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ABSTRACT OF THE DISSERTATION

Modern Problems in Mathematical Signal Processing: Quantized Compressed Sensing

and Randomized Neural Networks

by

Aaron A. Nelson

Doctor of Philosophy in Mathematics with a specialization in Computational Science

University of California San Diego, 2019

Professor Rayan Saab, Chair

We study two problems from mathematical signal processing. First, we consider prob-

lem of approximately recovering signals on a smooth, compact manifold from one-bit linear

measurements drawn from either a Gaussian ensemble, partial circulant ensemble, or bounded or-

thonormal ensemble and quantized using Σ∆ or distributed noise-shaping schemes. We construct

a convex optimization algorithm for signal recovery that, given a Geometric Multi-Resolution

Analysis approximation of the manifold, guarantees signal recovery with high probability. We

prove an upper bound on the recovery error which outperforms prior works that use memoryless

scalar quantization, requires a simpler analysis, and extends the class of measurements beyond

x



Gaussians.

Second, we consider the problem of approximation continuous functions on compact

domains using neural networks. The learning speed of feed-forward neural networks is notoriously

slow and has presented a bottleneck in deep learning applications for several decades. For instance,

gradient-based learning algorithms, which are used extensively to train neural networks, tend to

work slowly when all of the network parameters must be iteratively tuned. To counter this, both

researchers and practitioners have tried introducing randomness to reduce the learning requirement.

Based on the original construction of B. Igelnik and Y.H. Pao, single layer neural-networks with

random input-to-hidden layer weights and biases have seen success in practice, but the necessary

theoretical justification is lacking. We begin to fill this theoretical gap by providing a (corrected)

rigorous proof that the Igelnik and Pao construction is a universal approximator for continuous

functions on compact domains, with ε-error convergence rate inversely proportional to the number

of network nodes; we then extend this result to the non-asymptotic setting using a concentration

inequality for Monte-Carlo integral approximations. We further adapt this randomized neural

network architecture to approximate functions on smooth, compact submanifolds of Euclidean

space, providing theoretical guarantees in both the asymptotic and non-asymptotic cases.

The views expressed in this dissertation are those of the author and do not reflect the official policy or position of the

U.S. Air Force, Department of Defense, or U.S. Government.
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Chapter 1

Introduction and Background

1.1 Mathematical Signal Processing in the Modern World

Mathematical signal processing is a critical component of modern technology and data

science – everyday devices ranging from mobile phones and digital cameras to medical imaging

and radar systems, as well as internet and wireless communication, audio systems, and chemical

or physical sensors are just a few examples of modern technologies which require advanced

processing of signals, images, and/or data. Engineering progress related to these technologies

goes hand-in-hand with the corresponding applied mathematical theory. Indeed, engineering

disciplines provide new, challenging problems and inspiration for mathematics, while mathematics

leads to engineering advances by providing rigorous, sophisticated solutions to these problems.

The Shannon-Nyquist sampling theory, which has its origins in the 1940s, is considered to be one

of the first such developments, setting the foundations for measuring and transforming analog

signals into digital form, as well as the fast, efficient transmission of this information across

multiple media, both wired and wireless. Such developments in mathematics and engineering lead

to the theory of wavelets, first introduced in the 1980s, which in turn has lead to new compression,

denoising, and other image processing methods. These new methods have provided important

1



mathematical insights with implications throughout the mathematical disciplines.

When practitioners first began to realize the possibility of sketching analog signals using

significantly less numerical information in the early 2000s, the powerful mathematical theory

of compressed sensing was born. This theory predicts that the Shannon-Nyquist rate may be

significantly overcome, in the sense that compressible (i.e., sparse) signals can be recovered

efficiently from what was previously believed to be highly incomplete linear measurements. This

surprising discovery lead to a flurry of research on the applications of compressed sensing in

other areas, including biomedical imaging, radar, and astronomy, to name a few. It has also lead

to various mathematical results by establishing links between fields such as harmonic analysis,

random matrix theory, and convex optimization.

More recently, mathematical signal processing has come to a turning point. Indeed, not

only are traditional analog signals like sound, images, and video collected and processed, but

entire daily activities are measured in various ways. The amount of data acquired, stored, and

transmitted on a daily basis is increasing rapidly, and the ability to efficiently process these

massive data sets is becoming ever more important. Together with new technological advances,

there is an increasing demand for novel mathematical methods to perform efficient information

processing at large scales. As such, real-world data analysis requires fundamentally new ideas

and approaches, with significant potential for cross-disciplinary mathematical developments.

In fact, mathematical techniques involved in signal and data processing, as well as proofs of

corresponding results, often involve various fields including harmonic analysis, optimization,

probability theory, numerical linear algebra, and graph theory, among others.

1.2 Compressed sensing and quantization

A major shift in sampling theory occurred over the past fifteen years with the development

of compressed sensing, which predicts the robust recovery of sparse signals from vastly incomplete
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linear random measurements using efficient methods such as convex optimization or certain greedy

algorithms. Indeed, one major difference between compressed sensing and classical sampling

theory is that signal recovery is no longer a linear process. Huge research efforts emerged

from this new field, including the development of new recovery algorithms, tailored to different

applications, as well as the analysis of random measurements, both structured and unstructured.

More recently, the extension of compressed sensing methods to more general situations is a

popular activity, and new results and breakthroughs are appearing in both theory and practice.

For instance, the recovery of low rank matrices from few linear random measurements, which has

important applications in high-dimensional data analysis, forms the basis for the development of

a robust theory of compressed sensing via non-linear measurements. Moreover, recent results

in the well-known phase retrieval problem, which appears in applications such as diffraction

imaging and x-ray crystallography, show that it is possible to recover signals from the absolute

values of their scalar products with respect to a small number of elements of certain finite frames.

Even the mathematical analysis of (structured) random matrices requires sophisticated tools from

compressed sensing.

The current state of research on quantization in mathematical signal processing focuses on

developing efficient methods for obtaining robust quantizers of analog signals, including low-bit

quantization schemes such as Sigma-Delta (abbreviated by Σ∆). The use of quantization in the

context of compressed sensing is also a major research topic, including one-bit compressed sens-

ing, extensions to low rank matrix recovery, and the analysis of structured random measurement

schemes. Various results from modern embedding theory, which has its origins in the 1980s with

the Johnson-Lindenstrauss lemma, have led to practical algorithms for quantized compressed

sensing with theoretical recovery guarantees.
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1.3 High-dimensional data analysis and machine learning

The analysis of data in high-dimensions poses several theoretical and practical challenges

due to the complexity inherent in the ambient system. Recent research efforts have attempted to

overcome this problem by using structural data assumptions. In this way, one hopes to reduce the

degrees-of-freedom of the system while keeping the problem tractable. Some of the first works

along this line of reasoning considered the recovery of sparse signals, while subsequent works

analyzed more general union-of-subspaces models and the recovery of low rank matrices, which

have applications in the phaseless reconstruction problem and other bilinear inverse problems. Yet

another line of work following this approach studies manifold models. Using this approach, one

assumes that the structural constraints are given by (unions of finitely many) manifolds having

low intrinsic dimension. Arguably, working with manifold models is better adapted to real world

data than sparsity, and so has gained traction in recent analysis methods.

Current developments in the field of machine learning, led primarily by the computer

science community, are producing exceptional results on highly complex decision tasks. The

great empirical success of deep learning shows that algorithms can beat humans in several tasks,

such as image classification or learning how to play complex games. However, the mathematical

modeling of such algorithms is still in its infancy. Indeed, the theoretical understanding of

the behavior of such machine learning techniques remains largely a mystery, and developing

mathematical guarantees is crucial for the advancement of the field – without such comprehension,

practitioners are operating solely based on empirical evidence. Recently, the mathematical

community has contributed novel methods, such as diffusion maps and kernel methods, to aid in

the understanding of machine learning techniques. This effort has led to an increased theoretical

understanding of and insights into deep learning methods, combining tools from harmonic

analysis, high-dimensional optimization, and probability theory. The introduction of methods

from high-dimensional data analysis which take advantage of the intrinsic structure of data, (e.g.,
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Principal Component Analysis and more sophisticated variants thereof) has also led to a greater

theoretical understanding of deep learning, but many open questions remain.

1.4 Organization of the manuscript

In this dissertation, we consider two topics from mathematical signal processing that

draw on results from various theoretical backgrounds. First, we consider the problem of re-

covering a signal from quantized linear measurements; second, we delve into the problem of

approximating continuous functions using artificial neural networks. Although their motivations

are fundamentally different, the common theme connecting these problems in this work is the

desire to leverage underlying signal structure (e.g., sparsity) to improve recovery or estimation

accuracy. In particular, we explore the increasingly popular assumption that the signal class we

are interested in lies on a low-dimensional submanifold of Euclidean space, which is important

for dimensionality reduction. Indeed, much of modern signal processing deals with massive

amounts of data lying in high-dimensional spaces, and the computational complexity of practical

algorithms suffers as a result. This complexity can often be reduced by designing algorithms that

take advantage of intrinsic signal structure.

The remainder of the manuscript is organized as follows: In Chapter 2, we introduce the

quantized compressed sensing problem, with a focus on using one-bit quantization schemes in

conjunction with random linear measurements of structured signals. Specifically, we study the

problem of approximately recovering signals on a low-dimensional submanifold of Euclidean

space from one-bit linear measurements drawn from either a Gaussian ensemble, partial circulant

ensemble, or bounded orthogonal ensemble and quantized using stable noise-shaping techniques.

We construct a convex optimization algorithm for signal recovery that, given a suitable approxima-

tion to the manifold, guarantees signal recovery with high probability. We prove an upper bound

on the recovery error which outperforms prior works that use memoryless scalar quantization,
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requires a simpler analysis, and extends the class of measurements beyond Gaussians. Finally, we

illustrate our results with numerical experiments.

In Chapter 3, we introduce a randomized neural network architecture, known as the

Random Vector Functional Link, for approximating continuous functions on compact sets. Based

on the original construction of B. Igelnik and Y.H. Pao, these single layer neural-networks use

random input-to-hidden layer weights and biases to reduce the complexity and running time of

learning algorithms. This approach has seen success in practice, but the necessary theoretical

justification is lacking. To begin to fill this theoretical gap, we provide a (corrected) rigorous

proof that the Igelnik and Pao construction is a universal approximator for continuous functions

on compact domains, with ε-error convergence rate inversely proportional to the number of

network nodes; we then extend this result to the non-asymptotic setting using a concentration

inequality for Monte-Carlo integral approximations. We further adapt this randomized neural

network architecture to approximate functions on smooth, compact submanifolds of Euclidean

space, providing theoretical guarantees in both the asymptotic and non-asymptotic cases that

depend on the manifold dimension rather than the ambient dimension. Finally, we illustrate our

results on manifolds with numerical experiments.

A conference version of the material presented in Chapter 2 appeared in the proceedings

of the 17th Annual International Conference on Sampling Theory and Applications (SampTA),

2019 [ILNS19]. Moreover, a journal version of the material presented in Chapter 3 is currently

being prepared for submission for publication.
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Chapter 2

One-Bit Compressed Sensing on Manifolds

2.1 Introduction

Compressed sensing [CRT06, D+06] demonstrates that structured high dimensional

signals such as sparse vectors or low-rank matrices can be recovered from few random linear

measurements. Recovery is typically formulated as a convex optimization problem whose

minimizer cannot be expressed analytically and must be solved for using numerical algorithms

running on digital devices. Thus, it is necessary to consider the effect of quantization in the design

of the recovery algorithms. Indeed, sparse vector recovery and low-rank matrix recovery have been

studied in the presence of various quantization schemes [GLP+10, HS18, JLBB13, LS17, PV13].

We look to extend these results to account for those structured signals that lie on a compact,

low-dimensional submanifold of RN for which we have a Geometric Multi-Resolution Analysis

(GMRA) [ACM12]. Our work is motivated by the results of Iwen et al. in [IKKSM18] where

they assume memoryless scalar quantized Gaussian measurements, and we provide better error

bounds that hold for a wider class of measurement ensembles.

As in [IKKSM18], a key component of our technique is the GMRA which approximates

the manifold at various levels of refinement. At each level the GMRA is a collection of ap-
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proximate tangent spaces about certain known "centers", and the quality of the approximation

improves with every level. Unlike in [IKKSM18], the quantization schemes that we use are Σ∆

or distributed noise-shaping methods (see, e.g., [GLP+10, HS18]) and the compressed sensing

measurements that our results apply to include those drawn from Gaussian ensembles, partial

circulant ensembles (PCE) or bounded orthogonal ensembles (BOE). Our proposed reconstruction

method is summarized in Algorithm 1. This simple algorithm first finds a GMRA center that

quantizes to a bit sequence close to the quantized measurements, where "closeness" is determined

using a pseudo-metric that respects the quantization; it then optimizes over all points in the

associated approximate tangent space to enforce, as much as possible, the consistency of the

quantization. Using the results of [HS18] we prove that the quantization error associated with

our proposed reconstruction algorithm decays polynomially or exponentially as a function of the

number of measurements, depending on the quantization scheme. This greatly improves on the

sub-linear error decay associated with scalar quantization in [IKKSM18].

2.2 Background and Notation

Let M be a smooth, compact submanifold of RN . Given a linear transformation A∈R
m×N ,

a discrete set A , and a quantization map Q : Rm → A , we seek to recover a vector x ∈ M from

the quantized linear measurements q = Q(Ax). It is assumed that we do not know the structure

of M a priori, but instead have access to a structured dictionary model, which we describe

later. In [IKKSM18], Iwen et al. study the case where the signal x is restricted to a manifold

M ⊂ S
N−1 and the quantization scheme is memoryless scalar quantization (MSQ), i.e., A is a

standard Gaussian matrix, A = {±1}, and Q(·) = sign(·). In their paper, Iwen et al. propose an

algorithm for recovering x from such measurements and show that the associated error decays

like O(m−1/7) [IKKSM18]. Such slow error decay, associated with MSQ (see, e.g., [HS18] and

references therein), has also been seen in the context of sparse vector recovery in the compressed
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sensing literature. Indeed, it is known in that setting that the error under any reconstruction scheme

using MSQ measurements cannot decay faster than O(m−1) [GVT95] (see also [BJKS14]).

To acheive better error rates than seen in [IKKSM18], one must use more sophisticated

quantization schemes. For example, in the sparse vector setting, noise-shaping techniques such

as Σ∆ and distributed noise-shaping leverage redundancy of the measurements to ensure error

decay like O(m−r) or O(β−cm) for some parameters r ∈N, β > 1 that depend on the quantization

scheme (see, e.g., [CG16, SWY18a]). To take advantage of these better decay rates, we study

the quantized manifold recovery problem in this setting. In particular, we study the recovery

of x ∈ M ⊂ BN
2 from the measurements q = Q(Ax) using Σ∆ and distributed noise-shaping

methods by leveraging an embedding result from [HS18]. This allows us to use not only Gaussian

measurement ensembles, as in [IKKSM18], but also more structured systems drawn from partial

circulant ensembles (POEs) and bounded orthogonal ensembles (BOEs).

Since our results involve material from several intersecting fields, it is convenient now

to provide a few brief introductions. The material that follows is therefore an amalgamation

of background information pertaining to compressed sensing and quantization. Much of this

information can be found in [HS18] and references therein.

2.2.1 Introduction to compressed sensing

Let x ∈C
N be an unknown vector that we wish to reconstruct from m linear measurements

of the form

y( j) = 〈a j,x〉+w( j), j = 1, . . . ,m,

where each a j ∈C
N is a known measurement vector and w( j)∈C is unknown measurement noise.

The collection of measurements y = {y( j)}m
j=1 is often written in the matrix form y = Ax+w,

where the jth row of A ∈ C
m×N is the vector a j and w = {w( j)}m

j=1. When x is sparse (i.e., most
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of its entries are zero) or well-approximated by sparse vectors, it can be recovered from the

measurements y even when the matrix A is tall (i.e., m ≪ N) [HS18]. The study of measurement

matrices, recovery algorithms, and reconstruction error guarantees in this setting comprises

the field of compressed sensing. One of the most popular compressed sensing techniques is

ℓ1-minimization, where the vector x is approximated by

x♯ := argmin
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η , (2.2.1)

where η > 0 is an assumed upper bound on the norm of the noise vector w.

For measurement matrices A that are selected entrywise at random (independently) from

Gaussian or Bernoulli distributions, it is known that, with high probability on the draw of the

matrix, the solution x♯ to (2.2.1) satisfies the error bound

‖x− x♯‖2 . η +
σk(x)1√

k

whenever m & k log(N/k) (see, e.g., [CRT06, D+06, MPTJ08, BDDW08]); here, σk(x)1 denotes

the ℓ1 error of the best k-sparse approximation to x, and is therefore a measure of the best error

one may hope to achieve. Reconstruction error guarantees of this form are often obtained by

requiring that the measurement matrix satisfy the Restricted Isometry Property (RIP):

Definition 2.2.1 (Restricted Isometry Property (RIP)). A matrix A ∈ C
m×N satisfies the (δk,k)-

Restricted Isometry Property (RIP) if for every k-sparse x ∈ C
N we have

(1−δk)
2‖x‖2

2 ≤ ‖Ax‖2
2 ≤ (1+δk)

2‖x‖2
2.

Essentially, matrices A satisfying the RIP provide near-isometric embeddings when acting on

sparse vectors.

For practical reasons (e.g., physical properties of the measurements, reconstruction al-

10



gorithm speed, etc.), one may require more structure in the matrix A than the random matrices

considered above. This motivated the study of structured random matrices for compressed sensing

(see, e.g., [CT06, BWD+06, RV08, Rau08, FR17]). Two of the more popular classes of struc-

tured random matrices, which we will use in our later algorithms, are partial circulant ensembles

(POEs) and bounded orthogonal ensembles (BOEs). The following definitions of these objects

can be found, for example, in [HS18].

