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Modern statistics for spatial point processes∗

April 1, 2006

Jesper Møller and Rasmus P. Waagepetersen

Department of Mathematical Sciences, Aalborg University

Abstract: We summarize and discuss the current state of spatial point process

theory and directions for future research, making an analogy with generalized

linear models and random effect models, and illustrating the theory with various

examples of applications. In particular, we consider Poisson, Gibbs, and Cox

process models, diagnostic tools and model checking, Markov chain Monte Carlo

algorithms, computational methods for likelihood-based inference, and quick

non-likelihood approaches to inference.

Keywords: Bayesian inference, conditional intensity, Cox process, Gibbs point

process, Markov chain Monte Carlo, maximum likelihood, perfect simulation,

Poisson process, residuals, simulation free estimation, summary statistics.

1 Introduction

Spatial point pattern data occur frequently in a wide variety of scientific disci-

plines, including seismology, ecology, forestry, geography, spatial epidemiology,

and material science, see e.g. Stoyan & Stoyan (1998), Kerscher (2000), Boots,

Okabe & Thomas (2003), Diggle (2003), and Ballani (2006). The classical spa-

tial point process textbooks like Ripley (1981, 1988), Diggle (1983), Stoyan &

Stoyan (1995), and Stoyan, Kendall & Mecke (1995) usually deal with rela-

tive small point patterns, where the assumption of stationarity is central and

∗Prepared for presentation as an special invited talk at the 21st Nordic Conference on

Mathematical Statistics, June 11 - 15, 2006, and for submission to the Scandinavian Journal

of Statistics.
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non-parametric methods based on summary statistics play a major role. In

recent years, fast computers and advances in computational statistics, particu-

larly Markov chain Monte Carlo (MCMC) methods, have had a major impact

on the development of statistics for spatial point processes. The focus has now

changed to likelihood-based inference for flexible parametric models, often de-

pending on covariates, and liberated from restrictive assumptions of stationarity.

In short, ‘Modern statistics for spatial point processes’, where recent textbooks

include Van Lieshout (2000), Diggle (2003), Møller & Waagepetersen (2003b),

and Baddeley, Gregori, Mateu, Stoica & Stoyan (2006).

Much of the literature on spatial point processes is fairly technical with ex-

tensive use of measure theoretical terminology and statistical physics parlance.

This has made the theory seem rather difficult. Moreover, in connection with

likelihood-based inference, many statisticians may be unfamiliar with the con-

cept of defining a density with respect to a Poisson process. It is our intention

in Sections 3–9 to give a concise and non-technical introduction to the modern

theory, making analogies with generalized linear models and random effect mod-

els, and illustrating the theory with various examples of applications introduced

in Section 2. In particular, we discuss Poisson, Gibbs, and Cox process mod-

els, diagnostic tools and model checking, MCMC algorithms and computational

methods for likelihood-based inference, and quick non-likelihood approaches to

inference. Section 10 summarizes the current state of spatial point process the-

ory and discusses directions for future research.

For definiteness, we mostly work with point processes defined in the plane

R
2, but most ideas easily extend to the general case of R

d or more abstract

spaces. For ease of exposition, no measure theoretical details are given; see

instead Møller & Waagepetersen (2003b) and the references therein. The com-

putations for the data examples were done using the R package spatstat (Bad-

deley & Turner, 2005, 2006) or our own programmes in C and R, where the code

is available at www.math.aau.dk/~rw/sppcode. Since we shall often refer to

our own monograph, please notice the comments and corrections to Møller &

Waagepetersen (2003b) at www.math.aau.dk/~jm.

2 Data examples

The following four examples of spatial point pattern data are from plant and

animal ecology, and are considered for illustrative purposes in subsequent sec-

2



tions. In each example, the observation window refers to the area where points

of the pattern can possibly be observed, i.e. when the point pattern is viewed

as a realization of a spatial point process (Section 3.1). Absence of points in a

region, where they could potentially occur, is a source of information comple-

mentary to the data on where points actually did occur. The specification of

the observation window is therefore an integral part of a spatial point pattern

data set.

Figure 1 shows positions of 55 minke whales (balaneoptera acutorostrata)

observed in a part of the North Atlantic near Spitzbergen. The whales are

observed visually from a ship sailing along predetermined so-called transect

lines. The point pattern can be thought of as an incomplete observation of all

the whale positions, since it is only possible to observe whales within the vicinity

of the ship. Moreover, whales within sighting distance may fail to be observed

due to bad weather conditions or if they are diving. The probability of observing

a whale is a decreasing function of the distance from the whale to the ship and

is effectively zero for distances larger than 2 km. The observation window is

therefore a union of narrow strips of width 4 km around the transect lines.

More details on the data set can be found in Skaug, Øien, Schweder & Bøthun

(2004) and Waagepetersen & Schweder (2005). The objective is to estimate the

abundance of the whales, or equivalently the whale intensity. The whales tend

to cluster around locations of high prey intensity, and a point process model for

all whale positions (including those not observed) should take this into account.

The point process model used in Waagepetersen & Schweder (2005) is described

in Example 4.2.

Figure 1: Observed whales along transect lines. The enclosing rectangle is of
dimensions 263 km by 116 km.

In studies of biodiversity of tropical rain forests, it is of interest to study
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whether the spatial patterns of the many different tree species can be related

to spatial variations in environmental variables concerning topography and soil

properties. Figure 2 shows positions of 3605 Beilschmiedia pendula Lauraceae

trees in the tropical rain forest of Barro Colorado Island. This data set is a part

of a much larger data set containing positions of hundreds of thousands of trees

belonging to thousands of species, see Hubbell & Foster (1983), Condit, Hubbell

& Foster (1996), and Condit (1998). In addition to the tree positions, covariate

information on altitude and norm of altitude gradient is available, see Figure 3.

Phrased in point process terminology, the question is whether the intensity of

Beilschmiedia trees may be viewed as a spatially varying function of the covari-

ates. In the study of this question, it is, as for the whales, important to take into

account clustering, which in the present case may be due to tree reproduction

by seed dispersal and possibly unobserved covariates. Different point process

models for the tree positions are considered in Examples 4.1 and 4.3.

Figure 2: Locations of Beilschmiedia pendula Lauraceae trees observed in a 1000
m by 500 m rectangular window.

Another pertinent question in plant ecology is how trees interact due to

competition. Figure 4 shows positions and stem diameters of 134 Norwegian

spruces. This data set was first analyzed by Fiksel (1984), and it is an example

of a marked point pattern, with points given by the tree locations and marks

by the stem diameters. The discs in Figure 4 are of radii five times the stem

diameters and may be thought of as ‘influence zones’ of the trees, see Penttinen,

Stoyan & Henttonen (1992) and Goulard, Särkkä & Grabarnik (1996). From

an ecological point of view it is of interest to study how neighbouring trees

interact, i.e. when their influence zones overlap. It is then natural to model

the conditional intensity, which roughly speaking determines the probability of
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Figure 3: Altitude (upper plot) in meter and norm of altitude gradient (lower
plot).

observing a tree at a given location and of given stem diameter conditional on

the neighbouring trees. In Example 5.1, we consider a simple model where the

conditional intensity depends on the amount of overlap between the influence

zones of a tree and its neighbouring trees.

Our last data set is an example of a multitype point pattern, with two types

of points specifying the positions of nests for two types of ants, messor wasmanni

and cataglyphis bicolor, see Figure 5 and Harkness & Isham (1983). Note the

rather atypical shape of the observation window. The interaction between the

two types of ants is of main interest for this data set. Biological knowledge

suggests that the messor ants are not influenced by presence or absence of

cataglyphis ants when choosing sites for their nests. The catagplyphis ants, on the

other hand, feed on dead messors and hence the positions of messor nest might

affect the choice of sites for cataglyphis nests. Högmander and Särkkä (1999)
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Figure 4: Norwegian spruces observed in a rectangular 56 m by 38 m window.
The radii of the discs equal 5 times the stem diameters.

therefore specify a hierarchical model: first a model for the conditional intensity

of a messor nest at a particular location given the neighbouring messor nests,

and second a conditional intensity for a cataglyphis nest given the neighbouring

cataglyphis nests and the neighbouring messor nests. Further details are given

in Example 5.2.

These examples illustrate many important features of interest for spatial

point process analysis: clustering due to e.g. seed dispersal or unobserved vari-

ation in prey intensity (as for the tropical rain forest trees and the whales),

inhomogeneity e.g. caused by a thinning mechanism or covariates (as for the

whales and tropical rain forest trees), and interaction between points, where

the interaction possibly depends on marks associated with the points (as for the

Norwegian spruces). The examples also illustrate different types of observation

windows.

3 Preliminaries

3.1 Spatial point processes

In the simplest case, a spatial point process X is a finite random subset of a given

bounded region S ⊂ R
2, and a realization of such a process is a spatial point

pattern x = {x1, . . . , xn} of n ≥ 0 points contained in S. We say that the point
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Figure 5: Locations of nests for messor (triangles) and cataglyphis (circles) ants.
Enclosing rectangle for observation window is 829 ft by 766 ft.

process is defined on S, and we write x = ∅ for the empty point pattern. The

number of points, n(X), is a random variable, and conditional on n(X) = n,

the joint distribution of the n points is exchangeable. An equivalent approach

is to specify the distribution of the counts of points within subsets of S, i.e. the

variables N(B) = n(XB) for subsets B ⊆ S, where XB = X ∩B.

If it is not known on which region the point process is defined, or if the pro-

cess extends over a very large region, or if certain invariance assumptions such

as stationarity are imposed, then it may be appropriate to consider an infinite

point process on R
2. We define a spatial point process X on R

2 as a locally finite

random subset of R
2, i.e. N(B) is a finite random variable whenever B ⊂ R

2

is a bounded region. We say that X is stationary respective isotropic if its

distribution is invariant under translations in R
2 respective rotations about the

origin in R
2. Stationarity and isotropy may be reasonable assumptions for point

processes observed within a homogeneous environment. These assumptions ap-

peared commonly in the older point process literature, where typically rather

small study regions were considered. We shall abandon these assumptions when

spatial covariate information is available.
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In most applications, the observation window W (see Section 2) is strictly

contained in the region S, where the point process is defined. Since X \W is

unobserved, we face a missing data problem, which in the spatial point process

literature is referred to as a problem of edge effects.

3.2 Moments

The mean structure of the count variables N(B), B ⊆ R
2, is summarized by

the moment measure

µ(B) = EN(B), B ⊆ R
2. (1)

In practice the mean structure is modelled in terms of a non-negative intensity

function ρ, i.e.

µ(B) =

∫

B

ρ(u) du

where we may interpret ρ(u) du as the probability that precisely one point falls

in an infinitesimally small region containing the location u and of area du.

The covariance structure of the count variables is most conveniently given

in terms of the second order factorial moment measure µ(2). This is defined by

µ(2)(A) = E

6=
∑

u,v∈X

1[(u, v) ∈ A], A ⊆ R
2 × R

2, (2)

where 6= over the summation sign means that the sum runs over all pairwise

different points u, v in X, and 1[·] is the indicator function. For bounded regions

B ⊆ R
2 and C ⊆ R

2,

Cov[N(B), N(C)] = µ(2)(B × C) + µ(B ∩ C) − µ(B)µ(C).

For many important model classes, µ(2) is given in terms of an explicitly known

second order product density ρ(2),

µ(2)(A) =

∫

1[(u, v) ∈ A]ρ(2)(u, v) dudv

where ρ(2)(u, v)dudv may be interpreted as the probability of observing a point

in each of two regions of infinitesimally small areas du and dv and containing u

and v. More generally, for integers n ≥ 1, the nth order factorial measure µ(n)
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is defined by

µ(n)(A) = E

6=
∑

u1,...,un∈X

1[(u1, . . . , un) ∈ A], A ⊆ R
2n, (3)

with corresponding nth order product density ρ(n). From (3) we obtain Camp-

bell’s theorem

E

6=
∑

u1,...,un∈X

h(u1, . . . , un) =

∫

h(u1, . . . , un)ρ(n)(u1, . . . , un) du1, · · ·dun (4)

for non-negative functions h. The nth order moment measure is given by the

right hand side of (3) without 6=. The reason for preferring the factorial moment

measures are the nicer expressions for the product densities, cf. (6) and (16).

