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Summary

 

This paper brings together some modern statistical methods to address the prob-

lem of missing data in obesity trials with repeated measurements. Such missing

data occur when subjects miss one or more follow-up visits, or drop out early

from an obesity trial. A common approach to dealing with missing data because

of dropout is ‘last observation carried forward’ (LOCF). This method, although

intuitively appealing, requires restrictive assumptions to produce valid statistical

conclusions. We review the need for obesity trials, the assumptions that must be

made regarding missing data in such trials, and some modern statistical methods

for analysing data containing missing repeated measurements. These modern

methods have fewer limitations and less restrictive assumptions than required for

LOCF. Moreover, their recent introduction into current releases of statistical

software and textbooks makes them more readily available to the applied data

analyses.
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Introduction

 

A number of studies have reported on relationships

between obesity and health risks (1,2), a reduced quality

of life (3–6), an added economic burden on society (7–10),

and increased mortality (11–13). The last relationship

between obesity and mortality has prompted recent discus-

sions regarding the implications of intentional vs. uninten-

tional weight loss on mortality (14,15). However, the

prevalence of obesity has been increasing worldwide (2,16),

and the prevalence of childhood obesity is also increasing

(17) prompting added concerns over the predictive nature

of this condition for ill-health later in life (18), and the

initiation of studies to evaluate factors linked to obesity in

children (19–21).

Given the prevalence and deleterious consequences of

obesity described above, and the fact that currently avail-

able methods for treating and preventing obesity are, at

best, modestly successful (1,22–24), many investigators are

studying new approaches to treat and prevent obesity (cf.

25–27). The randomized controlled clinical trial is thought

to be the ‘gold standard’ for establishing a causal effect of

a new treatment on a response (28). Conducting such trials

to evaluate treatments for obesity offers special challenges,

most notably, a requirement that the length of the trial be

sufficient to confirm treatment efficacy not only for short-

term use (29).

In obesity trials, statistical evaluation of a treatment’s

efficacy is usually complicated by missing observations

because of dropouts (i.e. subjects who drop out of the

clinical trial after some interim follow-up visit and do not

return) or by missing observations because of subjects who

miss one or more visits (even though they might complete

the trial). For example, one study evaluating two doses of

sibutramine vs. a placebo had 485 subjects randomized

into three treatment arms, and 53% of subjects completed
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the 12-month trial. Estimating a treatment effect at the final

visit required a technique to handle the 226 missing obser-

vations at that visit, not to mention any additional missing

data because of subjects who also missed interim monthly

visits.

One technique that has been used to handle missing data

in obesity trials with repeated measurements is ‘last obser-

vation carried forward’ (LOCF) (cf. 30,31). This technique

replaces subjects’ missing outcomes with outcomes

observed on the previous visit. For example, if there were

five follow-up visits in a clinical trial (denoted times 1,

2, …, 5) and a subject dropped out after the third visit,

observed outcomes would be 

 

y

 

1

 

, 

 

y

 

2

 

, 

 

y

 

3

 

 and outcomes 

 

y

 

4

 

, 

 

y

 

5

 

would be missing. LOCF would set 

 

y

 

5

 

 

 

=

 

 

 

y

 

4 

 

=

 

 

 

y

 

3

 

. This

method is easy to implement in practice and sometimes,

but not necessarily, provides a conservative estimate of a

treatment’s effect (i.e. the effect of treatment is underesti-

mated) (32). However, the assumption that a subject’s out-

come would remain constant can not only bias estimates

of a treatment’s effect, but also underestimate the true

variability in the data and increase the probability of mak-

ing a type 1 error above the desired target significance level

(32). Another option, as easily implemented in practice as

LOCF, is to analyse data from ‘completers’ only. In this

rather extreme technique, the above subject who dropped

out after the third visit would be omitted entirely from the

analysis, thus ignoring potentially valuable information

regarding the treatment (i.e. the information available in

the observed 

 

y

 

1

 

, 

 

y

 

2

 

, 

 

y

 

3

 

).

There is a large body of literature describing statistical

methods to handle missing data and of which the associ-

ated theoretical properties have been well studied (theoret-

ical properties of LOCF have been given limited attention).