Definition 2.2.2 (Partial Circulant Ensemble (PCE)). For z ∈ C
N , let Hz ∈ C

N×N be the circulant

matrix given by its action Hzx = z ∗ x on x ∈ C
N , where ∗ denotes circular convolution. Fix

a subset Ω ⊂ {1,2, . . . ,N} of cardinality m arbitrarily. A matrix A ∈ C
m×N is drawn from the

partial circulant ensemble associated with Ω by choosing a vector σ whose entries are selected

uniformly at random (independently) from the ±1 Bernoulli distribution and setting the rows of

A to be the rows of Hσ indexed by Ω.

Definition 2.2.3 (Bounded Orthogonal Ensemble (BOE)). Let N−1/2U ∈ C
N×N be any unitary

matrix such that |U( j,k)| ≤ 1 for all j,k = 1, . . . ,N. A matrix A ∈ C
m×N is drawn from the

bounded orthogonal ensemble associated with U by picking each row of A uniformly at random

(independently) from the set of all rows of U .

Structured random matrices drawn from both PCEs and BOEs arise naturally in com-

pressed sensing applications, such as radar, wireless channel estimation, and magnetic resonance

imaging (see, e.g., [HBRN10, RRT12, Rom09, FKS17, HHL10, LDP07, MAD+12, VAH+10]).

Moreover, PCEs and BOEs satisfy the RIP with high probability whenever m & kpolylog(N)

[RV08, CGV13, Bou14, HR17] and are fast to implement, featuring prominently in the construc-

tion of fast Johnson-Lindenstrauss embeddings [AL13, AC09, KW11].
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2.2.2 Introduction to quantization

Consider the m linear measurements y = Ax of a signal x ∈ R
N , where A ∈ R

m×N . Vector

quantization is the process of mapping y to a vector of elements from some finite alphabet A

via a quantization map Q : Rm → A m, thus allowing for digital storage and processing. Such

digitization is necessary for many applications, and careful selection of the pair (Q,A) often

leads to faster, more efficient algorithms [HS18]. For instance, in the field of binary embeddings

one designs the quantization map Q in such a way that pairwise distances between signals are

approximately preserved (i.e., such that Q is an approximate isometry) [JLBB13, PV12, PV14,

YCP15]. On the other hand, in compressed sensing one requires a quantization map Q and a

reconstruction algorithm R : A m → R
N such that the reconstruction error ‖x−R(Q(y))‖2 is

sufficiently small for all sparse (or approximately sparse) vectors (see, e.g., [CGK+15]).

Several constructions of quantization maps (and associated reconstruction algorithms)

have emerged in the binary embedding and compressed sensing literature. For instance, some

of the more intuitive approaches use memoryless scalar quantization (MSQ) [JLBB13, PV12,

DJR17], in which one takes (sub)-Gaussian random measurements y = Ax and quantizes to the al-

phabet A = {±1} using the quantization map Q(·) = sign(·). In this way, MSQ simply quantizes

the vector y ∈ R
m by mapping it to the nearest corner of the Hamming cube. Since recovery algo-

rithms based on MSQ are notoriously suboptimal [HS18], more sophisticated approaches exist

and are often based on noise-shaping techniques. These noise-shaping methods, such as Σ∆ quan-

tization [GLP+13, KSW12, KSY14] and distributed noise-shaping quantization [Cho13, Huy16],

are known for both their computational simplicity and desirable error bounds (as a function of

m) [HS18]. Each of these quantization methods employs a state variable u ∈ R
m and quantizes

measurements in a recursive fashion:

q( j) = Q

(
f
(
y( j), . . . ,y(1),u( j−1), . . . ,u(1)

))
j = 1, . . . ,m,

12



where f is some function designed for the quantization scheme. The state variable is then updated

via the state relation Ax−q = Hu, where H : Rm →R
m is a lower-triangular noise-shaping matrix.

Important for the analysis (and for practical reasons) is that H and f are chosen so that whenever

‖Ax‖∞ is bounded, we have that ‖u‖∞ is also bounded; such quantization schemes are said to

be stable. Since we will use both Σ∆ and distributed noise-shaping quantization methods in our

results, we save more detailed discussions of both for a later section.

2.2.3 Notation

We use & and . for inequalities that hold up to a constant; subscripts indicate the constant

depends on a specified parameter. For any probability distribution P : RN → [0,1], a random

variable X distributed according to P is denoted by X ∼ P, and we write its expectation as

EX :=
∫
RN XdP. Given a set T ⊂ R

N , we define its radius to be rad(T ) := supx∈T ‖x‖2; for

g ∼ Norm(0, IN), the Gaussian mean width of T is defined by ω(T ) := Esupx∈T 〈g,x〉. The open

ℓp ball of radius r > 0 centered at x ∈R
N is denoted by BN

p (x,r) for all 1 ≤ p ≤ ∞; the ℓp unit-ball

centered at the origin is abbreviated BN
p .

2.3 Preliminaries

In this section, we introduce some important mathematical concepts that will be used

later in our theoretical results. These introductions are by no means exhaustive, and are instead

intended to provide a basic understanding that will enable us to properly introduce our main

results and supporting material.

2.3.1 Noise-shaping quantization methods

Noise-shaping quantizers, first proposed for analog-to-digital conversion of bandlimited

functions (see, e.g., [DD03, Gün03, PST17]), have enjoyed success essentially becuase they
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push the quantization error toward the nullspace of the associated reconstruction operator. Such

methods have since been extended to the settings of finite frames (see, e.g., [CGK+15]) and

compressed sensing [GLP+13, KSW12, Cho13]. In fact, the approaches based on Σ∆ quantization

and beta encoders (i.e., distributed noise-shaping) have been shown to achieve near-optimal

bounds for sub-Gaussian measurements [Cho13, SWY18b].

To explain these methods, let AL,δ denote a real quantization alphabet, consisting of 2L

symmetric levels with spacing 2δ :

AL,δ :=
{
− (2L−1)δ ,−(2L−2)δ , . . . ,−δ ,δ , . . . ,(2L−2)δ ,(2L−1)δ

}
.

A noise-shaping quantizer Q : Rm → A m
L,δ is defined using a state variable u ∈ R

m such that, for

each y ∈ R
m, the resulting quantization q := Q(y) satisfies the noise-shaping relation

y−q = Hu (2.3.1)

for some lower-triangular noise-shaping matrix H : Rm → R
m. Careful attention must be taken

when designing such methods to ensure that the process is stable, which we make precise below:

Definition 2.3.1 (Stable noise-shaping quantization). Given a finite alphabet A and a noise-

shaping, lower-triangular matrix H ∈ R
m×m, the noise-shaping quantization scheme

Q : Rm → A
m, y 7→ q = y+Hu

is said to be stable if ‖u‖∞ ≤C holds whenever ‖y‖∞ ≤ h < 1. The upper bound C is referred to

as the stability constant of the quantization scheme.

Examples of stable noise-shaping quantizers are the popular Σ∆ and distributed noise-shaping

schemes, which we now describe.

For r ∈ N, the standard rth-order Σ∆ quantization scheme computes a uniformly bounded
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solution u to (2.3.1) where H = Dr is the order r difference matrix, which is computed by taking

powers of the m×m first-order difference matrix D:

D( j,k) :=





1 if j = k,

−1 if j = k+1,

0 otherwise

for all j,k = 1, . . . ,m. Constructing quantization functions that yield stable methods in this context

is far from simple, but several constructions do exist (see, eg., [DD03, Gün03, DKG11]). In

particular, one-bit Σ∆ schemes, where A = {±1} and δ = 1, are stable as long as ‖y‖∞ ≤ h <

1 [KSW12].

Distributed noise-shaping quantization schemes are constructed in a way similar to Σ∆

schemes, albeit with a few key differences. To see this, let λ := m/p be the oversampling rate (we

assume it to be an integer). Then for any β > 1, the distributed noise-shaping quantization method

computes a uniformly bounded solution u to (2.3.1) where H = Ip ⊗Hβ is the block-diagonal

operator determined by the λ ×λ matrix

Hβ ( j,k) :=





1 if j = k,

−β if j = k+1,

0 otherwise

for all j,k = 1, . . . ,λ . As in the Σ∆ case, ensuring that these quantization methods are stable is

nontrivial. However, stable constructions do exist for Gaussian measurement models [CG16] as

well as those drawn from BOEs and PCEs [HS18].
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2.3.2 Binary embeddings

General embedding theory is often centered around the idea of obtaining low-dimensional

representations of high-dimensional sets that preserve the geometric structure of the original set.

The benefits of such embeddings stem from the dimensionality reduction (e.g., reduced storage

space and computational time), and therefore play an important role in the signal processing

and machine learning communities [HS18]. The first, and perhaps most important, example of

low-distortion embeddings is the Johnson-Lindenstrauss lemma:

Lemma 2.3.2 (Johnson-Lindenstrauss Lemma [JL84]). For every ε ∈ (0,1) and finite collection

T ⊂R
N of size |T |= n, if m > 8ε−2 log(n), then there exists a linear map f : RN →R

m such that

(1− ε)‖u− v‖2
2 ≤ ‖ f (u)− f (v)‖2

2 ≤ (1+ ε)‖u− v‖2
2

for all u,v ∈ T .

In words, Lemma 2.3.2 states that one can linearly embed any set of n points in R
N

into R
m while preserving pairwise Euclidean distance up to ε-Lipschitz distortion, provided

m = O(ε−2 log(n)). The Johnson-Lindenstrauss Lemma extends to infinite subsets of RN by

replacing cardinality with another measure of complexity, like Gaussian mean width [OR15];

moreover, it is known (see, e.g., [KW11]) that matrices with the RIP and randomized column

signs provide such embeddings.

Binary embeddings, where the embedding space is instead taken to be {±1}m, have

gained recent attention in the signal processing and machine learning communities (see, e.g.,

[WTF09, RL09, SH09, GLGP13]) due to the potential storage and computational benefits. Much

effort has been focused on developing fast and efficient binary embeddings in the context of

quantization (see [HS18] and references therein).
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2.3.3 Geometric Multi-Resolution Analysis

Let M ⊂ R
N be a smooth, compact d-dimensional manifold. In other words, M is a

compact subset of RN for which the following holds: There exists a collection {(Uα ,φα)}α∈S of

subsets Uα ⊂M and homeomorphisms φα : Uα →R
d such that ∪α∈SUα =M and the transition

maps φβ ◦φ−1
α : φα(Uα ∩Uβ )→ φβ (Uα ∩Uβ ) are C∞. The pairs (Uα ,φα) are called charts and

the collection {(Uα ,φα)}α∈S is called an atlas.

As previously mentioned, we will assume, as in [IKKSM18], that we do not know the

structure of the manifold M a priori, but instead have access to a structured dictionary model.

Clearly, any solution to our signal recovery problem depends on the type of representation we

have. In our results, we consider the case where the dictionary model for the manifold is provided

by a Geometric Multi-Resolution Analyis (GMRA) approximation of M [ACM12], which we

make precise below, but first we must define a new geometric object: For any set T ⊂ R
N and

constant ρ > 0, let

tubeρ(T ) :=
{

x ∈ R
N : infy∈T ‖x− y‖2 ≤ ρ

}

denote the tube of raduis ρ around T . With this definition in hand, we are ready to formally

introduce the GMRA approximation:

Definition 2.3.3 (Geometric Multi-Resolution Analysis (GMRA) [IM13]). Let J ∈ N be nonzero

and {K j}J
j=1 ⊂ N. A GMRA approximation of a smooth, compact d-dimensional manifold

M ⊂ R
N is a collection {(C j,P j)}J

j=1 of centers C j = {c j,k}
K j

k=1 and affine projections

P j =
{

Pj,k : RN → R
N : k ∈ {1, . . . ,K j}

}

with the following properties:

1.Affine Projections. Every Pj,k is an orthogonal projection onto some d-dimensional affine
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space which contains the center c j,k.

2.Dyadic Structure. The number of centers at each level is bounded by |C j|= K j ≤CC2d j for

an absolute constant CC ≥ 1. Moreover, there exist C1 > 0, C2 ∈ (0,1] such that

(a) K j ≤ K j+1 for all j ∈ {1, . . . ,J−1},

(b) ‖c j,k1 − c j,k2‖2 >C12− j for all j ∈ {1, . . . ,J} and k1 6= k2 ∈ {1, . . . ,K j},

(c) For each j ∈ {1, . . . ,J} there exists a parent function p j : {1, . . . ,K j}→ {1, . . . ,K j−1} with

‖c j,k − c j−1,p j(k)‖2 ≤C2 min
k′∈{1,...,K j−1}\{p j(k)}

‖c j,k − c j−1,k′‖2.

3.Multiscale Approximation. The projectors in P j approximate M in the following sense:

(a) There exists j0 ∈ {1, . . . ,J − 1} such that c j,k ∈ tubeC12− j−2(M ) for all j ≥ j0 and k ∈

{1, . . . ,K j}.

(b) For each j ∈ {1, . . . ,J} and z ∈ R
N , let

c j,k j(z) ∈ argmin
c j,k∈C j

‖z− c j,k‖2. (2.3.2)

Then for each z ∈ M there exists Cz > 0 so that ‖z − Pj,k j(z)z‖2 ≤ Cz2−2 j for all j ∈

{1, . . . ,J}; moreover, for each z ∈ K there exists C̃z > 0 so that ‖z− Pj,k′z‖2 ≤ C̃z2− j

whenever j ∈ {1, . . . ,J} and k′ ∈ {1, . . . ,K j} satisfy

‖z− c j,k′‖2 ≤ 16max
{
‖z− c j,k j(z)‖2, C12− j−1

}
.

Remark 2.3.4. By part (1) of Definition 2.3.3, a GMRA approximation of M represents the

manifold as a collection of points (the centers c j,k) and corresponding low-dimensional affine

spaces (defined by Pj,k). The refinement levels j control the accuracy of this approximation. Part
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(2) of the definition states that the centers are organized in a tree-like structure, while part (3)

characterizes the approximation accuracy at each refinement level. Note in particular, by part

(3.a) the centers c j,k do not necessarily lie on M , but cannot be too far away.

2.4 Problem Formulation and Main Result

Let M ⊂ (1− µ)BN
2 be a smooth, compact d-dimensional submanifold of the unit ℓ2-

ball in R
N for some µ ∈ (0,1). We assume that we have access to a GMRA approximation

{(C j,P j,k)} j of M , as in Definition 2.3.3. Define the scale- j GMRA approximation

M̂ j := {Pj,k j(z)z : ‖z‖2 ≤ 1}∩BN
2 . (2.4.1)

We suppose that j0 is large enough so that supx∈M C̃x2− j0 ≤ µ to ensure that

{
Pj,k′x : x ∈ M , ( j,k′) as in part (3.b) of Definition 2.3.3

}
⊂ BN

2 ,

and further assume that tubeC12− j0−2(M )⊂ BN
2 which ensures C j ⊂ M̂ j for j ≥ j0. The number

of measurements required for our theoretical guarantees to hold will depend on two notions

of complexity of M and the GMRA approximation, namely, its Gaussian mean width w(M )

and radius rad(M ). Finally, for j ≥ j0, we define S := M ∪M̂ j; essentially, this set defines

an enlargement of M within the ℓ2 unit ball that will enable us to approximate x ∈ M using

suitable points from the GMRA approximation of M . Now, let Q be either a stable rth order

Σ∆ quantizer or stable distributed noise-shaping quantizer for β > 1 and associated alphabet

A . Let x ∈ M , A ∈ R
m×N be a standard Gaussian matrix (or a matrix drawn from a PCE or

BOE), Dε ∈ R
N×N a diagonal matrix with random signs (independent of A) along the diagonal,

Φ := ADε and q := Q (Φx). Our goal is the following:

Given q and Φ, approximate x ∈ M and show that the
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associated error bounds decay fast as a function of m.

A useful fact (which we state below in its entirety) is that the binary embeddings provided

by Σ∆ and distributed noise-shaping quantization approximately preserve Euclidean distance

via a related pseudometric on the quantized vectors. This pseudometric, first defined in [HS18],

is constructed by means of a condensation operator V : Rm → R
p in such a way that the state

variable is controlled, i.e., ‖V Hu‖2 is small (as a function of m). Given such a condensation

operator, we define the pseudometric by

dV (u,v) := ‖V (u− v)‖2 (2.4.2)

for all u,v ∈ A m.

For the case of stable Σ∆ quantization, the condensation operator we will use is defined as

follows: Let λ := m/p =: rλ̃ − r+1 for some integer λ̃ and consider the row vector vΣ∆ ∈ R
λ

whose jth entry is the corresponding coefficient of the polynomial (1+z+ · · ·+zλ̃−1)r. Letting ⊗

denote the Kronecker product and Ip the p× p identity matrix, we then define the Σ∆ condensation

operator to be

ṼΣ∆ :=
1

‖vΣ∆‖2
√

p
Ip ⊗ vΣ∆, (2.4.3)

which is a p×m matrix. The distributed noise-shaping condensation operator is defined in a

similar way. Indeed, consider the row vector vβ ∈R
λ whose jth entry is β− j. Then the distributed

noise-shaping condensation operator is defined by

Ṽβ :=
1

‖vβ‖2
√

p
Ip ⊗ vβ . (2.4.4)

The condensation operators ṼΣ∆ and Ṽβ interact with stable quantization schemes in a

particularly nice way. To be explicit, we have the following results from [HS18]:
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Lemma 2.4.1 (Lemma 4.5 in [HS18]). For a stable rth order Σ∆ quantization scheme the

condensation operator ṼΣ∆ : Rm → R
p satisfies ‖ṼΣ∆Dr‖∞→2 ≤ (8r)r+1λ−r+1/2.

Lemma 2.4.2 ([HS18]). For β > 1, the stable distributed noise-shaping condensation operator

Ṽβ : Rm → R
p satisfies ‖Ṽβ H‖∞→2 ≤ 9

8β−λ+1.