In order to characterize the tendency of points to attract or repel each other,

while adjusting for the effect of a large or small intensity function, it is useful

to consider the pair correlation function

g(u, v) = ρ(2)(u, v)/(ρ(u)ρ(v)) (5)

(provided ρ(u) > 0 and ρ(v) > 0). If points appear independently of each other,

ρ(2)(u, v) = ρ(u)ρ(v) and g(u, v) = 1 (see also (6)). When g(u, v) > 1 we in-

terpret this as attraction between points of the process at locations u and v,

while if g(u, v) < 1 we have repulsion at the two locations. Translation invari-

ance g(u, v) = g(u− v) of g implies that X is second order intensity reweighted

stationary (Baddeley, Møller & Waagepetersen, 2000 and Section 6.2.1), and in

applications it is often assumed that g(u, v) = g(‖u − v‖) depends only on the

distance ‖u− v‖. Notice that very different point process models can share the

same g function (Baddeley & Silverman, 1984, Baddeley et al., 2000, Møller &

Waagepetersen, 2003b).

Suppose π(u) ∈ [0, 1], u ∈ R
2, are given numbers. An independent π-

thinning of X is obtained by independent retaining each point u in X with

probability π(u). It follows easily from (4) that π(u1) · · ·π(un)ρ(n)(u1, . . . , un)

is the nth order product density of the thinned process. In particular, π(u)ρ(u)

is the intensity function of the thinned process, while g is the same for the two

processes.

9



3.3 Marked point processes

In addition to each point u in a spatial point process X, we may have an

associated random variable mu called a mark. The mark often carries some

information about the point, like for example the radius of a disc as in Figure 4,

the type of ants as in Figure 5, or another point process (e.g. the clusters in a

shot noise Cox process, see Section 4.2.2). The process Φ = {(u,mu) : u ∈ X}
is called a marked point process. This is ‘just’ a special type of point process,

and many of the concepts for spatial point processes easily extend; see Stoyan &

Stoyan (1995), Schlather (2001), and Møller & Waagepetersen (2003b). For the

models presented later in this paper, the marked point process model of discs

in Figure 4 will be viewed as a point process in R
2 × (0,∞), and the bivariate

point process model of ants nests in Figure 5 will be specified by a hierarchical

model so that no methodology specific to marked point processes is needed.

3.4 Generic notation

Unless otherwise stated,

X denotes a generic spatial point process defined on a region S ⊆ R
2;

W ⊆ S is a bounded observation window;

x = {x1, . . . , xn} is either a generic finite point configuration or a realization

of XW (the meaning of x will always be clear from the context);

z(u) = (z1(u), . . . , zk(u)) is a vector of covariates depending on locations u ∈
S such as spatially varying environmental variables, known functions of

the spatial coordinates themselves or distances to known environmental

features, cf. Berman & Turner (1992) and Rathbun (1996);

β = (β1, . . . , βk) is a corresponding regression parameter;

θ is the vector of all parameters (including β) in a given parametric model.

4 Modelling the intensity function

This section discusses spatial point process models specified by a deterministic or

random intensity function in analogy with generalized linear models and random

effects models. Particularly, two important model classes, namely Poisson and
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Cox/cluster point processes are introduced. Roughly speaking, the two classes

provide models for no interaction and aggregated point patterns, respectively.

4.1 The Poisson process

A Poisson process X defined on S and with intensity measure µ and intensity

function ρ satisfies for any bounded region B ⊆ S with µ(B) > 0,

(i) N(B) is Poisson distributed with mean µ(B),

(ii) conditional on N(B), the points in XB are i.i.d. with density proportional

to ρ(u), u ∈ B.

Poisson processes are studied in detail in Kingman (1993). They play a funda-

mental role as a reference process for exploratory and diagnostic tools and when

more advanced spatial point process models are constructed.

If ρ(u) is constant for all u ∈ S, we say that the Poisson process is homoge-

neous. Realizations of the process may appear to be rather chaotic with large

empty space and close pairs of points, even when the process is homogeneous.

The Poisson process is a model for ‘no interaction’ or ‘complete spatial ran-

domness’, since XA and XB are independent whenever A,B ⊂ S are disjoint.

Moreover,

ρ(n)(u1, . . . , un) = ρ(u1) · · · ρ(un), g ≡ 1, (6)

reflecting the lack of interaction. Stationarity means that ρ(u) is constant, and

it implies anisotropy of X. Note that another Poisson process results if we make

an independent thinning of a Poisson process.

Typically, a log linear model of the intensity function is considered,

log ρ(u) = z(u)βT. (7)

The independence properties of a Poisson process are usually not realistic for

real data. Despite of this the Poisson process has enjoyed much popularity due

to its mathematical tractability.

4.2 Cox processes

One natural extension of the Poisson process is a Cox process X driven by a

non-negative process Λ = (Λ(u))u∈S, such that conditional on Λ, X is a Poisson

11



process with intensity function Λ (Cox, 1955; Grandell, 1976; Daley & Vere-

Jones, 2003).

Three points of statistical importance should be noticed. First, though Λ

may be modelling a random environmental heterogeneity, X is stationary if

Λ is stationary. Second, we cannot distinguish the Cox process X from its

corresponding Poisson process X|Λ when only one realization of XW is available,

cf. Bartlett (1964) and the discussion in Møller & Waagepetersen (2003b, Section

5.1). Third, the likelihood is in general unknown, while product densities may

be tractable. The consequences of the latter point are discussed in Sections 7

and 8.

4.2.1 Log Gaussian Cox processes

In analogy with random effect models, as an extension of the log linear model

(7), take

log Λ(u) = z(u)βT + Ψ(u) (8)

where Ψ = (Ψ(u))u∈S is a zero-mean Gaussian process. Then we call X a

log Gaussian Cox process (Møller, Syversveen & Waagepetersen, 1998). The

covariance function c(u, v) = Cov[Ψ(u),Ψ(v)] typically depends on some lower-

dimensional parameter, see e.g. Example 4.1 below. To ensure local integrability

of Λ(u), the covariance function has to satisfy certain mild conditions, which

are satisfied for models used in practice.

The product densities are particularly tractable. The intensity function

log ρ(u) = z(u)βT + c(u, u)/2 (9)

is log linear, g and c are in a one-to-one correspondence as

g(u, v) = exp(c(u, v))

and higher-order product densities are nicely expressed in terms of ρ and g

(Møller et al., 1998). Another advantageous property is that we have no problem

with edge effects, since XW is specified by the Gaussian process restricted to

W .

Example 4.1. (Log Gaussian Cox process model for tropical rain forest trees)

For the tropical rain forest trees in Figure 2, we consider in Example 7.5 infer-

ence for a log Gaussian Cox process with z(u) = (1, z2(u), z3(u)), where z2(u)

12



and z3(u) denote the altitude and gradient covariates given in Figure 3. An

exponential covariance function c(u, v) = σ2 exp(−‖u − v‖/α) is used for the

Gaussian process, where σ and α are positive parameters.

4.2.2 Shot noise Cox processes

A shot noise Cox process X has

Λ(u) =
∑

(c,γ)∈Φ

γk(c, u) (10)

where c ∈ R
2, γ > 0, Φ is a Poisson process on R

2 × (0,∞), and k(c, ·) is a

density for a two-dimensional continuous random variable (Møller, 2003). Note

that X is distributed as the superposition (i.e. union) of independent Poisson

processes X(c,γ) with intensity functions γk(c, ·), (c, γ) ∈ Φ, where we interpret

X(c,γ) as a cluster with centre c and mean number of points γ. Thus X is an

example of a Poisson cluster process, and provides a natural model for seed

setting mechanisms causing clustering, see e.g. Brix & Chadoeuf (2002). Simple

formulae for the intensity and pair correlation functions of a shot noise Cox

process are provided in Møller (2003).

Example 4.2. (Shot noise Cox process for minke whales) In Waagepetersen &

Schweder (2005), the positions of minke whales in Figure 1 are modelled as

an independent thinning of a shot noise Cox process. Letting p(u) denote the

probability of observing a whale at location u, the process of observed whales

is a Cox process driven by Λ(u) = p(u)
∑

(c,γ)∈Φ γk(c, u). The cluster centres

are assumed to form a stationary Poisson process with intensity κ, the c’s are

independent of the γ’s, and the γ’s are i.i.d. gamma random variables with

mean α and unit scale parameter. To handle edge effects, k(c, ·) is the density

of N2(c, ω
2I) restricted to c+ [−3ω, 3ω]2.

A particular simple case of a shot noise Cox process is a Neyman-Scott process

X, where the centre points form a stationary Poisson process with intensity κ

and the γ’s are all equal to a positive parameter α (Neyman & Scott, 1958).

If furthermore k(c, ·) is a bivariate normal density with mean c and covariance

matrix ω2I, then X is a Thomas process (Thomas, 1949). A Neyman-Scott

process is stationary with intensity ρ = ακ, and the Thomas process is also

isotropic with

g(r) = 1 + exp
(

−r2/(4ω2)
)

/(4πκω2), r > 0. (11)
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Shot noise Cox process can be extended in various interesting ways by al-

lowing the kernel k to depend on a random band width b and replacing Φ by a

Poisson or non-Poisson process model for the points (c, γ, b) (Møller & Torrisi,

2005). In this paper, we consider instead an extension which incorporates co-

variate information in a multiplicative way, i.e. an inhomogeneous Cox process

driven by

Λ(u) = exp
(

z(u)βT
)

∑

(c,γ)∈Φ

γk(c, u) (12)

(Waagepetersen, 2005). A nice feature is that the pair correlation function of

X is the same for (10) and (12), i.e. it does not depend on the parameter β.

Example 4.3. (Inhomogeneous Thomas model for tropical rain forest trees) In

addition to the log Gaussian Cox process model for the tropical trees (Exam-

ple 4.1), we consider an inhomogeneous Thomas process of the form (12),

Λ(u) =
α

2πω2
exp (β2z2(u) + β3z3(u))

∑

c∈Φ

exp
(

−‖u− c‖2/(2ω2)
)

where now Φ denotes a stationary Poisson process with intensity κ. Then the

intensity function is

ρ(u) = κα exp (β2z2(u) + β3z3(u)) (13)

while the pair correlation function is equal to (11).

5 Modelling the conditional intensity function

Gibbs point processes arose in statistical physics as models for interacting parti-

cle systems. The intensity function for a Gibbs process is unknown; instead, the

Papangelou conditional intensity λ(u,x) (Papangelou, 1974) becomes the appro-

priate starting point for modelling. The definition and interpretation of λ(u,x)

are given in Section 5.2 in terms of the density of a finite point process and in

Section 5.4 using a more technical account for infinite point processes. The den-

sity of a Gibbs point process is specified in Section 5.3. Though the density has

an unknown normalizing constant, likelihood inference based on MCMC meth-

ods is easier for parametric Gibbs point process models than for Cox processes;

see Section 7. While Cox processes provide flexible models for aggregation or

clustering in a point pattern, Gibbs point processes provide flexible models for
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regularity or repulsion (Sections 5.3 and 10.3).

5.1 Finite point processes with a density

Throughout this section we assume that S is bounded and X is a finite point

process defined on S. Moreover, Yρ denotes a Poisson process on S with in-

tensity measure µ and intensity function ρ. In particular, Y1 is the unit rate

Poisson process on S with intensity ρ ≡ 1. Before defining what is meant by

the density of X, we need the following useful Poisson expansion. If F denotes

any event of spatial point patterns contained in S, by (i)-(ii) in Section 4.1,

P(Yρ ∈ F ) =

∞
∑

n=0

e−µ(S)

n!

∫

Sn

1[x ∈ F ] ρ(x1) · · · ρ(xn) dx1 · · ·dxn (14)

where x = {x1, . . . , xn}.
By (14), X has density f with respect to Y1 if

P(X ∈ F ) = E [1[Y1 ∈ F ]f(Y1)]

=

∞
∑

n=0

e−|S|

n!

∫

Sn

1[x ∈ F ] f(x) dx1 · · ·dxn (15)

where |S| is the area of S. Combining (3) and (15) it follows that

ρ(n)(u1, . . . , un) = Ef(Y1 ∪ {u1, . . . , un}) (16)

for any n ∈ N and pairwise different points u1, . . . , un ∈ S. Conversely, under

mild conditions, f can be expressed in terms of the product densities ρ(n) (Mac-

chi, 1975). Furthermore, conditional on n(X) = n with n ≥ 1, the n points in

X have a symmetric joint density

fn(x1, . . . , xn) ∝ f({x1, . . . , xn}) (17)

on Sn.