Although a number of these methods evolved from the need

to analyse data from surveys, many have been extended

and adapted to longitudinal data and one method in par-

ticular is specifically suited to such. The methods are rela-

tively recent (from a historical perspective), the background

literature on some still theoretical, and the software to

implement them relatively recent and less trivial to imple-

ment than the more common methods available for com-

plete and balanced designs (i.e. no missing data). The

methods have been used for data analyses and reported in

most applied statistical journals (33,34), but their adapta-

tion into obesity trial data has been slow with a few excep-

tions (e.g. 27,35). The field of obesity research is not alone

in dealing with the problems associated with missing data

in longitudinal studies. Recent publications in the field of

psychiatric research (36,37) illustrate that similar problems

also plague other fields of research.

This paper evaluates some recent developments in statis-

tics within the context of randomized trials to evaluate

obesity treatments where repeated measurements are taken

on subjects and dropout is an issue. We will not discuss

mathematical details [this has been done elsewhere (e.g.

34,38,39)]. This material will inform researchers in obesity

about other statistical techniques beyond LOCF for han-

dling missing data from clinical studies. Ideally, there

would be no missing data resulting from a clinical trial, and

method to retain subjects in clinical trials is its own area

of research (cf. 40), and beyond the scope of this paper. We

also do not consider the topic of treatment compliance, that

is, a subject who remains in a trial but does not comply

with an assigned treatment. Further details on design of

obesity trials and a discussion of some statistical issues have

appeared elsewhere (41,42).

 

The missing data mechanism

 

The central question of many studies involving missing

data has seemed to be ‘what should be done about the

missing outcomes, that is, should they be filled in via a

technique like LOCF or should the entire cases be omitted

from the analysis?’ More problematic, however, is the often

ignored process or mechanism that caused the outcomes to

be missing in the first place. The first time that the theoret-

ical aspects of this problem were rigorously considered in

the statistical literature may have been Rubin (43), an

article that began further initiatives that continue to this

day (e.g. 44–46).

As an illustration, consider the example subject from

above who enters an obesity trial with an initial ‘baseline’

visit and five scheduled follow-up visits. The subject’s con-

ceptual outcomes (e.g. change from baseline) may be

denoted 

 

Y

 

1

 

, 

 

Y

 

2

 

, 

 

Y

 

3

 

, 

 

Y

 

4

 

, 

 

Y

 

5

 

. Suppose, again, that the subject

will complete the third follow-up visit and then drop out

of the trial. Then 

 

Y

 

4

 

, 

 

Y

 

5

 

 are unobservable and resulting data

will contain missing values for these two variables.

There is another variable for this subject, call it 

 

R

 

, that

defines the process that causes missing outcomes. This vari-

able can be defined in different ways. For an arbitrary

pattern of missing data, 

 

R

 

 could be defined as a vector of

five ones and zeros. For example, 

 

R

 

 

 

=

 

 [1,1,0,0,1] would

mean that a subject attended visits 1, 2, and 5 but missed

visits 3 and 4. An alternative definition that we will adopt,

for convenience, can be used for a monotone pattern of

missingness, that is, once a subject drops out, he/she does

not return for any remaining follow-up visit. In this case,

 

R

 

 can be defined as the follow-up visit number before the

subject dropped out. For the subject described earlier who

dropped out after the third visit, 

 

R 

 

=

 

 3, but the variable

itself may take on integer values from 0 to 5, 0 meaning

the subject never returned after the baseline visit and 5

meaning the subject completed the trial. Table 1 shows a

monotone missingness pattern for a hypothetical set of four

subjects. The modern statistical methods to be described,

however, are still applicable with arbitrary patterns of

missingness.
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For each subject, 

 

R

 

 can take on values from 0 to 5 with,

it is likely, different probabilities. The relationship between

these probabilities and the outcome variable 

 

Y

 

 determines

the extent to which this variable can be entirely ignored in

a statistical analysis of a treatment’s effect on values of 

 

Y

 

.

Let 

 

Y

 

obs

 

 be the set of observed changes from baseline in the

outcome variable, and let 

 

Y

 

mis

 

 be the set of missing obser-

vations. Thus, for subject 1 in Table 1, 

 

Y

 

obs

 

 

 

=

 

 (

 

Y

 

1

 

, 

 

Y

 

2

 

, 

 

Y

 

3

 

)

and 

 

Y

 

mis

 

 

 

=

 

 (

 

Y

 

4

 

, 

 

Y

 

5

 

).