Using Lemmas 2.4.1 and 2.4.2, T. Huynh and R. Saab were able to prove that the binary em-

beddings associated with Σ∆ and distributed noise-shaping quantization approximately preserve

Euclidean distance via the pseudometric (2.4.2):

Theorem 2.4.3 (c.f. Theorem 5.2 in [HS18]). Consider any set T ⊂ BN
2 . Fix α ∈ (0,1) and let

Φ := ADε for A ∈R
m×N a standard (sub)-Gaussian matrix, PCE (Definition 2.2.2), or BOE (Defi-

nition 2.2.3) and Dε ∈R
N×N a diagonal matrix of random signs. Let Q : Rm →

√
(1+α)m{±1}

be the stable quantization scheme corresponding to either rth order Σ∆ quantization or distributed

noise-shaping quantization with β ∈ (1,10/9] and suppose λ = m/p. Finally, define Ṽ as in

either (2.4.3) or (2.4.4) for each quantization method (resp.) and let γ = ‖vΣ∆‖1/‖vΣ∆‖2 or

γ = ‖vβ‖1/‖vβ‖2, respectively. Now, fix ν > 0 and suppose that

p ≥ c1γ2(1+ν)2 log4(N)
max

{
1, ω2(T−T )

rad2(T−T )

}

α2

for some constant c1 > 0. If m ≥ χ(p), then with probability at least 1− e−ν , there exists a

constant c2 > 0 such that

∣∣∣dṼ
(Q(Φx),Q(Φy))−‖x− y‖2

∣∣∣≤ max
{√

α,α
}

rad(T −T )+ c2η(λ )

holds for all x,y ∈ T . Here, χ(p) = p
r−1/2

r−1 and η(λ ) = λ−r+1/2 for a stable Σ∆ quantization

scheme, while χ(p) = p log(m) and η(λ ) = β−λ+1 for distributed noise-shaping quantization.

We are now ready to state our recovery algorithm and its associated error guarantees.
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Algorithm 1 Reconstruction Algorithm

Given: noise-shaping quantizer Q; measurements q =Q(Φx) for x ∈M ; GMRA approximation

{(c j,k,Pj,k)}
K j

k=1 of M at scale j ≥ j0; Ṽ as in (2.4.3) or (2.4.4).
Ensure: x♯ ≈ x.

Step 1: Find c j,k′ ∈ argminc j,k∈C j
‖Ṽ (Q(Φc j,k)−q)‖2.

Step 2: If ‖Ṽ (Q(Φc j,k′)−q)‖2 = 0, set x♯ = c j,k′; else

x♯ =argmin
z∈RN

∥∥∥Ṽ (Φz−q)
∥∥∥

2
subject to z = Pj,k′(z), ‖z‖2 ≤ 1.

Theorem 2.4.4. For M ⊂ (1−µ)BN
2 , µ ∈ (0,1) a smooth, compact d-dimensional manifold with

GMRA approximation at scale j ≥ j0, let Φ := ADε for A ∈ R
m×N a standard (sub)-Gaussian

matrix, PCE (Definition 2.2.2), or BOE (Definition 2.2.3) and Dε ∈ R
N×N a diagonal matrix

of random signs. Then there exist α ∈ (0,1), r ∈ N, and β ∈ (1,10/9] such that the following

holds: Let Q : Rm →
√

(1+α)m{±1} be the stable quantization scheme corresponding to either

rth order Σ∆ quantization or distributed noise-shaping quantization, where S := M ∪ M̂ j is

determined by (2.4.1), and suppose λ = m/p. Now, fix ν > 0 and suppose that

p & (1+ν)2 log4(N)rad4(S−S)
max

{
1,ω2(S−S)rad−2(S−S)

}

α2
. (2.4.5)

If m ≥ χ(p), then with probability at least 1− e−ν , for all x ∈ M , x♯ from Algorithm 1 satisfies

‖x♯− x‖2 . C̃x2− j +max
{√

α,α
}

rad(S−S)+
√
(1+α)mη

(
m/p

)
.

Here, χ(p) = p
r−1/2

r−1 and η(λ ) = λ−r+1/2 for a stable Σ∆ quantization scheme, while χ(p) =

p log(m) and η(λ ) = β−λ+1 for distributed noise-shaping quantization.

Remark 2.4.5. The error bound in Theorem 2.4.4 consists of three terms, each originating from a
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different source:

‖x♯− x‖2 . C̃x2− j

︸ ︷︷ ︸
GMRA error

+ max
{√

α,α
}

rad(S−S)︸ ︷︷ ︸
Manifold complexity

+
√

(1+α)mη
(
m/p

)
︸ ︷︷ ︸

Quantization error

.

By appropriate choice of α and λ = m/p, the manifold complexity and quantization error terms

may be made sufficiently small so that ‖x♯−x‖2 . C̃x2− j (see [ILNS19] for details); for instance,

in the case of Σ∆ quantization, it suffices to choose α . rad−2(S−S)2−2( j+1) and λ & j2 (hence,

r = O( j)). Essentially, this implies that the accuracy of Algorithm 1 is limited almost entirely by

the level of refinement in the GMRA approximiation of M .

Proof of Theorem 2.4.4. Fix x ∈ M and let k′ be the index of the optimal center c j,k′ found in

Step 1 of Algorithm 1 and Pj,k′ the corresponding GMRA projection. By the triangle inequality,

we then have

‖x♯− x‖2 ≤ ‖x♯−Pj,k′x‖2 +‖Pj,k′x− x‖2. (2.4.6)

To bound the first term on the right-hand side of (2.4.6), note that optimality of x♯ and feasibility

of Pj,k′x give us

0 ≤
∥∥∥Ṽ

(
ΦPj,k′x−q

)∥∥∥
2
−
∥∥∥Ṽ

(
Φx♯−q

)∥∥∥
2

=
∥∥∥Ṽ

(
ΦPj,k′x−q

)∥∥∥
2
−
∥∥∥Ṽ

(
Φx♯−ΦPj,k′x+ΦPj,k′x−q

)∥∥∥
2

≤ 2
∥∥∥Ṽ

(
ΦPj,k′x−q

)∥∥∥
2
−
∥∥∥Ṽ Φ

(
x♯−Pj,k′x

)∥∥∥
2
,

where the final step is an application of the triangle inequality. Now, by the definition of S we have

x♯,Pj,k′x ∈ S and, hence, by the proof of Theorem 2.4.3 (specifically, the fact that Ṽ Φ satisfies the
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RIP; see equation (5.8) in [HS18]) we have

∥∥∥Ṽ Φ
(
x♯−Pj,k′x

)∥∥∥
2
≥ ‖x♯−Pj,k′x‖2 −max

{√
α,α

}
rad(S−S)

with probability exceeding 1− e−ν . Thus, it follows that

‖x♯−Pj,k′x‖2 ≤ 2
∥∥∥Ṽ

(
ΦPj,k′x−q

)∥∥∥
2
+max

{√
α,α

}
rad(S−S)

holds with probability at least 1− e−ν . Now, if we define q∗ := Q(ΦPj,k′x), then

∥∥∥Ṽ
(
ΦPj,k′x−q

)∥∥∥
2
≤
∥∥∥Ṽ

(
ΦPj,k′x−q∗

)∥∥∥
2
+d

Ṽ
(q,q∗).

Since the quantization scheme is stable, Lemmas 2.4.1 and 2.4.2 then enable us to bound

‖Ṽ (ΦPj,k′x−q∗)‖2 . η(λ ), while Theorem 2.4.3 implies

d
Ṽ
(q,q∗)≤ ‖x−Pj,k′x‖+max

{√
α,α

}
rad(S−S)+ c2

√
(1+α)mη(λ )

with probability exceeding 1− e−ν . Hence, up to constant factors (depending on r or β ), we have

obtained

‖x♯−Pj,k′x‖2 . 2‖x−Pj,k′x‖+3max
{√

α,α
}

rad(S−S)+2
(
1+ c2

√
(1+α)m

)
η(λ ),

which combines with (2.4.6) to yield

‖x♯− x‖2 . max
{√

α,α
}

rad(S−S)+
√

(1+α)mη(λ )+‖Pj,k′x− x‖2.

Therefore, to complete the proof we must show that ‖Pj,k′x− x‖2 . C̃x2− j, which follows from
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part (3.b) of Definition 2.3.3, provided we can show that

‖x− c j,k′‖2 ≤ 16max
{
‖x− c j,k j(x)‖2,C1 ·2− j−1

}
(2.4.7)

holds with high probability. To this end observe that, by Theorem 2.4.3, with probability at least

1− e−ν we have

∣∣d
Ṽ

(
Q(Φc j,k),q

)
−‖c j,k − x‖2

∣∣. max
{√

α,α
}

rad(S−S)+
√
(1+α)mη(λ )

for all c j,k ∈ C j. Since optimality of c j,k′ in Algorithm 1 gives us

d
Ṽ

(
Q(Φc j,k′),q

)
≤ d

Ṽ

(
Q(Φc j,k j(x)),q

)
,

where k j(x) is as in (2.3.2), it therefore follows that

‖x− c j,k′‖2 . ‖x− c j,k j(x)‖2 +max
{√

α,α
}

rad(S−S)+
√
(1+α)mη(λ ).

Hence, choosing α sufficiently small and r or β sufficiently large (so that η(λ ) is small) en-

sures (2.4.7) holds with probability at least 1− e−ν , as desired.

Remark 2.4.6. As Lemma 4.3 of [IKKSM18] shows, ω(S−S). ω(M )+
√

d j. This is a suitable

bound for coarse GMRA scales, i.e. j . log(N). However, for j & log(N) one can slightly modify

the definition of S and use the bound ω(S−S). (ω(M )+1) log(N) as proven in Lemma 4.5 of

[IKKSM18], albeit this requires some modifications to the proof of Theorem 2.4.4. Please see

Remark 4.15 of [IKKSM18] for more details.
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2.5 Numerical Simulations

To simulate Algorithm 1, we take M = S
2 embedded in R

20 and construct a GMRA up

to level jmax = 15 using 20,000 data points sampled uniformly from M . We randomly select a

test set of 100 points x ∈ M for use throughout all experiments. In each experiment (i.e., point in

Figure 2.5.1), compressed sensing measurements y = Φx = m−1/2ADεx are taken for each test

point, with A ∼ Norm(0, Im×N) and Dε a diagonal N ×N matrix of random ±1s. We recover

x♯ from the rth order Σ∆ measurements Q(y) via Algorithm 1 where, for practical reasons, the

alphabet from Theorem 2.4.4 is modified to be A = {±1}. We vary λ = m/p for fixed r, p, and

refinement scale j. The reconstruction error decays as a function of λ until reaching a floor due

to the refinement level of the GMRA.

Figure 2.5.1: Log-scale plot of average relative reconstruction error from Algorithm 1 as a
function of the oversampling rate λ = m/p for p = 10. Solid lines correspond to GMRA
refinement level j = 12; dashed lines to j = 6. Blue and red plots represent r = 2,4 (resp.). For
each j, reconstruction error decays as a function of λ until reaching a floor due to error in the
GMRA approximation of M .
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Chapter 3

Random Vector Functional Link Networks

3.1 Introduction

In recent years, deep learning has triggered an increased interest in neural networks

amongst researchers in the machine learning community. So-called deep neural networks model

functions using a composition of multiple hidden layers, each transforming (possibly non-linearly)

the previous layer(s) before building a final output representation. In machine learning parlance,

these layers are determined by sets of weights and biases which, when adjusted appropriately,

allow the network to mimic the action of more general functions. In this way, deep neural networks

are fundamentally parametric functions whose parameters may be chosen using optimization

techniques to minimize the difference between the network and the function it is intended to

model. This difference is typically characterized using a finite set of input signals and their

function evaluations (called training data); indeed, these function evaluations may be compared

to the corresponding network outputs when evaluated on the same set of input signals, and the

weights and biases then learned by minimizing a given loss function (e.g., sum-of-squares error,

cross-entropy, etc.). Unfortunately, estimating a general unknown function using a deep neural

network in this manner often requires learning thousands of weights and biases using gradient
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descent-based algorithms such as back-propogation, which can be very time consuming, often get

stuck in local minima, and can be very sensitive to the distribution of training data used [Sug18].

Moreover, deep neural networks can require massive amounts of training data, and so are typically

unreliable for applications with very limited data availability, such as agriculture, healthcare, and

ecology [OWB18].

To address some of the difficulties associated with training deep neural networks, both

researchers and practitioners have attempted to incorporate randomness in some way. Indeed,

randomization-based neural networks that yield closed form solutions typically require less

time to train and avoid some of the pitfalls of traditional neural networks trained using back-

propogation [Sug18, SKD92, BS95]. One of the popular randomization-based neural network

architectures is the Random Vector Functional Link (RVFL) network [PT92, IP95], which is a

single layer feed-forward neural network (SLFN) in which the input-to-hidden layer weights

and biases are selected randomly and independently from a suitable domain and the remaining

hidden-to-output layer weights are learned using training data. Although originally considered in

the early- to mid-1990s [PT92, PPS94, IP95, PP95], RVFL networks have had much more recent

success in several modern applications, including time-series data prediction [CW99], hand-

written word recognition [PP00], visual tracking [ZS17b], signal classification [ZS17a, KSZ18],

regression [VPM18], and forecasting [TWY18, DMSP18]. Deep neural network architectures

based on RVFL networks have also made their way into more recent literature [HR18, KST19],

although traditional, single layer RVFL networks tend to perform just as well as, and with lower

training costs than, their multi-layer counterparts [KST19].

Although RVFL networks are proving their usefulness in practice, the supporting theoreti-

cal framework is currently lacking [ZWC+19]. Most theoretical research into the approximation

capabilities of deep neural networks centers around two main concepts: universal approximation

of functions on compact domains and point-wise approximation on finite training sets [HZS06].

For instance, in the early 1990s it was shown that multi-layer feed-forward neural networks having
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activation functions which are continuous, bounded, and non-constant are universal approximators

(in the Lp sense for 1 ≤ p < ∞) of continuous functions on compact domains [Hor91]; this result

was later improved to include non-polynomial activation functions [LLPS93]. Likewise, it is

known that m distinct observations can be learned with zero training error using SLFNs with

at most n = m hidden nodes and (almost) any bounded, non-linear activation function [GB98]

or RVFL networks with at most n = m nodes and smooth activation function [HZS06]. The

most notable result in the existing literature regarding the universal approximation capability

of RVFL networks is due to B. Igelnik and Y.H. Pao in the mid-1990s, who showed that such

neural networks can universally approximate continuous functions on compact sets [IP95]; the

noticeable lack of results since has left a sizable gap between theory and practice. In this paper,

we begin to bridge this gap, bringing the mathematical theory behind RFVL networks into the

modern spotlight. Our contributions are as follows: First, we provide a rigorous proof of the

original Igelnik and Pao result, that is, that RVFL networks with activation functions which are

both absolutely and square integrable are universal approximators (on average) of continuous

functions with compact support, provided the number of nodes n is allowed to be infinite [IP95].

Our proof of this result corrects several mistakes from the original paper and formally structures

the proof technique in a way that is readily adaptable to other settings. Second, we prove a

non-asymptotic version of the original Igelnik and Pao result, showing that RVFL networks

having absolutely and square integrable activation functions universally approximate (with high

probability) continuous functions with compact support, provided the number of nodes n is large

enough (but finite!). Next, we propose a new RVFL network architecture for approximating

continuous functions defined on smooth, compact manifolds and show that the original Igelnik

and Pao result may be adapted to this setting. Finally, we prove an anaologous, probabilistic

result for our RFVL network architecture on manifolds.
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3.2 Background and notation

In this section, we provide the necessary mathematical background for Random Vector

Functional Link (RVFL) networks, as well as some notation that will be used throughout.

3.2.1 Randomized single layer neural networks

Consider a single layer feed-forward neural network (SLFN) with n nodes, which may be

regarded as a parametric function fn : RN → R of the form

fn(x) =
n

∑
k=1

vkρ(〈wk,x〉+bk), x ∈ R
N .

Here, the function ρ : R→ R is called an activation function and is potentially non-linear; see

Table 3.2.1 for some typical examples used in practical applications. The parameters of the SLFN

are the number of nodes n∈N in the the hidden layer, the input-to-hidden layer weights and biases

{wk}n
k=1 ⊂ R

N and {bk}n
k=1 ⊂ R (resp.), and the hidden-to-output layer weights {vk}n

k=1 ⊂ R.

Such neural networks are often used in supervised learning, where the network parameters are

learned from training data in order to approximate an unknown function on a given domain.

Specifically, given an unknown function f : RN → R and a training set {(xk, f (xk))}m
k=1 for some

m ∈ N, one seeks to optimize the parameters of fn in such a way that fn ≈ f . Often the means

of measuring approximation error in this setting is via a loss function L (x1, . . . ,xk); indeed, a

typical loss function is the sum-of-squares error

L (x1, . . . ,xk) =
1

m

m

∑
k=1

| f (xk)− fn(xk)|2.

The SLFN which approximates f is then determined using an optimization algorithm, such as

back-propogation, to find the network parameters which minimize L (x1, . . . ,xk). It is known that

there exist weights and biases which make the loss function vanish when the number of nodes n
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Table 3.2.1: List of typical activation functions for neural networks.

Sigmoid ρ(z) = 1
1+exp(−z)

ReLU ρ(z) = max{0,z}
Sine ρ(z) = sin(z)

Hardlim ρ(z) = 1
2(1+ sin(z))

Tribas ρ(z) = max{0,1+ |z|}
Radbas ρ(z) = exp(−z2)

Sign ρ(z) = sign(z)

is at most m, provided the activation function is bounded, non-linear, and has at least one finite

limit at either ±∞ [GB98].

Unfortunately, optimizing the parameters in SLFNs can be difficult. For instance, any

non-linearity in the activation function can cause back-propogation to be very time consuming

or get caught in local minima of the loss function [Sug18]. RVFL networks, which are SLFNs

where the input-to-hidden layer weights and biases are chosen at random, are designed to avoid

these difficulties. Indeed, by eliminating the need to optimize the input-to-hidden layer weights

and biases, RVFL networks turn supervised learning into a purely linear problem. To see this,

define ρ(X) ∈ R
n×m to be the matrix whose jth column is {ρ(〈wk,x j〉+bk)}n

k=1 and f (X) ∈ R
m

the vector whose jth entry is f (x j). Then the vector v ∈ R
n of hidden-to-output layer weights is

the solution to the matrix-vector equation f (X) = ρ(X)T v, which can be solved by computing the

Moore-Penrose pseudoinverse of ρ(X)T . In fact, there exist weights and biases which make the

loss function vanish when the number of nodes n is at most m, provided the activation function is

smooth [HZS06].

