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Abstract. A general stream cipher with memory in which each cipher-
text symbol depends on both the current and previous plaintext symbols,
as well as each plaintext symbol depends on both the current and previ-
ous ciphertext symbols, is pointed out. It is shown how to convert any
keystream generator into a stream cipher with memory and their secu-
rity is discussed. It is proposed how to construct secure self-synchronizing
stream ciphers, keyed hash functions, hash functions, and block ciphers
from any secure stream cipher with memory. Rather new and unusual
designs can thus be obtained, such as the designs of block ciphers and
(keyed) hash functions based on clock-controlled shift registers only.
Key words: Stream ciphers, block ciphers, keyed hash functions, hash
functions, conversions, security.

1 Introduction

The electronic codebook (ECB) mode of block ciphers is mostly confined to en-
cryption of relatively short messages in cryptographic protocols for confidential-
ity and/or authentication purposes. To increase the resistance to cryptanalysis,
various modes with memory have been suggested, such as the output feedback
(OFB) mode, the cipher block chaining (CBC) mode, the cipher feedback (CFB)
mode, and the counter mode (e.g., see [22]). If a block cipher is used for encryp-
tion in one of these modes with memory, it then essentially becomes a stream
cipher whose next-state and/or output functions are determined by the secret-
key-dependent encryption and/or decryption functions of the block cipher.

The CBC and CFB as well as some other modes with memory [20] can be
used to produce a message authentication code (MAC), usually also called a
keyed hash function (KHF), which can be combined with encryption as well. It
is proved in [2] that the CBC-MAC (used without CBC encryption) is at least
as secure as the underlying block cipher with respect to the well-known pseudo-
random function probabilistic model. A more general theoretical framework for
the relative security analysis of symmetric encryption modes is proposed in [3].
Block ciphers can also be used in a number of various modes with memory to
build hash functions (HF’s) (e.g., see [20]).

* Part of this work was done while the author was with the Information Security
Research Centre, Queensland University of Technology, Brisbane, Australia

D.R. Stinson and S. Tavares (Eds.): SAC 2000, LNCS 2012, pp. 233-B47] 2001.
(© Springer-Verlag Berlin Heidelberg 2001



234 Jovan Dj. Golié

However, stream ciphers need not be based on block ciphers, that is, on
one-to-one functions that are difficult to compute in both directions without
knowledge of the secret key. Instead, there exist many proposals of practically
secure stream ciphers (keystream generators) whose next-state and/or output
functions are very simple and whose initial state is controlled by the secret key
(e.g., see [21], [22], and [19)]).

A general way to produce a KHF from a keystream generator and an un-
conditionally secure MAC (authentication code, which is typically based on
some linear operations modulo an integer or modulo a polynomial) is to use
the keystream sequence to define the time-variant MAC secret key (see [23],
[12], and [T4]). A different construction directly based on a keystream generator
is given in [I5], but is shown to be insecure in [23]. The KHF can be combined
with the keystream generator encryption, but then an additional portion of the
keystream sequence is required.

In [I] it is suggested how to build block ciphers of unbalanced Luby-Rackoff
type, with just a few rounds, from a keystream generator and a KHF or a HF.
Note that a KHF itself can be produced from a HF by incorporating the secret
key in the message. Similar constructions are also proposed in [I6], along with
a more elaborate security analysis.

The main objective of this paper is to show how to construct secure self-
synchronizing stream ciphers, keyed hash functions, hash functions, and block
ciphers from secure stream ciphers in a general, simple, and direct way. The
crucial point is that instead of the keystream generator mode, which is almost
exclusively treated in the open literature, we make use of a more general stream
cipher mode in which each ciphertext symbol depends not only on the current
plaintext symbol, but also on all the previous plaintext symbols. We discuss the
security of all the modes proposed.

A formal proof that a derived mode of operation is at least as secure as the
original mode with respect to certain attacks means that any efficient attack on
the derived mode gives rise to an efficient attack on the original mode. How-
ever, if the original mode is not proved to be secure itself, as is the case with
all known practical stream and block ciphers and (keyed) hash functions in the
open literature, then formal security reduction proofs only show alternative ways
of developing efficient attacks on the original mode. If the original mode is con-
sidered heuristically secure with respect to known attacks, then formal security
reduction proofs do not imply that the derived modes are such, because they
may be vulnerable to previously unknown, specially adapted attacks. Moreover,
in our case, the security of the underlying stream cipher mode with plaintext
memory has not been considered in the open literature. Accordingly, apart from
the formal security analysis, we also deal with the practical (heuristic) security
analysis of the modes proposed.

