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Abstract 

Classic parametric statistical significance tests, such as ANOVA and least squares 

regression, are widely used by researchers in many disciplines, including psychology.  

For classic parametric tests to produce accurate results, the assumptions underlying 

them (such as normality and homoscedasticity) must be satisfied.  These assumptions 

are rarely met when analyzing real data.  The use of classic parametric methods with 

violated assumptions can result in the inaccurate computation of p-values, effect sizes, 

and confidence intervals.  This may lead to substantive errors in the interpretation of 

data.  Many modern robust statistical methods exist that alleviate the problems 

inherent in using parametric methods with violated assumptions, yet modern methods 

are rarely used by researchers.  We examine why this is the case, arguing that most 

researchers are unaware of the serious limitations of classic methods, and are 

unfamiliar with modern alternatives.  A range of modern robust and rank-based 

significance tests suitable for analyzing a wide range of designs is introduced.  

Practical advice on conducting modern analyses using software such as SPSS, SAS, 

and R is provided.  We conclude by discussing robust effect size indices. 
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Modern robust statistical methods: An easy way to maximize the accuracy and power of your 

research 

Null hypothesis significance testing (NHST) is the workhorse of research in many 

disciplines, including medicine, education, ecology, economics, sociology and psychology.  

A recent study of 10 leading international psychology journals found that NHST was used in 

97% of articles (Cumming et al., 2007).  The most widely used null hypothesis tests are 

classic parametric procedures, such as Student’s t, ANOVA, and ordinary least squares 

regression.  For classic parametric tests to produce accurate results, the assumptions 

underlying them must be sufficiently satisfied.  However, these assumptions are rarely met 

when analyzing real data.  The use of classic parametric tests when assumptions are violated 

can lead to the inaccurate calculation of p-values.  This can result in an increased risk of 

falsely rejecting the null hypothesis (i.e., wrongly concluding that real effects exist, when 

they do not).  In contrast, power to detect genuine effects is often substantially reduced.  An 

additional problem is that common measures of effect size (e.g., Cohen’s d) and confidence 

intervals may be inaccurately estimated when classic parametric assumptions (e.g., 

normality) are violated.  The miscomputation of p-values, coupled with the inaccurate 

estimation of effect sizes and confidence intervals can lead to substantive errors in the 

interpretation of data.  Several prominent statisticians and researchers have described the use 

of classic parametric statistics in the face of assumption violations as invalid (e.g., Keselman 

et al., 1998; Leech & Onwuegbuzie, 2002; Wilcox, 2001; Zimmerman, 1998). 

Modern robust statistical procedures exist that can solve the problems inherent in 

using classic parametric methods when assumptions are violated.  Many modern statistical 

procedures are easily conducted with widely-used software such as SPSS, SAS, and R.  

Despite the advantages of modern methods, and the ease with which these procedures can be 

conducted, they are rarely used by researchers.  In the first part of this paper, we examine 
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why this is the case.  We argue that most researchers are unaware of the limitations of classic 

methods, and do not realize that modern alternatives exist.  In the second half of the article 

we provide a practical, nontechnical introduction to some modern methods. 

Problems with classic parametric methods 

Classic parametric methods are based upon certain assumptions.  One important 

assumption is that the data being analyzed are normally distributed.  In practice, this 

assumption is rarely met.  Micceri (1989) examined 440 large data sets from the 

psychological and educational literature, including a wide range of ability/aptitude measures 

(e.g., maths and reading tests) and psychometric measures (e.g., scales measuring personality, 

anxiety, anger, satisfaction, locus of control).  None of the data were normally distributed, 

and few distributions remotely resembled the normal curve.  Instead, the distributions were 

frequently multimodal, skewed and heavy tailed.  Micceri’s study indicated that real data are 

more likely to resemble an exponential curve than a normal distribution.  Micceri’s findings 

are consistent with other research.  Bradley (1977) identified several examples of 

asymmetrical and skewed distributions in the social science literature.  For example, reaction 

time is often used as a dependent variable in psychological research, and it is well known that 

reaction time data are frequently skewed (Miller, 1988; Taylor, 1965). 

Another important assumption underlying classic parametric tests is that of equal 

population variances (also called homogeneity of variance, or homoscedasticity).  The 

assumption can be framed in terms of a variance ratio (VR).  If two populations have similar 

variances, their VR will be close to 1:1.  For example, if the variance of population A is 120, 

and the variance of population B is 100, their VR would be 120:100, or 1.2:1.  When real data 

are analyzed, the VR often strays markedly from the 1:1 ratio required to fulfill the 

assumption.  Keselman et al. (1998) conducted a comprehensive review of ANOVA analyses 

in 17 educational and child psychology journals.  For each study, a sample VR was calculated 
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by dividing the largest variance by the smallest variance.  In studies utilizing a one-way 

design, the median VR was 2.25:1, and the mean VR 4:1.  In factorial studies, the median VR 

was 2.89:1 and the mean VR 7.84:1.  Keselman et al. identified several extreme VRs, the 

largest being 566:1.  Large variance ratios have also been found in reviews of studies 

published in clinical and experimental psychology journals.  Grissom (2000) examined one 

issue of the Journal of Consulting and Clinical Psychology and identified sample ratios of 

4:1, 6:1, 7:1 and 8:1 on more than one occasion.  Ratios of 25:1 and 281:1 were also found.  

We examined two recent issues of the Journal of Experimental Psychology: General and the 

Journal of Experimental Psychology: Human Perception and Performance.  We identified 28 

studies which analyzed data using ANOVA.  In these studies, sample VRs between 2:1 and 

4:1 were common.  Several VRs exceeding 10:1 were identified, including VRs of 39:1, 59:1, 

69:1 and 121:1.  These sample VRs are subject to considerable sampling error; nevertheless, 

the magnitude of the VRs, and the consistency with which they are reported suggests that it is 

not unusual for the homoscedasticity assumption to be violated. 

The presence of heteroscedasticity in real data is not surprising, given the nature of 

the research designs and samples we employ.  Researchers are often interested in comparing 

the performance of preexisting groups (e.g., men and women) on some dependent variable.  

Groups defined using a preexisting factor can have different variances (Keppel & Wickens, 

2004).  For example, the performance of older adults on measures of cognitive functioning is 

more variable than that of younger adults (Hultsch, MacDonald, & Dixon, 2002).  

Heteroscedasticity can also occur in completely randomized experiments, due to the 

experimental variable causing differences in variability between groups.  Consider a trial 

investigating the efficacy of a novel psychotherapy for depression.  Participants in the trial 

are randomly allocated to either, (i) receive the novel treatment, or (ii) a control group that 

receives no treatment.  Participants’ depressive symptoms are measured at the start of the 



 Modern Robust Statistics 
 6 

trial, and 12 weeks later.  Due to random allocation, the variances of the two groups at the 

start of the trial should be roughly equivalent.  However, the groups’ variances at the end of 

the trial may be significantly different as a result of the effects of the experimental variable.  