Apart from the Poisson process and a few other simple models such as the

mixed Poisson process (Grandell, 1997), the density is not on a closed form. For

the Poisson process Yρ, (14) gives

f(x) = e|S|−µ(S)
n

∏

i=1

ρ(xi). (18)
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Thus, for a Cox process driven by Λ = (Λ(u))u∈S,

f(x) = E

[

exp

(

|S| −
∫

S

Λ(u) du

)

∏

u∈X

Λ(u)

]

(19)

which in general is not on a closed form.

5.2 The conditional intensity

The usual conditional intensity of a one-dimensional point process does not ex-

tend to two-dimensional point processes because of the lack of a natural ordering

in R
2. Instead, the Papangelou conditional intensity becomes the appropriate

counterpart (Papangelou, 1974); a formal definition is given below.

Let the situation be as in Section 5.1, and suppose that f is hereditary, i.e.

f(x) > 0 and y ⊂ x ⇒ f(y) > 0 (20)

for finite point configurations x ⊂ S. This positivity condition is usually as-

sumed in practice.

Now, for locations u ∈ S and finite point configurations x ⊂ S, the Papan-

gelou conditional intensity is defined by

λ(u,x) = f(x ∪ {u})/f(x \ {u}) (21)

if f(x \ {u}) > 0, and λ(u,x) = 0 otherwise. The precise definition of λ(u,x)

when u ∈ x is not that important, and (21) just covers this case for completeness.

Note that λ(u,x) = λ(u,x \ {u}), and (20) implies that f and λ are in a one-

to-one correspondence.

For a Poisson process, the Papangelou conditional intensity is simply the

intensity: if f(x) > 0 is given by (18), then λ(u,x) = ρ(u) does not depend on

x, again showing the absence of interaction in a Poisson process.

Combining (16) and (20)–(21),

ρ(u) = Eλ(u,X). (22)

Recall that the conditional probability P(A|x) of an event A given X = x

satisfies P(A) = E[P(A|X)]. Thus due to the infinitesimal interpretation of

ρ(u) du (Section 3.2), it follows from (22) that λ(u,x) du may be interpreted as

the conditional probability that there is a point of the process in an infinitesimal

16



region containing u and of area du given that the rest of the point process

coincides with x.

Often a density f is specified by an unnormalized density h, i.e. f ∝ h where

h is an hereditary function, for which the normalizing constant Eh(Y1) is well

defined but unknown. However,

λ(u,x) = h(x ∪ {u})/h(x \ {u})

does not depend on the normalizing constant. This is one reason why inference

and simulation procedures are often based on the conditional intensity rather

than the density of the point process.

In practically all cases of spatial point process models, an unnormalized

density h is locally stable, that is, there is a constant K such that

h(x ∪ {u}) ≤ Kh(x) (23)

for all u ∈ S and finite x ⊂ S. Local stability implies both that h is hereditary

and integrable with respect to unit rate Poisson process. Local stability also

plays a fundamental role when studying stability properties of MCMC algo-

rithms (Section 9.2).

5.3 Finite Gibbs point processes

Consider again a finite point process X defined on the bounded region S and

with hereditary density f . This is a Gibbs point process (also called a canonical

ensemble in statistical physics) if

log λ(u,x) =
∑

y⊆x

U(y ∪ {u}) when f(x) > 0 (24)

where the function U(x) ∈ [−∞,∞) is defined for all non-empty finite point

configurations x ⊂ S, and we set log 0 = −∞. In statistical mechanical terms,

U is a potential.

A large selection of Gibbs point process models are given in Van Lieshout

(2000) and Møller & Waagepetersen (2003b). Usually, a log linear model is

considered, where the first order potential is either constant or depends on

spatial covariates

U(u) ≡ U({u}) = z(u)βT
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and higher order potentials are of the form

U(x) = V (x)ψT

n(x), n(x) ≥ 2

where the ψn are so-called interaction parameters. Then λ is parameterized by

θ = (β, ψ2, ψ3, . . .) and is on log linear form

log λθ(u,x) = (t(x ∪ {u}) − t(x))θT (25)

where

t(x) =





∑

u∈x

z(u),
∑

y⊆x: n(y)=2

V (y),
∑

y⊆x: n(y)=3

V (y), . . .



 . (26)

Combining (21) and (24), the Gibbs process has density

f(x) ∝ exp





∑

∅6=y⊆x

U(y)



 (27)

defining exp(−∞) = 0. Unless X is Poisson, i.e. when U(y) = 0 whenever

n(y) ≥ 2, the normalizing constant of the density is unknown. Usually for

models used in practice, U(y) ≤ 0 if n(y) ≥ 2, which implies local stability

(and hence integrability). This means that the points in the process repel one

other, so that realizations of the process tend to be more regular than for a

Poisson process. Most Gibbs models are pairwise interaction processes, i.e.

U(y) = 0 whenever n(y) ≥ 3, and typically the second order potential depends

on distance only, U({u, v}) = U(‖u − v‖). A hard core process with hard core

r > 0 has U({u, v}) = −∞ whenever ‖u− v‖ < r.

By the Hammersley-Clifford theorem (Ripley & Kelly, 1977), any hereditary

density is of the form (27) and the following properties (I) and (II) are equivalent.

(I) U(x) = 0 whenever there exist two points {u, v} ⊆ x such that ‖u−v‖ > R.

(II) If f(x) > 0 and u ∈ S \ x, then λ(u,x) = λ(u,x ∩ b(u,R)).

Here b(u,R) is the closed disc with centre u and radius R. When (I) or (II) is

satisfied, X is said to be Markov with interaction radius R, or more precisely,

Markov with respect to the R-close neighbourhood relation. This definition

and the Hammersley-Clifford theorem can be extended to an arbitrary sym-

metric relation on S (Ripley & Kelly, 1977) or even a relation which depends

on realizations of the point process (Baddeley & Møller, 1989). Markov point
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processes constitute a particular important subclass of Gibbs point processes,

since the local Markov property (II) very much simplifies the computation of

the Papangelou conditional intensity in relation with parameter estimation and

simulation.

The local Markov property (II) implies a spatial Markov property. If B ⊂ S

and ∂B = {u 6∈ B : b(u,R) ∩ B 6= ∅} is its R-close neighbourhood, then

the process XB conditional on XBc depends only on XBc through X∂B. The

conditional process XB |X∂B = x∂B is also Gibbs, with density

fB(xB|x∂B) ∝ exp





∑

∅6=y⊆xB

U(y ∪ x∂B)



 (28)

where the normalizing constant depends on x∂B (the conditional density may

be arbitrarily defined if U(y) = −∞ for some non-empty point configuration

y ⊆ x∂B). The corresponding Papangelou conditional intensity is

λ(u,xB|x∂B) = λ(u,xB ∪ x∂B), u ∈ B. (29)

Example 5.1. (Overlap interaction model for Norwegian spruces) The condi-

tional intensity for a Norwegian spruce with a certain influence zone should

depend not only on the positions but also on the influence zones of the neigh-

bouring trees, see Figure 4. A tree with influence zone given by the disc b(u,mu),

where u is the spatial location of the tree and mu is the influence zone radius, is

treated as a point (u,mu) in R
3. Confining ourselves to a pairwise interaction

process, we define the pairwise potential by

U({(u,mu), (v,mv)}) = ψ|b(u,mu) ∩ b(v,mv)|, ψ ≤ 0.

Hence, the strength of the repulsion between two trees (u,mu) and (v,mv) is

given by ψ times the area of overlap between the influence zones of the two

trees. We assume that the influence zone radii belong to a bounded interval

M = [a, b], where a and b are estimated by the minimal and maximal observed

influence zone radii. We divide M into six disjoint subintervals of equal size,

and define the first order potential by

U((u,mu)) = β(mu) = βk if mu falls in the kth subinterval

where βk is a real parameter. This enables modelling the varying numbers
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of trees in the six different size classes. However, the interpretation of the

conditional intensity

λθ((u,mu),x) = exp



β(mu) + ψ
∑

(v,mv)∈x

|b(u,mu) ∩ b(v,mv)|



 (30)

is not straightforward — it is for instance not in general a monotone function

of mu. On the other hand, for a fixed (u,mu), the conditional intensity will

always decrease if the neighbouring influence zones increase.

Example 5.2. (Hierarchical model for ants nests) The hierarchical model in

Högmander & Särkkä (1999) for the positions of ants nests is based on so-called

Strauss processes with hard cores and interaction range R = 45 (distances are

measured in ft). Details follow below.

For distances t > 0, define

V (t; r) =



















−∞ if t ≤ r

1 if r < t ≤ 45

0 otherwise

where r ≥ 0 denotes a hard core distance (or no hard core if r = 0). For the

Messor nests, the Strauss process process with hard core rM is given by first

and second order potentials

UM1(u) = βM , UM2({u, v}) = ψMV (‖u− v‖; rM ),

and no higher order interactions. The conditional intensity for a putative nest

at a location u is thus zero if an existing nest occur within distance rM from

u, and otherwise the log conditional density is given by the sum of βM and ψM

times the number of neighbouring nests within distance 45. Given the pattern

xM of Messor nests, the Cataglyphis nests are modelled as an inhomogeneous

Strauss process with one hard core rCM to the Messor nests and another hard

core rC between the Cataglyphis nests, i.e. using potentials

UC1(u) = βC + ψCM

∑

v∈xM

V (‖u− v‖; rCM ), UC2({u, v}) = ψCV (‖u− v‖; rC).

Finally, the hard cores are estimated by the observed minimum interpoint dis-

tances, i.e. rM = 9.35, rC = 2.45, and rCM = 6.1.
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The Strauss processes with hard cores rM > 0 and rC > 0 are well-defined

for all real values of the parameters βM , βC , ψM , ψCM , and ψC . However,

as noted by Møller (1994), the Strauss hard core process is a poor model for

clustering due to the following ‘phase transition property’: for positive values of

the interaction parameter, except for a narrow range of values, the distribution

will either be concentrated on point patterns with one dense cluster of points

or in ‘Poisson-like’ point patterns. We later also use the estimates rM = 9.35

and rC = 2.45, but we find it more natural to consider a model with no hard

core between the two types of ants nests, i.e. to let rCM = 0. Figure 6 shows

the support of the covariate function z2(u) =
∑

v∈xM
V (‖u − v‖; 0) for the

Cataglyphis model with rCM = 0.
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Figure 6: The white region is the set of u ∈ W with distance less than 45 to a
Messor nest. The dots show the locations of Cataglyphis nests.

5.4 Infinite Gibbs point processes

In general it is not possible to deal with densities of infinite point processes.

For example, a stationary Poisson process has a density with respect to another

stationary Poisson process if and only if their intensities are equal. However, the
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Papangelou conditional intensity for a point process X on R
2 can be indirectly

defined as follows. If λ(u,x) is a non-negative function defined for locations

u ∈ R
2 and locally finite point configurations x ⊂ R

2 such that

E
∑

u∈X

h(u,X \ {u}) =

∫

E[λ(u,X)h(u,X)] du (31)

for all non-negative functions h, then λ is the Papangelou conditional inten-

sity of X. In fact two infinite point processes can share the same Papangelou

conditional intensity; this phenomenon is known in statistical physics as phase

transition.

The integral formula (31) is called the Georgii-Nguyen-Zessin formula (Geor-

gii, 1976; Nguyen & Zessin, 1979), and this together with the Campbell theorem

are basically the only known general formulae for spatial point processes. It is

straightforward to verify (31) when X is defined on a bounded region, so that

it is a finite point process with Papangelou conditional intensity (21). Using

induction we obtain the iterated GNZ-formula

E

6=
∑

x1,...,xn∈X

h(x1, . . . , xn,X \ {x1, . . . , xn}) =

∫

· · ·
∫

E[λ(x1,X)λ(x2,X ∪ {x1})

· · ·λ(xn,X ∪ {x1, . . . , xn−1})h(x1, . . . , xn,X)] dx1 · · ·dxn (32)

for non-negative functions h. Combining (3) and (32), we see that

ρ(n)(u1, . . . , un) = E[λ(u1,X)λ(u2,X ∪ {u1}) · · ·λ(un,X ∪ {u1, . . . , un−1})].
(33)

Notice that the iterated GNZ-formula (32) implies the Campbell theorem (4).