In this paper, we study the uniform approximation capabilities of RVFL networks, specifi-

cally, the problem of estimating a continuous, compactly supported function on N-dimensional

Euclidean space. Few theoretical results exist in this area; indeed, the most notable result is

due to Igelnik and Pao [IP95], who proved that any f ∈ Cc(R
N) may be approximated uni-

formly (in the sense of mean-square error) by RVFL networks whose activation function satisfies

ρ ∈ L1(R)∩L2(R), provided the number of nodes n is allowed to be infinite. Although this
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result is indeed true, the original proof presented in [IP95] is unclear and not mathematically

rigorous. Moreover, the results of [IP95] are both asymptotic in the number of nodes n and highly

dependent on the ambient dimension N. In practice, one would prefer non-asymptotic results

that quantify the relationship between the approximation error and the size of the neural network,

as well as take advantage of any lower-dimensional structure exhibited by the function f . We

address both of these issues, providing non-asymptotic error bounds for RVFL networks that

depend on the complexity of f through the intrinsic dimension of its domain.

3.2.2 Notation

For a function f : RN → R, the set supp( f )⊂ R
N denotes the support of f . We denote by

Cc(R
N) and C0(R

N) the classes of continuous functions mapping R
N to R whose support sets

are compact and vanish at infinity, respectively. Given a set S ⊂ R
N , we define its radius to be

rad(S) := supx∈S ‖x‖2; moreover, if dµ denotes the uniform volume measure on S, then we write

vol(S) :=
∫

S dµ to represent the volume of S. For any probability distribution P : RN → [0,1], a

random variable X distributed according to P is denoted by X ∼ P, and we write its expectation

as EX :=
∫
RN XdP. The open ℓp ball of radius r > 0 centered at x ∈R

N is denoted by BN
p (x,r) for

all 1 ≤ p ≤ ∞; the ℓp unit-ball centered at the origin is abbreviated BN
p . Given a fixed δ > 0 and a

set S ⊂ R
N , a minimal δ -net for S, which we denote C (δ ,S) is the smallest subset of S satisfying

S ⊂ ∪x∈C (δ ,S)B
N
2 (x,δ ); the δ -covering number of S is the cardinality of a minimal δ -net for S

and is denoted N (δ ,S) := |C (δ ,S)|.

3.3 Theoretical results in Euclidean space

The first theoretical result for RVFL networks, due to Igelnik and Pao, guarantees that

continuous functions can be universally approximated on compact sets using RVFL networks,

provided the number of nodes n ∈ N in the network is allowed to go to infinity [IP95]. Moreover,

33



it shows that the mean square error of the approximation vanishes at a rate proportional to 1/n. At

the time, this result was state-of-the-art and justified how RVFL networks were used in practice.

However, the original theorem, although correct in spirit, is not technically correct. In fact, several

aspects of the proof technique are flawed. Some of the minor flaws are mentioned in [JCIY97],

but the subsequent revisions do not address the more major issues that we tackle here. Thus, our

first contribution to the theory of RVFL networks is a corrected version of the original Igelnik

and Pao theorem:

Theorem 3.3.1 (Igelnik and Pao, 1995). Let f ∈Cc(R
N) with K := supp( f ) and fix any activation

function ρ ∈ L1(R)∩L2(R). For any ε > 0, there exist constants α,Ω > 0 and hidden-to-output

layer weights {vk}n
k=1 ⊂ R such that the following holds: If

w0 ∼ Unif([−αΩ,αΩ])N ;

y0 ∼ Unif(K);

u0 ∼ Unif([−π
2 (2L+1), π

2 (2L+1)]), where L := ⌈2N
π rad(K)Ω− 1

2⌉;

b0 :=−〈w0,y0〉−αu0,

and one chooses {wk}n
k=1, {bk}n

k=1 as independent draws from the distributions of w0 and b0,

respectively, then the sequence of RVFL networks { fn}∞
n=1 defined by

fn(x) :=
n

∑
k=1

vkρ(〈wk,x〉+bk) for x ∈ K

satisfies

lim
n→∞

E

∫

K
| f (x)− fn(x)|2dx < ε,

with convergence rate O(1/n).
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Remark 3.3.2. We note that, unlike the original theorem statement in [IP95], Theorem 3.3.1 does

not show exact convergence of the sequence of constructed RVFL networks fn to the original

function f . Indeed, it only ensures that the limit fn is ε-close to f . This should still be sufficient

for practical applications since, given a desired accuracy level ε > 0, one can find values of

α,Ω,n such that this accuracy level is achieved on average. Exact convergence can be proved if

one replaces α and Ω by sequences {αn}∞
n=1 and {Ωn}∞

n=1 of positive numbers, both tending to

infinity with n. In this setting, however, there is no guaranteed rate of convergence; moreover, as

n increases, the ranges of the random variables {wk}n
k=1 and {uk}n

k=1 become increasingly larger,

which may cause problems in practical applications.

The following simple corollary, which increases the class of activation functions one may

use when constructing RVFL networks, also first appeared in [IP95]. We state the corollary here

for completeness:

Corollary 3.3.3 (Igelnik and Pao, 1995). Let f ∈ Cc(R
N) with K := supp( f ) and fix any dif-

ferentiable activation function ρ : R→ R such that ρ ′ ∈ L1(R)∩L2(R). For any ε > 0, there

exist constants α,Ω > 0 and hidden-to-output layer weights {vk}n
k=1 ⊂ R such that the following

holds: If

w0 ∼ Unif([−αΩ,αΩ])N ;

y0 ∼ Unif(K);

u0 ∼ Unif([−π
2 (2L+1), π

2 (2L+1)]), where L := ⌈2N
π rad(K)Ω− 1

2⌉;

b0 :=−〈w0,y0〉−αu0,

and one chooses {wk}n
k=1, {bk}n

k=1 as independent draws from the distributions of w0 and b0,
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respectively, then the sequence of RVFL networks { fn}∞
n=1 defined by

fn(x) :=
n

∑
k=1

vkρ(〈wk,x〉+bk) for x ∈ K

satisfies

lim
n→∞

E

∫

K
| f (x)− fn(x)|2dx < ε,

with convergence rate O(1/n).

One of the drawbacks of Theorem 3.3.1 is that the mean square error guarantee is

asymptotic in the number of nodes used in the neural network. This is clearly impractical for

applications, and so it is desirable to have a more explicit error bound for each fixed number n of

nodes used. To this end, we introduce a new, non-asymptotic version of Theorem 3.3.1, which

provides an error guarantee with high probability whenever the number of network nodes is large

enough, albeit at the price of an additional Lipschitz requirement on the activation function:

Theorem 3.3.4. Let f ∈Cc(R
N) with K := supp( f ) and fix any activation function ρ ∈ L1(R)∩

L2(R). Suppose further that ρ is κ-Lipschitz on R for some κ > 0. For any ε > 0 and η ∈ (0,1),

there exist constants α,Ω > 0 and hidden-to-output layer weights {vk}n
k=1 ⊂ R such that the

following holds: Suppose

w0 ∼ Unif([−αΩ,αΩ])N ;

y0 ∼ Unif(K);

u0 ∼ Unif([−π
2 (2L+1), π

2 (2L+1)]), where L := ⌈2N
π rad(K)Ω− 1

2⌉;

b0 :=−〈w0,y0〉−αu0,

and one chooses {wk}n
k=1, {bk}n

k=1 as independent draws from the distributions of w0 and b0,
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respectively. For any

0 < δ <

√
ε

4
√

Nκα2MΩN+2vol3/2(K)(1+2Nrad(K))
,

if one chooses

n ≥ 2
√

2vol(K)Cc log(3η−1N (δ ,K))
√

ε log
(
1+ C

√
ε

4
√

2N(2Ω)N+1rad(K)vol5/2(K)Σ

) ,

where M := supx∈K | f (x)|, c > 0 is a numerical constant, and C,Σ are constants depending on f

and ρ , then the RVFL network defined by

fn(x) :=
n

∑
k=1

vkρ(〈wk,x〉+bk) for x ∈ K

satisfies

∫

K
| f (x)− fn(x)|2dx < ε

with probability at least 1−η .

The implication of Theorem 3.3.4 is that, given a desired accuracy level ε > 0, one can

construct a RVFL network fn that is ε-close to f with high probability, provided the number of

nodes n in the neural network is sufficiently large. In fact, using the coarse estimates

δ .

√
ε

vol(K)
and n &

log(N (δ ,K))√
ε/vol(K) log

(
1+

√
ε/vol(K)

) ,

along with the fact that log(1+ x) = x+O(x2) for small values of x, the requirement on the
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number of nodes behaves like

n &
vol(K)

ε
log

(
N

(√
ε/vol(K),K

))

whenever ε is sufficiently small. Using a simple bound on the covering number, this yields a

coarse estimate of n & Nvol(K)ε−1 log(vol(K)/ε).

3.4 Preliminaries

In this section, we briefly introduce supporting material and theoretical results which we

will need in later sections. This material is far from exhaustive, and is meant to be a survey of

definitions, concepts, and key results.

3.4.1 A concentration bound for classic Monte Carlo integration

A crucial piece of the proof technique employed in [IP95], which we will use repeatedly,

is the use of the Monte-Carlo method to approximate high-dimensional integrals. As such, we

require a basic understanding of Monte-Carlo integration. The following introduction is adapted

from the background material in [DKS13].

Let f : RN → R and S ⊂ R
N a compact set. Suppose we want to estimate the integral

I( f ,S) :=
∫

S f dµ , where µ is the uniform measure on S. The classic Monte Carlo method does

this by an equal-weight cubature rule,

In( f ,S) :=
vol(S)

n

n

∑
j=1

f (x j),

where {x j}n
j=1 are independent identically distributed uniform random samples from S and
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vol(S) :=
∫

S dµ is the volume of S. In particular, note that EIn( f ,S) = I( f ,S) and

EIn( f ,S)2 =
1

n

(
vol(S)I( f 2,S)+(n−1)I( f ,S)2

)
;

if we define the quantity

σ( f ,S)2 :=
I( f 2,S)

vol(S)
− I( f ,S)2

vol2(S)
, (3.4.1)

it therefore follows that the random variable In( f ) has mean I( f ,S) and variance vol2(S)σ( f )2/n.

Hence, by the Central Limit Theorem, provided that 0 < vol2(S)σ( f ,S)2 < ∞, we have

lim
n→∞

P
(
|In( f ,S)− I( f ,S)| ≤Cε( f )

)
= (2π)−1/2

∫ C

−C
e−x2/2dx

for any constant C > 0. This yields the following well-known result:

Theorem 3.4.1. For any f ∈ L2(S,µ), the mean-square error of the Monte Carlo approximation

In( f ,S) satisfies

E
∣∣In( f ,S)− I( f ,S)

∣∣2 = vol2(S)σ( f ,S)2

n
,

where the expectation is taken with respect to the random variables {x j}n
j=1 and σ( f ,S) is defined

in (3.4.1).

In particular, Theorem 3.4.1 implies that

lim
n→∞

E
∣∣In( f ,S)− I( f ,S)

∣∣2 = 0,

with convergence at a rate O(1/n).

In the non-asymptotic setting, an interesting question is how to obtain a useful bound
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on the probability P(|In( f ,S)− I( f ,S)| ≥ t) for all t > 0. To this end, we now briefly recall a

concentration result, which is a generalization of Bennett’s inequality:

Theorem 3.4.2 (Theorem 7.6 in [Led01]; see also [Mas98, Tal96]). Let F : RN → R be a mea-

surable function and {Xk}n
k=1 ⊂ R

N be independent identically distributed random variables.

Set

Z :=
n

∑
k=1

F(Xk) or Z :=
∣∣∣

n

∑
k=1

F(Xk)
∣∣∣

and assume there exists a constant K > 0 such that |F | ≤ K almost surely. Then for every t > 0

we have

P
(
|Z −EZ| ≥ t

)
≤ 3exp

(
− t

CK
log

(
1+

Kt

EΣ2

))
,

where Σ2 := ∑
n
k=1 F(Xk)

2 and C > 0 is a universal constant.

To apply Theorem 3.4.2 in the classic Monte Carlo setting, we consider the function

F(x) := vol(S) f (x)− I( f ,S), so that

Z =
n

∑
j=1

F(x j) =
n

∑
j=1

(
vol(S) f (x j)− I( f ,S)

)
= n(In( f ,S)− I( f ,S)).

Observing that EF(x j) = vol(S)E f (x j)− I( f ,S) = 0 and

EF(x j)
2 = vol2(S)E f (x j)

2 −2vol(S)I( f ,S)E f (x j)+ I( f ,S)2

= vol(S)I( f 2,S)− I( f ,S)2

= vol2(S)σ( f ,S)2
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for each j = 1, . . . ,n, as well as EZ = n(EIn( f ,S)− I( f ,S)) = 0, we obtain (via Theorem 3.4.2)

P
(
n|In( f ,S)− I( f ,S)| ≥ t

)
≤ 3exp

(
− t

CK
log

(
1+

Kt

nvol2(S)σ( f ,S)2

))

for all t > 0, where we take

K := sup
x∈S

|vol(S) f (x)− I( f ,S)|,

which is finite by assumptions on S and f . In this way, we obtain the following concentration

inequality for the random variable In( f ,S):

Lemma 3.4.3. For any f ∈ L2(S) and n ∈ N we have

P
(
|In( f ,S)− I( f ,S)| ≥ t

)
≤ 3exp

(
− nt

CK
log

(
1+

Kt

vol2(S)σ( f )2

))

for all t > 0, provided |vol(S) f (x)− I( f ,S)| ≤ K for almost every x ∈ S, where C > 0 is a

universal constant.

3.4.2 Smooth, compact manifolds in Euclidean space

In this section we review several concepts of smooth manifolds that will be useful to us

later. Many of the definitions and results that follow can be found, for instance, in [SCC18]. Let

M ⊂ R
N be a smooth, compact d-dimensional manifold. A chart for M is a pair (U,φ) such

that U ⊂ M is an open set and φ : U → R
d is a homeomorphism. One way to interpret a chart is

as a tangent plane at some point x ∈U ; in this way, a chart defines a Euclidean coordinate system

on U via the map φ . A collection {(U j,φ j)} j∈J of charts defines an atlas for M if ∪ j∈JU j = M .

We now define a special collection of functions on M called a partition of unity:

Definition 3.4.4. Let M ⊂ R
N be a smooth manifold. A partition of unity of M with respect to
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an open cover {U j} j∈J of M is a family of nonnegative smooth functions {η j} j∈J such that for

every x ∈ M we have 1 = ∑ j∈J η j(x) and, for every j ∈ J, supp(η j)⊂U j.

It is known (see, e.g., [Tu10]) that if M is compact there exists a partition of unity of M such

that supp(η j) is compact for all j ∈ J. In particular, such a partition of unity exists for any open

cover of M corresponding to an atlas.

Fix an atlas {(U j,φ j)} j∈J for M , as well as the corresponding, compactly supported

partition of unity {η j} j∈J . Then we have the following, useful result (see, e.g., Lemma 4.8

in [SCC18]):

Lemma 3.4.5. Let M ⊂ R
N be a smooth, compact manifold with atlas {(U j,φ j)} j∈J and com-

pactly supported partition of unity {η j} j∈J . For any f ∈C(M ) we have

f (x) = ∑
{ j∈J : x∈U j}

( f̂ j ◦φ j)(x)

for all x ∈ M , where

f̂ j(z) :=





f (φ−1
j (z))η j(φ

−1
j (z)) z ∈ φ j(U j)

0 otherwise.

In later sections, it will be useful to know how to use the representation of Lemma 3.4.5

to integrate functions f ∈ C(M ) over M . To this end, for each j ∈ J, let Dφ j(y) denote the

differential of φ j at y ∈U j, which is a map from the tangent space TyM into R
d . In particular, one

may interpret Dφ j(y) as the matrix representation of a basis for the cotangent space at y ∈U j. As

a result, Dφ j(y) is necessarily invertible for each y ∈U j, and so we know that |det(Dφ j(y))|> 0

for each y ∈U j. Hence, it follows by the change of variables theorem that

∫

M

f (x)dx =
∫

M
∑

{ j∈J : x∈U j}
( f̂ j ◦φ j)(x)dx = ∑

j∈J

∫

φ j(U j)

f̂ j(z)

|det(Dφ j(φ
−1
j (z)))|

dz. (3.4.2)

42



3.5 Proof of Theorem 3.3.1

Let f ∈Cc(R
N) with K := supp( f ) and suppose ε > 0 is fixed. Take ρ ∈ L1(R)∩L2(R)

arbitrarily. We wish to show that there exists a sequence of RVFL networks { fn}∞
n=1 defined on

K which satisfy the asymptotic error bound

lim
n→∞

E

∫

K
| f (x)− fn(x)|2dx < ε.

The proof technique we use is based on that introduced by Igelnik and Pao, and consists of two

approximation steps. First, the function f is approximated by an integral over the parameter

space using a convolution identity from functional analysis. Then, this integral approximation is

again approximated using a linear combination of random realizations of the activation function

ρ via the Monte Carlo method. For clarity of presentation, we further break down the proof into

four main parts (Sections 3.5.1- 3.5.4), each building upon the previous steps until the proof is

complete.