Suppose 

 

X

 

 denotes a set of other variables observed for

a subject. Examples are a subject’s baseline measurement

of the outcome variable, 

 

Y

 

0

 

, a subjects age at baseline,

gender, race, etc., and may also include an indication of the

treatment group to which a subject was assigned. If 

 

R

 

 is

independent of (the probabilities for values of 

 

R

 

 do not

depend on) (

 

Y

 

obs

 

, 

 

Y

 

mis

 

) 

 

=

 

 (

 

Y

 

1

 

, 

 

Y

 

2

 

, 

 

Y

 

3

 

, 

 

Y

 

4

 

, 

 

Y

 

5

 

) in Table 1, or

any other variables 

 

X

 

, then the missing values are said to

be ‘missing completely at random’ (MCAR). A special case

of MCAR occurs when 

 

R

 

 is independent of (

 

Y

 

obs

 

, 

 

Y

 

mis

 

), but

can depend on 

 

X

 

. This special case has been termed ‘cova-

riate – dependent dropout’ (44), that we denote MCAR2.

If 

 

R

 

 is independent of the values that will be missing, that

is, 

 

Y

 

mis

 

, given other variables that are observed, that is,

(

 

Y

 

obs

 

, 

 

X

 

), then the missing values are said to be ‘missing at

random’ (MAR). Missing data that are MAR or MCAR

(or MCAR2) are said to result from a missing data mech-

anism that is ignorable. For data of this type, we do not

have to specify a distribution for the pattern of missingness

in order to obtain valid inferences regarding the primary

parameters of interest. Furthermore, MCAR or MCAR2

may be testable using observed data by comparing distri-

butions of observed variables across the patterns of missing

data. That is, MCAR, MCAR2, and MAR are nested in

that the former two may be empirically testable while MAR

is not directly testable.

If the probabilities for values of 

 

R

 

 depend on 

 

Y

 

mis

 

, and

if this dependence cannot be eliminated by adjusting for

other observed variables, then the missing data mechanism

is not ignorable and missing data resulting from this are

described as ‘not missing at random’ (NMAR). Table 2

summarizes the extent to which missing data mechanisms

can be ignored in a statistical analysis. This is shown via

the definition of a missing data mechanism denoted as a

probability equation. So, for example, data that are MCAR

result from 

 

P

 

(

 

R

 

 

 

=

 

 

 

r

 

1|2

 

Y

 

obs

 

, 

 

Y

 

mis

 

, 

 

X

 

) 

 

=

 

 

 

P

 

(

 

R 

 

=

 

 r

 

) which reads,

‘the probability that the subject drops out at the 

 

r

 

th follow-

up visit, given other variables to be observed or to be

missing and covariates, 

 

X

 

, is equal to the probability that

the subject drops out at the 

 

r

 

th follow-up visit.’ This sug-

gests that the subject dropped out for reasons unrelated to

the treatment, or how well they were or were not benefiting

from the treatment. The equation is assumed to hold for

all subjects in a study.

NMAR is a particular concern with weight loss studies

because low values for 

 

R

 

 may be more likely to occur for

a subject who is not losing weight. In such settings, the

missing values for that subject may be NMAR unless the

subject stayed in the trial long enough for data to be col-

lected describing the subject’s ‘lack of weight loss’. If the

subject’s lack of weight loss is observed with existing data,

then the data are said to be MAR. A subject’s missing

values are only MCAR if the reason for dropout (i.e. the

value of 

 

R

 

) was unrelated to the weight loss for that subject

(e.g. a subject’s employment requires moving out of the

area). In any given study, the distinction regarding whether

the missing data are MAR, MCAR, or NMAR is not a

trivial one, because the choice of analysis method is highly

dependent upon the type of missing data mechanism.

Table 1 A monotone missingness pattern for four subjects with different 
values for the dropout variable, R

Subject Y0 Y1 Y2 Y3 Y4 Y5 R

1 y1,0 y1,1 y1,2 y1,3 ? ? 3
2 y2,0 y2,1 y2,2 ? ? ? 2
3 y3,0 ? ? ? ? ? 0
4 y4,0 y4,1 y4,2 y4,3 y4,4 y4,5 5

Y0 indicates a baseline measurement and Yj, the change from baseline 
in the outcome variable at the jth follow-up visit. The lower case yi,j 
indicates an observed value for the ith subject at the jth follow-up visit, 
and missing observations are denoted with a ‘?’.