For instance, for a Cox process driven by Λ, the Papangelou conditional

intensity is the Bayes estimator

λ(u,X) = E [Λ(u) |X] . (34)

However, this conditional expectation is usually unknown, and the GNZ-formula

is more useful in connection with Gibbs point processes as described below.

The most common approach for defining a Gibbs point process X on R
2 is to

assume that X satisfies the spatial Markov property with respect to the R-close

neighbourhood relation, and has conditional densities of a similar form as in the

finite case. That is, for any bounded region B ⊂ R
2, XB |XBc depends on XBc

22



only through X∂B, and (28) specifies the conditional density. An equivalent

approach is to assume that X has a Papangelou conditional intensity, which in

accordance with (28) and (29) satisfies λ(u,X) = λ(u,X ∩ b(u,R)), where for

finite point configurations x ⊂ R
2 and locations u ∈ R

2,

λ(u,x) = exp





∑

y⊆x

U(y ∪ {u})



 if u 6∈ x, λ(u,x) = λ(u,x\{u}) if u ∈ x.

Unfortunately, (33) is not of much use here, and in general a closed form ex-

pression for ρ(n) is unknown when X is Gibbs.

Questions of much interest in statistical physics are if a Gibbs process exists

for λ specified by a given potential U as above, and if the process is unique (i.e.

no phase transition) and stationary (even in that case it may not be unique);

see Ruelle (1969), Preston (1976), Georgii (1976), Nguyen & Zessin (1979) or

the review in Møller & Waagepetersen (2003b). These questions are of less

importance in spatial statistics, where the process is observed within a bounded

window W and, in order to deal with edge effects, we can use the so-called

border method. That is, we base inference on XW⊖R
|X∂W⊖R

, where W⊖R is the

clipped observation window

W⊖R = {u ∈W : b(u,R) ⊂W}

and the Papangelou conditional intensity is given by λ(u,xW⊖R
|x∂W⊖R

) =

λ(u,x) when XW = x is observed. We return to this issue in Sections 6.1.3

and 7.2.

6 Exploratory and diagnostic tools

It is often difficult to assess the properties of a spatial point pattern by eye. A

realization of a homogeneous Poisson process may for example appear clustered

due to points which happen to be close just by chance. This section explains

how to explore the features of a spatial point pattern with the aim of suggesting

an appropriate model, and how to check and critize a fitted model. The resid-

uals described in Section 6.1 are useful to assess the adequacy of the specified

(conditional) intensity function in relation to a given data set. The second order

properties specified by the pair correlation function and the distribution of in-

terpoint distances may be assessed using the more classical summary statistics
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in Section 6.2.

In this section, ρ̂ and λ̂ denote estimates of the intensity function and the Pa-

pangelou conditional intensity, respectively. These estimates may be obtained

by non-parametric or parametric methods. In the stationary case, or at least if

ρ is constant on S, a natural unbiased estimate is ρ̂ = n/|W |. In the inhomoge-

neous case, a non-parametric kernel estimate is

ρ̂(u) =
n

∑

i=1

k(u− xi)/

∫

W

k(v − u) dv (35)

where k is a kernel with finite band width, and where the denominator is an

edge correction factor ensuring that
∫

W
ρ̂(u) du is an unbiased estimate of µ(W )

(Diggle, 1985). If the intensity or conditional intensity is specified by a para-

metric model, ρ = ρθ or λ = λθ, and θ is estimated by θ̂(x) (Sections 7–8), we

let ρ̂ = ρθ̂(x) or λ̂ = λθ̂(x).

6.1 Residuals

For a Gibbs point process with log Papangelou conditional intensity (24), the

first order potential corresponds to the linear predictor of a generalised lin-

ear model (GLM), while the higher order potentials are roughly analogous to

the distribution of the errors in a GLM. Recently, Baddeley, Turner, Møller &

Hazelton (2005) developed a residual analysis for spatial point processes based

on the GNZ-formula (31) and guided by the analogy with residual analysis for

(non-spatial) GLM’s. For a Cox process, the Papangelou conditional intensity

(34) is usually not known on closed form, while the intensity function may be

tractable. In such cases, Waagepetersen (2005) suggested residuals be defined

using instead the intensity function. Whether we base residuals on the condi-

tional intensity or the intensity, the two approaches are very similar.

6.1.1 Definition of innovations and residuals

For ease of exposition we assume first that the point process X is defined on

the observation window W ; the case where X extends outside W is considered

in Section 6.1.3.

For non-negative functions h(u,x), define the h-weighted innovation by

Ih(B) =
∑

u∈XB

h(u,X \ {u}) −
∫

B

λ(u,X)h(u,X) du, B ⊆W. (36)
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We will allow infinite values of h(u,x) if u ∈ x, in which case we define

λ(u,x)h(u,x) = 0 if λ(u,x) = 0. Baddeley et al. (2005) study in particular

the raw, Pearson, and inverse-λ innovations given by h(u,x) = 1, 1/
√

λ(u,x),

1/λ(u,x), respectively. Note that Ih is a signed measure, where we may inter-

pret ∆I(u) = h(u,X \ {u}) as the innovation increment (‘error’) attached to a

point u in X, and dI(u) = −λ(u,X)h(u,X)du as the innovation increment at-

tached to a background location u ∈W . Assuming that the sum or equivalently

the integral in (36) has finite mean, the GNZ-formula (31) gives

EIh(B) = 0. (37)

The h-weighted residual is defined by

Rĥ(B) =
∑

u∈xB

ĥ(u,x \ {u}) −
∫

B

λ̂(u,x)ĥ(u,x) du, B ⊆W, (38)

where, as the function h may depend on the model, ĥ denotes an estimate. This

also is a signed measure, and we hope that the mean of the residual measure is

approximately zero. The raw, Pearson, and inverse-λ residuals are

R(B) = n(x) −
∫

B

λ̂(u,x) du,

R
1/
√

λ̂
(B) =

∑

u∈xB

1/

√

λ̂(u,x) −
∫

B

√

λ̂(u,x) du,

R1/λ̂(B) =
∑

u∈xB

1/λ̂(u,x) −
∫

B

1[λ̂(u,x) > 0] du.

In order that the Pearson and inverse-λ residuals be well defined, we require

that λ̂(u,x) > 0 for all u ∈ x. Properties of these innovations and residuals are

analyzed in Baddeley, Møller and Pakes (2006).

Similarly, we define innovations and residuals based on ρ, where we in all

expressions above replace λ and λ̂ by ρ and ρ̂, respectively, and h(u,x) and

ĥ(u,x) by h(u) and ĥ(u), respectively. Here it is required that
∫

W
h(u)ρ(u) du <

∞, so that (37) also holds in this case.
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6.1.2 Diagnostic plots

Baddeley et al. (2005) suggest various diagnostic plots for spatial trend, depen-

dence of covariates, interaction between points, and other effects. In particular,

the plots can check for the presence of such features when the fitted model does

not include them. The plots are briefly described below in the case of residuals

based on λ; if we instead consider residuals based on ρ, we use the same substi-

tutions as in the preceding paragraph. Figures 7 and 8 show specific examples

of the plots in the case of the Cataglyphis nests model (Examples 5.2) fitted in

Example 8.2 and based on raw residuals (h ≡ 1). The plots are corrected for

edge effects, cf. Section 6.1.3.

The mark plot is a pixel image with greyscale proportional to λ̂(u,x)ĥ(u,x)

and a circle centred at each point u ∈ x with radius proportional to the residual

mass ĥ(u,x \ {u}). The plot may sometimes identify ‘extreme points’. For

example, for Pearson residuals and a fitted model of correct form, large/small

circles and dark/light greyvalues should correspond to low/high values of the

conditional intensity, and in regions of the same greylevel the circles should

be uniformly distributed. The upper left plot in Figure 7 is a mark plot for

the raw residuals obtained from the model fitted to the Cataglyphis nests in

Example 8.2. In this case, the circles are by definition of the same radii and just

show the locations of the nests. In the region of the large cluster of circles one

could perhaps have expected larger values (more light grey scales) of the fitted

conditional intensity.

The smoothed residual field at location u ∈W is

s(u,x) =

∑n
1 k(u− xi)ĥ(xi,x \ {xi}) −

∫

W
k(u− v)λ̂(u,x)ĥ(v,x) dv

∫

W
k(u− v) dv

(39)

where k is a kernel and the denominator is an edge correction factor. For exam-

ple, for raw residuals, the numerator of (39) has mean
∫

W
k(u− v)E[λ(v,X) −

λ̂(v,X)] dv, so positive/negative values of s suggest that the fitted model un-

der/overestimates the intensity function. The smoothed residual field may be

presented as a greyscale image and a contour plot, see the lower right plot in

Figure 7 which suggests some underestimation of the conditional intensity at

the middle of the plot and overestimation in the top part of the plot.

For a given covariate z : W 7→ R and numbers t, define W (t) = {u ∈ W :

z(u) ≤ t}. A plot of the ‘cumulative residual function’ A(t) = Rĥ(W (t)) is

called a lurking variable plot, since it may detect if z should be included in the
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model. If the fitted model is correct, we expect A(t) ≈ 0. The upper right

and lower left plots in Figure 7 show lurking variable plots for the covariates

given by the y and x spatial coordinates, respectively. The upper right plot

indicates (in accordance with the lower right plot) a decreasing trend in the

y direction, whereas there is no indication of trend in the x direction. The

possible defects of the model indicated by the right plots in Figure 7 might

to be related to inhomogeneity due to that the observation window consists of

a ‘field’ and a ‘scrub’ part divided by a boundary which runs roughly along

the diagonal from the lower left to the upper right corner (Harkness & Isham,

1983). Including covariates given by an indicator for the field and the spatial

y-coordinate improved somewhat the appearance of the diagnostic plots.

Baddeley et al. (2005) also consider a Q-Q plot comparing empirical quan-

tiles of s(u,x) with corresponding expected empirical quantiles estimated from

s(u,x(1)), . . . , s(u,x(n)), where x(1), . . . ,x(n) are simulations from the fitted

model. This is done using a grid of fixed locations uj ∈ W, j = 1, . . . , J . For

each k = 0, . . . , n, where x(0) = x is the data, we sort s
(k)
j = s(uj ,x

(k)), j =

1, . . . , J to obtain the order statistics s
(k)
[1] ≤ . . . ≤ s

(k)
[J] . We then plot s

(0)
[j] versus

the estimated expected empirical quantile
∑n

k=1 s
(k)
[j] /n for j = 1, . . . , J . The

Q-Q plot in Figure 8 shows some deviations between the observed and estimated

quantiles but each observed order statistic fall within the 95% intervals obtained

from corresponding simulated order statistics.

6.1.3 Edge effects

Substantial bias and other artifacts in the diagnostic plots for residuals based

on λ may occur if edge effects are ignored. We therefore use the border method

as follows (see also Baddeley, Møller and Pakes, 2006). Suppose the fitted

model is Gibbs with interaction radius R (Sections 5.3-5.4). For locations u

in W \W⊖R = ∂W⊖R, λ(u,x) may depend on points in x which are outside

the observation window W . Since the Papangelou conditional intensity (29)

with B = W⊖R does not depend on points outside the observation window, we

condition on X∂W⊖R
= x∂W⊖R

and plot residuals only for u ∈ W⊖R. See e.g.

the upper left plot in Figure 7.

For residuals based on ρ instead, we have no edge effects, so no adjustment

of the diagnostic tools in Section 6.1.2 is needed.
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Figure 7: Plots for Cataglyphis nests based on raw residuals: mark plot (upper
left), lurking variable plots for covariates given by y and x coordinates (upper
right, lower left), and smoothed residual field (lower right). Dark grey scales
correspond to small values.

6.2 Summary statistics

This section considers the more classical summary statistics such as Ripley’s K-

function and the nearest-neighbour function G. See also Baddeley, Møller and

Waagepetersen (2006) who develop residual versions of such summary statistics.

