificial

cohort consisting of 25,640 subjects (“HNSCC artificial

cohort”), an artificial cohort consisting of 17,310 subjects

(“TBI artificial cohort”) and an artificial cohort consisting

of 19,086 subjects (“CHIP artificial cohort”).

Reference models

In the current study, we evaluated the following model-

ling techniques, using default settings as far as possible:

� Logistic regression (LR)

� Classification and regression trees (CART)

� Support vector machines (SVM)

� Neural nets (NN)

� Random forest (RF)

For a description of these modelling techniques, based

on the work of various authors [12,15,20,21], we refer to

Additional file 1.

As reference points for this evaluation, we first applied

each modelling technique to each entire artificial cohort

in order to generate an LR model, a CART model, an SVM

model, an NN model and an RF model. These models were

fitted with optimization according to default settings. Next,

we generated probabilities of the outcome for each of these

reference models. With these probabilities, we generated a

new 0/1 outcome by comparing the generated probabilities

of each reference model with a random number from a uni-

form (0,1) distribution. Using this new 0/1 outcome, we

evaluated the five modelling techniques. The R-code for the

construction of the reference models is in Additional file 2.

Development and validation

For each of the five modelling techniques, we randomly

divided the artificial cohort into a development set and

a validation set for performance assessment. Each set

consisted of 50% of the subjects of the artificial cohort.

Simulation design and analysis

We applied the following steps to each of the three arti-

ficial cohorts:

1. Development sets were samples of increasing sizes

(varying from 200 to the maximum size of the

development set with increment 1000), drawn

Table 1 Cohort characteristics

Cohort

HNSCC TBI CHIP

Outcome 5 year survival 6 months mortality Intracranial
findings

Type dichotomous dichotomous dichotomous

Event/total 601/1282 (46.9%) 386/1731 (22.3%) 243/3181 (7.6%)

Predictors 2 dichotomous 4 dichotomous 9 dichotomous

4 categorial 1 categorial 1 categorial

1 continuous 4 continuous 2 continuous
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at random from the non-validation part of the

artificial cohort.

2. For each of the five modelling techniques we

generated a model for each sample, taking the 0/1

outcome of a specific reference model as outcome.

We evaluated the predictions on each sample.

3. For each sample, the predictions of the model were

evaluated on the validation set, taking the 0/1

outcome of the same reference model as outcome.

We repeated these steps 100 times for each sample

size to achieve sufficient stability. We considered each of

the five reference models in turn for a fair comparison of

each of the modelling techniques. Evaluation of predictive

performance focussed on the discriminatory ability accord-

ing to the area under the Receiver Operating Characteristic

curve (AUC). The AUC was determined using the develop-

ment set (apparent AUC) and the validation set (validated

AUC). We calculated optimism as mean apparent AUC

minus mean validated AUC.

We defined the maximally attainable AUC (AUCmax)

as the validated AUC-value of a model based on the

entire development set (50% of the artificial cohort).

A flowchart of the simulation design is presented in

Figure 1. For the analysis we used R software (version

2.14) [22]. For the R-code of the simulation design we

refer to Additional file 2, [23].

Learning curves

For each modelling technique, we generated learning

curves to visualize the relation between the AUC-values

and optimism of the generated models with respect to

the number of events per variable.

Data hungriness

The data hungriness of a modelling technique was defined

as the minimum number of events per variable at which

the optimism of the generated model was <0.01. This

limit was admittedly arbitrary, but in line with previous

research [24].

Sensitivity analysis

We performed a sensitivity analysis to determine the

influence of the endpoint incidence in the CHIP artificial

cohort (7.6%). We hereto selectively oversampled sub-

jects with the outcome of interest in order to generate

an artificial cohort with an endpoint incidence of 50%

(“CHIP5050 cohort”).

Results

HNSCC cohort

The best performance in terms of mean validated AUC-

values was achieved when the full development set was

used (n = 12,820, number of events = 6013, event rate

46.9%) and by the models generated with the same

modelling technique as the reference model, except

when the reference model was generated with NN, in

which case the RF model had the best performance

(AUC 0.810, Table 2).