There may be great variability in the response of participants in the novel psychotherapy 

group.  Some participants may find that their symptoms completely remit, others may have a 

partial response, some experience no change, and a few may experience worsening of their 

symptoms.  In contrast, the majority of the participants in the control group may experience 

comparatively little change in their depressive symptoms.  If this is the case, the variances of 

the two groups at the end of the trial will be heterogeneous.  See Grissom and Kim (2005) for 

additional discussion about why heteroscedasticity occurs in real data. 

Violation of the normality and homoscedasticity assumptions can have a substantial 

influence on the results of classic parametric tests, in particular rates of type I and II error.  A 

type I error occurs when the null hypothesis is falsely rejected.  In other words, concluding 

that a real effect exists, when it does not.  In contrast, a type II error occurs when the null 

hypothesis is not rejected, even though it is false.  The power of a test is the probability that a 

type II error will not occur. 

Violation of the normality and homoscedasticity assumptions can cause the type I 

error rate to distort.  Usually, the type I error rate (also known as the alpha rate, or α) is set at 

.05.  This means that if a result is deemed statistically significant, there should be less than a 

5% risk that a type I error has been made.  However, when classic parametric tests are used to 

analyze nonnormal or heteroscedastic data, the true risk of making a type I error may be 

much higher (or lower) than the obtained p-value.  Consider performing an ANOVA on data 

when variances and sample sizes are unequal.  We run our ANOVA in SPSS or SAS, and the 

p-value reported is .05.  This should mean that if we reject the null hypothesis, there is less 

than a 5% chance that we have made a type I error.  However, the true risk of committing a 
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type I error may be closer to 30% (Wilcox, Charlin, & Thompson, 1986).  Contrary to 

popular belief, equal sample sizes offer little protection against inflated type I error when 

variances are heterogeneous (Harwell, Rubinstein, Hayes, & Olds, 1992).  Conducting a 

regression analysis with violated assumptions can also lead to inflated rates of type I error.  

The probability of a type I error when testing at α = .05 can exceed 50% when data are 

nonnormal and heteroscedastic (Wilcox, 2003).  Researchers need to be aware that the p-

values reported by statistical packages such as SPSS may be extremely inaccurate if the data 

being analyzed are nonnormal and/or heteroscedastic, and as a result they may unwittingly 

make type I errors. 

An additional problem is that the power of classic parametric tests can be 

substantially lowered when the assumptions of normality or homoscedasticity are violated.   

See Wilcox (1998) for an example in which only a small departure from normality reduces 

the power of the t-test from .96 to .28.  Wilcox (p. 300) summarized the effect on power of 

violating the normality and homoscedasticity assumptions as follows: 

As hundreds of articles in statistical journals have pointed out and for reasons 

summarized in several books… arbitrarily small departures from normality can result 

in low power; even when distributions are normal, heteroscedasticity can seriously 

lower the power of standard ANOVA and regression methods.  The practical result is 

that in applied work, many nonsignificant results would have been significant if a 

more modern method, developed after the year 1960, had been used. 

 As noted by Wilcox (1998), modern robust statistics exist that can solve many of the 

problems caused by violating the assumptions of classic parametric tests.  The term robust 

statistics refers to procedures that are able to maintain the type I error rate of a test at its 

nominal level, and also maintain the power of the test, even when data are nonnormal and 

heteroscedastic (see Wilcox, 2005, for a more detailed discussion of statistical criteria for 
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judging robustness).  Countless studies have shown that, in terms of type I error control and 

statistical power, modern robust statistics frequently offer significant advantages over classic 

parametric methods, particularly when data are not normally distributed or heteroscedastic.  

However, modern robust methods are rarely used by researchers.  We now examine why 

most researchers do not make use of the wide array of robust statistics that have been 

developed over the past 50 years. 

Why are modern methods underutilized? 

Lack of familiarity with modern methods 

Most researchers do not realize that modern robust statistical methods exist.  This is 

largely due to lack of exposure to these methods.  For example, the psychology statistics 

curriculum, journal articles, popular textbooks and software are dominated by statistics 

developed before the 1960s.   This problem is not limited to psychology, but also exists in 

many other disciplines (e.g., medicine, ecology).  Statistics has progressed markedly since 

1960, yet most researchers rely upon outdated methods.  We are not trying to blame 

researchers for not being familiar with modern statistical methods.  Researchers are busy in 

their own areas of expertise, and cannot be expected to be familiar with cutting edge 

developments within statistics.  At the same time, it is essential that researchers are made 

aware of important developments within statistics which have the potential to improve 

research in domains such as psychology. 

Assumption testing issues 

Another reason why modern methods are underused is that researchers frequently fail 

to check whether the data they are analyzing meet the assumptions underlying classic 

parametric tests (Keselman et al., 1998).  This may be due to forgetfulness, or not knowing 

how to check assumptions.  A related problem is that, due to low power, statistical 

assumption tests built into software such as SPSS often do a poor job of detecting violations 
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from normality and homoscedasticity (Jaccard & Guilamo-Ramos, 2002).  For example, 

Levene’s test is often used to test the homoscedasticity assumption.  A p-value greater than 

.05 is usually taken as evidence that the assumption has not been violated.  However, 

Levene’s test can yield a p-value greater than .05, even when variances are unequal to a 

degree that could significantly affect the results of a classic parametric test.  This is 

particularly true when small samples are being analyzed.  Another problem is that assumption 

tests have their own assumptions.  Normality tests usually assume that data are 

homoscedastic; tests of homoscedasticity assume that data are normally distributed.  If the 

normality and homoscedasticity assumptions are violated, the validity of the assumption tests 

can be seriously compromised.  Prominent statisticians have described the assumption tests 

(e.g., Levene’s, Kolmogorov-Smirnov test) built into software such as SPSS as fatally 

flawed, and recommend that these tests never be used (D'Agostino, 1986; Glass & Hopkins, 

1996).  The take home message is that researchers should not rely upon statistical tests to 

check assumptions, due to the frequency with which they produce inaccurate results. 

The robustness argument 

Researchers often claim that classic parametric tests are robust to violations of the 

assumptions of normality and homoscedasticity, negating the need to use alternate 

procedures.  Robust in this sense is generally taken to mean that the tests maintain rates of 

type I error close to the nominal level.  Note the difference between this definition of robust, 

and the definition of robust statistics given earlier.  Robust statistics control type I error, and 

also maintain adequate statistical power.  In contrast, claims that classic parametric tests are 

robust usually only consider type I error, not power.  An overview of the robustness argument 

can be found in Sawilowsky (1990). 

The origin of the robustness argument can be traced back to several key papers and 

books, including Boneau (1960), Box (1953), Lindquist (1953) and Glass, Peckham and 
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Sanders (1972).  These widely cited studies concluded that classic parametric methods are 

exceedingly robust to assumption violations.  These claims of robustness found their way into 

introductory statistical textbooks, and researchers quickly came to accept as fact the notion 

that classic parametric tests are robust.  See Bradley (1978) for an excellent summary of how 

this process occurred.  Today, the belief that classic parametric tests are robust is widespread 

(Wilcox, 1998).  Most research methods textbooks used by researchers continue to claim that 

classic tests are generally robust, at least for balanced designs.  However, there are several 

problems with the robustness argument.  The early studies cited previously only examined the 

impact of small deviations from normality and homoscedasticity, not the large deviations that 

are often found when analyzing real psychological data.  Therefore, the early studies do not 

provide a valid assessment of how classic parametric tests perform under real-world data 

analytic conditions.  Also, the studies generally investigated the impact of violating normality 

and homoscedasticity in isolation, whereas in practice it is often the case that both 

assumptions are concurrently violated (Bradley, 1980; Keppel & Wickens, 2004).  