6.2.1 Second order summary statistics

Second order properties are described by the pair correlation function g, where

it is convenient if g(u, v) only depends on the distance ‖u − v‖ or at least

the difference u − v (note that g(u, v) is symmetric). Kernel estimation of g
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Figure 8: Q-Q plot for Cataglyphis nests based on smoothed raw residual field.
The dotted lines show the 2.5% and 97.5% percentiles for the simulated order
statistics

is discussed in Stoyan & Stoyan (2000). Alternatively, if g(u, v) = g(u − v)

is translation invariant, one may consider the inhomogeneous reduced second

moment measure (Baddeley et al., 2000)

K(B) =

∫

B

g(u) du, B ⊆ R
2.

More generally, if g is not assumed to exist or to be translation invariant, we

may define

K(B) =
1

|A|E
∑

u∈XA

∑

v∈X\{u}

1[u− v ∈ B]

ρ(u)ρ(v)
(40)

provided that X is second order reweighted stationary which means that the right

hand side of (40) does not depend on the choice of A ⊂ R
2, where 0 < |A| <∞.

Note that K is invariant under independent thinning.

The (inhomogeneous) K-function is defined by K(r) = K(b(0, r)), r > 0.

Clearly, if g(u, v) = g(‖u − v‖), then K is determined by K, and K(r) =

2π
∫ r

0
sg(s) ds, so that g and K are in a one-to-one correspondence. In the

stationary case of X, it follows from (40) that ρK(r) has the interpretation as
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the expected number of further points within distance r from a typical point in

X, and ρ2K(r)/2 is the expected number of (unordered) pairs of distinct points

not more than distance r apart and with at least one point in a set of unit area

(Ripley, 1976). A formal definition of ‘typical point’ is given in terms of Palm

measures, see e.g. Møller & Waagepetersen (2003b). For a Poisson process,

K(r) = πr2.

In our experience, non-parametric estimation of K is more reliable than that

of g, since the latter involves kernel estimation, which is sensitive to the choice

of the band width. Various edge corrections have been suggested, the simplest

and most widely applicable being

K̂(r) =

6=
∑

u,v∈x

1[‖u− v‖ ≤ r]

ρ̂(u)ρ̂(v)|W ∩Wu−v|
(41)

where Wu is W translated by u, and ρ̂ is an estimate of the intensity function.

One possibility is the non-parametric estimate of ρ given in (35) but the resulting

estimate K̂(r) is very sensitive to the choice of kernel band width. In general

we prefer to use a parametric estimate of the intensity function.

An estimate of the K-function for the tropical rain forest trees obtained with

a parametric estimate of the intensity function (see Example 8.1) is shown in

Figure 9. The plot also shows theoretical K-functions for fitted log Gaussian

Cox, Thomas, and Poisson processes, where all three processes share the same

intensity function (details are given later in Example 8.3). The trees seem to

form a clustered point pattern since the estimated K-function is markedly larger

than the theoretical K-function for a Poisson process.

One often considers the L-function L(r) =
√

K(r)/π, which is a variance

stabilizing transformation whenK is estimated by non-parametric methods (Be-

sag, 1977). Moreover, for a Poisson process, L(r) = r. In general, at least for

small distances, L(r) > r indicates aggregation and L(r) < r indicates regu-

larity. Usually when a model is fitted, L̂(r) =

√

K̂(r)/π or L̂(r) − r is plotted

together with the average and 2.5% and 97.5% quantiles based on simulated

L̂-functions under the fitted model; we refer to these bounds as 95% envelopes.

Examples are given in the right plots of Figures 11 and 12.

Estimation of third-order properties and of directional properties (so-called

directional K-functions) is discussed in Stoyan & Stoyan (1995), Møller et al.

(1998), and Schladitz & Baddeley (2000).
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Figure 9: Estimated K-function for tropical rain forest trees and theoretical
K-functions for fitted Thomas, log Gaussian Cox, and Poisson processes.

6.2.2 Interpoint distances

In order to interpret the following summary statistics based on interpoint dis-

tances, we assume stationarity of X. The empty space function F is the distri-

bution function of the distance from an arbitrary location to the nearest point

in X,

F (r) = P(X ∩ b(0, r) 6= ∅), r > 0.

The nearest-neighbour function is defined by

G(r) =
1

ρ|W |E
∑

u∈X∩W

1[(X \ {u}) ∩ b(u, r)], r > 0,

which has the interpretation as the cumulative distribution function for the

distance from a ‘typical’ point in X to its nearest-neighbour point in X. Thus,

for small distances, G(r) and ρK(r) are closely related. For a stationary Poisson

process, F (r) = G(r) = 1 − exp(−πr2). In general, at least for small distances,

F (r) > G(r) indicates aggregation and F (r) < G(r) indicates regularity. Van

Lieshout & Baddeley (1996) study the nice properties of the J-function defined
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by J(r) = (1 −G(r))/(1− F (r)) for F (r) < 1.

Non-parametric estimation of F and G which account for edge effects is

straightforward using border methods, see e.g. Møller & Waagepetersen (2003b).

An estimate of J is obtained by plugging in the estimates of F and G in the

expression for J . We combine the estimates to obtain an estimate of J . Esti-

mates of F , G, and J for the positions of Norwegian spruces shown in Figure 10

provide evidence of repulsion.
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Figure 10: Left to right: estimated F , G, and J-functions for the Norwegian
spruces (solid lines) and 95% envelopes calculated from simulations of a homo-
geneous Poisson process (dashed lines) with expected number of points equal
to the observed number of points. The long-dashed curves show the theoretical
values of F , G, and J for a Poisson process.

7 Likelihood-based inference and MCMC meth-

ods

Computation of the likelihood function is usually easy for Poisson process mod-

els (Section 7.1), while the likelihood contains an unknown normalizing constant

for Gibbs point process models, and is given in terms of a complicated integral

for Cox process models. Using MCMC methods, it is now becoming quite feasi-

ble to compute accurate approximations of the likelihood function for Gibbs and

Cox process models (Sections 7.2 and 7.3). However, the computations may be

time consuming and standard software is yet not available. Quick non-likelihood

approaches to inference are reviewed in Section 8.
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7.1 Poisson process models

For a Poisson process with a parameterized intensity function ρθ, the log likeli-

hood function is

l(θ) =
∑

u∈x

log ρθ(u) −
∫

W

ρθ(u) du, (42)

cf. (18), where in general numerical integration is needed to compute the in-

tegral. A clever implementation for finding the maximum likelihood estimate

(MLE) numerically, based on software for generalized linear models (Berman

and Turner, 1992), is available in spatstat when the intensity function is on

the log linear form (7).

Rathbun & Cressie (1994) study increasing domain asymptotics for inhomo-

geneous Poisson point processes and provide fairly weak conditions for asymp-

totic normality of the MLE in the case of a log linear intensity function. Waa-

gepetersen (2005) instead suggests asymptotics for a fixed observation window

when the intercept in the log linear intensity function tends to infinity, and the

only condition for asymptotic normality of the MLE of the remaining parame-

ters is positive definiteness of the observed information matrix. Inference for a

log linear Poisson process model is exemplified in Example 8.1.

7.2 Gibbs point process models

We restrict attention to parametric models for Gibbs point processes X as in

Sections 5.3–5.4, assuming that the interaction radius R is finite and the con-

ditional intensity is on the log linear form (25) (no matter whether X is finite

or infinite). We assume to begin with that R is known.

First, suppose that the observation window W coincides with S. The density

is then on exponential family form

fθ(x) = exp(t(x)θT)/cθ

where t is given by (26) and cθ is the unknown normalizing constant. The score

function and observed information are

u(θ) = t(x) − Eθt(X), j(θ) = Varθt(X),

where Eθ and Varθ denote expectation and variance with respect to X ∼ fθ.

Consider a fixed reference parameter value θ0. The score function and ob-
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served information may then be evaluated using the importance sampling for-

mula

Eθk(X) = Eθ0

[

k(X) exp
(

t(X)(θ − θ0)
T
)]

/(cθ/cθ0
) (43)

with k(X) given by t(X) or t(X)Tt(X). The importance sampling formula also

yields

cθ/cθ0
= Eθ0

[

exp
(

t(X)(θ − θ0)
T
)]

. (44)

Approximations of the likelihood ratio fθ(x)/fθ0
(x), score, and observed infor-

mation are then obtained by Monte Carlo approximation of the expectations

Eθ0
[· · · ] using MCMC samples from fθ0

, see Section 9.2.

The path sampling identity (e.g. Gelman and Meng, 1998)

log(cθ/cθ0
) =

∫ 1

0

Eθ(s)t(X)(dθ(s)/ds)Tds

provides an alternative and often numerically more stable way of computing a

ratio of normalizing constants. Here θ(s) is a differentiable curve connecting

θ0 = θ(0) and θ = θ(1), and the log ratio of normalizing constants is approxi-

mated by evaluating the outer integral using e.g. the trapezoidal rule and the

expectation using MCMC methods (Berthelsen & Møller, 2003; Møller & Waa-

gepetersen, 2003b).

Second, suppose thatW is strictly contained in S and let fW,θ(x|x∂W ) denote

the conditional density of XW given X∂W = x∂W . The likelihood function

L(θ) = EθfW,θ (x|X∂W )

may be computed using a missing data approach, see Geyer (1999) and Møller

& Waagepetersen (2003b). A simpler alternative is to consider the conditional

likelihood function given by

fW⊖R,θ(xW⊖R
|x∂W⊖R

)

where the score, observed information, and likelihood ratios may be computed

in analogy with the W = S case, cf. Sections 5.3–5.4.

For a fixed R, the approximated (conditional) likelihood function can be

maximized with respect to θ using Newton-Raphson updates. In our experience

the Newton-Raphson updates converge quickly, and in the examples below, the

computing times for obtaining a MLE are modest — less than half a minute.
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MLE’s of R are often found using a profile likelihood approach, since the like-

lihood function is typically not differentiable and log concave as a function of

R.

Asymptotic results for MLE’s of Gibbs point process models are reviewed in

Møller and Waagepetersen (2003b) but these results are derived under restric-

tive assumptions of stationarity and weak interaction. According to standard

asymptotic results, the inverse observed information provides an approximate

covariance matrix of the MLE, but if one is suspicious about the validity of this

approach, an alternative is to use a parametric bootstrap.

Example 7.1. (Maximum likelihood estimation for overlap interaction model)

For the overlap interaction model in Example 5.1, Møller & Waagepetersen

(2003b) compute maximum likelihood estimates using both missing data and

conditional likelihood approaches. Letting W = [0, 56]× [0, 38], the conditional

likelihood approach is based on the trees with locations inW⊖2b, since trees with

locations outside W do not interact with trees located inside W⊖2b. The condi-

tional MLE is given by (β̂1, . . . , β̂6) = (−1.02,−0.41, 0.60,−0.67,−0.58,−0.22)

and ψ̂ = −1.13. Confidence intervals for ψ obtained from the observed in-

formation and a parametric bootstrap are [−1.61,−0.65] and [−1.74,−0.79],

respectively. As expected, due to the repulsive interaction term in the condi-

tional intensity (30), the β̂k tend to be larger than expected under the Poisson

model with ψ = 0. This is illustrated in Figure 11 (left plot), where the exp(β̂k)

are shown together with relative frequencies of trees within each of the six size

classes (the frequencies are proportional to the MLE of the exp(βk) under the

Poisson model). The fitted overlap interaction process seems to capture well the

second order characteristics for the point pattern of tree locations, see Figure 11

(right plot).

