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Modern technologies for improving
cleaning and disinfection of environmental
surfaces in hospitals
John M. Boyce

Abstract

Experts agree that careful cleaning and disinfection of environmental surfaces are essential elements of effective infection
prevention programs. However, traditional manual cleaning and disinfection practices in hospitals are often suboptimal.
This is often due in part to a variety of personnel issues that many Environmental Services departments encounter. Failure
to follow manufacturer’s recommendations for disinfectant use and lack of antimicrobial activity of some disinfectants
against healthcare-associated pathogens may also affect the efficacy of disinfection practices.
Improved hydrogen peroxide-based liquid surface disinfectants and a combination product containing peracetic acid and
hydrogen peroxide are effective alternatives to disinfectants currently in widespread use, and electrolyzed water
(hypochlorous acid) and cold atmospheric pressure plasma show potential for use in hospitals. Creating “self-disinfecting”
surfaces by coating medical equipment with metals such as copper or silver, or applying liquid compounds that have
persistent antimicrobial activity surfaces are additional strategies that require further investigation.
Newer “no-touch” (automated) decontamination technologies include aerosol and vaporized hydrogen peroxide,
mobile devices that emit continuous ultraviolet (UV-C) light, a pulsed-xenon UV light system, and use of high-intensity
narrow-spectrum (405 nm) light. These “no-touch” technologies have been shown to reduce bacterial contamination
of surfaces. A micro-condensation hydrogen peroxide system has been associated in multiple studies with reductions
in healthcare-associated colonization or infection, while there is more limited evidence of infection reduction by the
pulsed-xenon system. A recently completed prospective, randomized controlled trial of continuous UV-C light should
help determine the extent to which this technology can reduce healthcare-associated colonization and infections.
In conclusion, continued efforts to improve traditional manual disinfection of surfaces are needed. In addition,
Environmental Services departments should consider the use of newer disinfectants and no-touch decontamination
technologies to improve disinfection of surfaces in healthcare.
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Background
In recent years, there is an increasing consensus that
improved cleaning and disinfection of environmental
surfaces is needed in healthcare facilities [1–4]. Experts
generally agree on a number of areas, including the fact
that careful cleaning and/or disinfection of environmen-
tal surfaces, daily and at time of patient discharge, are
essential elements of effective infection prevention pro-
grams. Moreover, when disinfectants are used, they must
be used appropriately to achieve the desired effects.
However, there are a number of areas of disagreement

and controversy regarding best practices for cleaning
and disinfection of environmental surfaces. Some experts
favor physical removal of microorganisms using only a
detergent solution [3]. Other individuals believe that
manual disinfection of surfaces using currently available
disinfectants is adequate, and that newer approaches to
disinfection are not necessary.
The purpose of this article is to summarize the many

factors that affect standard cleaning and disinfection prac-
tices and to discuss modern technologies that can supple-
ment traditional cleaning and disinfection methods.
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Personnel-related issues
Multiple studies have shown that manual cleaning and
disinfection of surfaces in hospitals is suboptimal. In
many facilities, only 40 to 50 % of surfaces that should
be cleaned are wiped by housekeepers [5]. In addition,
observational methods combined with use of adenosine
triphosphate (ATP) bioluminescence have shown that in-
dividual housekeeper performance varies considerably
[6]. One study found variations among housekeepers in
the amount of time spent cleaning surfaces, the number
of wipes used in each room, and the level of cleanliness
achieved [6]. Specialized cleaning teams that included
infection control personnel have been shown to reduce
C. difficile surface contamination more effectively than
routine housekeepers [7]. Personnel turnover among
Environmental Services departments is a significant
problem [8, 9], which may reach 30 to 50 % in some fa-
cilities. As a result, shortages in Environmental Services
personnel were reported by more than 50 % of hospitals
in a recent survey conducted in the United States [10].
Among housekeepers and nursing personnel, there is
often confusion about who is responsible for cleaning
various surfaces and equipment [11, 12].