As usual (e.g., see [I8] and [I]), the formal security statements and proofs
are presented in a general language, which can be made mathematically precise
by assuming various mathematical models for cryptanalytic attacks, such as the
polynomial-complexity algorithms.
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The stream cipher with memory (SCM) and other stream cipher modes are
briefly described in Section[2l A general way of converting a stream cipher from
the keystream generator mode into the SCM mode is proposed in Section
and practical security analysis of both the modes is addressed in Section
Conversions of a stream cipher with memory into a self-synchronizing stream
cipher, a keyed hash function, a block cipher, and a hash function are presented
in Sections Bl [6 [4, and 8], respectively, together with their security analyses. A
proposal of a simple class of stream ciphers with memory to be used is described
in Section[@. Conclusions are given in Section [I0.

2 Stream Cipher with Memory (SCM) Mode

Let x = (24)§2, and y = (y:)52, denote the plaintext and ciphertext binary
sequences, respectively. Let the binary strings k£ and r stand for the secret and
randomizing keys, respectively, and let s = (s:)52, denote the internal state
sequence where s; is a binary string of length M and sq(k, r) is the initial internal
state determined by k and r. Then, a general binary stream cipher decipherable
without delay is an invertible nonautonomous finite-state machine with one input
and one output that maps an input sequence x into the output sequence y by
the encryption (sequential) transform recursively defined by

Siv1 = Fi(se,ze),  ye = x4+ fr(se), t>0 (1)

where the addition is binary and F}, : {0, 1}*1 — {0,1} and f; : {0,1}M —
{0,1} are the (secret-key-dependent) next-state and output functions, respec-
tively. The inverse, decryption transform is recursively defined by

Ser1 = Fe(st,ye + fr(se)),  xe = ye + fu(st), t > 0. (2)

The encryption and decryption transforms are thus defined by the so-called
keystream sequence z = (z: = fr(s))20-

Let the input memories of the encryption and decryption transforms be re-
ferred to as the input and output memories of a stream cipher, respectively. All
stream ciphers can be classified into the following three types with respect to the
input and output memories: memoryless, with finite input or output memory,
and with infinite input and output memory.

In the memoryless type, known as the keystream generator (KG) or the pseu-
dorandom sequence generator type, the next-state function does not depend on
the plaintext symbol, that is, s;41 = Fk(s:), so that the keystream sequence z
is plaintext independent. The KG type is sensitive to synchronization errors but
has no substitution error propagation. To deal with a possible loss of synchro-
nization when encrypting longer messages with the same secret key k, a long
message is divided in shorter ones and a randomizing key r is used to reinitialize
the keystream generator for every new message to be encrypted. It is typically
sent in the clear and as such is public rather than secret. The randomizing key
is generated in a random or deterministic way with the property of being with
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high probability different for every new message to be encrypted with the same
secret key. This is in order to satisfy the so-called one-time-pad assumption that
repetitions of long segments of keystream are highly unlikely. Namely, to this
end, every new plaintext sequence should with high probability be encrypted
by using a different initial state. More generally, repetitions of internal states
should be highly unlikely.

In the finite input or output memory type, the encryption or decryption
transform has finite input memory. In particular, in the self-synchronizing stream
cipher (S2SC) type (i.e., the cipher feedback type), the decryption transform has
finite input memory, that is, s;11 = (yt,i)ij\ial, so that the keystream sequence
depends on ciphertext only. As a consequence, the propagation of both synchro-
nization and substitution errors in decryption is limited. Its security entirely de-
pends on the output (feedback) function f; which must be secret-key-dependent.

In the infinite input and output memory type, the next-state function ef-
fectively depends on the current plaintext symbol in such way that both the
encryption and decryption transforms have infinite input memory. This type is
typically either not mentioned or just overlooked as a practical possibility in the
open literature on stream ciphers (e.g., see [2I], [22], and [19]). Such a type is
called here the stream cipher with memory (SCM) type, to emphasize the fact
that in encryption each ciphertext bit does not depend on the current plaintext
bit only, but also on the previous plaintext bits as well as that in decryption each
plaintext bit depends on the current and previous ciphertext bits. Note that the
PKZIP stream cipher is of this type (see [5]).