Furthermore, several authors (e.g., Bradley, 1978; Harwell, 1992) have noted that a careful 

reading of the early studies allows for very different conclusions about robustness to be 

reached.  Bradley pointed out that the authors of the early studies downplayed evidence that 

did not support their argument, and overextended claims of robustness beyond their data, 

claiming that classic parametric tests are robust in a wide range of circumstances. 

Considerable research indicates that classic parametric tests are only robust in a 

limited number of circumstances, not the vast majority as is widely believed.  For example, 

Sawilowsky and Blair (1992) found that the t-test is relatively robust to violation of the 

normality assumption when the following four conditions hold: (i) variances are equal, (ii) 

sample sizes are equal (iii) sample sizes are 25 or more per group, and (iv) tests are two 

tailed.   This combination of conditions is not reflective of most real data analytic 
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circumstances, where unequal sample sizes are common and variances often heterogeneous.  

Sawilowsky and Blair found that when one tailed tests were used, the type I error rate would 

become conservative.  Several researchers have shown that the t-test is not robust when the 

homogeneity of variance assumption is violated, nor when the normality and homogeneity of 

variance assumptions are concurrently violated (e.g., Ramsey, 1980; Zimmerman, 1998).  In 

most situations – particularly when analyzing real world data – robustness is the exception, 

rather than the rule. 

Proponents of the robustness argument have typically focused their attention on type I 

error, but not considered the power of classic parametric tests when data are nonnormal or 

heteroscedastic.  Countless studies have shown that, even when classic parametric tests are 

robust to type I errors, they are usually considerably less powerful than their modern robust 

counterparts.  For example, Akritas, Arnold and Brunner (1997) demonstrated that when the 

normality assumption is violated, a modern version of ANOVA can be more than three times 

as powerful than the classic ANOVA used by most researchers. Even if researchers insist that 

classic parametric tests are robust, this does not preclude the use of alternate procedures. 

Modern methods are also robust and more powerful when data are not normally distributed 

and/or heteroscedastic. 

Transformations 

Rather than using modern methods, researchers sometimes opt to transform their data.  

In these cases, a transformation such as the square root or logarithm is performed, and classic 

parametric tests are used to analyze the transformed data.  The use of transformations is 

problematic for numerous reasons, including that: (i) transformations often fail to restore 

normality and homoscedasticity, (ii) they do not deal with outliers, (iii) they can reduce 

power, (iv) they sometimes rearrange the order of the means from what they were originally, 

and (v) they make the interpretation of results difficult, as findings are based on the 
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transformed rather than the original data (Grissom, 2000; Leech & Onwuegbuzie, 2002; Lix, 

Keselman, & Keselman, 1996).  We strongly recommend using modern robust methods 

instead of conducting classic parametric analyses on transformed data. 

Classic Nonparametric Statistics 

Several classic nonparametric statistics are built into widely used software such as 

SPSS and SAS.  Some researchers elect to use these classic nonparametric statistics, rather 

than modern methods.  As with classic parametric techniques, classic nonparametric tests 

were developed before the 1960s, and suffer from many limitations.  For example, classic 

nonparametric statistics are not robust when used to analyze heteroscedastic data (Harwell et 

al., 1992; Lix et al., 1996; Sawilowsky, 1990; Zimmerman, 1998, 2000).  Another major 

limitation is that classic nonparametric tests are only appropriate for analyzing simple, one-

way layouts, and not factorial designs involving interactions.  Modern robust methods (which 

include modern nonparametric procedures) are not susceptible to these limitations. 

Misconceptions about Modern Methods 

Some researchers have misconceptions about modern methods that have contributed 

to underuse of these procedures.  One misconception is that software to perform modern 

statistical analyses is not readily available.  This belief may stem from the fact that modern 

robust statistics are not built into widely used statistical software such as SPSS and SAS.  

This has made modern methods invisible to many researchers.  Fortunately, proponents of 

modern methods have created special software “add ons” that allow researchers to conduct 

analyses using SPSS and SAS.  Furthermore, a vast array of alternative, free software is 

available that can conduct modern analyses. 

Another misconception held by some researchers is that modern methods should not 

be used because they sometimes involve the use of trimming or ranking procedures that 

“discard valuable information.”  Wilcox (2001) notes that it is somewhat counterintuitive that 



 Modern Robust Statistics 
 13 

a test could be more accurate by removing information – hence why some researchers are 

suspicious of modern methods.  However, take the case of outliers (highly unusual data 

points) and trimmed means.  Consider a dataset containing the following values:  

1, 1, 1, 2, 2, 5, 5, 5, 6, 20, 40. 

The mean of the values is 8.  However, the mean is distorted by two outlying values (20 and 

40).  All of the other values in the dataset are less than or equal to 6.  Consequently, the mean 

does not accurately reflect the central values of the dataset.  Instead of using the mean as a 

measure of central tendency, we could instead use the median, which in this case is 5.  The 

median is an extreme form of a trimmed mean, in the sense that all but the middle score is 

trimmed.  However, calculating the median discards a lot of information, as every value 

above and below the middle point of the dataset is removed.  A compromise between the 

mean and the median is the 20% trimmed mean.  To obtain the 20% trimmed mean, the 

lowest and highest 20% of the values from the dataset are removed, leaving:  

1, 2, 2, 5, 5, 5, 6 

The mean of the remaining values is then calculated.  In this case, the 20% trimmed mean is 

3.71, which reflects the central values of the original dataset more accurately than the 

untrimmed mean of 8.  The trimmed mean is an attractive alternative to the mean and the 

median, because it effectively deals with outliers without discarding most of the information 

in the dataset.  Research has shown that the use of trimming (and other modern procedures) 

results in substantial gains in terms of control of type I error, power, and narrowing 

confidence intervals (Keselman, Algina, Lix, Wilcox, & Deering, 2008; Wilcox, 2001, 2003, 

2005).  Furthermore, if data are normally distributed, the mean and the trimmed mean will be 

the same. 
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A Practical Introduction to Modern Methods 

What follows is a practical, nontechnical introduction to some modern, robust 

statistical methods.  Modern robust methods are designed to perform well when classic 

assumptions are met, as well as when they are violated.  Therefore, researchers have little to 

lose and much to gain by routinely using modern statistical methods instead of classical 

techniques.  An alternate strategy is to analyze data using both classic and modern methods.  

If both analyses lead to the same substantive interpretation of the data, debate about which 

analysis should be trusted is moot.  If classic and modern analyses lead to conflicting 

interpretations of data, the reason for the discrepancy should be investigated.  Differences 

will often be due to nonnormality, heteroscedasticity or outliers causing classic techniques to 

produce erroneous results.  Consequently, analyses conducted using modern methods should 

usually be trusted over those conducted using classic procedures.  However, each situation 

needs to be assessed on its own merits.  Because of the serious limitations of assumption tests 

noted earlier, researchers should not use assumption tests as a basis for deciding whether to 

use classic or modern statistical techniques. 