Issues related to disinfection protocols and practices
In addition to the above personnel-related issues, there
are many other factors that can potentially have adverse
effects on the efficacy of traditional cleaning and disin-
fection practices. The type of surface being cleaned or
disinfected can affect the completeness with which bac-
teria are removed. For example, Ali et al. found that the
type of material from which bed rails were made affected
how well they could be cleaned by microfiber cloths,
and that bacteria were removed more effectively by anti-
bacterial wipes than by microfiber [13]. Disinfectants
may be applied using inadequate contact times. Failure
of housekeepers to use an adequate number of wipes per
room can result in poor cleaning of surfaces [6]. Use of
wipes without sufficient antimicrobial activity against
target pathogens can result in poor disinfection of
surfaces and can lead to spread of pathogens from one
surface to another [14, 15]. Binding of quaternary am-
monium disinfectants to cloths made of cotton or wipes
containing substantial amounts of cellulose may reduce
the antimicrobial efficacy of the disinfectant [16, 17]. At
least one laboratory-based study has shown that deter-
gent wipes have variable ability to remove pathogens
from surfaces, and may in fact transfer pathogens be-
tween surfaces [18].
Inappropriate over-dilution of disinfectant solutions by

housekeepers or by malfunctioning automated dilution
systems may result in applying disinfectants using in-
appropriately low concentrations [9, 17]. For example,
an investigation of housekeeping practices at a large

teaching hospital included an audit of 33 automated dis-
infectant dispensing stations that mix concentrated dis-
infectant with water to yield a desired in-use quaternary
ammonium concentration of 800 ppm [17]. Quaternary
ammonium concentrations of solutions dispensed were
tested using commercially-available test strips. The audit
revealed that several dispensing stations yielded solu-
tions with less than 200 ppm, approximately 50 % of
stations delivered solutions with 200 to 400 ppm. An in-
vestigation revealed several flaws in the dispensing sys-
tem. Inexpensive test strips and more complicated
titration kits are available to monitor quaternary ammo-
nium concentrations of disinfectants.
Contamination of disinfectant solutions can occur, par-

ticularly if recommendations for their use are not followed
[19–21]. For example, Kampf et al. recently reported that
28 buckets from 9 hospitals contained surface-active disin-
fectants (e.g., quarternary ammomium solutions) that
were contaminated with Achromobacter or Serratia strains
[21]. Buckets and roles of wipes had not been handled ac-
cording to manufacturer recommendations. In studies
that involved culturing high-touch surfaces in patient
rooms before and shortly after housekeepers had per-
formed routine cleaning, we found that cultures obtained
from several surfaces in one room after cleaning yielded
large numbers of Serratia and smaller numbers of Achro-
mobacter which were not present before cleaning [Fig. 1]
[20]. The housekeeper’s bucket of quaternary ammonium-
based disinfectant contained 9.3 × 104 CFUs/ml of gram-
negative bacilli (mostly Serratia marcescens and fewer
numbers of Achromobacter xylosoxidans). Pulsed-field gel
electrophoresis demonstrated that Serratia isolates recov-
ered from the disinfectant were the same strains as those
recovered from surfaces in the patient room. Genome se-
quencing of one of the Serratia strains by collaborating in-
vestigators revealed that it contained four different qac
resistance genes that permitted the organism to grow and
survive in the disinfectant (unpublished data). If

Fig. 1 Contact agar plate cultures showing bacterial colonies recovered
from a patient’s overbed table before (left) and after (right) the surface
was cleaned by a housekeeper using contaminated quaternary
ammonium disinfectant. Colonies on right are Serratia marcescens and
Achromobacter xylosoxidans
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disinfectant contamination is suspected, a sample of the
product can be used to inoculate a broth medium or solid
agar containing neutralizers effective against the active
agent(s) in the disinfectant solution.
Numerous studies have found that standard manual

cleaning or disinfection of surfaces can reduce, but
often does not eliminate, important pathogens such as
C. difficile, staphylococci including methicillin-resistant
Staphylococcus aureus (MRSA), vancomycin-resistant en-
terococci (VRE), and multi-drug-resistant Acinetobacter
[7, 22–28]. Failure to adequately disinfect patient
rooms at the time of hospital discharge contributes to
the increased risk of acquisition of resistant pathogens
among patients admitted to a room where the prior
room occupant was colonized or infected with a
multidrug-resistant pathogen [29–31].