The level that could be reached (AUCmax) depended

foremost on the reference model used to generate the 0/

1 outcomes. All models performed best when the refer-

ence model RF was used. For all reference models, except

the CART reference model, the CART model performed

worst (Table 2).

The data hungriness of the various modelling tech-

niques is reflected by the first part of the learning curves

with <100 events per variable (Figure 2). As expected, all

models converged monotonically to AUCmax. For each

of the reference models, the LR model showed the most

rapid increase to a stable mean validated AUC-value,

while the RF model needed the largest number of events

per variable to reach a stable mean validated AUC-value

(Figure 2).

We calculated the relative performance of a model by

setting the performance of the model resulting from the

modelling technique that generated the reference model

at 100%. Figure 3 shows the relative performance of the

models for each reference model.

For all reference models, the optimism of the models

decreased with an increasing number of events per vari-

able. For all reference models, except when the reference

model was CART, the modelling technique LR needed

the smallest number of events per variable to reach an

optimism <0.01 (55 to 127 events per variable).

When CART was the reference model, the modelling

technique CART needed the smallest number of events

per variable to reach an optimism <0.01 (62 events per

variable). The modelling techniques NN and RF and, to a

lesser extent, SVM needed the most events per variable to

generate models with an optimism <0.01.

The modelling technique RF needed 850 events per

variable when the reference model RF was used, but for

the other reference models the optimism of the RF model

remained > =0.01, despite the large number of events per

variable (Figure 4).

TBI cohort

For the TBI artificial cohort, with a development set con-

sisting of 8655 subjects and 1930 events (event rate

22.3%), the CART models performed poorly, irrespective

of the reference model (Table 3). The models generated

with the same modelling technique as the reference model

showed the best performance, except when the reference

model was generated with CART, in which case the LR

model had the best performance (AUC 0.712, Table 3). All

models, except the CART model, showed the lowest AUC

when the reference model CART was used (Table 3).
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Figure 1 Flow chart simulation design.
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The NN model needed the largest number of events

per variable to reach AUCmax. For each of the reference

models, the LR model showed the most rapid increase

to a stable AUC (Figure 5).

Again, we calculated the relative performance of a model

by setting the performance of the model resulting from

the modelling technique that generated the reference

model at 100%. Figure 6 shows the relative performance

of the models for each reference model.

For all models, optimism decreased with an increasing

number of events per variable. The LR model needed

18–23 events per variable to reach an optimism <0.01,

whereas the optimism of the RF model remained high,

except for the reference model RF, in which case opti-

mism was <0.01 at 163 events per variable (Figure 7).

CHIP cohort

For the CHIP artificial cohort, with a development set

consisting of 9543 subjects and 729 events (event rate

7.64%), the findings were largely similar to the results of

the HNSCC cohort. The best performance was achieved

by the same modelling technique that generated the ref-

erence model (Table 4). The modelling technique CART

generated models with a poor performance, irrespective

of the reference models. The modelling technique SVM

also generated models with a poor performance, irre-

spective of the reference models, except when the RF

model was used as reference model (AUC 0.871, Table 4).

All models performed poorly when the reference models

CART and SVM were used. All models, except the

CART model, performed well when the reference model

RF was used (AUC > 0.8, Table 4).

Considering the learning curves (Figure 8), the CART

models performed poorly. For each of the reference

models, the LR model showed a rapid increase to a

stable mean validated AUC-value, in contrast to the NN

model which needed far more events to reach a stable

mean validated AUC-value. The CART model showed a

decreasing mean validated AUC-value despite increasing

number of events, except when the reference model

CART was used (Figure 8).

Figure 9 shows the relative performance of the models

for each reference model.

Table 2 AUCmax per reference model, HNSCC cohort

Reference model

LR CART SV NN RF

LR 0.797 0.745 0.803 0.802 0.880

CART 0.730 0.748 0.749 0.728 0.822

SVM 0.787 0.740 0.814 0.802 0.898

NN 0.785 0.744 0.800 0.804 0.869

RF 0.784 0.747 0.810 0.810 0.929

Bold numbers are for model performance when the underlying model was

specified according to the modelling technique considered.