The defining feature of robust statistics is that they are able to maintain adequate type 

I error control and statistical power, even when data are nonnormal or heteroscedastic.  

Essentially, robust methods work by replacing traditional regression estimators (i.e., ordinary 

least squares), measures of location (e.g., the mean) and measures of association (e.g., 

Pearson’s r) with robust alternatives.  Hypothesis testing can be performed using these robust 

measures.  For example, Keselman et al. (2008) proposed a robust approach to hypothesis 

testing that involves trimmed means, Winsorized variances, and bootstrapping.  Keselman et 

al. recommend the use of 20% trimmed means, although on some occasions a smaller or 

larger amount of trimming may be desirable (see Wilcox, 2005, p. 57). 
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Winsorized variance 

Keselman et al.’s robust approach to hypothesis testing involves the replacement of a 

distribution’s variance with a robust alternative, the Winsorized variance.  The benefit of the 

Winsorized variance is that it is more resistant to outliers than the variance.  The use of 

Winsorizing can result in the estimation of more accurate standard errors than if classic 

methods are used. 

To illustrate the calculation of a Winsorized variance, imagine that a study is 

conducted with 10 participants, who have the following scores on the dependent variable: 

 3, 1, 75, 10, 5, 6, 11, 7, 75, 12 

The first step in computing the Winsorized variance is to reorder the scores from lowest to 

highest. 

 1, 3, 5, 6, 7, 10, 11, 12, 75, 75  

The second step in Winsorizing (if 20% trimming is being used) is to remove the lowest and 

highest 20% of scores from the dataset.  In this case, the scores 1, 3, 75 and 75 will be 

removed, leaving: 

 5, 6, 7, 10, 11, 12  

Next, the removed scores in the lower tail of the distribution are replaced by the smallest 

untrimmed score, and the removed scores in the upper tail of the distribution are replaced by 

the highest untrimmed score.  The non-trimmed and replaced scores are known as Winsorized 

scores.  For our dataset, the Winsorized scores are: 

 5, 5, 5, 6, 7, 10, 11, 12, 12, 12  

The mean of the Winsorized scores is then calculated. 

 wX = 10
1

 (5 + 5 +5 + 6 + 7 + 10 + 11 +12 +12 + 12) =  8.5 (1) 

Finally, the variance of the Winsorized scores is calculated by using the same formula that is 

used to calculate the (ordinary least squares) variance, except that the Winsorized scores and 
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Winsorized mean are used in place of the original scores and mean.  Therefore, any software 

program that can calculate variance can also be used to calculate Winsorized variance.  For 

the present dataset, the Winsorized variance is 90.5. 

Bootstrapping 

 Bootstrapping is a computer intensive resampling technique.  All bootstrap methods 

involve generating bootstrap samples based on the original observations in a study.  Consider 

a study in which the following scores on the dependent variable are observed: 

 2, 3, 3, 4, 5, 6, 7, 8, 9, 9, 9, 10 

The sample size is 12, and the sample mean is 6.25.  To calculate a bootstrap sample, a 

computer is used to randomly sample with replacement 12 observations one at a time from 

the original scores.  Sampling with replacement means that each individual score remains in 

the original dataset before the selection of the next score, rather than being removed from the 

original dataset.  As a result, observations can occur more (or less) times in the bootstrapped 

sample than they did in the original sample.  A bootstrap sample generated from the original 

observations in this example might be 

 3, 3, 3, 3, 4, 4, 7, 8, 8, 9, 10, 10 

The mean of this bootstrap sample is 6.  The process of generating bootstrap samples from 

the original scores is repeated hundreds or thousands of times.  With modern computers, this 

can be accomplished in seconds. 

Bootstrapping is often used to get a better approximation of the sampling distribution 

of a statistic (e.g., the t distribution) than its theoretical distribution provides when 

assumptions are violated.  In other words, instead of assuming that the data we collect 

follows the t, χ2 or some other distribution, bootstrapping is used to create a sampling 

distribution, and this bootstrapped distribution can be used to compute p-values and test 

hypotheses.  Bootstrapping can also be used to generate confidence intervals.  For example, 
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imagine that we want to create a 95% confidence interval around a mean.  We could 

accomplish this using the percentile bootstrap method.  Imagine that a study is conducted and 

that the mean of participants on the dependent variable is 6.50.  We use the participants’ 

scores to generate 1000 bootstrap samples.  For each bootstrap sample, a mean is calculated.  

The 1000 bootstrapped means are then put in order, from lowest to highest, and the central 

95% of values are used to form the confidence interval.  If the central 95% of values fall 

between 4.70 and 7.80, these values would form the lower and upper limits of the 95% 

confidence interval around the mean. Software is available that will conduct analyses based 

on bootstrap samples (see below). 

Robust hypothesis testing, software and resources 

The robust approach to hypothesis testing proposed by Keselman et al. (2008) uses 

trimmed means, Winsorized variances and bootstrapping to calculate a test statistic and p-

value, which they term the adjusted degrees of freedom (ADF) solution.  The ADF solution 

can be used to evaluate hypotheses analogous to those tested using classic parametric tests.  

The only difference is that the hypotheses evaluated using Keselman et al.’s approach 

concern trimmed means, rather than means.  For example, the null hypothesis tested using the 

classic independent groups t-test is that two population means are equal, where as in 

Keselman et al.’s approach the null hypothesis is that two population trimmed means are 

equal.  Keselman et al. have developed a free SAS/IML program that can be used to perform 

hypothesis testing using the ADF solution.  The program can also compute robust estimates 

of effect size.  The program and instructions are available from the APA website, 

http://dx.doi.org/10.1037/1082-989X.13.2.110.supp.  The instructions outline how the SAS 

program analyzes data for one-way and factorial designs. 

. 

 



 Modern Robust Statistics 
 18 

 

The ADF solution is just one of many robust hypothesis testing methods developed 

over the past 40 years.  Readers interested in a short introduction to some modern methods 

may benefit from consulting Wilcox and Keselman (2003).  There are also several excellent 

books about robust methods that researchers will find useful.  Wilcox (2001) is an eminently 

readable, nontechnical introduction to the fundamentals of robust statistics.  For a clear, 

comprehensive and practical overview of a wide variety of robust methods, see Wilcox 

(2003).  More advanced coverage is found in Wilcox (2005).  Wilcox has written code for R 

to conduct the analyses described in his 2003 and 2005 texts.  R is a powerful statistical 

software package, free to download from http://www.R-project.org.  R uses a command line 

(similar to SPSS’s syntax), rather than a graphical user interface.  Wilcox’s code can estimate 

numerous measures of location and scale, detect outliers, calculate confidence intervals, 

analyze data from one-way, factorial, repeated measures, split plot and multivariate designs, 

perform multiple comparison procedures, correlations and robust regression.  The latest 

version of Wilcox’s code is available as a free download from http://www-

rcf.usc.edu/~rwilcox.   