3.5.1 A convolution identity

The first step in the proof of Theorem 3.3.1 is to represent f using a special convolution

identity. To this end, we assume without loss of generality that ρ ∈ L1(R) such that
∫
R

g(x)dx = 1

and consider the function hw : RN → R defined by

hw(y) :=
N

∏
j=1

w( j)ρ
(
w( j)y( j)

)
(3.5.1)

for all y,w ∈ R
N . Observe that hw may be viewed as a multidimensional bump function formed

by taking Cartesian products of ρ ; indeed, the parameter w ∈ R
N controls the width of the bump

in each of the N coordinate directions. In particular, if each coordinate of w is allowed to grow

very large, then hw becomes very localized near the origin. Objects that behave in this way are
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known in the functional analysis literature as approximate δ -functions:

Definition 3.5.1. A sequence of functions {ϕt}t>0 ⊂ L1(RN) are called approximate (or nascent)

δ -functions if

lim
t→∞

∫

RN
ϕt(x) f (x)dx = f (0) (3.5.2)

for all f ∈Cc(R
N). For such functions, we write δ0(x) = limt→∞ ϕt(x) for all x ∈ R

N , where δ0

denotes the N-dimensional Dirac δ -function centered at the origin.

Given ϕ ∈ L1(RN) with
∫
RN ϕ(x)dx = 1, one may construct approximate δ -functions for

t > 0 by defining ϕt(x) := tNϕ(tx) for all x ∈ R
N [SW71]. Such sequences of approximate δ -

functions are also called approximate identity sequences [Rud91] since they satisfy a particularly

nice identity with respect to convolution, namely, limt→∞ ‖ f ∗ϕt − f‖1 = 0 for all f ∈Cc(R
N)

(see, e.g., [Rud91, Theorem 6.32]). In fact, such an identity holds much more generally:

Lemma 3.5.2. [SW71, Theorem 1.18] Let ϕ ∈ L1(RN) with
∫
RN ϕ(x)dx = 1 and for t > 0 define

ϕt(x) := tNϕ(tx) for all x ∈ R
N . If f ∈ Lp(RN) for 1 ≤ p < ∞ (or f ∈ C0(R

N) ⊂ L∞(RN) for

p = ∞), then limt→∞ ‖ f ∗ϕt − f‖p = 0.

Motivated by this result, it is reasonable to suppose that the function hw satisfies a similar

identity. In particular, for any f ∈C0(R
N) one might suspect that

f (x) = lim
|w|→∞

( f ∗hw)(x) (3.5.3)

holds uniformly for all x ∈ R
N ; here, we write lim|w|→∞ to mean the limit as each coordi-

nate {w( j)}N
j=1 grows to infinity simultaneously. To prove (3.5.3), it would suffice to have

lim|w|→∞ ‖ f ∗hw− f‖∞ = 0 for all f ∈C0(R
N); indeed, since convolutions of L1(RN) and L∞(RN)

functions are uniformly continuous and bounded, this identity implies (3.5.3) by simply observing
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that hw ∈ L1(RN) and f ∈ C0(R
N) ⊂ L∞(RN). Unfortunately, such an identity does not imme-

diately follow from Lemma 3.5.2 as hw is not constructed in the same way as the approximate

identity ϕt . We can, however, prove the identity using the same proof technique from [SW71]:

Lemma 3.5.3. Let ρ ∈ L1(R) with
∫
R

ρ(x)dx = 1 and define hw ∈ L1(RN) as in (3.5.1) for all

w ∈ R
N . Then we have

lim
|w|→∞

sup
x∈RN

∣∣( f ∗hw)(x)− f (x)
∣∣= 0

for all f ∈C0(R
N).

Proof. By symmetry of the convolution operator in its arguments, we have

sup
x∈RN

∣∣( f ∗hw)(x)− f (x)
∣∣= sup

x∈RN

∣∣∣
∫

RN
f (y)hw(x− y)dy− f (x)

∣∣∣

= sup
x∈RN

∣∣∣
∫

RN
f (x− y)hw(y)dy− f (x)

∣∣∣.

Since a simple substitution yields 1 =
∫
RN ρ(x)dx =

∫
RN hw(x)dx, an application of Minkowski’s

integral inequality (see, e.g., [SP70, Section A.1] or [HLC+52, Theorem 202]) for L∞(RN) gives

us

sup
x∈RN

∣∣( f ∗hw)(x)− f (x)
∣∣= sup

x∈RN

∣∣∣
∫

RN

(
f (x− y)− f (x)

)
hw(y)dy

∣∣∣

≤
∫

RN
|hw(y)| sup

x∈RN

∣∣ f (x)− f (x− y)
∣∣dy.

Finally, expanding the function hw, we obtain

sup
x∈RN

∣∣( f ∗hw)(x)− f (x)
∣∣≤

∫

RN

( N

∏
j=1

w( j)
∣∣ρ
(
w( j)y( j)

)∣∣
)

sup
x∈RN

∣∣ f (x)− f (x− y)
∣∣dy

=
∫

RN

( N

∏
j=1

∣∣ρ
(
z( j)

)∣∣
)

sup
x∈RN

∣∣ f (x)− f (x− z◦w−1)
∣∣dz,
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where we have used the substitution z = y◦w; here, ◦ denotes the Hadamard (entrywise) product,

and we denote by w−1 ∈ R
N the vector whose jth entry is 1/w( j). Taking limits on both sides of

this expression and observing that

∫

RN

( N

∏
j=1

∣∣ρ
(
z( j)

)∣∣
)

sup
x∈RN

∣∣ f (x)− f (x− z◦w−1)
∣∣dz ≤ 2‖ρ‖N

1 sup
x∈RN

| f (x)|< ∞,

it follows by the Dominated Convergence Theorem that

lim
|w|→∞

sup
x∈RN

∣∣( f ∗hw)(x)− f (x)
∣∣≤

∫

RN

( N

∏
j=1

∣∣ρ
(
z( j)

)∣∣
)

lim
|w|→∞

sup
x∈RN

∣∣ f (x)− f (x− z◦w−1)
∣∣dz,

and so it suffices to show that

lim
|w|→∞

sup
x∈RN

∣∣ f (x)− f (x− z◦w−1)
∣∣= 0

for all z ∈ R
N . To this end, let ε > 0 and z ∈ R

N be arbitrary. Since f ∈ C0(R
N), there exists

r > 0 sufficiently large such that | f (x)| < ε/2 for all x ∈ R
N \B(0,r), where B(0,r) ⊂ R

N is

the closed ball of radius r centered at the origin. Let B := B(0,r+‖z◦w−1‖2), so that for

each x ∈ R
N \B we have both x and x− z ◦w−1 in R

N \B(0,r). Thus, both | f (x)| < ε/2 and

| f (x− z◦w−1)|< ε/2, implying that

sup
x∈RN\B

∣∣ f (x)− f (x− z◦w−1)
∣∣< ε.

Hence, we obtain

lim
|w|→∞

sup
x∈RN

∣∣ f (x)− f (x− z◦w−1)
∣∣

≤ lim
|w|→∞

max
{

sup
x∈B

∣∣ f (x)− f (x− z◦w−1)
∣∣, sup

x∈RN\B

∣∣ f (x)− f (x− z◦w−1)
∣∣
}

46



< max
{

ε, lim
|w|→∞

sup
x∈B

∣∣ f (x)− f (x− z◦w−1)
∣∣
}
.

Now, as B is a compact subset of RN , the continuous function f is uniformly continuous on B,

and so the remaining limit and supremum may be freely interchanged, whereby continuity of f

yields

lim
|w|→∞

sup
x∈B

∣∣ f (x)− f (x− z◦w−1)
∣∣= sup

x∈B

lim
|w|→∞

∣∣ f (x)− f (x− z◦w−1)
∣∣= 0.

Since ε > 0 may be taken arbitrarily small, we have proved the result.

As alluded to earlier, given f ∈C0(R
N), Lemma 3.5.3 implies that (3.5.3) holds uniformly

for all x ∈ R
N , that is,

lim
|w|→∞

sup
x∈RN

|( f ∗hw)(x)− f (x)|= 0.

In particular, since both f and f ∗hw are uniformly continuous and bounded, we may swap the

order of the limit and supremum operators to obtain

sup
x∈RN

∣∣ lim
|w|→∞

( f ∗hw)(x)− f (x)
∣∣= 0. (3.5.4)

Hence, we have f (x) = lim|w|→∞( f ∗hw)(x) uniformly for all x ∈ R
N .

With (3.5.4) in hand, we may now use l’Hôpital’s rule to show that

f (x) = lim
|w|→∞

( f ∗hw)(x) = lim
Ω→∞

1

ΩN

∫

[0,Ω]N
( f ∗hw)(x)dy

holds uniformly for all x ∈R
N . Indeed, consider functions F and G which act on Borel subsets of
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R
N as follows:

F(A) :=
∫

A
( f ∗hw)(x)dy and G(A) :=

∫

A
dy.

Choosing A = [0,Ω]N , the Lebesgue Differentiation Theorem states that

d

dΩ
F([0,Ω]N) = ( f ∗hw)(x)

∣∣
w=[Ω,...,Ω]

and
d

dΩ
G([0,Ω]N) = 1

(in one-dimension, this is simply the Fundamental Theorem of Calculus). Now, as both F([0,Ω]N)

and G([0,Ω]N) are unbounded as Ω tends to infinity, we may apply l’Hôpital’s rule to obtain

lim
Ω→∞

F([0,Ω]N)

G([0,Ω]N)
= lim

Ω→∞
( f ∗hw)(x)

∣∣
w=[Ω,...,Ω]

.

Simplifying the left-hand side of this equation and making a substitution on the right-hand side,

we have obtained

lim
Ω→∞

1

ΩN

∫

[0,Ω]N
( f ∗hw)(x)dy = lim

|w|→∞
( f ∗hw)(x),

which is the desired equality. In summary, we have proved the following:

Lemma 3.5.4. Let f ∈ C0(R
N) and ρ ∈ L1(R) with

∫
R

ρ(z)dz = 1. Define hw ∈ L1(RN) as

in (3.5.1) for all w ∈ R
N . Then we have

f (x) = lim
Ω→∞

1

ΩN

∫

[0,Ω]N
( f ∗hw)(x)dy (3.5.5)

uniformly for all x ∈ R
N .
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3.5.2 The limit-integral representation

The next step in the proof of Theorem 3.3.1 is to represent f as the limiting value of a

multidimensional integral over the parameter space. In particular, we seek to replace ( f ∗hw)(x)

in the convolution identity (3.5.5) with a function of the form
∫

K F(y)ρ(〈w,x〉+b(y))dy, as this

will introduce the RVFL structure we require. To achieve this, we first use a truncated cosine

function in place of the activation function ρ and then use identity (3.5.4) to switch back to a

general activation function.

For each fixed Ω > 0, let L = L(Ω) := ⌈2N
π rad(K)Ω− 1

2⌉ and define cosΩ : R→ [−1,1]

by

cosΩ(x) :=





cos(x) x ∈ [−1
2(2L+1)π, 1

2(2L+1)π],

0 otherwise.

(3.5.6)

Since cosΩ ∈ L1(R)∩L2(R), consider the function hw defined in (3.5.1) with ρ replaced by cosΩ.

Then we have

( f ∗hw)(x) =
∫

RN
f (y)

(
N

∏
j=1

w( j)cosΩ

(
w( j)

(
x( j)− y( j)

)))
dy

=
∫

RN
f (y)∆(w,x− y)

( N

∏
j=1

w( j)
)

dy

for all x ∈ R
N , where we define

∆(w,z) :=
N

∏
j=1

cosΩ

(
w( j)z( j)

)

for all w,z ∈ R
N . When substituted into (3.5.5), this yields the representation

f (x) = lim
Ω→∞

1

ΩN

∫

RN×[0,Ω]N
f (y)∆(w,x− y)

( N

∏
j=1

w( j)
)

dydw (3.5.7)
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uniformly for all x ∈ R
N . In order to introduce the inner-product structure present in RVFL

networks, we would like to convert the product in ∆ to a summation. Now, if we consider the

more general product ∏
N
j=1 cos(z( j)), using the sum and difference identity 2cos(a)cos(b) =

cos(a−b)+ cos(a+b) iteratively yields

N

∏
j=1

cos
(
z( j)

)
=

1

2N ∑
±

cos
(
± z(1)±·· ·± z(N)

)
,

where the summation is taken over all combinations of ± appearing inside the cosine; for instance,

in the case N = 3 we have

3

∏
j=1

cos
(
z( j)

)
=

1

2
cos

(
z(1)

)(
cos

(
z(2)− z(3)

)
+ cos

(
z(2)+ z(3)

))

=
1

4

(
cos

(
z(1)− z(2)+ z(3)

)
+ cos

(
z(1)+ z(2)− z(3)

)

+ cos
(
z(1)− z(2)− z(3)

)
+ cos

(
z(1)+ z(2)+ z(3)

))
,

at which point multiplying by 1 = cos(0) and applying the sum and difference identity four more

times yields

3

∏
j=1

cos
(
z( j)

)
=

1

8 ∑
±

cos
(
± z(1)± z(2)± z(3)

)
.

To apply the same procedure for the product in ∆, first observe that we have chosen the value of L

in a particularly nice way, so that

−π

2
(2L+1)≤

N

∑
j=1

(
±w( j)

(
x( j)− y( j)

))
≤ π

2
(2L+1)

for any w ∈ [0,Ω], x,y ∈ K, and all combinations of sign choices. Hence, we may apply the sum

and difference identity 2cosΩ(a)cosΩ(b) = cosΩ(a−b)+ cosΩ(a+b) inside ∆(w,x− y) in the
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same iterative way to obtain

∆(w,x− y) =
N

∏
j=1

cosΩ

(
w( j)

(
x( j)− y( j)

))

=
1

2N ∑
±

cosΩ

(
±w(1)

(
x(1)− y(1)

)
±·· ·±w(N)

(
x(N)− y(N)

))

for all w ∈ [0,Ω] and x,y ∈ K. Now, noting that for each j = 1, . . . ,N and any constant C the

symmetry of cosΩ gives us

∫ Ω

0
w( j)

(
cosΩ

(
w( j)

(
x( j)− y( j)

)
+C

)
+ cosΩ

(
−w( j)

(
x( j)− y( j)

)
+C

))
dy( j)

=
∫ Ω

0
w( j)cosΩ

(
w( j)

(
x( j)− y( j)

)
+C

)
dy( j)

−
∫ 0

−Ω
w( j)cosΩ

(
w( j)

(
x( j)− y( j)

)
+C

)
dy( j)

=
∫ Ω

−Ω
|w( j)|cosΩ

(
w( j)

(
x( j)− y( j)

)
+C

)
dy( j),

by replacing each variable −w( j) in ∆(w,x− y) with w( j) we may write

∫

[0,Ω]N
∆(w,x− y)

( N

∏
j=1

w( j)
)

dy =
1

2N

∫

[−Ω,Ω]N
cosΩ

(
〈w,x− y〉

)∣∣∣
N

∏
j=1

w( j)
∣∣∣dy

for all x,y ∈ K. Plugging this expression into (3.5.7), it follows that

f (x) = lim
Ω→∞

1

(2Ω)N

∫

K×[−Ω,Ω]N
f (y)cosΩ

(
〈w,x− y〉

)∣∣∣
N

∏
j=1

w( j)
∣∣∣dydw (3.5.8)

holds uniformly for all x ∈ K.

With the representation (3.5.8) in hand, we now seek to reintroduce the general acti-

vation function ρ . To this end, since cosΩ ∈ Cc(R) ⊂ C0(R) we may apply the convolution

identity (3.5.4) with f replaced by cosΩ to obtain cosΩ(z) = limα→∞(cosΩ ∗hα)(z) uniformly

for all z ∈ R, where hα is the one-dimensional version of hw as defined in (3.5.1). Using this
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representation of cosΩ in (3.5.8), it follows that

f (x) = lim
Ω→∞

1

(2Ω)N

∫

K×[−Ω,Ω]N
f (y)

(
lim

α→∞

(
cosΩ ∗hα

)(
〈w,x− y〉

))∣∣∣
N

∏
j=1

w( j)
∣∣∣dydw

holds uniformly for all x ∈ K. Since f is continuous and the convolution cosΩ ∗hα is uniformly

continuous and bounded, the fact that the domain K × [−Ω,Ω]N is compact then allows us to

bring the limit as α tends to infinity outside the integral in this expression via the Dominated

Convergence Theorem, which gives us

f (x) = lim
Ω→∞

lim
α→∞

1

(2Ω)N

∫

K×[−Ω,Ω]N
f (y)

(
cosΩ ∗hα

)(
〈w,x− y〉

)∣∣∣
N

∏
j=1

w( j)
∣∣∣dydw (3.5.9)

uniformly for every x ∈ K.

Remark 3.5.5. It should be noted that we are unable to swap the order of the limits in (3.5.9);

indeed, our use of (3.5.4) is no longer valid in this case, as cosΩ is not in C0(R) when Ω is

allowed to be infinite.

To complete this step of the proof, observe that the definition of cosΩ allows us to write

(cosΩ ∗hα)(z) = α

∫

R

cosΩ(u)ρ
(
α(z−u)

)
du = α

∫ π
2 (2L+1)

− π
2 (2L+1)

cosΩ(u)ρ
(
α(z−u)

)
du (3.5.10)

uniformly for all z ∈ R. By substituting (3.5.10) into (3.5.9), we then obtain

f (x) = lim
Ω→∞

lim
α→∞

α

(2Ω)N

∫

K(Ω)
f (y)cosΩ(u)ρ

(
α
(
〈w,x− y〉−u

))∣∣∣
N

∏
j=1

w( j)
∣∣∣dydwdu

uniformly for all x ∈ K, where K(Ω) := K× [−Ω,Ω]N × [−π
2 (2L+1), π

2 (2L+1)]. In this way, if
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we define

Fα,Ω(y,w,u) :=
α

(2Ω)N

∣∣∣
N

∏
j=1

w( j)
∣∣∣ f (y)cosΩ(u),

bα(y,w,u) :=−α(〈w,y〉+u)

(3.5.11)

for y,w ∈ R
N and u ∈ R, we have proved the following result:

Lemma 3.5.6. Let f ∈ Cc(R
N) and ρ ∈ L1(R) with K := supp( f ) and

∫
R

ρ(z)dz = 1. Define

Fα,Ω and bα as in (3.5.11) for all Ω ∈ R
N and α ∈ R. Then we have

f (x) = lim
Ω→∞

lim
α→∞

∫

K(Ω)
Fα,Ω(y,w,u)ρ

(
α〈w,x〉+bα(y,w,u)

)
dydwdu (3.5.12)

uniformly for every x ∈ K, where K(Ω) := K × [−Ω,Ω]N × [−π
2 (2L+ 1), π

2 (2L+ 1)] and L :=

⌈2N
π rad(K)Ω− 1

2⌉.