Monitoring housekeeping practices
In order to improve standard cleaning and disinfection
practices, it is recommended that the practices of house-
keepers be monitored and that they receive feedback
regarding their performance. However, monitoring of
housekeeper performance is often not performed as fre-
quently as needed, if at all [10]. Recently, fluorescent
marking systems (Fig. 2) and ATP bioluminescence
assays (Fig. 3) have proven useful for evaluating
cleaning practices and providing housekeepers with
feedback [32, 33]. Unfortunately, such objective means
of monitoring the adequacy of cleaning/disinfection prac-
tices are not routinely used in many facilities [10]. Perhaps
the lack of monitoring of housekeepers is due in part to
the fact that monitoring activities can be time-consuming
and must be conducted on an ongoing basis in order to be
effective [34].
Given the multitude of challenges to achieving and

maintaining adequate cleaning and disinfection in health-
care facilities, there is a need to consider the use of
modern technologies designed to improve disinfection of

surfaces in hospitals. New technologies fall into several
categories, including: (A) new liquid surface disinfectants,
(B) improved methods for applying disinfectants, (C) self-
disinfecting surfaces, (D) light-activated photosensitizers,
and (E) no-touch (automated) technologies.

New liquid disinfectants
New disinfectants that are currently available or under
development include improved hydrogen peroxide liquid
disinfectants, peracetic acid-hydrogen peroxide com-
bination, electrolyzed water, cold atmospheric pressure
plasma, and polymeric guanidine. Several improved
hydrogen peroxide disinfectants have been shown to be
effective one-step cleaner/disinfectant agents that signifi-
cantly reduce bacterial levels on surfaces [35–38]. In one
study, use of a product containing 0.5 % (weight/volume)
improved hydrogen peroxide was associated with fewer
healthcare-associated infections when compared to an
existing cleaning product, although all potential con-
founding variables were not analyzed [38]. Improved
hydrogen peroxide liquid disinfectants can also be used
to reduce contamination by multidrug-resistant patho-
gens on soft surfaces such as bedside curtains [14, 39].
Several of the improved hydrogen peroxide disinfectants
also have activity against norovirus surrogate viruses, al-
though they are not as potent as sodium hypochlorite
(bleach) solutions [40]. These newer disinfectants have
Environmental Protection Agency (EPA) safety rating of
category IV (housekeepers do not need to wear any per-
sonal protective equipment while using these products).
A new sporicidal disinfectant that contains both

peracetic acid and hydrogen peroxide has been shown to
reduce bacterial levels on surfaces to a greater degree
than a quaternary ammonium disinfectant in one study,
and reduced contamination by C.difficile, MRSA, and
VRE as effectively as sodium hypochlorite in another
study [41, 42]. The product has a smell similar to
vinegar that may be of concern when it is initially

After marked surface was wipedBefore marked surface was wiped

Fig. 2 Photographs of a fluorescent marker visible with a “black light” on a high touch surface before cleaning (left), and absence of the fluorescent
marker after cleaning was performed (right)
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introduced. The combination product gives hospitals a
potential alternative to sodium hypochlorite when a spo-
ricidal disinfectant is needed.
Electrolyzed water (hypochlorous acid) disinfectant is

produced by passing current through a solution of water
and salt [43–45]. This promising disinfectant was shown
to reduce bacterial levels on surfaces near patients to
greater degree than a quaternary ammonium disinfectant
in one study [43]. In another study, an electrolyzed
water disinfectant significantly reduced MRSA, VRE and
C. difficile spores in in-vitro experiments, and signifi-
cantly reduced aerobic bacteria and C. difficile spores
when sprayed onto medical equipment [44]. Spraying
equipment was simple, required only approximately 15 s
per application, and could be left to dry without wiping.
One group of investigators found that electrolyzed water
effectively reduced the number of aerobic bacteria
(including staphylococci) on near-patient surfaces, but
for reasons not well understood, appeared to allow re-
growth of staphylococci within 24 h of application [45].
Further studies of this phenomenon are warranted. Elec-
trolyzed water has the advantage of not leaving any toxic
residues on surfaces. Issues related to stability of such
products and logistic issues related to its use require
additional study.
Cold-air atmospheric pressure plasma systems are being

investigated for possible use as surface disinfectants in
healthcare facilities [46–48]. In laboratory studies, the re-
active oxygen species generated by these systems have
bactericidal activity against a variety of pathogens, with
variable activity against C. difficile spores [48]. Much more
experience with cold-air atmospheric pressure plasma sys-
tems is needed to determine the practicality, efficacy and
safety of using such systems in hospital settings. A novel
nebulized solution of polymeric guanidine has been shown
in one study to have antimicrobial activity against several

healthcare-associated pathogens, and may warrant further
investigation [49].