Example 7.2. (Maximum likelihood estimation for ants nests) Högmander &

Särkkä (1999) consider a subset of the data in Figure 5 within a rectangu-

lar region, and they condition on the observed number of points for the two

species when fitting the hierarchical model described in Example 5.2, whereby

the parameters βM and βC vanish. Instead we fit the hierarchical model to the

full data set, we do not condition on the observed number of points, and we

set rCM = 0. No edge correction is used for our MLE’s, but in Example 8.2 we

compare maximum pseudo likelihood estimates (Section 8.1) obtained both with

and without edge correction. The MLE’s β̂M = −8.39 and ψ̂M = −0.41 indicate

a repulsion within the Messor nests, and the MLE’s β̂C = −10.3, ψ̂CM = 0.90,
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Figure 11: Dark grey bars: frequencies of trees for the six size classes (scaled so
that light and dark bars are of the same height for the first class). Light gray
bars: MLE of exp(βk), k = 1, . . . , 6. Right plot: estimated L(r)− r function for
spruces (solid line) and average and 95% envelopes computed from simulations
of fitted overlap interaction model (dashed lines).

and ψ̂C = −0.06 indicates positive association between Messor and Cataglyphis

nests, and a weak repulsion within the Cataglyphis nests. Confidence intervals

for ψCM are [−0.1, 1.9] (based on observed information) and [0.3, 2.1] (paramet-

ric bootstrap). Due to the phase transition property of the Strauss hard core

process (Example 5.2), we restrict ψC ≤ 0 in the Newton-Raphson maximiza-

tions for the bootstrap simulated data sets. In this case, the two types of confi-

dence intervals provide qualitatively different conclusions concerning the signifi-

cance of the interspecies interaction. The results in Högmander & Särkkä (1999)

differ from ours, since they estimate a strong repulsion within the Cataglyphis

nests and a weak repulsion between the two species; see also Example 8.2.

7.3 Cox process models

We consider MLE for parametric models for first the case of a shot noise Cox

process and second a log Gaussian Cox process.

In the case of a shot noise Cox process (Section 4.2.2), suppose that the

parameter vector θ = (α, ω) consists of components α and ω parameterizing

respectively the intensity function ζα of Φ and the kernel k(c, ·) = k(c, ·;ω).

Let f(x|Λ) denote the Poisson density of XW given Λ(·) = Λ(·;Φ, ω). For

simplicity assume that k is of bounded support, i.e. there exists a bounded

region W̃ = W̃ω ⊃ W so that k(c, u;ω) = 0 whenever c ∈ R
2 \ W̃ and u ∈ W .
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The likelihood

L(θ) = Eαf
(

x|Λ(·;Φ, ω)
)

= Eαf
(

x|Λ(·;ΦW̃ , ω)
)

is then given in terms of an expectation with respect to the Poisson process

ΦW̃ = {(c, γ) ∈ Φ|c ∈ W̃}. We assume moreover that
∫ ∞

0
ζα(c, γ)dγ < ∞

whenever c ∈ W̃ . Thereby ΦW̃ is finite and we let fW̃ (·;α) denote the Poisson

process density of ΦW̃ . Choose a reference parameter value θ0 = (α0, ω0).

Then L(θ) is the normalizing constant of f(x|Λ(·;ϕ, ω))fW̃ (ϕ;α) viewed as an

unnormalized density for the conditional distribution of ΦW̃ given XW = x.

Consequently, in analogy with (44),

L(θ)/L(θ0) = Eα0

[

f
(

x|Λ(·; ΦW̃ , ω)
)

fW̃ (ΦW̃ ;α)

f
(

x|Λ(·; ΦW̃ , ω0)
)

fW̃ (ΦW̃ ;α0)

∣

∣

∣

∣

XW = x

]

(45)

which can be approximated using samples from the conditional distribution of

ΦW̃ given XW = x and θ = θ0. Let

Vθ,x(ΦW̃ ) = d log
(

f(x|Λ(·;ΦW̃ , ω))fW̃ (ΦW̃ ;α)
)

/dθ.

The score function and observed information are given by

u(θ) = Eθ[Vθ,x(ΦW̃ )|XW = x]

and

j(θ) = −Eθ

[

dVθ,x(ΦW̃ )/dθT|XW = x
]

− Varθ [Vθ,x(ΦW̃ )|XW = x]

where approximations of these conditional expectations can be obtained by ap-

plying importance sampling (Section 8.6.2 in Møller & Waagepetersen, 2003b).

Samples from the conditional distribution of ΦW̃ can be generated using MCMC,

see Section 9.2.

For a log Gaussian Cox process (Section 4.2.1), we consider a finite partition

Ci, i ∈ I, of W and approximate the Gaussian process (Ψ(u))u∈W by a step

function with value Ψ(ui) within Ci, where ui is a representative point in Ci.

We then proceed in a similar manner as for shot noise Cox processes, but now

computing conditional expectations with respect to the finite Gaussian vector

(Ψ(ui))i∈I given XW = x. Conditional samples of (Ψ(ui))i∈I may be obtained
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using Langevin-Hastings MCMC algorithms, see Section 10.2.3 in Møller &

Waagepetersen, 2003b).

Asymptotic results for MLE’s have been established for certain Cox process

models defined on the real line, see Jensen (2005) and the references therein,

but we are not aware of any such results for spatial Cox processes.

Example 7.3. (Maximum likelihood estimation for North Atlantic whales) For

the shot noise Cox process model in Example 4.2, the unknown parameters

are the intensity κ of the cluster centres, the mean number α of whales per

cluster, and the standard deviation ω of the Gaussian density. Since it is

difficult to evaluate the components of the score function and observed infor-

mation corresponding to the parameter ω, Waagepetersen & Schweder (2005)

compute the profile log likelihood function lp(ω) = max(κ,α) logL(θ) for a fi-

nite set of values ωl. This is done using (45) repeatedly, i.e. by cumulat-

ing log likelihood ratios logL(θ̂l+1) − logL(θ̂l), where θ̂l = (κ̂l, α̂l, ωl) and

(κ̂l, α̂l) = arg max(κ,α) logL(κ, α, ωl) is obtained using Newton-Raphson. The

profile likelihood function is shown in Figure 12 (left plot) and gives ω̂ = 0.6

with corresponding values κ̂ = 0.025 and α̂ = 2.4. These estimates yield an

estimated whale intensity of 0.06 whales per km2 with a 95% parametric boot-

strap confidence interval [0.03, 0.08]. Figure 12 (right plot) shows the fitted

L-function; note the high variability of the non-parametric estimate of the L-

function, cf. the envelopes computed from simulations of the fitted model. For

this particular example, the computation of the profile likelihood function is very

time consuming and Monte Carlo errors occasionally caused negative definite

estimated observed information matrices. From a computational point of view,

the Bayesian approach provides a more feasible alternative, see Example 7.4.

7.4 Bayesian inference

To compute posterior distributions for θ in a fully Bayesian approach to infer-

ence, we need to know the likelihood function for all values of θ. For a Gibbs

point process, the computational problems due to the need for estimating the un-

known normalizing constant are therefore even harder than for finding the MLE

(Section 7.2) or the maximum a posteriori estimate (Heikkinen & Penttinen,

1999). Based on perfect simulation (Section 9.3) and auxiliary variable MCMC

methods (Møller, Pettitt, Berthelsen & Reeves, 2006), progress on Bayesian in-

ference for Markov point processes has been made in Berthelsen & Møller (2003,

2004, 2006a, 2006b).
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Figure 12: Fitting a shot noise Cox process model to the North Atlantic whales
data set. Left: profile log likelihood function lp(ω) = max(κ,α) logL(θ) obtained
by cumulating estimated log likelihood ratios, see text. The small horizontal
bars indicate 95% Monte Carlo confidence intervals for the log likelihood ratios.
Right: non-parametric estimate of L(r)−r (solid line), 95% confidence envelopes
based on simulations of fitted shot noise Cox process (dotted lines), L(r)−r = 0
for a Poisson process (lower dashed line), and L(r) − r > 0 for the fitted shot
noise Cox process (upper dashed line).

In the examples below, we restrict attention to Cox processes for which the

Bayesian approach is quite appealing from a computational point of view. The

need for computing the likelihood function is eliminated by a demarginalization

strategy, where the unknown random intensity function or cluster centre pro-

cess is considered as an unknown parameter along with the original parameter

θ. This simplifies computations, since the likelihood of the data given θ and

the random intensity function is just a Poisson likelihood function. References

on Bayesian inference for Cox processes include Wolpert & Ickstadt (1998),

Best, Ickstadt & Wolpert (2000), Møller & Waagepetersen (2003a, 2003b),

Beněs, Bodlák, Møller & Waagepetersen (2005), and Waagepetersen & Schweder

(2005).

Example 7.4. (Bayesian inference for North Atlantic whales) In Waagepetersen

& Schweder (2005), the unknown parameters κ, α, and ω (Examples 4.2 and

7.3) are assumed to be a priori independent with uniform priors on bounded

intervals for κ and ω and an informative N(2, 1) (truncated at zero) prior for

α (the whales are a priori believed to appear in small groups of 1-3 animals).

Posterior distributions are computed by extending an MCMC algorithm for
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simulation of the cluster centres (see Section 9.2) with random walk MCMC

updates for κ, α, and ω. The posterior means for κ, α, and ω are 0.027, 2.2, and

0.7, and the posterior mean of the whale intensity is identical to MLE. There is

moreover close agreement between the 95% confidence interval (Example 7.3)

and the 95% central posterior interval [0.04, 0.08] for the whale intensity.

Example 7.5. (Bayesian inference for tropical rain forest trees) Considering the

log Gaussian Cox process model for the tropical rain forest trees (Example 4.1),

we assume that β = (β1, β2, β3), σ, and α are a priori independent, and use

an improper uniform prior for β on R
3, an improper uniform prior for σ on

[0.001,∞), and a uniform prior for logα with 1 ≤ α ≤ 235. For a discussion

of posterior properity in similar models, see Christensen, Møller & Waagepe-

tersen (2000). The Gaussian process is discretized to a 200 × 100 grid, and the

posterior distribution of the discretized Gaussian process and the parameters is

computed using MCMC with Langevin-Hastings updates for the Gaussian pro-

cess (Section 7.3). The marginal posterior distributions of β, log σ, and logα

are approximately normal. Posterior means and 95% central posterior intervals

for the parameters of primary interest are 0.06 and [0.02, 0.10] for β2, 8.76 and

[6.03, 11.37] for β3, 1.61 and [1.44, 1.85] for σ, 42.5 and [32.1, 56.45] for α. Fig-

ure 13 shows the posterior means of the systematic part β1 + β2z2(u) + β3z3(u)

(left plot) and the random part Ψ(u) (right plot) of the log random intensity

function (8). The systematic part seems to depend more on z3 (norm of altitude

gradient) than z2 (altitude), cf. Figure 3. The fluctuations of the random part

may be caused by small scale clustering due to seed dispersal and covariates

concerning soil properties.

Denote by L(r;X, θ) the estimate of the L-function obtained from the point

process X using (41) with ρ̂(u) replaced by the parametric intensity function

ρθ(u) = exp
(

z(u)βT + σ2/2
)

for X given θ. Following the idea of posterior

predictive model checking (Gelman et al., 1996), we consider the posterior pre-

dictive distribution of the differences ∆(r) = L(r;x, θ) − L(r;X, θ), r > 0, i.e.

the distribution obtained when (X, θ) are generated under the posterior predic-

tive distribution given the data x. If zero is an extreme value in the posterior

predictive distribution of ∆(r) for a range of distances r, we may question the

fit of our model. Figure 14 shows 95% central envelopes obtained from poste-

rior predictive simulations of ∆(r). The plot indicates that our model fails to

accomodate clustering for small values of r less than 10 m.
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Figure 13: Posterior mean of β1 + β2z2(u) + β3z3(u) (left) and Ψ(u) (right),
u ∈ W , under the log Gaussian Cox process model for the tropical rain forest
trees.

8 Simulation free estimation procedures

This section reviews quick non-likelihood approaches to inference using vari-

ous estimating functions based on either first or second order properties of a

spatial point process. In Section 8.1, estimating functions based on the (con-

ditional) intensity function are motivated heuristically as limits of composite

likelihood functions (Lindsay, 1988) for Bernouilli trials concerning absence or

presence of points within infinitesimally small cells partitioning the observation

window. Section 8.2 considers minimum contrast or composite log likelihood

type estimating functions based on second order properties. In case of minimum

contrast estimation, the parameter estimate minimizes the distance between a

non-parametric estimate of a second order summary statistic and its theoretical

expression. Yet another approach for obtaining estimating equations for spatial

point process models is studied in Baddeley (2000).
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Figure 14: Tropical rain forest trees: 95% central envelopes obtained from pos-
terior predictive simulations of ∆(r).