The SCM type is therefore sensitive to both synchronization and substitution
errors, but, due to infinite input memory, has an inherent potential that can be
used for message integrity purposes. The errors on real channels should be dealt
with by separate error-correction and/or detection codes and, in addition, by
the resynchronization method. However, instead of using and transmitting the
randomizing key as described above, one may just prepend the randomizing key
to each new message and keep the initial state secret-key-dependent only, as is
done in the PKZIP stream cipher. In this case, the randomizing key is encrypted
rather than transmitted in the clear and hence need not be public.

The basic types of stream ciphers will also be referred to as the modes of
operation of stream ciphers, because it will be shown that they can be converted
into each other by simple and general constructions. Similarly, other crypto-
graphic primitives constructed from stream ciphers will also be referred to as
the modes of operation of stream ciphers.

3 Conversion of Keystream Generator (KG) Mode
into SCM Mode

Any stream cipher in the KG mode can be converted into the SCM mode by
letting the next-state function depend upon the current plaintext bit too. The
main practical criterion to be respected in this regard is that a change of a
single plaintext bit should give rise to a random looking change in the keystream
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(ciphertext) sequence to follow (forward propagation effect). Note that the KG
mode should satisfy the same property, but with respect to changes of the initial
state bits. So, the adaptation is easily achieved by adding the plaintext bit to one
or more of the internal state bits, especially those with the significant forward
propagation effect. For a nonbinary plaintext alphabet, the plaintext symbol
should be incorporated by a function with the property that any change of this
symbol necessarily gives rise to a change of one or more of the internal state
variables. This can generally be achieved by using a quasigroup operation.

In shift-register-based keystream generators, the conversion is easily done by
making the shift registers nonautonomous, that is, by adding the plaintext bit
to the feedback bit for each of the shift registers, and especially those that are
used for clock control. The output of such shift registers should then necessarily
involve the first, input stage. In KGs based on the table-shuffling principle like
RC4 (see [22]), the plaintext symbol should affect the internal state variables
defining the table positions where the changes should be made.

4 Security Analysis of SCM and KG Modes

In view of (), the change of one plaintext bit necessarily causes the change
of the corresponding ciphertext bit in the KG and SCM modes as well as a
pseudorandom change of only the subsequent ciphertext bits in the SCM mode.
Therefore, without the one-time-pad assumption, cryptanalytic attacks generat-
ing new plaintext/ciphertext pairs by modifying some bits in the known pairs are
feasible. This is relevant for achieving information authenticity. The one-time-
pad assumption can be achieved either without using resynchronization or by
using resynchronization by (with high probability) different randomizing keys.

We will discuss cryptanalytic attacks in a general, adaptive combined cho-
sen plaintext and ciphertext scenario, possibly key related as well (e.g., see [18]).
The situation is conceptually similar to one with block ciphers in the ECB mode,
with a difference that we now deal with the plaintext/ciphertext strings rather
than blocks and that each plaintext sequence effectively includes the randomiz-
ing key used. The attacks use a training set consisting of a number of known,
arbitrarily, possibly adaptively, chosen plaintext/ciphertext string pairs obtained
from the same secret key (and the same or different known randomizing keys),
and possibly from a set of related keys as well. An attack is an algorithm that
produces one or more new plaintext/ciphertext string pairs, not included in the
training set, where either the plaintext or ciphertext string in each of these pairs
is assumed to be given. As knowing a plaintext/ciphertext string pair in the
KG mode is equivalent to knowing a keystream/ciphertext string pair, an attack
on the KG mode is in fact an algorithm that reconstructs unknown portions of
a keystream sequence from its known portions or, more generally, from known
portions of a set of keystream sequences obtained from different randomizing
keys and the same secret key.

Typically, it is assumed that the attacks work for any secret key. Ideally, the
exhaustive search over the secret keys or over unknown plaintext or ciphertext
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strings should be the most efficient way to perform an attack. If an attack can
recover only particular plaintexts from given ciphertexts, it is then said to be
successful for such plaintexts only, e.g., corresponding to certain plaintext statis-
tics. On the other hand, secret key reconstruction attacks are the best known
examples of the attacks successful for all the plaintexts.

An attack on the SCM mode that produces new plaintext/ciphertext string
pairs by modifying a number of end bits in a known plaintext/ciphertext string
pair is said to be trivial. A trivial attack on the KG mode is defined similarly. As
argued above, trivial attacks are always computationally feasible for any stream
cipher in the SCM or KG mode if the one-time-pad assumption is not satisfied.