Researchers who prefer to work with a graphical user interface may be interested in 

ZumaStat, an easy to use and relatively inexpensive software package developed by Professor 

James Jaccard.  ZumaStat allows users to conduct robust analyses from within SPSS or 

Microsoft Excel.  ZumaStat adds a toolbar to SPSS or Excel that allows users to point and 

click to select robust statistical procedures.  The software then feeds instructions into R, 

which performs the relevant analyses.  The ZumaStat software can perform most of Wilcox’s 

R functions.  For further information, visit http://www.zumastat.com. 

SAS/STAT 9 includes some inbuilt capability for performing robust analyses.  The 

ROBUSTREG procedure can perform a limited number of robust regression techniques, such 
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as M-Estimation and Least Trimmed Squares.  These procedures can also be used for 

ANOVA (SAS Institute, 2004, pp. 3971-4030). 

Modern Rank Statistics 

The modern robust methods discussed thus far can be thought of as modern day 

versions of classic parametric procedures, such as ANOVA and least squares regression.  

These techniques revolve around robust measures of location and scale, such as trimmed 

means and Winsorized variances.  Another set of modern techniques have been developed 

that revolve around ranked data.  These rank-based techniques can be thought of as modern 

versions (and extensions) of classic nonparametric statistics.  Modern rank-based procedures 

are robust in the sense that they produce valid results when analyzing data that is nonnormal 

and/or heteroscedastic.  We will now briefly introduce some prominent modern rank-based 

methods. 

Rank Transform 

Conover and Iman (1981) proposed a simple, two step procedure known as the rank 

transform (RT).  RT is only mentioned here so that researchers know to avoid it.  The RT 

procedure involves (i) converting data to ranks, and (ii) performing a standard parametric 

analysis on the ranked data, instead of original scores.  The appeal of RT is that it is easily 

conducted using software such as SPSS and SAS.  In fact, official SAS user documentation 

encourages use of RT (SAS Institute, 2004).  Early research into the technique was 

promising, however by the late 1980s numerous problems with RT had emerged.  See 

Fahome and Sawilowsky (2000), Lix et al. (1996), Sawilowsky (1990), and Toothaker and 

Newman (1994) for concise reviews of this research.  RT can perform well, but in many 

circumstances it is nonrobust and can be less powerful than classic parametric and 

nonparametric methods.  The consensus in the literature is that RT should not be used. 
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ANOVA-type statistic 

An alternative to the RT is the ANOVA-type statistic (ATS; Brunner, Domhof, & 

Langer, 2002; Brunner & Puri, 2001; Shah & Madden, 2004).  As its name suggests, the ATS 

can be used in data analytic situations in which ANOVA is traditionally used.  The 

hypotheses tested by ANOVA and the ATS are similar.  An ANOVA assumes that the groups 

being compared have identical distributions, and tests the null hypothesis that the means of 

the groups are the same.  The ATS tests the null hypothesis that the groups being compared 

have identical distributions, and that their relative treatment effects ( ip̂ ) are the same.  A 

relative treatment effect is the tendency for participants in one group to have higher (or 

lower) scores on the dependent variable, compared to the scores of all participants in a study.  

Relative treatment effects can range between 0 and 1 (if the null hypothesis is true, all groups 

should have a relative treatment effect of .50). 

 

Insert Table 1 about here 

 

To illustrate the computation and interpretation of relative treatment effects, consider 

a study in which a researcher is interested in comparing three groups (A, B, C) on some 

dependent variable.  There are four participants in each group.  Their scores and the 

following calculations are shown in Table 1.  First, convert the scores to ranks, ignoring 

group membership.  That is, the smallest score in the entire dataset is assigned a rank of 1, the 

second smallest score a rank of 2, and so on until all scores have been converted to ranks.  

Tied scores are assigned midranks (i.e., the second and third score in this dataset are both 11, 

so the assigned ranks would be 2 and 3, but they are given an average rank, or midrank of (2 

+ 3)/2 = 2.5.  Next, the ranks in each group are summed, and then divided by the number of 

observations in the group to calculate each group’s mean rank.  For example, the sum of the 
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ranks in Group A is 21.5, and there are 4 observations.  Therefore, the mean rank of Group A 

is simply 21.5 / 4 = 5.375.  Finally, the relative treatment effect of each group is computed 

using the following equation: 

 
N

R
p i

i
50.ˆ −

= •  (2) 

where ip̂  is the ith group’s estimated relative treatment effect, •iR  is the group’s mean rank, 

and N is the total number of observations in the study.  Given that in the present study N = 

12, the estimated relative treatment effect of Group A would be (5.375 - .5) / 12 = .41.   

The interpretation of relative treatment effects is similar to the interpretation of 

means.  If the groups being compared have similar relative treatment effects, this can be 

interpreted as indicating that the groups do not differ much (in terms of participants’ typical 

response on the dependent variable).  In contrast, large differences in relative treatment 

effects suggest that the groups differ significantly.  Relative treatment effects for the current 

dataset are shown in Table 1.  Participants in Group C ( cp̂  = .83) tend to have higher scores 

on the dependent variable than participants in Group A ( ap̂  = .41) or B ( bp̂  = .26).  The ATS 

can be used to determine whether these differences are statistically significant.  In the present 

case, the null hypothesis that the groups have equivalent relative treatment effects is rejected, 

ATS (1.81, 7.42) = 11.38, p = .006.  The values in brackets (1.81 and 7.42) refer to the 

degrees of freedom for the test. 

The ATS can analyze data from independent groups, repeated measures and mixed 

designs.  Brunner, Domhof and Langer (2002) developed macros that allow the easy 

generation of the ATS in SAS.  Most of the macros are now also available for R.  They can 

be downloaded from http://www.ams.med.uni-goettingen.de/de/sof/ld/makros.html.  The 

webpage is written in German; however, the macros are clearly labelled and downloading 

them is straightforward.  Brunner et al. (2002) provided instructions for using the SAS 

http://www.ams.med.uni-goettingen.de/de/sof/ld/makros.html�
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macros.  Shah and Madden (2004) is another useful source of information.  This paper is 

targeted at applied researchers unfamiliar with the ATS, rather than statisticians.  The paper is 

accompanied by a comprehensive electronic supplement that illustrates how to use the SAS 

macros to generate and interpret the ATS and relative treatment effects.  Wilcox (2003, 2005) 

also provides coverage of the ATS, which he refers to as the Brunner, Dette, and Munk 

(BDM) method.  Wilcox discusses code for calculating the ATS using R.  He also discusses 

how to follow up significant ATS main effects and interactions with multiple comparison 

procedures. 

Other rank-based methods 

The ATS is just one of many modern robust rank-based methods.  A prominent rank-

based approach to ANOVA and regression is that of  Hettmansperger and McKean (1998).  

Their approach is sometimes called Wilcoxon Analysis (WA).  WA evaluates hypotheses 

analogous to those assessed by classic parametric methods.  For example, the null hypothesis 

tested in regression (i.e., no relationship between the predictors and the criterion variable; 

beta weights of zero) is exactly the same in WA as it is in ordinary least squares regression.  