Remark 3.5.7. We will see in Section 3.5.3 that the RVFL networks fn will be built using

random samples drawn independently and uniformly from the domain K(Ω). Since the range

[−π
2 (2L+ 1), π

2 (2L+ 1)] is potentially quite large (compared to Ω), for practical purposes we

may instead use the domain K × [−Ω,Ω]N × [Ω,Ω]. Indeed, by defining the truncation errors

ν̃(x) :=
1

(2Ω)N

∫

K×[−Ω,Ω]N
ν
(
〈w,x− y〉

)
f (y)

∣∣∣
N

∏
j=1

w( j)
∣∣∣dydw,

ν(z) := α

∫ −Ω

−∞
cosΩ(u)ρ

(
α(z−u)

)
du+α

∫ ∞

Ω
cosΩ(u)ρ

(
α(z−u)

)
du

for all x ∈ R
N and z ∈ R, the representation (3.5.12) then becomes

f (x) = lim
Ω→∞

lim
α→∞

(
ν̃(x)+

∫

K×[−Ω,Ω]N×[Ω,Ω]
Fα,Ω(y,w,u)ρ

(
α〈w,x〉+bα(y,w,u)

)
dydwdu

)
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uniformly for all x ∈ K; in particular,

|ν̃(x)|. Mvol(K)
(
‖ρ‖1 − inf

w∈[−Ω,Ω]N

x,y∈K

∫ α(Ω+〈w,x−y〉)

−α(Ω+〈w,x−y〉)
|ρ(u)|du

)
,

where M := supx∈K | f (x)|< ∞, which decays to zero as α tends to infinity at least as fast as the

tails of ρ ∈ L1(R).

3.5.3 Monte-Carlo integral approximation

The next step in the proof of Theorem 3.3.1 is to approximate the integral in (3.5.12) using

the Monte-Carlo method. To this end, let {yk}n
k=1, {wk}n

k=1, and {uk}n
k=1 be independent samples

drawn uniformly from K, [−Ω,Ω]N , and [−π
2 (2L+1), π

2 (2L+1)], respectively, and consider the

sequence of random variables {In(x)}∞
n=1 defined by

In(x) :=
vol(K(Ω))

n

n

∑
k=1

Fα,Ω(yk,wk,uk)ρ
(
α〈wk,x〉+bα(yk,wk,uk)

)
(3.5.13)

for each x ∈ K, where we note that vol(K(Ω)) = (2Ω)Nπ(2L+1)vol(K). If we also define

I(x; p) :=
∫

K(Ω)

(
Fα,Ω(y,w,u)ρ

(
α〈w,x〉+bα(y,w,u)

))p

dydwdu (3.5.14)

for x ∈ K and p ∈ N, then we want to show that

lim
n→∞

E

∫

K
|I(x;1)− In(x)|2dx = 0 (3.5.15)

with convergence rate O(1/n), where the expectation is taken with respect to the joint distribution

of the random samples {yk}n
k=1, {wk}n

k=1, and {uk}n
k=1. For this, it suffices to find a constant
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C f ,ρ,α,Ω,N < ∞ independent of n satisfying

∫

K
E|I(x;1)− In(x)|2dx ≤ C f ,ρ,α,Ω,N

n
;

indeed, an application of Fubini’s theorem would then yield

E

∫

K
|I(x;1)− In(x)|2dx ≤ C f ,ρ,α,Ω,N

n
,

which implies (3.5.15). To determine such a constant, we first observe by an application of

Theorem 3.4.1 that

E|I(x;1)− In(x)|2 =
vol2(K(Ω))σ(x)2

n
,

where we define the variance term

σ(x)2 :=
I(x;2)

vol(K(Ω))
− I(x;1)2

vol2(K(Ω))

for x ∈ K. Noting that

|Fα,Ω(y,w,u)|=
α

(2Ω)N

∣∣∣
N

∏
j=1

w( j)
∣∣∣| f (y)||cosΩ(u)| ≤

αM

2N

for all y,w ∈ R
N and u ∈ R, where M := supx∈K | f (x)|< ∞, observe that a simple bound on this

variance term is

σ(x)2 ≤ I(x;2)

vol(K(Ω))
≤ α2M2

22Nvol(K(Ω))

∫

K(Ω)

∣∣∣ρ
(
α〈w,x〉+bα(y,w,u)

)∣∣∣
2
dydwdu. (3.5.16)
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Since we assume ρ ∈ L2(R), we then have

∫

K
E|I(x;1)− In(x)|2dx =

vol2(K(Ω))

n

∫

K
σ(x)2dx

≤ α2M2vol(K(Ω))

22Nn

∫

K×K(Ω)

∣∣∣ρ
(
α〈w,x〉+bα(y,w,u)

)∣∣∣
2
dxdydwdu

≤ α2M2vol(K(Ω))

22Nn

∫

K(Ω)
‖ρ‖2

2dydwdu

=
α2M2vol2(K(Ω))‖ρ‖2

2

22Nn
.

Substituting the value of vol(K(Ω)), this means that

C f ,ρ,α,Ω,N := α2M2Ω2Nπ2(2L+1)2vol2(K)‖ρ‖2
2

is a suitable choice for the desired constant.

Now that we have established (3.5.15), we may rewrite the random variables In(x) in a

more convenient form. To this end, we change the domain of the random samples {wk}n
k=1 to

[−αΩ,αΩ]N and define the new random variables {bk}n
k=1 ⊂ R by bk :=−(〈wk,yk〉+αuk) for

each k = 1, . . . ,n. In this way, if we denote

vk :=
vol(K(Ω))

n
Fα,Ω

(
yk,

wk

αN
,uk

)

for each k = 1, . . . ,n, the random variables { fn}∞
n=1 defined by

fn(x) :=
n

∑
k=1

vkρ
(
〈wk,x〉+bk

)
(3.5.17)

satisfy fn(x) = In(x) for every x ∈ K. Combining this with (3.5.15), we have proved the following:

Lemma 3.5.8. Let f ∈ Cc(R
N) and ρ ∈ L1(R)∩L2(R) with K := supp( f ) and

∫
R

ρ(z)dz = 1.

Define fn as in (3.5.17) for each n ∈ N and Fα,Ω,bα as in (3.5.11) for all Ω ∈ R
N and α ∈ R.
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Then we have

lim
n→∞

E

∫

K

∣∣∣∣
∫

K(Ω)
Fα,Ω(y,w,u)ρ

(
α〈w,x〉+bα(y,w,u)

)
dydwdu− fn(x)

∣∣∣∣
2

dx = 0, (3.5.18)

where K(Ω) := K × [−Ω,Ω]N × [−π
2 (2L+1), π

2 (2L+1)] and L := ⌈2N
π rad(K)Ω− 1

2⌉, with con-

vergence rate O(1/n).

3.5.4 Bounding the asymptotic mean square error

The fourth and final step in the proof of Theorem 3.3.1 is to combine the limit representa-

tion (3.5.12) with the Monte-Carlo error guarantee (3.5.18) and show that, given any ε > 0, there

exist α,Ω > 0 such that

lim
n→∞

E

∫

K
| f (x)− fn(x)|2dx < ε.

To this end, let ε ′ > 0 be arbitrary and consider the integral I(x; p) in (3.5.14) for x ∈ K and p ∈N.

By (3.5.12), there exists α,Ω > 0 such that | f (x)− I(x;1)|< ε ′ holds uniformly for every x ∈ K,

and so it follows that

∣∣ f (x)− fn(x)
∣∣< ε ′+

∣∣I(x;1)− fn(x)
∣∣

for every x ∈ K. Hence, we have

lim
n→∞

E

∫

K
| f (x)− fn(x)|2dx

< (ε ′)2vol(K)+ lim
n→∞

E

∫

K

∣∣I(x;1)− fn(x)
∣∣2dx+2ε ′ lim

n→∞
E

∫

K

(
I(x;1)− fn(x)

)
dx.

(3.5.19)
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By (3.5.18), we know that the second term on the right-hand side of (3.5.19) vanishes at a rate

proportional to 1/n. On the other hand, the third term on the right-hand side of (3.5.19) vanishes

by applying Fubini’s Theorem and observing that E fn(x) = I(x;1) for all n ∈ N and x ∈ K.

Therefore, we have

lim
n→∞

E

∫

K
| f (x)− fn(x)|2dx < (ε ′)2vol(K)

with convergence rate O(1/n), and so the proof is completed by taking ε ′ =
√

ε/vol(K) and

choosing α,Ω > 0 accordingly.

It remains only to verify our use of Fubini’s Theorem in evaluating the final term on the

right-hand side of (3.5.19). To this end, recall that the Monte Carlo integral approximation fn

satisfies limn→∞(I(x;1)− fn(x))∼ Norm(0,σ(x)2) via the Central Limit Theorem. Hence, we

have

E lim
n→∞

|I(x;1)− fn(x)| ≤ σ(x)

√
2

π
. (3.5.20)

Since have already seen in (3.5.16) that

σ(x)≤ αM

2N
√

vol(K(Ω))

(∫

K(Ω)

∣∣ρ
(
α〈w,x〉+bα(y,w,u)

)∣∣2dydwdu
)1/2

for all x ∈ K, observing that

∫

K(Ω)

∣∣ρ
(
α〈w,x〉+bα(y,w,u)

)∣∣2dydwdu =
∫

K(Ω)

∣∣ρ
(
α〈w,x− y〉−αu

)∣∣2dydwdu

≤
∫

[−Ω,Ω]N×[− π
2 (2L+1), π

2 (2L+1)]
‖ρ‖2

2dwdu

=
vol(K(Ω))

vol(K)
‖ρ‖2

2,
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we obtain the bound

∫

K
E lim

n→∞
|I(x;1)− fn(x)|dx ≤

√
2

π

∫

K
σ(x)dx ≤ αM‖ρ‖2

√
vol(K)

2N−1/2
√

π
,

which is necessarily finite. Therefore, we may apply both Fubini’s Theorem and the Dominated

Convergence Theorem to obtain

∫

K
E lim

n→∞

(
I(x;1)− fn(x)

)
dx = lim

n→∞

∫

K
E
(
I(x;1)− fn(x)

)
dx = lim

n→∞
E

∫

K

(
I(x;1)− fn(x)

)
dx,

as desired.

3.6 Proofs of Corollary 3.3.3 and Theorem 3.3.4

In this section we prove the remaining results for RVFL networks in R
N . The proof

techniques rely heavily on that used to prove Theorem 3.3.1, and so we will refer back to the

results in that proof as needed.

3.6.1 Proof of Corollary 3.3.3

Let f ∈ Cc(R
N) with K := supp( f ) and suppose ε > 0 is fixed. Take the activation

function ρ : R→ R to be differentiable with ρ ′ ∈ L1(R)∩L2(R). We wish to show that there

exists a sequence of RVFL networks { fn}∞
n=1 defined on K which satisfy the asymptotic error

bound

lim
n→∞

E

∫

K
| f (x)− fn(x)|2dx < ε.

The proof of this result is a minor modification of the first two steps in the proof of Theorem 3.3.1.

To begin, note that ρ ′ satisfies the assumptions on ρ in Theorem 3.3.1. Hence, we may
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use Lemma 3.5.4 with hw defined by

hw(y) :=
N

∏
j=1

w( j)ρ ′(w( j)y( j)
)

for all y,w ∈ R
N to obtain the representation (3.5.5) for all x ∈ R

N , which leads to the representa-

tion (3.5.9). Now, since (3.5.10) gives us

(cosΩ ∗hα)(z) = α

∫

R

cosΩ(u)ρ
′(α(z−u)

)
du

uniformly for all z ∈ R, recalling the definition of cosΩ in (3.5.6) and integrating by parts, we

obtain

(cosΩ ∗hα)(z) = α

∫

R

cosΩ(u)ρ
′(α(z−u)

)
du

=−
∫ π

2 (2L+1)

− π
2 (2L+1)

cosΩ(u)dρ(α(z−u))

=−cosΩ(u)ρ(α(z−u))
∣∣∣

π
2 (2L+1)

− π
2 (2L+1)

+
∫ π

2 (2L+1)

− π
2 (2L+1)

ρ(α(z−u))d cosΩ(u)

=−
∫

R

sinΩ(u)ρ
(
α(z−u)

)
du

for all z ∈ R, where L := ⌈2N
π rad(K)Ω − 1

2⌉ and sinΩ : R → [−1,1] is defined analogously

to (3.5.6). Substituting this representation of (cosΩ ∗hα)(z) into (3.5.9) then yields

f (x) = lim
Ω→∞

lim
α→∞

−α

(2Ω)N

∫

K(Ω)
f (y)sinΩ

(
〈w,x− y〉

)
ρ
(
α(z−u)

)∣∣∣
N

∏
j=1

w( j)
∣∣∣dydwdu

uniformly for every x ∈ K. Thus, if we replace the definition of Fα,Ω in (3.5.11) by

Fα,Ω(y,w,u) :=
−α

(2Ω)N

∣∣∣
N

∏
j=1

w( j)
∣∣∣ f (y)sinΩ(u)
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for y,w ∈ R
N and u ∈ R, we again obtain the uniform representation (3.5.12) for all x ∈ K. The

remainder of the proof proceeds from this point exactly as in the proof of Theorem 3.3.1.

3.6.2 Proof of Theorem 3.3.4

Let f ∈ Cc(R
N) with K := supp( f ) and suppose ε > 0, η ∈ (0,1) are fixed. Take any

κ-Lipschitz activation function ρ ∈ L1(R)∩L2(R) arbitrarily. We wish to show that there exists

a sequence of RVFL networks { fn}∞
n=1 defined on K which satisfy the error bound

∫

K
| f (x)− fn(x)|2dx < ε

with probability at least 1−η when n is chosen sufficiently large. The proof is obtained by

modifying the proof of Theorem 3.3.1 for the asymptotic case.

We begin by repeating the first two steps in the proof of Theorem 3.3.1 from Sections 3.5.1

and 3.5.2. In particular, by Lemma 3.5.6 we have the representation (3.5.12), namely,

f (x) = lim
Ω→∞

lim
α→∞

∫

K(Ω)
Fα,Ω(y,w,u)ρ

(
α〈w,x〉+bα(y,w,u)

)
dydwdu

holds uniformly for all x ∈ K. Hence, if we define the random variables fn and In from Sec-

tion 3.5.3 as in (3.5.17) and (3.5.13), respectively, we seek a uniform bound on the quantity

| f (x)− fn(x)| ≤ | f (x)− I(x;1)|+ |In(x)− I(x;1)|

over the compact set K, where I(x;1) is given by (3.5.14) for all x ∈ K. Since equation (3.5.12)

allows us to fix α,Ω > 0 such that

| f (x)− I(x;1)|=
∣∣∣ f (x)−

∫

K(Ω)
Fα,Ω(y,w,u)ρ

(
α〈w,x〉+b

)
dydwdu

∣∣∣<
√

ε

2vol(K)
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holds for every x∈K simultaneously, the result follows if we show |In(x)−I(x;1)|<
√

ε/2vol(K)

uniformly for all x ∈ K with high probability, since this would yield

∫

K
| f (x)− fn(x)|2dx ≤

∫

K
| f (x)− I(x;1)|2dx+

∫

K
|In(x)− I(x;1)|2dx < ε

with high probability. To this end, for δ > 0 let C (δ ,K)⊂ K denote a minimal δ -net for K, with

cardinality N (δ ,K). Now, fix x ∈ K and consider the inequality

|In(x)− I(x;1)| ≤ |In(x)− In(z)|︸ ︷︷ ︸
(∗)

+ |In(z)− I(z;1)|︸ ︷︷ ︸
(∗∗)

+ |I(x;1)− I(z;1)|︸ ︷︷ ︸
(∗∗∗)

, (3.6.1)

where z ∈ C (δ ,K) is such that ‖x− z‖2 < δ . We will obtain the desired bound on (3.6.1) by

bounding each of the terms (∗), (∗∗), and (∗∗∗) separately.

First, we consider the term (∗). Recalling the definition of In, observe that we have

(∗) = (2Ω)N+1vol(K)

n

∣∣∣
n

∑
k=1

Fα,Ω(yk,wk,uk)
(

ρ
(
α〈wk,x〉+bα(yk,wk,uk)

)

−ρ
(
α〈wk,z〉+bα(yk,wk,uk)

))∣∣∣

≤ 2αMΩN+1vol(K)

n

n

∑
k=1

∣∣ρ
(
α〈wk,x〉+bα(yk,wk,uk)

)
−ρ

(
α〈wk,z〉+bα(yk,wk,uk)

)∣∣∣

≤ 2αMΩN+1vol(K)Rα,Ω(x,z),

where M := supx∈K | f (x)| and we define

Rα,Ω(x,z) := sup
y∈K

w∈[−Ω,Ω]N

u∈[−Ω,Ω]

∣∣ρ
(
α〈w,x〉+bα(y,w,u)

)
−ρ

(
α〈w,z〉+bα(y,w,u)

)∣∣∣.
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Now, since ρ is assumed to be κ-Lipschitz, we have

∣∣ρ
(
α〈w,x〉+bα(y,w,u)

)
−ρ

(
α〈w,z〉+bα(y,w,u)

)∣∣∣

=
∣∣∣ρ
(

α
(
〈w,x− y〉−u

))
−ρ

(
α
(
〈w,z− y〉−u

))∣∣∣≤ κα
∣∣〈w,x− z〉

∣∣

for any y ∈ K, w ∈ [−Ω,Ω]N , and u ∈ [−Ω,Ω]. Hence, an application of the Cauchy-Schwarz

inequality yields Rα,Ω(x,z)≤ καΩδ
√

N for all x ∈ K, from which it follows that

(∗)≤ 2M
√

Nκδα2ΩN+2vol(K) (3.6.2)

holds for all x ∈ K.