New methods for applying disinfectants
Microfiber cloths or mops and ultramicrofiber cloths are
among the relatively newer methods for applying liquid
disinfectants to surfaces [50–54]. Some studies have
shown increased cleaning efficacy of microfiber or ultra-
microfiber cloths compared to standard cotton cloth or
mops [51, 55]. However, it appears that all microfiber
wipes are not equally effective [50]. Furthermore, if not
used properly, there is some evidence that they may ac-
tually spread bacteria to other surfaces [53, 54]. When
using microfiber cloths or mops, is important to know
that the durability of these products is adversely affected
by hypochlorite and high temperatures used during
laundering and drying, and that their performance may
decrease after multiple washings. One of the advantages
of microfiber over cotton cloths is that microfiber is less
likely than cotton cloths to bind quaternary ammonium
disinfectants [16, 17]. However, presently, it is not clear
how much the lower binding of microfiber cloths to
quaternary ammonium disinfectants effects eradication
of bacteria from contaminated surfaces. Additional stud-
ies are needed to better define the relative advantages
and disadvantages of applying surface disinfectants with
microfiber, cotton cloths and spunlace non-woven dis-
posable wipes.

Self-disinfecting surfaces
Creating “self-disinfecting surfaces” by coating surfaces
with heavy metals such as copper or silver that have in-
nate antimicrobial properties or applying to surfaces
compounds that retain their antimicrobial activity for
weeks or months has received some attention as a new
strategy for disinfecting or preventing the growth of

Step 1 Step 2                                 Step 3

Use special swab                        Place swab in            Place tube in luminometer
to sample surface reaction tube            Results: Relative Light Units

Fig. 3 Three steps of an ATP bioluminescence assay for monitoring cleanliness of surfaces. Step 1: a special swab is used to sample the surface. Step 2:
the swab is placed in a reaction tube and shaken for 10–15 s. Step 3: the reaction tube is placed in a luminometer and a result is reported as relative
light units (RLUs). The higher the RLU value, the greater the amount of ATP detected on the surface
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bacteria on surfaces in hospitals [56, 57]. Silver binds
strongly with disulfide and sulfhydryl groups present in
proteins of microbial cell walls, leading to cell death
[56]. The antimicrobial activity of copper may be due
primarily to its ability to form reactive oxygen radicals
that damage nucleic acid and proteins [56]. Impregnat-
ing equipment surfaces with copper alloys has been
shown to reduce bacterial contamination of surfaces
[58–60], and in one study, coating several surfaces in
hospital rooms with copper alloy was associated with re-
duction in incidence of HAIs [60]. Further studies of the
long-term antimicrobial potency, practicality and cost-
effectiveness of copper-coated surfaces are needed.
Privacy curtains impregnated with silver have been
shown to reduce or delay contamination of curtains with
potential pathogens [61, 62].
Organosilane compounds are comprised of a surfac-

tant plus an antimicrobial substance such as a quater-
nary ammonium moiety. These compounds are designed
to minimize bacterial contamination of surfaces by
maintaining their antimicrobial activity on surfaces for
weeks or months. To date, the ability of these com-
pounds to prevent contamination of surfaces for pro-
longed time periods is unclear. One study that applied
compounds to surfaces using microfiber cloths failed to
demonstrate continuing antimicrobial activity, where as
two other studies using different application methods re-
ported persistent antimicrobial activity of varying levels
for differing time periods [63–65]. Further evaluation of
organosilane-type compounds using a variety of applica-
tion methods appears warranted. Polyhexamethylene
biguanide disinfectant was found to reduce bacterial
levels on surfaces for at least 24 h after application in
one study [66].