The difference between the two procedures is that they use different methods to fit the 

regression line.  In ordinary least squares regression, the regression line minimizes the sum of 

the squared residuals.  A single outlier can substantially alter the slope of the regression line, 

reducing its fit to the data.  In contrast, WA, which involves ranking residuals, minimizes the 

impact that extreme criterion (Y-axis) scores have on the regression line.  The result is that 

the WA line often provides a better fit to data than the least squares line.  It is important to 

note that, while WA is robust to outliers in the Y-space, it is not robust to extreme predictor 

(X-axis) values (neither is ordinary least squares regression).  In such situations, a modified 

version of WA called Weighted Wilcoxon techniques (WW) can be used.  WW ensures that 

analyses are robust to outliers in both the X and Y-spaces.  However, it is preferable to use 
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WA in situations where there are no outliers in the X-space, as WA is more powerful than 

WW.  See Hettmansperger and McKean (1998), and McKean (2004) for more details. 

Free web-based software, known as RGLM, can conduct WA via the internet.  RGLM 

is located at http://www.stat.wmich.edu/slab/RGLM.  To conduct an analysis, a user uploads 

data to RGLM, or enters data into a form.  Analysis options are selected, and RGLM then 

conducts the analysis and outputs the results.  The interface can perform WA simple and 

multiple regression, as well as WA alternatives to the single and paired samples t-test, one-

way and factorial ANOVA and ANCOVA.  An appealing aspect of RGLM is that both WA 

and classic parametric analyses are reported side-by-side.  This allows users to observe 

whether the two procedures produce equivalent or conflicting results.  Abebe, Crimin and 

McKean (2001), and Crimin, Abebe and McKean (in press) provide a guide to conducting 

robust analyses using RGLM.  It is important to note that the RGLM interface only conducts 

WA.  Users wishing to conduct WW analyses should make use of the experimental site 

http://www.stat.wmich.edu/slab/HBR2.  It is also possible to conduct WA and WW analyses 

using R.  Terpstra and McKean (2005) provide instructions for carrying out WW analyses 

using R.  R-code for WA and WW is available for download from 

http://www.jstatsoft.org/v14/i07 and http://www.stat.wmich.edu/mckean/HMC/Rcode. 

Readers interested in further information about rank-based methods may like to 

consult Higgins (2004).  Journals that regularly feature articles about modern robust methods 

include Psychological Methods, Educational and Psychological Measurement, and the 

Journal of Modern Applied Statistical Methods.  Papers in these journals are sometimes 

accompanied by useful software and instructions.  For example, Serlin and Harwell (2004) 

published a paper in Psychological Methods containing SPSS syntax that researchers can use 

to conduct a range of nonparametric approaches to regression. 
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Effect Size 

The APA manual and many journals encourage researchers to report estimates of 

effect sizes in addition to statistical significance tests.  Effect size provides information about 

the magnitude of an effect, which can be useful in determining whether it is of practical 

significance.  Unfortunately, the most commonly reported effect sizes (e.g., Cohen’s d, η2) 

are predicated on the same restrictive assumptions (e.g., normality, homoscedasticity) as 

classic parametric statistical significance tests.  Standard parametric effect sizes are not 

robust to violation of these assumptions (Algina, Keselman, & Penfield, 2005b; Grissom & 

Kim, 2001; Onwuegbuzie & Levin, 2003).  Furthermore, using classic methods to calculate a 

confidence interval around the point estimate of an effect size with violated assumptions can 

lead to inadequate probability coverage (Algina, Keselman, & Penfield, 2005a, 2006a).  In 

other words, a researcher may believe that he or she has formed a 95% confidence interval 

around the point estimate of an effect size, when in fact the degree of confidence may be 

lower (e.g., 85%).  The take home message is that researchers should not report estimates of 

standard effect sizes (nor confidence intervals around these estimates) if parametric test 

assumptions are violated, as the estimates and associated confidence intervals could be 

misleading.  Fortunately, several robust alternatives to classic effect size indices exist. 

A popular measure of the size of an effect size in the population is the standardized 

mean difference: 

  δ = (μ A – μ B) / σ (3) 

which is estimated by 

 SMD = (M A – M B) / SD (4) 

 

where MA is the mean of group A, MB is the mean of group B, and SD the standard deviation.  

Variants of the standardized mean difference include Cohen’s d, Glass’s ∆, and Hedges’ g 
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(each variant uses a slightly different method to calculate the standard deviation).  Robust 

analogues of the standardized mean difference exist to calculate the magnitude of an effect 

between two independent groups (Algina et al., 2005b; Algina, Keselman, & Penfield, 

2006b), and two correlated groups (Algina et al., 2005a).  Free software available from 

http://plaza.ufl.edu/algina/index.programs.html can compute these robust effect sizes.  An 

attractive feature of the software is that it calculates accurate bootstrapped confidence 

intervals around the point estimate of the effect size (see also Keselman et al., 2008). 

Another robust effect size is the probability of superiority (PS).  PS has also been 

called the probabilistic index, intuitive and meaningful effect size index, area under the 

receiver operator characteristic curve, and the measure of stochastic superiority (Acion, 

Peterson, Temple, & Ardnt, 2006; Grissom, 1994; Grissom & Kim, 2005; Kraemer & 

Kupfer, 2006; Vargha & Delaney, 2000).  PS is the probability that a randomly sampled score 

from one population is larger than a randomly sampled score from a second population.  For 

example, imagine that a researcher wanted to compare men (population one) and women 

(population two) in terms of their height (dependent variable).  If PS = .70, the probability 

that a randomly sampled man is taller than a randomly sampled woman is .70. 

PS is easily estimated using software such as SPSS and SAS.  First, run the Mann 

Whitney U test, and obtain the U value.  In SPSS, the test is accessed by clicking Analyze, 

followed by Nonparametric Tests, and Two Independent Samples.  In SAS, use the 

NPAR1WAY procedure.  Once obtaining the U value, estimate PS using the formula: 

 PSest = U / mn (5) 

where U is the Mann Whitney U statistic, m is number of participants in the first sample, and 

n the number of participants in the second sample (Acion et al., 2006; Grissom & Kim, 

2005).  For example, imagine U = 80, m =10 and n = 20.  Substituting these values into the 

formula above, we get: 
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 PSest = 80 / (10 x 20) = .40. (6) 

The calculation of PS values using the above formula is only appropriate for independent 

groups designs.  For a variant of PS that is appropriate for repeated measures designs, see 

Grissom and Kim (2005, pp. 114-115) or Vargha and Delaney (2000). 

It is possible to compare PS values with those that would be obtained under normal 

theory using other estimates of effect sizes, such as Cohen’s d.  Grissom (1994) presented a 

comprehensive table of d values ranging from 0 to 3.99, and corresponding PS values.  Using 

the table, it is possible to establish that d = 0 (i.e. no difference between group means) is 

equivalent to PS = .50.  A small effect size (d = .20) is equal to a PS of .56, a medium effect 

size (d = .50) equivalent to PS = .64, and a large effect size (d = .80) equivalent to PS = .71.  