Next, we bound (∗∗∗) using a similar approach to that used to bound (∗). Indeed, by the

definition of I(·;1) we have

(∗∗∗) =
∣∣∣
∫

K(Ω)
Fα,Ω(y,w,u)

(
ρ
(
α〈w,x〉+bα(y,w,u)

)
−ρ

(
α〈w,z〉+bα(y,w,u)

))
dydwdu

∣∣∣

≤ αM

2N

∫

K(Ω)

∣∣ρ
(
α〈w,x〉+bα(y,w,u)

)
−ρ

(
α〈w,z〉+bα(y,w,u)

)∣∣∣dydwdu

≤ αMvol(K(Ω))

2N
Rα,Ω(x,z).

Using the fact that Rα,Ω(x,z)≤ καΩδ
√

N for al x ∈ K, it follows that

(∗∗∗)≤ M
√

Nκδα2Ωvol(K(Ω))

2N
(3.6.3)

holds for all x ∈ K.

Notice that the inequalities (3.6.2) and (3.6.3) are deterministic. In fact, both can be

controlled by choosing an appropriate value for δ in the net C (δ ,K). To see this, fix ε ′ > 0

arbitrarily and recall that vol(K(Ω)) = (2Ω)Nπ(2L+ 1)vol(K). A simple computation then
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shows that (∗)+(∗∗∗)< ε ′ whenever

δ <
ε ′

2
√

Nκα2MΩN+2vol(K)(1+2Nrad(K))
. (3.6.4)

We now continue to bound (∗∗) uniformly for x ∈ K. Unlike (∗) and (∗∗∗), we cannot

bound this term deterministically. However, since fn ∈ L2(K(Ω)), we may apply Lemma 3.4.3 to

obtain the tail bound

P
(
(∗∗)≥ t

)
≤ 3exp

(
− nt

Czc
log

(
1+

Czt

vol2(K(Ω))σ(z)2

))

for all t > 0, where c > 0 is a numerical constant and

Cz := esssup
k∈{1,...,n}

∣∣∣vol(K(Ω))Fα,Ω

(
yk,

wk

αN
,uk

)
ρ
(
〈wk,z〉+bk

)
− I(z;1)

∣∣∣,

σ(z)2 :=
I(z;2)

vol(K(Ω))
− I(z;1)2

vol2(K(Ω))

for all z ∈ C (δ ,K). Taking

C := sup
z∈C (δ ,K)

Cz and Σ := sup
z∈C (δ ,K)

σ(z)2, (3.6.5)

which are now fixed constants describing the complexity of the function Fα,Ωρ , if we choose the

number of nodes such that

n ≥ Cc log(3η−1N (δ ,K))

t log
(
1+ Ct

vol2(K(Ω))Σ

) , (3.6.6)

then a union bound yields (∗∗)< t simultaneously for all z ∈ C (δ ,K) with probability at least
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1−η . Combined with the bounds (3.6.2) and (3.6.3), it follows from (3.6.1) that

|In(x)− I(x;1)|< ε ′+ t

simultaneously for all x ∈ K with probability at least 1−η , provided δ and n satisfy (3.6.4)

and (3.6.6), respectively. Since we require |In(x)− I(x;1)| <
√

ε/2vol(K), the proof is then

completed by setting ε ′+ t =
√

ε/2vol(K) and choosing δ and n accordingly. In particular, it

suffices to choose ε ′ = t = 1
2

√
ε/2vol(K), so that (3.6.4) and (3.6.6) become

δ <

√
ε

4
√

Nκα2MΩN+2vol3/2(K)(1+2Nrad(K))
,

n ≥ 2
√

2vol(K)Cc log(3η−1N (δ ,K))
√

ε log
(
1+ C

√
ε

2
√

2vol5/2(K(Ω))Σ

) ,

as desired.

Remark 3.6.1. The κ-Lipschitz assumption on the activation function ρ may likely be removed

for most practical applications. Indeed, since (∗ ∗ ∗) can be bounded instead by leveraging

continuity of the L1 norm with respect to translation, the only term whose bound depends on the

Lipschitz property of ρ is (∗). However, there is randomness in In that we did not use to obtain

the bound (3.6.2), and this randomness may be enough to control (∗) in most cases. To see this,

recall that in bounding (∗) we require control over quantities of the form

∣∣∣ρ
(

α
(
〈wk,x− yk〉−uk

))
−ρ

(
α
(
〈wk,z− yk〉−uk

))∣∣∣.

For most practical realizations of ρ , this difference will be small with high probability (on the

draws of yk,wk,uk) whenever ‖x− z‖2 is sufficiently small.
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3.7 Theoretical results on submanifolds of Euclidean space

The constructions of RVFL networks presented in Theorems 3.3.1 and 3.3.4 depend

heavily on the dimension of the ambient space RN . Indeed, the random variables used to construct

the input-to-hidden layer weights and biases for these neural networks are N-dimensional objects;

moreover, we saw that the lower bound on the number of nodes in Theorem 3.3.4 behaves like

n & Nvol(K)ε−1 log(vol(K)/ε). If the ambient dimension is small, these dependencies do not

present much of a problem. However, many modern applications require the ambient dimension

to be large. Fortunately, a common assumption in practice is that signals of interest have structure

(e.g., sparsity) that effectively reduces their complexity. Good theoretical results and algorithms

typically depend on this intrinsic dimension rather than the ambient dimension. For this reason,

it is desirable to obtain approximation results for RVFL networks that leverage the underlying

structure of the signal class of interest, namely, the domain of f ∈Cc(R
N).

One way to introduce lower-dimensional structure in the context of RVFL networks is to

assume that supp( f ) lies on a subspace of RN . More generally, and motivated by applications,

we may consider the case where supp( f ) is actually a submanifold R
N . To this end, for the

remainder of this section we take M ⊂ R
N to be a smooth, compact d-dimensional manifold

and consider the problem of approximating functions f ∈C(M ) using RVFL networks. As we

will see, RVFL networks in this setting yield theoretical guarantees that replace the dependencies

of Theorems 3.3.1 and 3.3.4 on the ambient dimension N with dependencies on the manifold

dimension d. Indeed, one might expect to see the random variables {wk}n
k=1, {bk}n

k=1 be d-

dimensional objects (rather than N-dimensional) and that the lower bound on the number of

network nodes in Theorem 3.3.4 scales like n & dvol(M)ε−1 log(vol(M)/ε).
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3.7.1 Adapting RVFL networks to d-manifolds

As in Section 3.4.2, let {(U j,φ j)} j∈J be an atlas for the smooth, compact d-dimensional

manifold M ⊂ R
N with corresponding, compactly supported partition of unity {η j} j∈J . Since

M is compact, we assume without loss of generality that |J| < ∞; indeed, if the coordinate

maps φ j are sufficiently nice1, then there exists an atlas for M with |J|. 2dd log(d)vol(M )r−d ,

where r = sup j∈J rad(U j) is the largest chart radius [SCC18]. Now, for f ∈C(M ), Lemma 3.4.5

implies that

f (x) = ∑
{ j∈J : x∈U j}

( f̂ j ◦φ j)(x) (3.7.1)

for all x ∈ M , where

f̂ j(z) :=





f (φ−1
j (z))η j(φ

−1
j (z)) z ∈ φ j(U j)

0 otherwise.

As we will see, the fact that M is smooth and compact implies f̂ j ∈Cc(R
d) for each j ∈ J, and

so we may approximate each f̂ j using RVFL networks on R
d as in Theorems 3.3.1 and 3.3.4. In

this way, it is reasonable to expect that f can be approximated on M using a linear combination

of these low-dimensional RVFL networks. To be clear, we propose approximating f on M via

the following process:

1. For each j ∈ J, approximate f̂ j uniformly on φ j(U j)⊂ R
d using a RVFL network f̃n j

as in

Theorems 3.3.1 and 3.3.4;

1For instance, one may construct the atlas {(U j,φ j)} j∈J by intersecting M with ℓ2 balls in R
N of sufficiently

small radii so that each set U j is diffeomorphic to a ℓ2 ball in R
d with coordinate map φ j close to the identity.
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2. Approximate f uniformly on M by summing these RVFL networks over J, i.e.,

f (x)≈ ∑
{ j∈J : x∈U j}

( f̃n j
◦φ j)(x)

for all x ∈ M .

3.7.2 Main results on d-manifolds

Using the construction presented in Section 3.7.1, we now prove the manifold-equivalents

of Theorems 3.3.1 and 3.3.4. For notational clarity, from here forward we use lim{n j} j∈J→∞

to mean the limit as each n j tends to infinity simultaneously. The first theorem that we prove

is an asymptotic approximation result for continuous functions on manifolds using the RVFL

network construction presented in Section 3.7.1. This theorem is the manifold-equivalent of

Theorem 3.3.1:

Theorem 3.7.1. Let M ⊂ R
N be a smooth, compact d-dimensional manifold with finite atlas

{(U j,φ j)} j∈J and f ∈ C(M ). Fix any activation function ρ ∈ L1(R)∩L2(R). For any ε > 0,

there exist constants α j,Ω j > 0 and hidden-to-output layer weights {v
( j)
k }n j

k=1 ⊂ R for each j ∈ J

such that the following holds: If

w
( j)
0 ∼ Unif([−α jΩ j,α jΩ j])

d;

y
( j)
0 ∼ Unif(φ j(U j));

u
( j)
0 ∼ Unif([−π

2 (2L j +1), π
2 (2L j +1)]), where L j := ⌈2d

π rad(φ j(U j))Ω j − 1
2⌉;

b
( j)
0 :=−〈w( j)

0 ,y
( j)
0 〉−α ju

( j)
0 ,

and one chooses {w
( j)
k }n j

k=1, {b
( j)
k }n j

k=1 as independent draws from the distributions of w
( j)
0 and
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b
( j)
0 for each j ∈ J, respectively, then the sequences of RVFL networks { f̃n j

}∞
n j=1 defined by

f̃n j
(z) :=

n j

∑
k=1

v
( j)
k ρ

(
〈w( j)

k ,z〉+b
( j)
k

)
, for z ∈ φ j(U j)

satisfy

lim
{n j} j∈J→∞

E

∫

M

∣∣∣∣ f (x) − ∑
{ j∈J : x∈U j}

( f̃n j
◦φ j)(x)

∣∣∣∣
2

dx < ε

with convergence rate O(1/min j∈J n j).

Proof. We wish to show that there exist sequences of RVFL networks { f̃n j
}∞

n j=1 defined on

φ j(U j) for each j ∈ J which together satisfy the asymptotic error bound

lim
{n j} j∈J→∞

E

∫

M

∣∣∣∣ f (x) − ∑
{ j∈J : x∈U j}

( f̃n j
◦φ j)(x)

∣∣∣∣
2

dx < ε.

We will do so by leveraging the result of Theorem 3.3.1 on each φ j(U j)⊂ R
d .

To begin, recall that we may apply the representation (3.7.1) for f on each chart (U j,φ j);

the RVFL networks f̃n j
we seek are approximations of the functions f̂ j in this expansion. Now,

as supp(η j)⊂U j is compact for each j ∈ J, it follows that each set φ j(supp(η j)) is a compact

subset of Rd . Moreover, because f̂ j(z) 6= 0 if and only if z ∈ φ j(U j) and φ−1
j (z) ∈ supp(η j)⊂U j,

we have that f̂ j = f̂ j|φ j(supp(η j) is supported on a compact set. Hence, f̂ j ∈Cc(R
d) for each j ∈ J,

and so we may apply Lemma 3.5.6 to obtain the uniform limit representation (3.5.12) on φ j(U j),

that is,

f̂ j(z) = lim
Ω j→∞

lim
α j→∞

∫

K(Ω j)
Fα j,Ω j

(y,w,u)ρ
(
α j〈w,z〉+bα j

(y,w,u)
)
dydwdu, (3.7.2)

where we define K(Ω j) := φ j(U j)× [−Ω j,Ω j]
d × [−π

2 (2L j +1), π
2 (2L j +1)]. In this way, as in
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Section 3.5.4, by (3.5.12) we know that for any ε j > 0 there exist α j,Ω j > 0 such that

∣∣ f̂ j(z)− I( j)(z;1)
∣∣<

√
ε j

vol(φ j(U j))
(3.7.3)

holds for each z ∈ φ j(U j) simultaneously, where I( j)(·; p) is as in (3.5.14), as well as the asymp-

totic error bound that is the final result of Theorem 3.3.1, namely

lim
n j→∞

E

∫

φ j(U j)

∣∣ f̂ j(z)− f̃n j
(z)

∣∣2dz < ε j. (3.7.4)

With these results in hand, we may now continue with the main body of the proof.

Since the representation (3.7.1) for f on each chart (U j,φ j) yields

∣∣∣∣ f (x) − ∑
{ j∈J : x∈U j}

( f̃n j
◦φ j)(x)

∣∣∣∣≤ ∑
{ j∈J : x∈U j}

∣∣∣( f̂ j ◦φ j)(x)− ( f̃n j
◦φ j)(x)

∣∣∣

for all x ∈ M , the mean square error of our RVFL approximation may be bounded by

E

∫

M

∣∣∣∣ f (x) − ∑
{ j∈J : x∈U j}

( f̃n j
◦φ j)(x)

∣∣∣∣
2

dx

≤ E

∫

M
∑

{ j∈J : x∈U j}

∣∣∣( f̂ j ◦φ j)(x)− ( f̃n j
◦φ j)(x)

∣∣∣
2
dx

︸ ︷︷ ︸
(∗)

+2E
∫

M
∑

{ j 6=k∈J : x∈U j∩Uk}

(
( f̂ j ◦φ j)(x)− ( f̃n j

◦φ j)(x)
)(

( f̂k ◦φk)(x)− ( f̃nk
◦φk)(x)

)
dx

︸ ︷︷ ︸
(∗∗)

.

(3.7.5)

To bound (∗), note that the change of variables (3.4.2) implies

∫

M
∑

{ j∈J : x∈U j}

∣∣∣( f̂ j ◦φ j)(x)− ( f̃n j
◦φ j)(x)

∣∣∣
2
dx = ∑

j∈J

∫

φ j(U j)

∣∣ f̂ j(z)− f̃n j
(z)

∣∣2

|det(Dφ j(φ
−1
j (z)))|

dz
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for each j ∈ J. Defining β j := infy∈U j
|det(Dφ j(y))|, which is necessarily bounded away from

zero for each j ∈ J by compactness of M , we therefore have

(∗)≤ ∑
j∈J

β−1
j E

∫

φ j(U j)

∣∣ f̂ j(z)− f̃n j
(z)

∣∣2dz.

Hence, applying (3.7.4) for each j ∈ J yields

lim
n j→∞

(∗)≤ ∑
j∈J

β−1
j lim

n j→∞
E

∫

φ j(U j)

∣∣ f̂ j(z)− f̃n j
(z)

∣∣2dz < ∑
j∈J

ε j

β j
(3.7.6)

with convergence rate O(1/n j). For the term (∗∗), we first use Fubini’s Theorem to swap the order

of integrals and then appeal to independence of the random variables f̃n j
and f̃nk

for j 6= k ∈ J,

giving us

(∗∗) = ∑
j 6=k∈J

∫

U j∩Uk

E

(
( f̂ j ◦φ j)(x)− ( f̃n j

◦φ j)(x)
)
E

(
( f̂k ◦φk)(x)− ( f̃nk

◦φk)(x)
)

dx

= ∑
j 6=k∈J

∫

U j∩Uk

(
( f̂ j ◦φ j)(x)− I( j)(φ j(x);1)

)(
( f̂k ◦φk)(x)− I(k)(φk(x);1)

)
dx.

Since the Cauchy-Schwarz inequality yields

∫

U j∩Uk

(
( f̂ j ◦φ j)(x)− I( j)(φ j(x);1)

)(
( f̂k ◦φk)(x)− I(k)(φk(x);1)

)
dx

≤
(∫

U j

∣∣∣( f̂ j ◦φ j)(x)− I( j)(φ j(x);1)
∣∣∣
2
dx
)1/2(∫

Uk

∣∣∣( f̂k ◦φk)(x)− I(k)(φk(x);1)
∣∣∣
2
dx
)1/2

for j 6= k ∈ J, another application of the change of variables (3.4.2) allows us to write

(∗∗)≤ ∑
j 6=k∈J

(∫

φJ(U j)

∣∣ f̂ j(z)− I( j)(z;1)
∣∣2

∣∣Dφ j(φ
−1
j (z))

∣∣ dz
)1/2(∫

φk(Uk)

∣∣ f̂k(z)− I(k)(z;1)
∣∣2

∣∣Dφk(φ
−1
k (z))

∣∣ dz
)1/2

.
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Combining (3.7.3) with the notation β j := infy∈U j
|det(Dφ j(y))|, it follows that

(∗∗)< ∑
j 6=k∈J

√
ε jεk

β jβk

, (3.7.7)

which is independent of n j and nk.

With the bounds (3.7.6) and (3.7.7) in hand, taking limits in (3.7.5) yields

lim
{n j} j∈J→∞

E

∫

M

∣∣∣∣ f (x) − ∑
{ j∈J : x∈U j}

( f̃n j
◦φ j)(x)

∣∣∣∣
2

dx < ∑
j∈J

ε j

β j
+2 ∑

j 6=k∈J

√
ε jεk

β jβk

=
(

∑
j∈J

√
ε j

β j

)2

with convergence rate O(1/min j∈J n j), and so the proof is completed by taking each ε j > 0 in

such a way that

ε =
(

∑
j∈J

√
ε j

β j

)2
,

and choosing α j,Ω j > 0 accordingly for each j ∈ J.