Table 2 Dropout mechanism defined as a probability statement, and the resulting type of missing data

Definition of dropout mechanism Notation for missing data Ignorability of missing data mechanism?

P(R = r |Yobs, Ymis, X) = P(R = r) MCAR Yes
P(R = r |Yobs, Ymis, X) = P(R = r |X) MCAR2 Yes, if Yobs and X used in method of analysis
P(R = r |Yobs, Ymis, X) = P(R = r |Yobs, X) MAR Yes, if and X used in method of analysis
P(R = r |Yobs, Ymis, X) = P(R = r |Yobs, Ymis, X) NMAR No, the relationship between R and Ymis cannot be eliminated using available

information

Observed values for the outcome variable (e.g. change from baseline) are Yobs, missing values because of dropout are Ymis, and other measured 
covariates are denoted by X. A monotone dropout mechanism is assumed and R is equal to the number of the last follow-up visit before the subject 
dropped out.
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In Table 1 for subject 1, R = 3 and we observe a value

for Y3 but the design requires observing a value for Y5.

Because Y5 is unobservable, the subject may either be omit-

ted from the analysis (as in a complete case analysis), or Y5

may be estimated (imputed). Later, we discuss a method

involving mixed effects models where the subject is neither

omitted from the analysis nor is their missing response

imputed.

Imputation strategies and two issues

There are two issues to consider when imputing missing

data. First, using a technique that assumes missing data are

MCAR (or MCAR2) when they are actually MAR can bias

conclusions from a study just as can assuming missing data

are MAR when they are actually NMAR. Thus MAR is

seen as a less restrictive assumption than MCAR or

MCAR2 and may often be more reasonable in practice

(35). A second issue involves the underestimation of the

variance of an estimated treatment effect.

One ad hoc method that has been used by researchers in

the past is to fill in missing values with the mean for all

non-missing subjects for that value. For example, if a cova-

riate of weight at 3 months was missing for the ith subject,

we would compute the mean weight at 3 months for all

non-missing subjects and impute this value for the ith sub-

ject. LOCF is another method that imputes a value for a

subject who has dropped out of a study. LOCF and the

method of replacing missing data with mean values

requires the missing values to be MCAR (47) (or MCAR2

if X is used in the analysis) to yield unbiased estimates of

a treatment effect. Moreover, both of these methods also

underestimate standard errors resulting in inflation of the

true probability of observing a type 1 error in the study.

More sophisticated techniques for imputing missing data

that only require MAR have been proposed to address the

first issue (cf. 38), and a method of ‘multiple’ imputation

has been proposed to address the second (48).

Under MAR, one can obtain unbiased estimates of the

treatment effect by using more complicated models for

replacing the missing values. If the observed variables

thought to be related to the missing data are included in

the model used to impute the missing values, then this

approach can lead to unbiased parameter estimates. For

example, if it is thought that men are more likely than

women to drop out of the study, one can replace the miss-

ing values with the gender-specific means. Obviously, this

approach can be generalized to complex models for

describing the missing values in which a large number of

covariates may be involved. The advantage of such an

approach is that, after values for the missing data have been

imputed, one can use standard methods of analysis that

would have been used had complete data been obtained

from the start.

The problem related to underestimating the standard

errors of the estimated treatment effect does not go away

even when more complex models are used for the imputa-

tion (46). This results from the fact that we are, in essence,

pretending that we have complete data during the analysis

phase and are ignoring the variability inherent in the impu-

tation process. Thus, instead of imputing a single value,

one should use multiple imputation and replace each miss-

ing value with a set of plausible random values in order to

capture the variability surrounding the missing value (48).

If the imputation process is repeated k times, a set of k

multiply imputed data sets would be created that can each

be analysed using a statistical procedure applicable for

complete data. As a consequence, one is left with k sets of

parameter estimates. Final estimates are obtained by com-

bining the k sets of parameter estimates. The variability of

the final estimates incorporates the inherent variability of

the imputation process. It has been shown that this process

avoids the underestimation of standard errors inherent with

single imputation with as few as 5–10 imputations (32).

Until recently, researchers had to use special software or

write their own programs to implement multiple imputa-

tion. However, with version 8.1, the SAS Institute intro-

duced two new procedures that enable one to implement

multiple imputation: PROC MI and PROC MIANALYSE

(49). Multiple imputation using SAS proceeds in three dis-

tinct phases:

(1) Use PROC MI to create the k multiply imputed data

sets.