Grissom and Kim (2005, p. 109) provided a table for converting between d, PS, and the 

population point-biserial correlation, rpb.  PS can also be converted to the number needed to 

treat (NNT), an effect size index that is particularly appropriate for conveying information in 

psychotherapy outcome studies, or other behavioral research that involves comparisons 

between treatments (or treatment and control/placebo conditions).  NNT is defined as the 

number of patients that would need to be treated with treatment A, to experience one greater 

treatment “success” than if the same number of patients were treated with treatment B.  For 

example, imagine a randomized controlled trial in which cognitive behavior therapy (CBT) is 

compared to psychoeducation for the treatment of depression.  “Success” is defined as the 

remission of depression at post-treatment.  A NNT of 3 would indicate that it is necessary to 

treat three patients with CBT, to have one more patient remit than if the same number of 

patients were treated with psychoeducation.   

There are many useful resources that provide further information about the robust 

standardized mean difference, PS, NNT, and other effect size measures.  Grissom and Kim 

(2005) is an authoritative source of information about numerous effect sizes for use in a wide 
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range of designs (including factorials).  Wilcox (2003, 2005) discusses various effect size 

measures, and provides software for R used to form confidence intervals around PS.  

Kromrey and Coughlin (2007) prepared a SAS macro used to calculate PS, Algina’s robust 

standardized mean difference, and a range of other robust effect sizes.  Kraemer and Kupfter 

(2006) discuss the estimation of PS and NNT when using dichotomous, rather than ordinal or 

continuous dependent variables.  For situations (such as meta analysis) in which original data 

are not available, the estimation of PS may not be possible.  In these cases, PS is estimated 

using McGraw and Wong’s (1992) common language effect size statistic. 

Summary 

Most researchers analyze data using outdated methods.  Classic parametric tests, 

effect sizes, and confidence intervals around effect size statistics are not robust to violations 

of their assumptions, and violations seem to occur frequently when real data are analyzed.  

Researchers relying upon statistical tests (e.g. Levene’s test) to identify assumption violations 

may frequently fail to detect deviations from normality and homoscedasticity that are large 

enough to seriously affect the type I error rate and power of classic parametric tests.  We 

recommend that researchers bypass classic parametric statistics in favor of modern robust 

methods.  Modern methods perform well in a much larger range of situations than classic 

techniques.  The use of modern methods will result in researchers finding more statistically 

significant results when real effects exist in the population.  Using modern methods will also 

reduce the number of type I errors made by researchers and result in more accurate 

confidence intervals around robust effect size statistics.  A range of accessible texts about 

modern methods are available (e.g., Wilcox, 2001, 2003), as well as a wide range of software 

to perform modern analyses.  Given the wealth of resources available, researchers have a 

tremendous opportunity to engage in modern robust statistical methods. 



 Modern Robust Statistics 
 28 

References 

Abebe, A., Crimin, K., & McKean, J. W. (2001). Rank-based procedures for linear models: 

Applications to pharmaceutical science data. Drug Information Journal, 35, 947-971. 

Acion, L., Peterson, J. J., Temple, S., & Ardnt, S. (2006). Probabilistic index: an intuitive 

non-parametric approach to measuring the size of treatment effects. Statistics in 

Medicine, 25, 591-602. 

Akritas, M. G., Arnold, S. F., & Brunner, E. (1997). Nonparametric hypotheses and rank 

statistics for unbalanced factorial designs. Journal of the American Statistical 

Association, 92, 258-265. 

Algina, J., Keselman, H., & Penfield, R. (2005a). Effect sizes and their intervals: The two-

level repeated measures case. Educational and Psychological Measurement, 65, 241-

258. 

Algina, J., Keselman, H., & Penfield, R. (2006a). Confidence intervals for an effect size 

when variances are not equal. Journal of Modern Applied Statistical Methods, 5, 2-13. 

Algina, J., Keselman, H. J., & Penfield, R. D. (2005b). An alternative to Cohen's standardized 

mean difference effect size: A robust parameter and confidence interval in the two 

independent groups case. Psychological Methods, 10, 317-328. 

Algina, J., Keselman, H. J., & Penfield, R. D. (2006b). Confidence interval coverage for 

Cohen's effect size statistic. Educational and Psychological Measurement, 66, 945-

960. 

Boneau, C. A. (1960). The effects of violations of assumptions underlying the t test. 

Psychological Bulletin, 57, 49-64. 

Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika, 40, 318-335. 

Bradley, J. V. (1977). A common situation conductive to bizarre distribution shapes. The 

American Statistician, 31, 147-150. 



 Modern Robust Statistics 
 29 

Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical 

Psychology, 31, 144-152. 

Bradley, J. V. (1980). Nonrobustness in Z, t, and F tests at large sample sizes. Bulletin of the 

Psychonomic Society, 16, 333-336. 

Brunner, E., Domhof, S., & Langer, F. (2002). Nonparametric analysis of longitudinal data 

in factorial experiments. New York: Wiley. 

Brunner, E., & Puri, M. L. (2001). Nonparametric methods in factorial designs. Statistical 

Papers, 42, 1-52. 

Conover, W. J., & Iman, R. L. (1981). Rank transformations as a bridge between parametric 

and nonparametric statistics. The American Statistician, 35, 121-129. 

Crimin, K., Abebe, A., & McKean, J. W. (in press). Robust general linear models and 

graphics via a user interface. Journal of Modern Applied Statistical Methods. 

Cumming, G., Fidler, F., Leonard, M., Kalinowski, P., Christiansen, A., Kleinig, A., et al. 

(2007). Statistical reform in psychology: Is anything changing? Psychological 

Science, 18, 230-232. 

D'Agostino, R. (1986). Tests for the normal distribution. In R. B. D'Agostino & M. A. 

Stephens (Eds.), Goodness-of-fit techniques. New York: Marcel Dekker. 

Fahoome, G., & Sawilowsky, S. S. (2000, April 24-28). Review of twenty nonparametric 

statistics and their large sample approximations. Paper presented at the annual 

meeting of the American Education Research Association. Retrieved from 

http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?accno=

ED441031 

Glass, G. V., & Hopkins, K. D. (1996). Statistical methods in education & psychology (3rd 

ed.). Boston: Allyn & Bacon. 



 Modern Robust Statistics 
 30 

Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet 

assumptions underlying the fixed effects analyses of variance and covariance. Review 

of Educational Research, 42, 237-288. 

Grissom, R. J. (1994). Probability of the superior outcome of one treatment over another. 

Journal of Applied Psychology, 79, 314-316. 

Grissom, R. J. (2000). Heterogeneity of variance in clinical data. Journal of Consulting and 

Clinical Psychology, 68, 155-165. 

Grissom, R. J., & Kim, J. J. (2001). Review of assumptions and problems in the appropriate 

conceptualization of effect size. Psychological Methods, 6, 135-146. 

Grissom, R. J., & Kim, J. J. (2005). Effect sizes for research: A broad practical approach. 

Mahwah, NJ: Lawrence Erlbaum. 

Harwell, M. R. (1992). Summarizing monte carlo results in methodological research. Journal 

of Educational Statistics, 17, 297-313. 