Figure 2 Validated AUC-values vs. events per variable, HNSCC cohort.
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Figure 3 Relative validated AUC-values vs. events per variable, HNSCC cohort.

Figure 4 Optimism vs. events per variable, HNSCC cohort.
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For the reference models LR, SVM and NN, the mod-

elling technique LR required 14 to 28 events per variable

to reach an optimism <0.01 and CART required 11 to

17 events per variable. Despite an increasing number of

events per variable, the modelling techniques SVM, NN

and RF generated models with optimism >0.01 for all

reference models. For the reference models CART and

RF, none of the modelling techniques was able to gener-

ate a model with optimism <0.01 (Figure 10).

Sensitivity analysis CHIP cohort

When we increased the event rate in the CHIP cohort

from 7.6% to 50% (“CHIP5050 cohort”), the behaviour of

the learning curves became largely similar to the

behaviour of the curves generated for the HNSCC co-

hort (Additional file 3, Figures 11, 12 and 13).

Discussion
Modern modelling techniques, such as SVM, NN and

RF, needed far more events per variable to achieve a

stable validated AUC and an optimism <0.01 than the

more conventional modelling techniques, such as LR and

CART. The CART models had a stable performance, but

at a fairly poor level. Specifically, a larger number of

events did not lead to better validated performance in the

cohort with a 7.6% event rate. The LR models had low

optimism when the number of events per variable was at

least 20 to 50. A remarkable finding was that the optimism

of the RF models remained high for the three cohorts,

even at a large number (over 200) of events per variable.

This indicates that these RF models were far from robust.

Of note, the validated performance of RF models was

similar to that of LR models. This implies that especially

RF models need careful validation to assess predictive

performance, since apparent performance may be highly

optimistic.

Since LR modelling is far less data hungry than alterna-

tive modelling techniques, this technique may especially

be useful in relatively small data sets. With very small data

sets, any modelling technique will lead to poorly perform-

ing models. Our results confirm the generally accepted

Table 3 AUCmax per reference model, TBI cohort

Reference model

LR CART SVM NN RF

LR 0.806 0.712 0.743 0.762 0.817

CART 0.710 0.702 0.676 0.652 0.684

SVM 0.754 0.677 0.765 .0765 0.838

NN 0.800 0.701 0.746 0.802 0.828

RF 0.744 0.685 0.750 0.776 0.988

Bold numbers are for model performance when the underlying model was

specified according to the modelling technique considered.

Figure 5 Validated AUC-values vs. number of events per variable, TBI cohort.
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Figure 6 Relative validated AUC-values vs. events per variable, TBI cohort.

Figure 7 Optimism vs. events per variable, TBI cohort.
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rule that reasonable predictive modelling requires at least

10 events per variable, even with a robust technique such

as LR [11,12,15]. We note that larger numbers of events

per variable are desirable to achieve better stability and

higher expected performance.

The modelling techniques SVM and NN needed far

more events per variable to generate models with a stable

mean validated AUC-value and an optimism converging

towards zero. For models generated with the modelling

technique RF, the optimism did not even converge to-

wards zero at the largest number of events per variable

that we evaluated.

Obviously, models generated by the same modelling

technique as the reference model generally performed

best, reflecting a “home advantage” over models generated

by a different modelling technique than the reference

model. The performance of models according to different

reference models was provided for a fair assessment of the

performance of the approaches considered.

While RF and LR models consistently performed well,

CART consistently performed poorly. The poor perform-

ance of CART modelling may be explained by the fact

that continuous variables need to be categorized, with op-

timal cut-offs determined from all possible cut-off points,

and that possibly unnecessary higher-order interactions

are assumed between all predictor variables. RF modelling

is an obvious improvement over CART modelling [24]. It

is hence remarkable that CART is still advocated as the

preferred modelling technique for prediction in some

disease areas, such as trauma [25]. A researcher must

always carefully consider which modelling technique is

appropriate in a specific situation. Using, for instance, a

random forest technique just because the number of

subjects is over 10,000 is too simplistic.