(2) Use some standard SAS procedure to analyse these k

data sets and save the parameter estimates and standard

errors into a data set. This involves the same procedures

that would be used to analyse a complete data set with no

missing data.

(3) Use PROC MIANALYSE to combine the k estimated

parameters and standard errors into the final estimates.

PROC MI uses three distinct methods for imputation:

(1) a parametric regression method that assumes multivari-

ate normality; (2) a non-parametric method that uses pro-

pensity scores; and (3) a Markov chain Monte Carlo

(MCMC) method that assumes multivariate normality. The

first two methods are useful with monotone missing data

patterns. The MCMC method is recommended when the

pattern of missing data is arbitrary.

Multiple imputation can be performed in other software

packages as well. Horton & Lipsitz (50) provide an excel-

lent comparison of several such software packages. We

mention two. SPSS is a package familiar to many obesity

researchers. The Missing Values Analysis (MVA) module in

SPSS allows one to implement multiple imputation to cre-

ate the k multiply imputed data sets (51). The user can then

use standard SPSS procedures to analyse these k data sets.

However, the user must then combine the parameter esti-
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mates from these k data sets in the appropriate manner.

The MVA module in SPSS is analogous to PROC MI in

SAS but there is no SPSS analogue to the PROC MIANAL-

YSE procedure in SAS. There are also multiple imputation

and analysis software routines written for the statistical

package S-Plus (52) that are described, and an internet site

for them given, in Schafer (46,53).

Because researchers must specify a model for imputation,

and the validity of this model affects the validity of the

conclusions, one should give the imputation model as much

thought as the analysis model during the design phase of a

study. It is not necessary that the same set of covariates are

included in both models, and it is often a good idea to

include a large number of covariates in the imputation

model because the precision lost by including any predic-

tors not useful for estimating the missing value is much less

than the price of incorrectly specifying the model. The

imputation model can include enough pre-withdrawal

information to make the result of assuming MAR plausible

in practice (32). Multiple imputations created under an

incorrect model can lead to incorrect conclusions (54).

Hunsberger et al. (35) describe their experience in choos-

ing an imputation strategy for a multicentre school-based

study to compare percent body fat between treatment and

usual care groups at the end of a 3-year obesity prevention

intervention in American Indian children. They found that

a multiple imputation approach using a regression equation

based on subjects with observed data had the best perfor-

mance with regards to type 1 error and power. Allison et al.
(27) used a multiple imputation procedure as their primary

analysis technique of data from an obesity trial, and they

supplemented these results with those obtained from a

complete case analysis. Although results from the two were

not expected to be the same, the secondary analysis was

considered an added step to highlight any major differences

that might require more detailed investigation.

Mixed effects models

A statistical method that does not require imputing missing

values has been developed that is based on maximum like-

lihood inference (55). This method often goes by several

names including mixed linear models, two-stage random

effects models, or random coefficient models (39). For lon-

gitudinal studies where missing data may be observed over

the course of the study, a repeated measures mixed model

requires only that missing data be MAR, and it may be

more robust to potential bias from missing data than the

traditional ad hoc methods (LOCF, completers only) when

the data are not MCAR (47). As opposed to traditional

repeated measurement techniques, mixed models permit

the inclusion of patients with missing values at some time

points. Often, the primary endpoint may be the change

from baseline to some pre-specified time points. Mixed

models are preferable to ad hoc methods in these situations.

However, the greatest utility of such mixed models is the

ability to model trends over time. For example, two groups

may be similar in their outcome values at the end of the

study but may differ drastically in how they arrive at those

values. Such analyses are difficult to perform using an

LOCF model because the very nature of carrying the last

observation forward diminishes the perceived variability in

the data over time.

Mixed models may be used to evaluate linear, quadratic,

or higher order trends over time separately for each group

of interest, while simultaneously controlling for any cova-

riates of interest. In such studies, the measurements

observed over time within a patient are correlated, and it

is often the case that the variation in measurements increase

over time. In order to account for both the correlations

over time within a patient and the increasing variation from

visit to visit, random intercepts and slopes may be fit to the

observations from any specific subject. As a consequence,

we allow the model to differ for each person, hence the

name ‘random effects’ model. By taking into account the

correlation of measurements over time for any particular

subject, we can obtain more efficient estimates of the treat-

ment effect at any particular time point. There are several

texts now available discussing the use of mixed effects

models (e.g. 56,57), and other texts specifically address

their implementation in S-Plus (58) and in SAS (59).