Harwell, M. R., Rubinstein, E. N., Hayes, W. S., & Olds, C. C. (1992). Summarizing monte 

carlo results in methodological research: The one- and two-factor fixed effects 

ANOVA cases. Journal of Educational Statistics, 17, 315-339. 

Hettmansperger, T. P., & McKean, J. W. (1998). Robust nonparametric statistical methods. 

London: Arnold Publishing. 

Higgins, J. J. (2004). Introduction to modern nonparametric statistics. Pacific Grove, CA: 

Brooks/Cole-Thompson Learning. 

Hultsch, D. F., MacDonald, S. W. S., & Dixon, R. A. (2002). Variability in reaction time 

performance of younger and older adults. Journal of Gerontology, 57B, 101-115. 

Jaccard, J., & Guilamo-Ramos, V. (2002). Analysis of variance frameworks in clinical child 

and adolescent psychology: Advanced issues and recommendations. Journal of 

Clinical Child Psychology, 31, 278-294. 



 Modern Robust Statistics 
 31 

Keppel, G., & Wickens, T. D. (2004). Design and analysis: A researcher's handbook (4th 

ed.). Upper Saddle River, NJ: Pearson Education. 

Keselman, H. J., Algina, J., Lix, L. M., Wilcox, R. R., & Deering, K. (2008). A generally 

robust approach for testing hypotheses and setting confidence intervals for effect 

sizes. Psychological Methods, 13, 110-129. 

Keselman, H. J., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R. A., Donahue, B., et al. 

(1998). Statistical practices of educational researchers: An analysis of their ANOVA, 

MANOVA, and ANCOVA analyses. Review of Educational Research, 68, 350-386. 

Kraemer, H. C., & Kupfer, D. J. (2006). Size of treatment effects and their importance to 

clinical research and practice. Biological Psychiatry, 59, 990-996. 

Kromrey, J. D., & Coughlin, K. B. (2007, November 4-6). ROBUST_ES: A SAS macro for 

computing robust estimates of effect size. Paper presented at the SouthEast SAS Users 

Group. Retrieved from http://analytics.ncsu.edu/sesug/2007/PO19.pdf 

Leech, N. L., & Onwuegbuzie, A. J. (2002, November 6-8). A call for greater use of 

nonparametric statistics. Paper presented at the Annual Meeting of the Mid-South 

Educational Research Association. Retrieved from 

http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?accno=

ED471346 

Lindquist, E. F. (1953). Design and analysis of experiments in psychology and education. 

Boston: Houghton Mifflin. 

Lix, L. M., Keselman, J. C., & Keselman, H. J. (1996). Consequences of assumption 

violations revisited: A quantitative review of alternatives to the one-way analysis of 

variance "F" test. Review of Educational Research, 66, 579-619. 

McGraw, K. O., & Wong, S. P. (1992). A common language effect size statistic. 

Psychological Bulletin, 111, 361-365. 



 Modern Robust Statistics 
 32 

McKean, J. W. (2004). Robust analysis of linear models. Statistical Science, 19, 562-570. 

Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. 

Psychological Bulletin, 105, 156-166. 

Miller, J. (1988). A warning about median reaction time. Journal of Experimental 

Psychology: Human Perception and Performance, 14, 539-543. 

Onwuegbuzie, A. J., & Levin, J. R. (2003). Without supporting statistical evidence, where 

would reported measures of substantive importance lead us? To no good effect. 

Journal of Modern Applied Statistical Methods, 2, 131-151. 

Ramsey, P. H. (1980). Exact type I error rates for robustness of Student's t test with unequal 

variances. Journal of Educational Statistics, 5, 337-349. 

SAS Institute. (2004). SAS STAT 9.1.3 user's guide.   Retrieved February 1, 2008, from 

http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_91/stat_ug_7313.pdf 

Sawilowsky, S. S. (1990). Nonparametric tests of interaction in experimental design. Review 

of Educational Research, 60, 91-126. 

Sawilowsky, S. S., & Blair, R. C. (1992). A more realistic look at the robustness and type II 

error properties of the t test to departures from population normality. Psychological 

Bulletin, 111, 352-360. 

Serlin, R. C., & Harwell, M. R. (2004). More powerful tests of predictor subsets in regression 

analysis under nonnormality. Psychological Methods, 9, 492-509. 

Shah, D. A., & Madden, L. V. (2004). Nonparametric analysis of ordinal data in designed 

factorial experiments. Phytopathology, 94, 33-43. 

Taylor, D. H. (1965). Latency models for reaction time distributions. Psychometrika, 30, 157-

163. 

Terpstra, J. T., & McKean, J. W. (2005). Rank-based analyses of linear models using R. 

Journal of Statistical Software, 14. Retrieved from http://www.jstatsoft.org/v14/i07 



 Modern Robust Statistics 
 33 

Toothaker, L. E., & Newman, D. (1994). Nonparametric competitors to the two-way 

ANOVA. Journal of Educational and Behavioral Statistics, 19, 237-273. 

Vargha, A., & Delaney, H. D. (2000). A critique and improvement of the CL common 

language effect size statistics of McGraw and Wong. Journal of Educational and 

Behavioral Statistics, 25, 101-132. 

Wilcox, R. R. (1998). How many discoveries have been lost by ignoring modern statistical 

methods? American Psychologist, 53, 300-314. 

Wilcox, R. R. (2001). Fundamentals of modern statistical methods. New York: Springer. 

Wilcox, R. R. (2003). Applying contemporary statistical techniques. San Diego, CA: 

Academic Press. 

Wilcox, R. R. (2005). Introduction to robust estimation and hypothesis testing (2nd ed.). San 

Diego, CA: Academic Press. 

Wilcox, R. R., Charlin, V. L., & Thompson, K. L. (1986). New Monte Carlo results on the 

robustness of the anova f, w and f statistics. Communications in Statistics - Simulation 

and Computation, 15, 933 - 943. 

Wilcox, R. R., & Keselman, H. J. (2003). Modern robust data analysis methods: Measures of 

central tendency. Psychological Methods, 8, 254-274. 

Zimmerman, D. W. (1998). Invalidation of parametric and nonparametric statistical tests by 

concurrent violation of two assumptions. Journal of Experimental Education, 67, 55-

68. 

Zimmerman, D. W. (2000). Statistical significance levels of nonparametric tests biased by 

heterogeneous variances of treatment groups. Journal of General Psychology, 127, 

354-364. 

 



 Modern Robust Statistics 
 34 

Author Note 

The authors thank Kale Dyer and Rand Wilcox for their helpful feedback on drafts of this 

article.  Thanks also to Amy Lampard and Jake England for their support and encouragement.



 Modern Robust Statistics  35 

Table 1 

Example calculations of relative treatment effects for the ANOVA type statistic (ATS)  

 Group 

 A   B   C 

Scores 11 12 17 18  10 11 13 15  20 21 23 25 

Corresponding Rank Scores 2.5 4 7 8  1 2.5 5 6  9 10 11 12 

Sum of Ranks 21.50  14.50  42.00 

Mean Rank 5.38  3.63  10.50 

Relative Treatment Effect 0.41   0.26   0.83 
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