8.1 Estimating functions based on intensities

For a given parametric model with parameter θ, suppose that the intensity

function ρθ is known on closed form. Consider a finite partitioning Ci, i ∈ I,

of the observation window W into disjoint cells Ci of small areas |Ci|, and let

ui denote a representative point in Ci. Let Ni = 1[N(Ci) > 0] and pi(θ) =

Pθ(Ni = 1). Then pi(θ) ≈ ρθ(ui)|Ci|, and the composite likelihood based on

the Ni, i ∈ I, is

∏

i∈I

pi(θ)
Ni(1 − pi(θ))

(1−Ni) ≈
∏

i

(ρθ(ui)|Ci|)Ni(1 − ρθ(ui)|Ci|)1−Ni .

We neglect the factors |Ci| in the first part of the product, since they cancel

when we form likelihood ratios. In the limit, under suitable regularity conditions

and when the cell sizes |Ci| tend to zero, the log composite likelihood becomes

∑

u∈x

log ρθ(u) −
∫

W

ρθ(u) du
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which coincides with the log likelihood function (42) in the case of a Poisson

process. The corresponding estimating function is given by the derivative

ψ1(θ) =
∑

u∈x

d log ρθ(u)/dθ −
∫

W

(d log ρθ(u)/dθ)ρθ(u) du. (46)

By the Campbell theorem (4), ψ1(θ) = 0 is an unbiased estimating equation,

and it can easily be solved using e.g. spatstat, provided ρθ is on a log linear

form. For Cox processes, as exemplified in Example 8.1 below, the solution may

only provide an estimate of one component of θ, while the other component may

be estimated by another method.

For a Gibbs point process, it is more natural to consider the Papangelou

conditional intensity λθ. Hence we redefine pi(θ) = Pθ(Ni = 1|X \ Ci) ≈
λθ(ui,X \Ci)|Ci|. In this case the limit of log

∏

i(pi(θ)/|Ci|)Ni(1− pi(θ))
(1−Ni)

becomes
∑

u∈x

λθ(u,x) −
∫

W

λθ(u,x) du

which is known as the log pseudo likelihood function (Besag, 1977; Jensen &

Møller, 1991). By the GNZ formula (31), the pseudo score

s(θ) =
∑

u∈x

d log λθ(u,x)/dθ −
∫

W

(d log λθ(u,x)/dθ)λθ(u,x) du

provides an unbiased estimating equation s(θ) = 0. This can be solved using

spatstat if λθ is on a log linear form (Baddeley & Turner, 2000).

Example 8.1. (Estimation of the intensity function for tropical rain forest trees)

For both the log Gaussian Cox process model in Example 4.1 and the inhomoge-

neous Thomas process model in Example 4.3, the intensity function is of the form

exp(z(u)(β̃1, β2, β3)
T), where β̃1 = σ2/2 + β1 for the log Gaussian Cox process

and β̃1 = log(κα) for the inhomogeneous Thomas process. Using the estimating

function (46) and spatstat, we obtain ( ˆ̃β1, β̂2, β̂3) = (−4.99, 0.02, 5.84), where

β̂2 and β̂3 are smaller than the posterior means obtained with the Bayesian ap-

proach in Example 7.5. The estimate of course coincides with the MLE under

the Poisson process with the same intensity function. Estimates of the cluster-

ing parameters, i.e. (σ2, α) respectively (κ, ω), may be obtained using minimum

contrast estimation, see Example 8.3.

Assuming (β̂2, β̂3) is asymptotically normal (Waagepetersen, 2005), we ob-

tain approximate 95% confidence intervals [−0.02, 0.06] and [0.89, 10.80] for β2
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and β3, respectively. Under the Poisson process model much more narrow ap-

proximate 95% confidence intervals [0.02, 0.03] and [5.34, 6.34] are obtained.

Example 8.2. (Maximum pseudo likelihood estimation for ants nests) For the

hierarchical model in Example 5.2, we first correct for edge effects by con-

ditioning on the data in W \ W⊖45. Using spatstat, the maximum pseudo

likelihood estimate (MPLE) of (βM , ψM ) is (−8.30,−0.44), indicating repul-

sion between the Messor ants nests. Without edge correction, a rather similar

MPLE (−8.48,−0.33) is obtained. The edge corrected MPLE of (βC , ψCM , ψC)

is (−26.19, 16.9,−0.43), indicating a positive association between the two species

and repulsion within the Cataglyphis nests. As mentioned in Example 7.2,

Högmander & Särkkä (1999) also found a repulsion within the Cataglyphis nests,

but a weak repulsive interaction between the two types of nests. Baddeley &

Turner (2006) modelled the Messor data conditional on the Cataglyphis data

using an inhomogeneous Strauss hard core model and found that an appar-

ent positive interspecies’ interaction was not significant. Notice that this is a

‘reverse’ hierarchical model compared to our and Högmander & Särkkä’s model.

The MPLE for Cataglyphis is very sensitive to whether edge correction

is used or not (for our W , but not for the reduced observation window in

Högmander & Särkkä, 1999). If no edge correction is used, the MPLE for

(βC , ψCM , ψC) is (−10.3, 0.89, 0.15). The large difference is due to that all

Cataglyphis nests, which are not in the influence region of the Messor nests,

are within the border region W \W⊖45, and two of these nest are moreover very

close, cf. Figure 6. The differences between the MLE in Example 7.2 and the

MPLE (without edge correction) seem rather minor. This is also the experi-

ence for MLE’s and corresponding MPLE’s in Møller & Waagepetersen (2003b),

though differences may appear in cases with a very strong interaction.

8.2 Estimating functions based on the g or K-function

The pair correlation function g and the K-function in some sense describe the

‘normalized’ second order properties of a point process, cf. (5) and (40). For

many Cox processes, g or K has a closed form expression depending on the

‘clustering parameters’ of the model. Examples include log Gaussian Cox pro-

cesses (Section 4.2.1) and inhomogeneous Neyman-Scott processes with random

intensity functions of the form (12) where k is a radially symmetric Gaussian

density or a uniform density on a disc. Clustering parameter estimates may

then be obtained using so-called minimum contrast estimation. That is, using
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an estimating function given in terms of a distance between the theoretical ex-

pression for g or K and a non- or semi-parametric estimate ĝ or K̂, e.g. (41)

where ρ̂ could be a parametric estimate obtained from (46). This is illustrated

in Example 8.3 for the K function. Minimum contrast estimation based on the

g-function is considered in Møller et al. (1998). Asymptotic properties of min-

imum contrast estimates are derived in the case of stationary cluster processes

in Heinrich (1992).

Alternatively, we may consider an estimating function based on the second

order product density ρ
(2)
θ (u, v):

ψ2(θ) =

6=
∑

u,v∈x

d log ρ
(2)
θ (u, v)/dθ −

∫

W 2

(

d log ρ
(2)
θ (u, v)/dθ

)

ρ
(2)
θ (u, v) dudv.

(47)

This is the score of a limit of composite log likelihood functions based on

Bernouilli observations Nij = 1[N(Ci) > 0, N(Cj) > 0], i 6= j. Unbiased-

ness of ψ2(θ) = 0 follows from Campbell’s theorem (4). The integral in (47)

typically must be evaluated using numerical integration. In the stationary

case, Guan (2006) considers a related unbiased estimating function, where the

integral in (47) is replaced by the number of pairs of distinct points times

log
∫

W 2 ρ
(2)
θ (u, v) dudv.

Example 8.3. (Minimum contrast estimation of clustering parameters for trop-

ical rain forest trees) The solid curve in Figure 9 shows an estimate of the

K-function for the tropical rain forest trees obtained using (41) with ρ̂ given by

the estimated parametric intensity function from Example 8.1. For the inhomo-

geneous Thomas process, a minimum contrast estimate (κ̂, ω̂) = (8 × 10−5, 20)

is obtained by minimizing

∫ 100

0

(K̂(r)1/4 −K(r;κ, ω)1/4)2dr (48)

where

K(r;κ, ω) = πr2 +
(

1 − exp(−r2/(4ω)2)
)

/κ

is the theoretical expression for the K-function. For the log Gaussian Cox

process, we calculate instead the theoretical K-function

K(r;σ, α) = 2π

∫ r

0

s exp
(

σ2 exp(−s/α)
)

ds
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using numerical integration, and obtain the minimum contrast estimate (σ̂, α̂) =

(1.33, 34.7). The estimated theoretical K-functions are shown in Figure 9.

Minimum contrast estimation is computationally very easy. A disadvantage

is the need to choose certain tuning parameters like the upper limit 100 and the

exponent 1/4 in the integral (48). Typically, these parameters are chosen on an

ad hoc basis.

Example 8.4. (Simultaneous estimation of parameters for tropical rain forest

trees) To estimate the parameters (β̃1, β2, β3) and (κ, ω) for the inhomogeneous

Thomas process (see Example 8.1) simultaneously, we apply the estimating

function ψ2 (47). We solve ψ2(θ) = 0 using a grid search for ω combined with

Newton-Raphson for the remaining parameters (Newton-Raphson for all the

parameters jointly turns out to be numerically unstable). We then search for

an approximate solution with respect to ω within a finite set of ω-values. The

resulting estimates of (β̃1, β2, β3) and (κ, ω) are respectively (−5.00, 0.02, 5.73)

and (7 × 10−5, 30). The estimate of ω differs considerably from the minimum

contrast estimate in Example 8.3, while the remaining estimates are quite similar

to those obtained previously for the inhomogeneous Thomas process in Exam-

ples 8.1 and 8.3. The numerical computation of ψ2 and its derivatives is quite

time consuming, and the whole process of solving ψ2(θ) = 0 takes about 75

minutes.

9 Simulation algorithms

As demonstrated several times, due to the complexity of spatial point process

models, simulations are needed when fitting a model and studying the properties

of various statistics such as parameter estimates and summary statistics. This

section reviews the most applicable simulation algorithms.

9.1 Poisson and Cox processes

Even in the simple case of a Poisson point process, simulations are needed, see

e.g. Figure 10. Simulation of a Poisson process within a bounded region is usu-

ally easy, using (i)–(ii) in Section 4.1 or other simple constructions (Section 3.2.3

in Møller & Waagepetersen, 2003b).

For simulation of a Cox process on a bounded region S, given a realization

of the random intensity function (Λ(u))u∈S, it is just a matter of simulating the

Poisson process with intensity function (Λ(u))u∈S. Details on how to simulate
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(Λ(u))u∈S depend much on the particular type of Cox process model. For a log

Gaussian Cox process, there are many ways of simulating the Gaussian process

(log(Λ(u)))u∈S, see e.g. Schlather (1999) and Møller & Waagepetersen (2003b).

For a shot noise Cox process, edge effects may occur since the Poisson process Φ

in (10) may be infinite, and so clusters associated to centre points outside S may

generate points of the shot noise Cox process within S. Brix & Kendall (2002),

Møller (2003) and Møller & Waagepetersen (2003b) discuss how to handle such

edge effects.

9.2 Point processes specified by an unnormalized density

In this section, we consider simulation of a finite point process X with density

f ∝ h with respect to the unit rate Poisson process defined on a bounded region

S, where h is a ‘known’ unnormalized density. The normalizing constant of the

density is not assumed to be known.

Simulation conditional on the number of points n(X) can be done using a

variety of Metropolis-Hastings algorithms, since the conditional process is just a

vector of fixed dimension when we order the points as in the density (17). Most

algorithms used in practice are a Gibbs sampler or a Metropolis-within-Gibbs

algorithm, where at each iteration a single point given the remaining points is

updated, see Møller & Waagepetersen (2003b, Section 7.1.1).

The standard algorithms (i.e. without conditioning on n(X)) are discrete

or continuous time algorithms of the birth-death type, where each transition is

either the addition of a new point (a birth) or the deletion of an existing point

(a death). The algorithms can easily be extended to birth-death-move type

algorithms, where e.g. in the discrete time case the number of points is retained

in a move by using a Metropolis-Hastings update as discussed in the previous

paragraph, see Møller & Waagepetersen (2003b, Section 7.1.2).

For instance, in the discrete time case, a simple Metropolis-Hastings algo-

rithm updates a current state Xt = x of the Markov chain as follows (Norman

& Filinov, 1969; Geyer & Møller, 1994). Assume that h is hereditary, and define

r(u,x) = λ(u,x)|S|/(n(x)+1) where, as usual, λ is the Papangelou conditional

intensity. With probability 0.5 propose a birth, i.e. generate a uniform point u

in S, and accept the proposal Xt+1 = x ∪ {u} with probability min{1, r(u,x)}.
Otherwise propose a death, i.e. select a point u ∈ x uniformly at random, and

accept the proposal Xt+1 = x \ {u} with probability min{1, 1/r(u,x \ {u})}.
As usual in a Metropolis-Hastings algorithm, if the proposal is not accepted,
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Xt+1 = x.