The issue of data NMAR

When the data are thought to be NMAR, the options for

analysis are more limited. Although some options have

been suggested in the statistical literature (38,44,60,61),

they are less easy to implement with standard software. For

that reason, we do not discuss details of these methods

here.

There is no magic solution to dealing with data that are

NMAR and care must be taken when drawing conclusions

based upon how some subjects ‘might’ have responded had

they not dropped out (62). Overall et al. (63) highlighted

this using simulations to evaluate type 1 error and power

for different methods of data analysis and different dropout

mechanisms. It is recommended that a statistician be

involved in the design of, and the analysis of data from, an

obesity trial, particularly if missing data that may be

NMAR are expected.

A simulation example

A small simulation was run to compare methods of analysis

using complete cases only, LOCF, multiple imputation, and

mixed effect models when data are MCAR, MAR, and

NMAR. More elaborate simulations have been reported

elsewhere (32,47,61). We suppose that 100 subjects are
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randomized into two treatment groups of 50 subjects each.

Weight in kilograms (kg) is measured at baseline (visit 1)

and three follow-up visits at 4-week intervals, that is, 4, 8,

and 12 weeks. The parameter of interest is mean difference

in weight loss between the two treatment groups after

12 weeks.

The complete data were generated similarly to Liu &

Gould (32). Data were multivariate normal with mean

vector for the treatment group equal to mT = [92,88,85,82],

and for the second (control) group equal to

mC = [92,90,90,89]. The two mean vectors were arbitrarily

selected as was done in Liu & Gould (32) and here they

reflect a 12-week ‘treatment’ effect of 7 kg additional

weight loss in the treatment group (positive outcomes

denote weight ‘loss’). Standard deviations were selected

using available cases in data used in Allison et al. (27) and

were equal to [14.3,14.0,14.2,13.9]. The correlation struc-

ture was also modelled after the data in Allison et al. (27)

and is given by the four-dimensional correlation matrix:

Thus, there is very high correlation between outcomes at

each subsequent visit with higher correlations occurring at

time points separated by only 4 weeks.

All ‘subjects’ in the simulation returned for the first visit

and then either remained or dropped out according to a

monotone pattern. Let Cj indicate a change from baseline

at visit j (Baseline–Visit j so positive values are weight ‘loss’,

j = 2, 3, 4). To simulate missing data that are MCAR or

MAR, subjects ‘missed’ the final 12-week visit with prob-

ability p14 if C3 £ 0 and with probability p24 if C3 > 0.

Subjects missed both the 8- and 12-week visits with prob-

ability p13 if C2 £ 0 and with probability p23 if C2 > 0.

Missing data that were MCAR were generated using

p14 = p24 = 0.3 and p13 = p23 = 0.15. Missing data that were

MAR were generated using p14 = 0.6, p24 = 0.2 and

p13 = 0.4, p23 = 0.1. In the latter case, subjects who did not

lose weight by the 4-week visit were more likely to drop

out of the study. Similarly, subjects who showed up for the
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8-week visit and had not lost weight were more likely to

miss the 12-week visit. In the MCAR situation, the proba-

bilities were the same.

NMAR data were created by slightly altering the defini-

tion of the above probabilities. Subjects missed the final 12-

week visit with probability p14 if C4 £ 0 and with probabil-

ity p24 if C4 > 0. Subjects missed both the 8- and 12-week

visits with probability p13 if C3 £ 0 and with probability p23

if C3 > 0. The actual values for p14, p24, p13, p23 were the

same as those for the MAR situation. So a subject dropped

out of the trial with a probability depending on what their

weight change would have been had they showed up, a

probability depending on a missing value. The numbers of

missing observations at 12 weeks were similar for the three

cases and varied over simulations from 20 to 50%.