A stream cipher in the SCM or KG mode is said to be (practically) secure with
respect to nontrivial cryptanalytic attacks if no suck attack is computationally
feasible, relative to available computing power. This security essentially means
that both the encryption and decryption transforms are infeasible to compute
without knowing the secret key, under the one-time-pad assumption.

Since it does not appear possible to formally relate the security of the KG
and SCM modes with respect to general attacks, we will concentrate on their
practical security. It turns out that the security of the SCM mode is more related
to the security of the KG mode with than without resynchronization, which,
except for [6], is hardly analyzed in the open literature.

The fact that in the SCM mode the plaintext statistics is disguised by the
plaintext dependent keystream sequence makes the cryptanalytic attacks suc-
cessful for particular plaintexts only and the ciphertext-only cryptanalytic at-
tacks both very unlikely. For the same reason, the attacks consisting in predicting
the keystream without reconstructing the initial state (e.g., based on low linear
[21] or 2-adic [13] complexities) and the attacks finding the statistical weaknesses
of the keystream (e.g., [9]) are also unlikely to succeed. In addition, unlike the
KG mode, assuming that the (prepended) randomizing key is known is not very
realistic in the SCM mode. Also, the known plaintext/ciphertext scenario is gen-
erally less useful for the SCM than for the KG mode, as missing portions of the
plaintext/ciphertext sequences present a difficulty which is harder to overcome
in the SCM than in the KG mode.

On the other hand, the plaintext dependent keystream sequence may open
new possibilities for secret key reconstruction attacks especially if resynchro-
nization is used and if prepended resynchronization key is assumed to be known,
although the cryptanalysis is more complicated. For a survey of various (initial
state) secret key reconstruction attacks on the KG mode without resynchroniza-
tion, see [21], [7], [10], and [19].

Since the randomizing key plays the role of known plaintext, the cryptanalytic
methods for block ciphers in the ECB mode, such as the differential [4] and linear
[I7] cryptanalysis, in principle extend to the KG and SCM modes too, especially
if the secret and randomizing keys are linearly combined together. They are
less likely to succeed here because of the underlying iterative structure. On the
other hand, if long all zero plaintext sequences are allowed to be encrypted,
then, formally, any secret key reconstruction attack on the KG mode directly
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extends to the SCM mode. So, the basic criterion for the SCM mode is that the
underlying KG mode is secure (e.g., this is not true for the PKZIP stream cipher
cryptanalyzed in [5]).

If the prepended randomizing key is assumed to be known, then the SCM
mode is required to be secure with respect to nontrivial cryptanalytic attacks
(in particular, secret key reconstruction attacks), for any training set of known
plaintext/ciphertext sequence pairs produced from the same initial state. To
this end, when the plaintext symbol is introduced into a part of the next-state
function of the underlying KG mode by a linear function, it appears reasonable
to recommend that this part of the next-state function should not be linear, as
a whole, with respect to the same type of linearity. Accordingly, in binary shift-
register-based keystream generators at least one of the shift registers affected by
the plaintext bit should be clock controlled or have nonlinear feedback.

5 Conversion of SCM Mode
into Self-Synchronizing Stream Cipher (S2SC) Mode

We should define the secret-key-controlled feedback function fi of m binary
variables, where m is the output memory size, on the basis of the SCM mode
of a given stream cipher so as to prevent trivial attacks on the SCM mode. A
general and simple way to achieve this is to use an SCM mode with the secret key
k, with the initial state determined only by k, and with the plaintext sequence
whose first m plaintext bits are defined by a given m-bit input to fr and the
remaining plaintext bits are fixed, possibly to zero. The output bit of fj is then
defined as the last ciphertext bit obtained after clocking the SCM mode m times
and a specified additional number of times, typically, on the order of several (e.g.,
three) internal memory sizes M of the SCM mode. Similarly, a faster conversion
is obtained by producing a block of n, n < M, ciphertext bits at a time, thus
constructing an n-bit output feedback function fj. In the S2SC mode, its output
is then combined with an n-bit block of plaintext at a time, e.g., by using the
bitwise binary addition.