This algorithm (like many other Metropolis-Hastings algorithms studied in

Chapter 7 in Møller & Waagepetersen, 2003b) is irreducible and aperiodic with

invariant distribution f ; in fact it is time reversible with respect to f . In other

words, the distribution of Xt converges towards f . Moreover, if h is locally

stable, the rate of convergence is geometrically fast, and a central limit theorem

holds for Monte Carlo errors (Geyer & Møller, 1994; Geyer, 1999).

An analogous continuous time algorithm is based on running a spatial birth-

death process Xt with birth rate λ(u,x) and death rate 1. This is also a reversible

process with invariant density f (Preston, 1977; Ripley, 1977). Convergence of

Xt towards f holds under weak conditions, and local stability of h implies

geometrically fast convergence (Møller, 1989).

If h is highly multimodal, e.g. in the case of a strong interaction like in a hard

core model with a high packing density, the birth-death (or birth-death-move)

algorithms described above may be slowly mixing. The algorithms may then

be incorporated into a simulated tempering scheme (Geyer & Thompson, 1995;

Mase, Møller, Stoyan, Waagepetersen & Döge, 2001).

9.3 Perfect simulation

One of the most exciting recent developments in stochastic simulation is perfect

(or exact) simulation, which turns out to be particular applicable for locally

stable point processes (Kendall, 1998; Kendall & Møller, 2000). By this we

mean an algorithm where the running time is a finite random variable and the

output is a draw from a given target distribution (at least in theory — of course

the use of pseudo random number generators and practical constraints of time

imply that we cannot exactly return draws from the target distribution).

The most famous perfect simulation algorithm is due to Propp & Wilson

(1996). It is based on a coupling construction called coupling from the past

(CFTP), which exploits the fact that any Markov chain algorithm, at least

when it is implemented on a computer, can be viewed as a so-called stochastic

recursive sequence Xt+1 = φ(Xt, Rt), where φ is a deterministic function and

the Rt are i.i.d. random variables. The updating function φ is supposed to

be monotone with respect to some partial order ≺, that is, x ≺ y implies

φ(x, r) ≺ φ(y, r). Further, it is assumed that there exist unique minimal and

maximal states 0̂ and 1̂, so 0̂ ≺ x ≺ 1̂ for any state x. The coupling construction

is based on pairs of upper and lower dominating chains generated for n = 1, 2, . . .
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by Un
t+1 = φ(Un

t , Rt) and Ln
t+1 = φ(Ln

t , Rt), t = Tn, Tn + 1, . . . ,−1, where

Un
Tn

= 1̂ and Ln
Tn

= 0̂, and the starting times Tn < 0 decrease to −∞ for

n = 1, 2, . . .. Note that the Rt are re-used for all n = 1, 2, . . .. By monotonicity

and the coupling construction, if XTn
= x for an arbitrary state x, we have the

sandwiching property Ln
t ≺ Xt ≺ Un

t and the funneling property Ln
t ≺ Ln+1

t ≺
Un+1

t ≺ Un
t , t = Tn, . . . , 0. Moreover, if Ln

s = Un
s then Ln

t = Un
t for s ≤ t ≤ 0.

Consequently, if the Markov chain is ergodic and with probability one, Ln
0 = Un

0

for some sufficiently large n, then we need only to generate the pairs of upper

and lower chains (Un, Ln) until we have coalescence at time 0, since Ln
0 = Un

0

will follow the equilibrium distribution of the chain.

The Propp-Wilson algorithm applies only for a few spatial point process

models (Häggström, Van Lieshout & Møller, 1999; Møller & Waagepetersen,

2003, Chapter 11). For the natural partial ordering given by set inclusion, the

empty point configuration is the unique minimal state, but there is no maximal

element. This problem is solved by a modification of the Propp-Wilson algo-

rithm, called dominating CFTP (Kendall & Møller, 2000), where the coupling

construction is a dependent thinning from a dominating spatial birth-death pro-

cess which is easy to simulate. The algorithm does not assume monotonicity,

and it applies to perfect simulation for locally stable point processes. For in-

stance, a spatial birth-death algorithm for a repulsive Gibbs point process is

anti-monotone, but this problem can be fixed by a certain cross-over trick due

to Kendall (1998). For an introduction to the dominated CFTP algorithm, in-

cluding empirical findings and a discussion on how to choose the sequence of

starting times Tn, see Berthelsen & Møller (2002) and Møller & Waagepetersen

(2003, Chapter 11).

10 Directions for future research

10.1 Spatial point pattern data sets

In this paper, we have for illustrative purposes and to limit space considered

relatively simple examples of data sets, where we could compare our results with

results published elsewhere. We have also not discussed more complicated mod-

els involving, for example, both thinnings, movements, and superpositioning of

points (Lund & Rudemo, 2000) or spatial point processes generating geometric

structures such as Voronoi tessellations (Baddeley & Møller, 1989; Blackwell &

Møller, 2003; Skare, Møller & Jensen, 2006).
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Many scientific problems call for new spatial point process methodology

for analyzing complex and large data sets (often with marks and possibly in

time-space). For example, in the tropical rain forest example, the data for the

Beilschmiedia trees is just a very small part of a very large data set containing

positions and diameters at breast height for thousands of species recorded over

several instances in time. Another example is the Sloan Digital Sky Survey with

millions of galaxies, where it is of interest to model the clustering of galaxies.

10.2 Inhomogeneity

We have pointed out that stationarity is often not a reasonable assumption, and

the focus on summary statistics based on the stationarity assumption (such as

F,G, J) is therefore often out of place. In our experience, it is often sufficient

to consider K or g, which also are well-defined in non-stationary situations.

Residual analysis (Baddeley et al., 2005) do not require stationarity, and using

the GNZ-formula (31) or (32), it can be meaningful to use functionals related

to F,G, J in inhomogeneous cases (Baddeley et al., 2006).

Often we need to specify an inhomogeneous point process model. For Poisson

and Cox processes, log linear modelling as in Examples 4.1 and 4.3 can be a

useful approach. For Gibbs point processes, as exemplified by the model for the

Cataglyphis ant’s nests in Example 5.2, a simple way of modelling inhomogeneity

is to introduce a non-constant first order potential (Ogata & Tanemura, 1986;

Stoyan & Stoyan, 1998; Berthelsen & Møller, 2006b). Another possibility is to

consider an independent thinning of a stationary Gibbs point process, in which

case we have second order intensity reweighted stationarity (Baddeley et al.,

2000). Yet other constructions, using transformations of homogeneous Markov

point processes and location dependent scaling, are studied in Jensen & Nielsen

(2000), Hahn, Jensen, Van Lieshout & Nielsen (2003), and Nielsen & Jensen

(2004). It is an open problem to extend asymptotic results for MLE (and to

some extend also MPLE) to non-stationary situations.

Often, when inhomogeneity is modelled in terms of covariates observed on

a grid, we face a missing data problem, since the likelihood function depends

on the covariate at any location in the observation window. In the tropical rain

forest example, we assumed constant values of the covariates within grid cells,

but this may not be appropriate when the covariates are observed on coarser

grids.
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10.3 Gibbs and other point processes

Markov or more generally Gibbs point processes originated naturally in statis-

tical physics as models for the study of phase transition behaviour and other

physical phenomena. We question their popularity in spatial statistics for the

following reasons.

Markov point processes provide a flexible framework for modelling repul-

sive spatial interaction as exemplified by the overlap model for the Norwegian

spruces. However, despite that the modelling using the influence zones is based

on biological reasoning, one may object that the model fails to reflect that the

observed spatial pattern is the result of an ongoing dynamic development of

the forest. In fact, for this and many other application areas, we do not believe

that spatial point patterns can be viewed as the equilibrium state of a reversible

spatial birth-death process (Section 9.2).

The estimation of the interaction range R is a tricky issue which seems

to require computation of a profile (pseudo) likelihood over a finite grid of R

values. It is not clear how to obtain e.g. confidence intervals for this parameter.

A parametric bootstrap is a computationally involved possibility although more

research on the usefulness of this approach seems required. The same can be

said about Bayesian inference with a prior imposed on R (Berthelsen & Møller,

2003, 2004, 2006a, 2006b).

There is a lack of satisfactory Gibbs point processes modelling attractive

spatial interaction. As discussed in Example 5.2, Strauss point processes with

a hard core are not so flexible due to a kind of phase transition behaviour. The

Widom-Rowlinson model or area-interaction point process, which is another

well known Gibbs point process with attractive spatial interaction (Widom &

Rowlinson, 1970; Baddeley & Van Lieshout, 1995), may be inflexible as well be-

cause of a somewhat similar phase transition behaviour (Häggström et al., 1999).

The saturation and triplet point processes in Geyer (1999) are other examples

of models for attraction between points, but in applications the interpretation

of these models is not clear. In contrast, we find Cox process models more nat-

ural, and more generally we find hierarchical model constructions relevant, cf.

Example 5.2 and Illian, Møller & Waagepetersen (2006).

As mentioned several times, closed form expressions for spatial point process

densities are rare. Shirai & Takahashi (2003) and McCullagh & Møller (2005)

study a large model class of non-Poisson point process models, called the per-

manent and determinant processes in McCullagh & Møller (2005), where both
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the density of the process and the product densities are of an analytic form.

The processes possess many appealing properties, where the permanent pro-

cess models aggregation of points (in some cases it is a Cox process), while the

determinant process models repulsion. It remains to investigate the processes

thoroughly in connection to statistical inference.

10.4 Computational issues

Some of the earliest applications of computational methods and particularly

MCMC methods in statistics are related to spatial point processes (Møller &

Waagepetersen, 2003b, Section A.1). As discussed in Section 7, maximum like-

lihood inference is now quite feasible for Markov point processes. For Cox pro-

cesses, likelihood-based inference is computationally more involved. The com-

puting times can be discouraging and research to obtain more efficient Monte

Carlo methods for Cox processes seems needed. For log Gaussian Cox processes,

promising results in Rue & Martino (2005) suggest that it may be possible to

compute accurate approximations of posterior distributions without MCMC.

In the future, we expect simulation-based methods to play an increasingly

important role for spatial point process modelling and inference, though quick

explorative tools and simulation free estimation procedures will still be useful.

Due to the fast increase in computer power, we expect e.g. the development

and use of perfect simulation techniques (Section 9.3) to become of much more

practical relevance, especially in connection to Bayesian inference (Berthelsen

Møller, 2003, 2004, 2006a, 2006b). Also the techniques in Møller & Mengersen

(2006) for calculating ergodic averages, eliminating the problem of finding the

burn-in by using upper and lower dominating processes but without the need

of doing perfect simulation, should be studied in connection to spatial point

process models. Simulation-based methods for the permanent and determinant

processes mentioned in Section 10.3 have yet not been investigated. In this

connection, an open problem is to develop and implement efficient algorithms

for calculation of cyclic products and permanent polynomials.

In order to make statisticians familiar with spatial point process modelling

and inference, there is an obvious need for userfriendly software. We therefore

much appreciate the development of spatstat which offers a wide range of

procedures for manipulation of point pattern data, residuals, summary statistics,

and maximum pseudo likelihood estimation (Baddeley & Turner, 2005, 2006);

see also the other references to software in Møller & Waagepetersen (2003b,
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Appendix A.3).

10.5 Spatio-temporal point processes

Due to space constraints, apart from Sections 9 and 10.3, we have not con-

sidered time-space point processes. One challenge is to develop tractable and

yet interesting continuous-time models, when spatial point process data is only

available at discrete times, see e.g. the spatio-temporal extensions of log Gaus-

sian Cox processes studied in Brix & Møller (2001) and Brix & Diggle (2001).

For time-space point processes in general, we refer to Daley & Vere-Jones (2003),

Møller & Waagepetersen (2003b, Section 2.4), Diggle (2005), and the references

therein.

10.6 Conclusion

In conclusion, spatial point processes and their application areas have undergone

major developments in recent years, and we expect they will continue to do so,

as statisticians and scientists become aware of their importance and the tools

for performing statistical analyses, and not at least, the challenges of developing

new tools.
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