A complete case analysis for each data set was conducted

using the usual two-sample pooled variance t-tests on

weight change at 12 weeks for the subjects that completed

the study. LOCF analysis was conducted using the same

two-sample t-tests on the completed data set of 100 obser-

vations. Multiple imputation was conducted using a regres-

sion imputation procedure described in detail in Liu &

Gould (32). Five imputations were used with each data set,

the same t-tests conducted on each completed data set, and

the results combined as described in Liu & Gould (32). A

mixed effect model analysis was conducted by coding time

as a factor variable with levels for 4, 8, and 12 weeks, and

the treatment indicator variable was equal to 1 for treat-

ment group and 0 for control. The response variable was

change from baseline at each subsequent visit. The chosen

model included treatment, time, and a treatment by time

interaction as explanatory fixed effects, and a random

effect for subject and time. A predicted ‘treatment effect’

was estimated from the model at the 12th week.

For each analysis an estimate of the mean treatment

effect, its standard error, and a 95% confidence interval

was recorded for each of 1000 simulations. In the case of

the mixed model analysis, confidence intervals were

approximate but expected to be fairly accurate because of

the reasonably large sample size [see Chapter 22 of Mil-

liken & Johnson (64) for more detail]. Results from the

simulation are shown in Table 3 and discussed in the next

Table 3 Results from 1000 simulations

MCAR MAR NMAR

Complete cases 6.96, 1.12, 0.956 6.09, 1.05, 0.862 6.26, 1.09, 0.895
LOCF 5.98, 0.88, 0.791 6.18, 0.89, 0.853 6.23, 0.88, 0.852
Multiple imputation 6.99, 0.95, 0.958 6.99, 0.95, 0.961 7.00, 0.94, 0.961
Mixed effects models 7.08, 0.94, 0.948 7.09, 0.93, 0.951 7.10, 0.93, 0.953

The three numbers shown in each of the 12 entries are the mean of the 1000 estimated treatment effects, the mean of 1000 standard errors, and the 
proportion coverage of 95% confidence intervals, respectively, for the three missing data patterns and four methods of analysis. The true mean 
effect = 7 kg; MCAR, missing completely at random; MAR, missing at random; NMAR, not missing at random; LOCF, last observation carried forward.
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section. The simulations were coded and executed in S-

Plus; however, we include some SAS code to analyse a

sample data set in the Appendix. This data set would be

called TESTDATA and includes variables Y (change from

baseline), TRT (the treatment variable), Time (time of fol-

low-up visit), BASE (baseline weight), and SUB (subject

number).

Results and summary

The results in Table 3 illustrate many of the ideas discussed

earlier. The complete case analysis generally obtains an

unbiased estimate of the mean treatment effect when miss-

ing data are MCAR but produces biased estimates under

MAR or NMAR. Standard errors are higher than the other

methods of analysis because of loss of efficiency associated

with smaller sample sizes (after omitting cases with missing

values). LOCF produces biased estimates for all three types

of missing data in these particular simulations. This hap-

pens because LOCF misses the trend of ‘more’ weight loss

as subjects remain in the trial longer. The LOCF estimates

are conservative in these simulations. LOCF also produces

the smallest standard errors because values imputed via the

LOCF method are taken as fixed at the final visit. With the

exception of complete case analysis for MCAR data, con-

fidence interval coverage is not accurate for either complete

case analysis or LOCF because of biased estimates and, in

the case of LOCF, underestimation of standard errors.

Both multiple imputation and mixed effects models

appear to produce unbiased estimates of a treatment effect

for all types of missing data. Moreover, standard errors are

fairly consistent between the two methods and among the

types of missing data. Confidence interval coverage is also

accurate with multiple imputation being perhaps slightly

conservative. Most noteworthy is that both multiple impu-

tation and mixed effects models perform well for either

data MAR or NMAR. The fact that all subjects completed

the first follow-up visit (and that there were only three

scheduled) combined with the high correlation of weight in

the multivariate normal correlation matrix contributed to

this robust behaviour for NMAR data. Multiple imputa-

tion and mixed effects models were able to capture enough

information in the earlier visits to produce valid estimates

of a treatment effect.

Which of the two methods, that is, multiple imputation

or mixed effects models, is superior in general remains open

to question. Both have been used to advantage for the

analysis of incomplete data sets. The mixed effects models

might have a slight edge in preference for various reasons.

Some issues have been brought up regarding multiple impu-

tation when the analyst’s and imputer’s models are vastly

different. This was thought possible with large survey data

sets (perhaps from government sources) where the imputer

and analyst may be different individuals in different orga-

nizations. Whether such situations could commonly occur

with clinical trial data is less certain.