Light-activated photosensitizers
A few studies have explored the potential of applying of
light-activated photosensitizers such as nanosized titan-
ium dioxide to surfaces and using UV light to generate re-
active oxygen species that can disinfect surfaces [67–70].
Activated titanium dioxide has been shown to have vary-
ing antimicrobial activity, with the relative susceptibility of
agents against pathogens. Research on the use of light-
activated photosensitizers is in early stages, and much
more information about the feasibility and safety of using
this strategy is needed.

No-touch room decontamination methods
Examples of no-touch room decontamination technolo-
gies include: aerosolized hydrogen peroxide, hydrogen
peroxide vapor systems, gaseous ozone, chlorine dioxide,
saturated steam systems, peracetic acid/hydrogen peroxide
fogging, mobile continuous ultraviolet devices, pulsed-

xenon light devices, and high-intensity narrow-spectrum
(405 nm) light [1, 3, 4, 71, 72].

Aerosolized hydrogen peroxide
Aerosolized hydrogen peroxide systems that utilize 3 to
7 % hydrogen peroxide with or without the addition of
silver ions have been evaluated by several investigators
[25, 73–79]. Aerosols (which are not vapor) generally
have particle sizes ranging from 2 to 12 μ, are injected
into a room, followed by passive aeration. These systems
have been shown to significantly reduce bacteria, gener-
ally a 4 log10 reduction of spores, although in several
studies spores were not completely eradicated. One sys-
tem has a sporicidal claim from the EPA in the United
States. In one study, use of the aerosolized hydrogen
peroxide system was associated with a reduction in
C. difficile infection, and possible reduction of MRSA
acquisition in a second study [25]. Like many other
strategies in infection control, there are currently no ran-
domized controlled trials of the efficacy of these systems
in preventing health-care-associated infections.

Hydrogen peroxide vapor
A “dry gas” vaporized hydrogen peroxide system that
utilizes 30 % hydrogen peroxide has been shown to be
effective against a variety of pathogens, including
Mycobacterium tuberculosis, Mycoplasma, Acinetobacter,
C. difficile, Bacillus anthracis, viruses, and prions [80–83].
In before/after studies, dry gas vaporized hydrogen perox-
ide system, when combined with other infection control
measures, appears to have contributed to control of out-
breaks of Acinetobacter in a long-term care facility and in
two intensive care units in a hospital [84–86]. However,
long cycle times have made it difficult to implement this
system in healthcare facilities.
A micro-condensation hydrogen peroxide vapor system,

which utilizes 35 % hydrogen peroxide, is effective in
eradicating important pathogens including MRSA, VRE, C.
difficile, Klebsiella, Acinetobacter, Serratia, Mycobacterium
tuberculosis, fungi, and viruses. Laboratory-based and in-
hospital studies documented significant reductions (often
106 log10) of a number of these pathogens, with 92 to
100 % reduction of pathogens on surfaces [23, 83, 87–93].
In before/after trials, when used in conjunction with other
measures, the micro-condensation hydrogen peroxide
vapor system appears to have contributed to control of
outbreaks caused by MRSA, multi drug-resistant Gram-
negative bacteria, and C. difficile [78, 87, 94–99]. A pro-
spective, controlled trial performed by Passaretti et al.
demonstrated significant reduction in the risk of acquiring
multidrug-resistant organisms (MDROs), especially VRE
[30]. It has also been used to decontaminate the packaging
of unused medical supplies removed from isolation rooms,
instead of discarding such items [100]. This system has
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also been used to decontaminate rooms previously occu-
pied by patients with the Lassa fever and Ebola virus infec-
tion [101, 102]. Despite the demonstrated ability of this
system to eradicate nosocomial pathogens from surfaces,
concerns over its cost and room turn-around-times have
hampered adoption of this technology in healthcare
settings. At least one study found that the micro-
condensation hydrogen peroxide system can be imple-
mented in hospitals when census levels are relatively high
[103]. Recent improvements in the efficiency of the system
permit more rapid turn-around-times than earlier equip-
ment, which may lead to wider adoption. To date, there
are no randomized, controlled trials establishing the im-
pact of the micro-condensation hydrogen peroxide system
on reduction of healthcare-associated infections. Other
vapor- or aerosol-based no-touch disinfection technologies
that have been described, but whose adoption appears to
be limited include gaseous ozone, chlorine dioxide gas,
and saturated steam systems [104–109].