The aim of our study was to investigate the data hun-

griness of the various modelling techniques and the aim

was not to find the best modelling technique in AUC

terms. To our knowledge, the data hungriness of various

modelling techniques has not been assessed before for

medical prediction problems. However, a few studies

addressed this topic in the context of progressive sam-

pling for the development of a power law to guide the

Table 4 AUCmax per reference model, CHIP cohort

Reference model

LR CART SVM NN RF

LR 0.786 0.572 0.607 0.782 0.903

CART 0.562 0.578 0.580 0.500 0.666

SVM 0.584 0.560 0.615 0.616 0.871

NN 0.758 0.564 0.589 0.791 0.856

RF 0.728 0.579 0.594 0.755 0.916

Bold numbers are for model performance when the underlying model was

specified according to the modelling technique considered.

Figure 8 Validated AUC-values vs. events per variable, CHIP cohort.
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Figure 9 Relative validated AUC-values vs. events per variable, CHIP cohort.

Figure 10 Optimism vs. events per variable, CHIP cohort.
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Figure 11 Validated AUC-values vs. events per variable, CHIP5050 cohort.

Figure 12 Relative validated AUC-values vs. events per variable, CHIP5050 cohort.
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required sample size for prediction modelling. For example,

arithmetic sampling was applied with sample sizes of 100,

200, 300, 400 etc. to 11 of the UCI repository databases to

obtain insight into the performance of a naive Bayes classi-

fier [8]. This study led to required sample sizes from 300 to

2180 to be within 2% from the accuracy of a model built

from the entire database. Other researchers modelled 3 of

the larger databases from the UCI repository using different

progressive sampling techniques [9]. Using the C4.5 model-

ling technique, which we consider a CART variant, sample

sizes of 2000 for the LED database, 8000 for the CENSUS

database and 12000 for the WAVEFORM database were

required for a model being no more than 1% less accurate

than a model based on all the available data.

Another study compared the performance of 6 data

mining tools at various sample sizes for 2 test databases

(test database I with 50,000 records and test data base

II with 1,500,000 records), using accuracy as the per-

formance measure. For test database I, for all tools, a

stable level of accuracy was reached at 16,000 records,

and for test database II, for all tools, a stable level was

reached at 8000 records [10]. The results of our study

are in line with these studies. Although we used mean

validated AUC-values instead of accuracy to measure

the performance of the models, we also found that the

more complex modelling techniques required large

numbers of events per variable to generate models with

optimism <0.01.

A number of limitations need to be considered. Firstly,

we used three cohorts with dichotomous outcomes, in

which non-linearity was not a major issue. While this

may be common in medical research, it limited the ability

for some modern modelling techniques to outperform

traditional logistic regression modelling. If important

non-linearity is truly present in a data set, techniques

that capture such non-linear patterns well are obviously

attractive. Various approaches can be considered to

address non-linearity within the regression framework,

including restricted cubic splines and fractional polyno-

mials [15,26]. Secondly, we used default settings for the

modelling techniques [8]. Further research might investi-

gate our evaluated models, but also other modelling

techniques such as LASSO, using other cohorts, and also

using other settings for the modelling (such as pruning

options, priors, and number of subjects in the end nodes).

Thirdly, there was a considerable difference in incidence

between the three cohorts (47%, 22% and 8%). To assess

the effect of this difference in incidence on the data

hungriness, we performed a sensitivity analysis. Further

research should evaluate the relation between the inci-

dence of the outcome and the data hungriness patterns

of various modelling techniques.

Figure 13 Optimism vs. events per variable, CHIP5050 cohort.
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Conclusions
Modern modelling techniques such as SVM, NN and RF

need far more events per variable to achieve a stable

AUC-value than classical modelling techniques such as

LR and CART. If very large data sets are available, mod-

ern techniques such as RF may potentially achieve an

AUC-value that exceeds the AUC-values of modelling

techniques such as LR. The improvement over simple

LR models may, however, be minor, as was shown in the

two empirical examples in this study. This implies that

modern modelling techniques should only be considered

in medical prediction problems if very large data sets

with many events are available.
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