The mixed effects models have now been supplemented

with routines in statistical analysis software and supporting

textbooks dealing specifically with implementation of the

models using that software. Their connection to traditional

linear regression models may also have an appeal in addi-

tion to their mathematical foundation, that is, maximum

likelihood inference. They are not, however, impervious to

producing errors. Other simulations of the mixed effects

model analysis (not shown here) illustrated biased esti-

mates, underestimation of variances, and inaccurate confi-

dence interval coverage. These situations occurred when

the model was misspecified. For example, coding time as a

numeric variable and including it in the model as a linear

term overestimates the treatment effect. Observing that the

population mean treatment effects at weeks 4, 8, and 12

are 2, 5, and 7 kg, respectively, including only a linear term

with time in the model will establish a trend that overesti-

mates the week 12 weight change. Moreover, if time is not

included as a random effect, the high (yet varying) corre-

lation from visit to visit underestimates standard errors.

This highlights the need for the same tests of assumptions

and diagnostic techniques as required for usual linear

regression. Misspecifying a model can lead to errors regard-

less of the type of missing data. A summary of the infor-

mation on missing data, recommended methods of

analysis, and key references are given in Table 4.

Table 4 Summary of ‘modern’ methods of analysis, appropriate use and limitations, and some selected applied and theoretical references

Method of analysis Appropriate use Applied references Theory references

Multiple imputation using means of observed data When missing data are MCAR 34 38, 42, 45, 48
Multiple imputation with regression models using X When missing data are MCAR2 34 38, 42, 45, 48
Multiple imputation with models using all Yobs, X When missing data are MAR 27, 32, 34, 35, 49, 50, 51, 53 38, 42, 45, 48, 54
Mixed effect models, assumed to incorporate Yobs, X When missing data are MAR 33, 34, 47, 58, 59, 63 39, 55, 56, 57
Pattern mixture models Potentially useful to detect 

consequences of NMAR
61 38, 43, 60

References highlighted in bold indicate those focused on a software implementation of the method. MCAR, missing completely at random; MAR, missing 
at random; NMAR, not missing at random.
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Appendix

SAS code for analysing missing data example

/* Sort data */

PROC SORT DATA=TESTDATA;

  BY SUB TIME;

RUN;

/* Complete Case Analysis */

PROC TTEST DATA=TESTDATA;

  WHERE TIME=12;

  CLASS TRT;

  VAR Y;

RUN;

/* LOCF Analysis */

DATA LOCF;

  SET TESTDATA;

  BY SUB TIME;

  RETAIN LOCFY;

  IF FIRST.SUB THEN LOCFY=.;

  IF Y NE . THEN LOCFY=Y;

RUN;

PROC TTEST DATA=LOCF;

  WHERE TIME=12;

  CLASS TRT;

  VAR LOCFY;

RUN;

/* Multiple Imputation Analysis */

PROC TRANSPOSE DATA=TESTDATA OUT=TEMP;

  BY SUB;

  VAR Y;

  ID TIME;

  COPY BASE TRT;

RUN;

DATA TESTDATAB;

  SET TEMP;

  WHERE _NAME_=‘Y’;

RUN;

PROC MI DATA=TESTDATAB SEED=345621 OUT=

OUTMI;

  MONOTONE METHOD=REG;

  VAR _4 _8 _12;

RUN;

PROC SORT DATA=OUTMI;

  BY _IMPUTATION_;

RUN;

PROC GLM DATA=OUTMI;

  BY _IMPUTATION_;

  MODEL _12 = TRT / SOLUTION INVERSE;

  ODS OUTPUT PARAMETERESTIMATES=GLMPARMS

             INVXPX=GLMXPXI;

RUN;

PROC MIANALYSE PARMS=GLMPARMS XPXI=

GLMXPXI;

http://www.stat.psu.edu/~jls/
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  VAR INTERCEPT TRT;

RUN;

/* Mixed Model Analysis */

PROC MIXED DATA=TESTDATA;

  CLASS TRT TIME;

  MODEL Y = TRT TIME TRT*TIME /

 SOLUTION;

  RANDOM INTERCEPT TIME / SUBJECT=SUB;

  ESTIMATE ‘12 week Effect’ TRT 1 

-1 TRT*TIME 0 0 1 0 0 -1 / CL;

RUN;