It remains only to verify our use of Fubini’s Theorem in bounding (3.7.7). To this end,

recall from (3.5.20) that

E lim
n j→∞

∣∣∣( f̂ j ◦φ j)(x)− ( f̃n j
◦φ j)(x)

∣∣∣≤ σ j(φ j(x))

√
2

π

for each x ∈U j. Hence, an application of the Cauchy-Schwarz inequality implies

∫

U j∩Uk

E lim
n j,nk→∞

∣∣∣( f̂ j ◦φ j)(x)− ( f̃n j
◦φ j)(x)

∣∣∣
∣∣∣( f̂k ◦φk)(x)− ( f̃nk

◦φk)(x)
∣∣∣dx

≤ 2

π

∫

U j∩Uk

σ j(φ j(x))σ j(φk(x))dx

≤ 2

π

(∫

U j

σ j(φ j(x))
2dx

)1/2(∫

Uk

σk(φk(x))
2dx

)1/2
.
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Combining this with (3.5.16), we obtain the bound

∫

U j

σ j(φ j(x))
2dx ≤

α2
j M2

j ‖ρ‖2
2vol(U j)

22dvol(φ j(U j))
,

and so it follows that

∫

U j∩Uk

E lim
n j,nk→∞

∣∣∣( f̂ j ◦φ j)(x)− ( f̃n j
◦φ j)(x)

∣∣∣
∣∣∣( f̂k ◦φk)(x)− ( f̃nk

◦φk)(x)
∣∣∣dx

≤ α jαkM jMk‖ρ‖2
2

22d−1π

√
vol(U j)vol(Uk)

vol(φ j(U j))vol(φk(Uk))

holds for all j 6= k ∈ J, which is necessarily finite. Hence, we may apply Fubini’s Theorem and

the Dominated Convergence Theorem to obtain

∫

U j∩Uk

E lim
n j,nk→∞

(
( f̂ j ◦φ j)(x)− ( f̃n j

◦φ j)(x)
)(

( f̂k ◦φk)(x)− ( f̃nk
◦φk)(x)

)
dx

= lim
n j,nk→∞

∫

U j∩Uk

E

(
( f̂ j ◦φ j)(x)− ( f̃n j

◦φ j)(x)
)(

( f̂k ◦φk)(x)− ( f̃nk
◦φk)(x)

)
dx

= lim
n j,nk→∞

E

∫

U j∩Uk

(
( f̂ j ◦φ j)(x)− ( f̃n j

◦φ j)(x)
)(

( f̂k ◦φk)(x)− ( f̃nk
◦φk)(x)

)
dx

for all j 6= k ∈ J, as desired.

The biggest takeaway from Theorem 3.7.1 is that the same asymptotic mean-square error

behavior we saw in the RVFL network architecture of Theorem 3.3.1 holds for our RVFL network

construction on manifolds, with the added benefit that the input-to-hidden layer weights and

biases are now d-dimensional random variables rather than N-dimensional. Provided the size of

the altas |J| isn’t too large, this significantly reduces the number of random variables that must be

generated to produce a uniform approximation of f ∈C(M ).

One might expect to see a similar reduction in dimension dependence for the non-

asymptotic case if the RVFL network construction of Section 3.7.1 is used. Indeed, our next
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theorem, which is the manifold-equivalent of Theorem 3.3.4, makes this explicit:

Theorem 3.7.2. Let M ⊂ R
N be a smooth, compact d-dimensional manifold with finite atlas

{(U j,φ j)} j∈J and f ∈ C(M ). Fix any activation function ρ ∈ L1(R)∩ L2(R) such that ρ is

κ-Lipschitz on R for some κ > 0. For any ε > 0 and η ∈ (0,1), there exist constants α j,Ω j > 0

and hidden-to-output layer weights {v
( j)
k }n j

k=1 ⊂ R for each j ∈ J such that the following holds:

Suppose

w
( j)
0 ∼ Unif([−α jΩ j,α jΩ j])

d;

y
( j)
0 ∼ Unif(φ j(U j));

u
( j)
0 ∼ Unif([−π

2 (2L j +1), π
2 (2L j +1)]), where L j := ⌈2d

π rad(φ j(U j))Ω j − 1
2⌉;

b
( j)
0 :=−〈w( j)

0 ,y
( j)
0 〉−α ju

( j)
0 ,

and one chooses {w
( j)
k }n j

k=1, {b
( j)
k }n j

k=1 as independent draws from the distributions of w
( j)
0 and

b
( j)
0 for each j ∈ J, respectively. For any

0 < δ j <

√
ε

4
√

2d|J|vol(M )κα2
j M jΩ

d+2
j vol(φ j(U j))(1+2drad(φ j(U j)))

,

if one chooses

n j ≥
4
√

|J|vol(M )C( j)c log(3|J|η−1N (δ j,φ j(U j)))
√

ε log
(
1+ C( j)

√
ε

8
√

|J|vol(M )d(2Ω j)d+1rad(φ j(U j))vol2(φ j(U j))Σ( j)

) ,

where M j := supz∈φ j(U j) | f̂ j(z)|, c > 0 is a numerical constant, and C( j),Σ( j) are constants de-

pending on f̂ j and ρ for each j ∈ J, then the sequences of RVFL networks { f̃n j
}∞

n j=1 defined

by

f̃n j
(z) :=

n j

∑
k=1

v
( j)
k ρ

(
〈w( j)

k ,z〉+b
( j)
k

)
, for z ∈ φ j(U j)
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satisfy

∫

M

∣∣∣∣ f (x) − ∑
{ j∈J : x∈U j}

( f̃n j
◦φ j)(x)

∣∣∣∣
2

dx < ε

with probability at least 1−η .

Proof. We wish to show that there exist sequences of RVFL networks { f̃n j
}∞

n j=1 defined on

φ j(U j) for each j ∈ J which together satisfy the error bound

∫

M

∣∣∣∣ f (x) − ∑
{ j∈J : x∈U j}

( f̃n j
◦φ j)(x)

∣∣∣∣
2

dx < ε

with probability at least 1−η when {n j} j∈J are chosen sufficiently large. The proof is obtained

by showing that

∣∣∣∣ f (x) − ∑
{ j∈J : x∈U j}

( f̃n j
◦φ j)(x)

∣∣∣∣<
√

ε

vol(M )
(3.7.8)

holds uniformly for x ∈ M with high probability.

We begin as in the proof of Theorem 3.7.1 by applying the representation (3.7.1) for f on

each chart (U j,φ j), which gives us

∣∣∣∣ f (x) − ∑
{ j∈J : x∈U j}

( f̃n j
◦φ j)(x)

∣∣∣∣≤ ∑
{ j∈J : x∈U j}

∣∣∣( f̂ j ◦φ j)(x)− ( f̃n j
◦φ j)(x)

∣∣∣ (3.7.9)

for all x ∈ M . Now, since we have already seen that f̂ j ∈Cc(R
d) for each j ∈ J, Theorem 3.3.4

implies that for any ε j > 0, there exist constants α j,Ω j > 0 and hidden-to-output layer weights

{v
( j)
k }n j

k=1 ⊂ R for each j ∈ J such that for any

δ j <

√
ε j

4
√

dκα2
j M jΩ

d+2
j vol3/2(φ j(U j))(1+2drad(φ j(U j)))

(3.7.10)
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we have

∣∣∣ f̂ j(z)− f̃n j
(z)

∣∣∣<
√

2ε j

vol(φ j(U j))

uniformly for all z ∈ φ j(U j) with probability at least 1−η j, provided the number of nodes n j

satisfies

n j ≥
2
√

2vol(φ j(U j))C
( j)c log(3η−1

j N (δ j,φ j(U j)))

√
ε j log

(
1+

C( j)√ε j

4
√

2d(2Ω j)d+1rad(φ j(U j))vol5/2(φ j(U j))Σ( j)

) , (3.7.11)

where c > 0 is a numerical constant and C( j),Σ( j) are as in (3.6.5). Indeed, it suffices to choose

the coefficients

v
( j)
k :=

vol(K(Ω j))

n j
Fα j,Ω j

(
y
( j)
k ,

w
( j)
k

αd
j

,u
( j)
k

)

for each k = 1, . . . ,n j, where

K(Ω j) := φ j(U j)× [−α jΩ j,α jΩ j]
d × [−π

2 (2L j +1), π
2 (2L j +1)]

for each j ∈ J. Combined with (3.7.9), choosing δ j and n j satifying (3.7.10) and (3.7.11),

respectively, then yields

∣∣∣∣ f (x) − ∑
{ j∈J : x∈U j}

( f̃n j
◦φ j)(x)

∣∣∣∣< ∑
{ j∈J : x∈U j}

√
2ε j

vol(φ j(U j))
≤ ∑

j∈J

√
2ε j

vol(φ j(U j))

for all x ∈ M with probability at least 1−∑{ j∈J : x∈U j}η j ≥ 1−∑ j∈J η j. Since we require

that (3.7.8) holds for all x ∈ M with probability at least 1−η , the proof is then completed by
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choosing {ε j} j∈J and {η j} j∈J such that

ε = 2vol(M )
(

∑
j∈J

√
ε j

vol(φ j(U j))

)2
and η = ∑

j∈J

η j.

In particular, it suffices to choose

ε j =
vol(φ j(U j))ε

2|J|vol(M )

and η j = η/|J| for each j ∈ J, so that (3.7.10) and (3.7.11) become

δ j <

√
ε

4
√

2d|J|vol(M )κα2
j M jΩ

d+2
j vol(φ j(U j))(1+2drad(φ j(U j)))

,

n j ≥
4
√

|J|vol(M )C( j)c log(3|J|η−1N (δ j,φ j(U j)))
√

ε log
(
1+ C( j)

√
ε

8
√

|J|vol(M )d(2Ω j)d+1rad(φ j(U j))vol2(φ j(U j))Σ( j)

) ,

as desired.

As alluded to earlier, an important implication of Theorems 3.7.1 and 3.7.2 is that the

random variables {w
( j)
k }n j

k=1 and {b
( j)
k }n j

k=1 are d-dimensional objects for each j ∈ J. Likewise,

for small ε , Theorem 3.7.2 shows that the number of nodes behaves roughly like

n j & d|J|vol(M )ε−1 log(vol(M )/ε)

for each j ∈ J. Thus, introducing the manifold structure removes the dependencies on the ambient

dimension N, replacing them instead with the intrinsic dimension of M and the complexity of

the atlas {(U j,φ j)} j∈J .

Remark 3.7.3. The bounds on the covering radii δ j and hidden layer nodes n j needed for each

chart in Theorem 3.7.2 are not optimal. Indeed, these bounds may be further improved if one uses

the local structure of the manifold, through quantities such as its curvature and reach. In particular,
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the appearance of |J| in both bounds may be significantly improved upon if the manifold is locally

well-behaved.

3.8 Numerical Simulations

In this section we provide numerical evidence to support the result of Theorem 3.7.2.

Let M ⊂ R
N be a smooth, compact d-dimensional manifold. Since having access to an atlas

for M is not necessarily practical, we assume instead that we have a suitable approximation to

M . For our purposes, we will use a Geometric Multi-Resolution Analysis (GMRA) [ACM11]

approximation of M , as previously used in Chapter 2. Recall from Definition 2.3.3 that such

a GMRA approximation provides a collection {(C j,P j)} j∈{1,...,J} of centers C j = {c j,k}
K j

k=1 ⊂

R
N and affine projections P j = {Pj,k}

K j

k=1 on R
N such that, for each j ∈ {1, . . . ,J}, the pairs

{(c j,k,Pj,k)}
K j

k=1 define d-dimensional affine spaces that approximate M with increasing accuracy

in the following sense: For every x ∈ M , there exists C̃x > 0 and k′ ∈ {1, . . . ,K j} such that

‖x−Pj,k′x‖2 ≤ C̃x2− j (3.8.1)

holds whenever ‖x− c j,k′‖2 is sufficiently small (see part (3.b) of Definition 2.3.3). In this way,

a GMRA approximation of M essentially provides a collection of approximate tangent spaces

to M . Hence, a GMRA approximation having fine enough resolution (i.e., large enough j) is a

good substitution for an atlas.

Let {(c j,k,Pj,k)}
K j

k=1 be a GMRA approximation of M for refinement level j ≥ j0. Since

the affine spaces defined by (c j,k,Pj,k) for each k ∈ {1, . . . ,K j} are d-dimensional, we will

approximate f on M by projecting it (in an appropriate sense) onto these affine spaces and

approximating each projection using an RVFL network on R
d . To make this more precise observe

that, since each affine projection acts on x ∈M as Pj,kx = c j,k+Φ j,k(x−c j,k) for some othogonal
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projection Φ j,k : RN → R
N , for each k ∈ {1, . . . ,K j} we have

f (Pj,kx) = f
(
c j,k +Φ j,k(x− c j,k)

)
= f

(
(IN −Φ j,k)c j,k +U j,kD j,kV

T
j,kx

)
,

where Φ j,k =U j,kD j,kV
T
j,k is the compact singular value decomposition (SVD) of Φ j,k (i.e., only

the left and right singular vectors corresponding to nonzero singular values are computed). In

particular, the matrix of right-singular vectors Vj,k : Rd → R
N enables us to define a function

f̂ j,k : Rd → R, given by

f̂ j,k(z) := f
(
(IN −Φ j,k)c j,k +U j,kD j,kz

)
, z ∈ R

d, (3.8.2)

which satisfies f̂ j,k(V
T
j,kx) = f (Pj,kx) for all x ∈M . By continuity of f and (3.8.1), this means that

for any ε > 0 there exists j ≥ j0 such that | f (Pj,kx)− f̂ j,k(V
T
j,kx)|< ε for some k ∈ {1, . . . ,K j}.

For such k ∈ {1, . . . ,K j}, we may therefore approximate f on the affine space associated with

(c j,k,Pj,k) by approximating f̂ j,k using a RFVL network f̃n j,k
: Rd → R of the form

f̃n j,k
(z) :=

n j,k

∑
ℓ=1

v
( j,k)
ℓ ρ

(
〈w( j,k)

ℓ ,z〉+b
( j,k)
ℓ

)
, (3.8.3)

where {w
( j,k)
ℓ }n j,k

ℓ=1 ⊂ R
d and {b

( j,k)
ℓ }n j,k

ℓ=1 ⊂ R are random input-to-hidden layer weights and

biases (resp.) and the hidden-to-output layer weights {v
( j,k)
ℓ }n j,k

ℓ=1 ⊂ R are learned. Choosing

the random input-to-hidden layer weights and biases as in Theorem 3.3.4 then guarantees that

| f (Pj,kx)− f̃n j,k
(V T

j,kx)| is small with high probability whenever n j,k is sufficiently large.

In light of the above discussion, we propose the following RVFL network construction

for approximating functions f ∈C(M ): Given a GMRA approximation of M with resolution

j ≥ j0, construct and train RVFL networks of the form (3.8.3) for each k ∈ {1, . . . ,K j}. Then,
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Algorithm 2 Approximation Algorithm

Given: f ∈C(M ); GMRA approximation {(c j,k,Pj,k)}
K j

k=1 of M at scale j ≥ j0

Ensure: y♯ ≈ f (x) for any x ∈ M

Step 1: For each k ∈ {1, . . . ,K j}, construct and train a RVFL network f̃n j,k
of the form (3.8.3)

Step 2: For any x ∈ M , find c j,k′ ∈ argminc j,k∈C j
‖x− c j,k‖2

Step 3: Set y♯ = f̃n j,k′

given x ∈ M and ε > 0, choose k′ ∈ {1, . . . ,K j} such that

c j,k′ ∈ argmin
c j,k∈C j

‖x− c j,k‖2

and evaluate f̃n j,k′ (x) to approximate f (x). We summarize this algorithm in Algorithm 2.

Since part (3.b) of Definition 2.3.3 implies ‖x − Pj,k′x‖2 ≤ Cx2−2 j holds for our choice of

k′ ∈ {1, . . . ,K j}, for large enough j, continuity of f and Lemma 3.5.8 imply that

| f (x)− f̃n j,k′ (x)| ≤ | f (x)− f̂ j,k′(V
T
j,k′x)|+ | f̂ j,k′(V

T
j,k′x)− f̃n j,k′ (V

T
j,k′x)|< ε

holds with high probability, provided n j,k′ satisfies the requirements of Theorem 3.3.4.

As a technical point, in the RVFL network construction proposed above we require that

the function f be defined in a sufficiently large region around the manifold. Essentially, we need

to ensure that f is continuously defined on the set S := M ∪M̂ j, where M̂ j is the scale- j GMRA

approximation defined in (2.4.1), that is,

M̂ j := {Pj,k j(z)z : ‖z‖2 ≤ rad(M )}∩BN
2 (0, rad(M )).

This ensures that f can be evaluated on the affine subspaces given by the GMRA.

To simulate Algorithm 2, we take M = S
2 embedded in R

20 and construct a GMRA up to

level jmax = 15 using 20,000 data points sampled uniformly from M . Given j ≤ jmax, we generate
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RVFL networks f̂n j,k
: R2 → R as in (3.8.3) and train them on V T

j,k(B
N
2 (c j,k,r)∩Tj,k)⊂ R

d using

the training pairs {(V T
k, jxℓ, f (Pj,kxℓ))}p

ℓ=1, where Tk, j is the affine space generated by (c j,k,Pj,k).

For simplicity, we fix n j,k = n to be constant for all k ∈ {1, . . . ,K j} and use a single, fixed pair

of parameters α,Ω > 0 when constructing all RVFL networks. We then randomly select a test

set of 200 points x ∈ M for use throughout all experiments. In each experiment (i.e., point in

Figure 3.8.1), we use Algorithm 2 to produce an approximation y♯ = f̃n j,k′ (x) of f (x). Figure 3.8.1

displays the mean relative error in these approximations for varying numbers of nodes n; to

construct this plot, f is taken to be the exponential f (x) = exp(∑N
k=1 x(k)) and ρ the hyperbolic

secant function. Notice that for small numbers of nodes the RVFL networks are not very good at

approximating f , regardless of the choice of α,Ω > 0. However, the error decays as the number

of nodes increases until reaching a floor due to error inherent in the GMRA approximation.

Figure 3.8.1: Log-scale plot of average relative error for Algorithm 2 as a function of the
number of nodes n in each RVFL network. Black, blue, and red lines correspond to GMRA
refinement levels j = 12, j = 9, and j = 6 (resp.). For each j, we fix α = 2 and vary Ω = 10,15
(solid and dashed lines, resp.). Reconstruction error decays as a function of n until reaching a
floor due to error in the GMRA approximation of M .
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