Ultraviolet light devices
Automated mobile ultraviolet light devices that continu-
ously emit UV-C in the range of 254 nm can be placed
in patient rooms after patient discharge and terminal
cleaning has been performed. A number of these devices
can be set to kill vegetative bacteria or to kill spores.
These systems often reduce the VRE and MRSA by four
or more log10, and C. difficile by 1–3 log10 [110–118]. In
one comparative trial, a continuous UV-C light system
resulted in lower log reductions than a micro-
condensation hydrogen peroxide vapor system [119].
Advantages of the mobile, continuous UV-C light de-
vices include their ease of use, minimal need for special
training of environmental services personnel, and unlike
hydrogen peroxide vapor systems, the ability to utilize
the devices without having to seal room vents or doors.
Recently, a prospective, multicenter randomized con-
trolled trial comparing a mobile continuous UV-C light
system with standard and other enhanced surface disin-
fection methods has been completed [120]. Results of
the trial should be published in the near future.
A pulsed-xenon device, which does not use mercury

bulbs to produce UV light, emits light in the 200–
320 nm range. It has been shown to significantly reduce
pathogens in patient rooms [121–127]. The manufacturer
recommends placing device in 3 locations in a room with
5–7 min cycles (shorter than with some continuous UV-C
systems). While a few studies utilizing the device reported
reductions in C. difficile infection [122, 127], a more re-
cent 8-month study in a large institution found no signifi-
cant reduction in C. difficile infection rates hospital-wide
or on four units with high C. difficile infection rates [128].
One carefully-performed trial which compared the
pulsed-xenon system with a continuous UV-C light device

found that log10 reductions of pathogens achieved with
the pulsed-xenon system were lower than with the con-
tinuous UV-C light device [129]. Additional evaluation of
the pulsed-xenon UV system by independent investigators
is needed.

High-intensity narrow-spectrum light
High-intensity narrow-spectrum (HINS) light, which is
visible violet-blue light in the range of 405 nm has been
tested as a means of disinfecting air and surfaces and
hospital rooms. This technology targets intracellular por-
phyrins that absorb the light and produce reactive oxy-
gen species [130–132]. Its antimicrobial efficacy is lower
than UV-C light, but it can be used in areas occupied by
patients. In one study, continuous HINS light showed a
27 to 75 % reduction in surface contamination by
staphylococci compared to control areas [131]. Further
investigation of this technology, including its level of ac-
tivity against C. difficile, appears warranted.

Photocatalytic disinfection
An enclosed air purifying system designed for use by
NASA utilizes UV-activated titanium dioxide photocata-
lytic reactions to oxidize volatile organic compounds
and airborne microorganisms. Since aerosolization of
pathogens such as S. aureus and C. difficile during pa-
tient care activities is known to occur, there may be
some interest in using such systems in patient rooms to
reduce airborne bacteria may settle onto environmental
surfaces [133].
Given the increasing interest in the above-mentioned

new technologies for cleaning and disinfection of envir-
onmental surfaces, the Agency for Healthcare Research
and Quality (AHRQ) recently commissioned an expert
panel to review data regarding these modern technolo-
gies. The panel concluded that there is a relative lack of
comparative studies addressing the relative effectiveness
of various cleaning, disinfecting and monitoring strat-
egies, and that future studies are needed that directly
compare newer disinfecting and monitoring methods to
one another and with traditional methods [4].

Conclusions
In conclusion, manual cleaning and disinfection of envir-
onmental surfaces in healthcare facilities (daily and at
patient discharge) are essential elements of infection
prevention programs. Because many factors make it dif-
ficult to achieve high rates of effective disinfection on a
routine and sustained basis, continued efforts to improve
the quality and consistency of traditional cleaning and
disinfection practices are needed. Given the many chal-
lenges in achieving desired levels of surface disinfection,
adoption of modern technologies is indicated to supple-
ment traditional methods. Further research into the
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efficacy and cost-effectiveness of newer technologies,
and when to best apply them, is needed. As additional
data become available, it is likely that newer liquid disin-
fectants and some no-touch room decontamination
systems will be more widely adopted to supplement
traditional cleaning and disinfection practices.
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