Any attack on the $2SC mode is essentially an algorithm for producing the
unknown outputs of the feedback function for one or more given inputs, where
a training set of a number of input/output pairs of the feedback function is
assumed to be known. The S2SC mode of a stream cipher is said to be secure
if no such attack is computationally feasible. In particular, the security can be
defined with respect to secret key reconstruction attacks only.

Proposition 1. If the underlying SCM mode is secure with respect to nontrivial
cryptanalytic attacks, then the derived S2SC mode is secure. If the underlying
SCM mode is secure with respect to secret key reconstruction cryptanalytic at-
tacks, so is the derived S2SC mode.

Proof. It should be proved that any computationally feasible attack on the S2SC
mode can be converted into a nontrivial attack on the SCM mode at an addi-
tional computational cost that is not comparatively significant. This is a direct
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consequence of the proposed construction, as any input/output pair for the feed-
back function can be extended into a plaintext/ciphertext string pair for the
SCM mode by appending a required number of fixed plaintext bits to the input
bits, where only the last bit (or the last n bits) of ciphertext is known. Accord-
ingly, one can modify the training set for any attack on the S2SC mode into the
corresponding training set for an attack on the SCM mode and vice versa. As
well, producing an unknown input/output pair of the feedback function directly
extends into producing an unknown bit (or n bits) of ciphertext for a known
plaintext string of the SCM mode. This is by definition a nontrivial attack on
the SCM mode, since sufficiently many fixed plaintext bits are appended.

A similar proof holds for secret key reconstruction attacks. O

In other words, the derived S?SC mode is at least as secure as the underlying
SCM mode with respect to nontrivial attacks, as trivial attacks on the SCM
mode are prevented by additional clocking.

6 Conversion of SCM Mode
into Keyed Hash Function (KHF) Mode

A binary keyed hash function (KHF) or a message authentication code (MAC)
is a secret-key-dependent function {0, 1}’ — {0,1}" that maps binary strings of
variable length ! (messages) into binary strings of a fixed length n, where [ > n.
This function should be easy to compute when the secret key is known. The
main computational security property required from a KHF is that it should
be computationally infeasible, without knowledge of k, to perform existential
forgery in the (adaptive) chosen message scenario, that is, to find another, dis-
tinct message and its hash value under k, provided a set of (adaptively) chosen
messages and their hash values under k is given. In particular, a KHF should
be secure against any secret key reconstruction attack. Ideally, the exhaustive
search over k should be the most efficient way to find k.

Our objective now is to show how to construct a KHF from a stream cipher
in the SCM mode. The designs proposed in the literature are either dedicated
or are based on block ciphers, hash functions, or unconditionally secure MACs
combined with KGs. They typically require that the message length be a multiple
of a given positive integer which is achieved by padding. Our construction allows
an arbitrary message length and is solely based on a stream cipher in the SCM
mode, which can be easily obtained from any KG mode (as shown in Section ().

The construction is similar to the one proposed for the S2SC mode. Let k be
the secret key for the SCM mode of a given stream cipher with the initial state
determined only by k and with the plaintext sequence whose first [ plaintext
bits are defined by the given message and the remaining bits are fixed, possibly
to zero. Let M > n, where M is the internal memory size of the SCM mode.
The hash value is then defined as the last n successive ciphertext bits obtained
after clocking the SCM mode [ times and a specified additional number of times,
several (e.g., three) times bigger than M.
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In a similar way as for the $2SC mode, producing a message and the cor-
responding hash value under k for the defined KHF mode directly extends into
producing n unknown ciphertext bits for a known plaintext string of the under-
lying SCM mode. Consequently, the following proposition is proved in essentially
the same way as Proposition [I]

Proposition 2. If the underlying SCM mode is secure with respect to nontriv-
ial cryptanalytic attacks, then the derived KHF mode is secure. If the underlying
SCM mode is secure with respect to secret key reconstruction cryptanalytic at-
tacks, so is the derived KHF mode.

In other words, the derived KHF mode is at least as secure as the underlying
SCM mode with respect to nontrivial attacks, as trivial attacks on the SCM
mode are prevented by additional clocking. The same proposition holds even if
the hash value of a given message is used together with the corresponding cipher-
text obtained by the SCM with the same k. Accordingly, the KHF mode can be
combined with the SCM encryption with the same secret key. Additional protec-
tion measures or constraints typically required for the designs proposed in the
literature (e.g., due to the finite input memory of the CBC or CFB decryption)
are not here needed.

7 Conversion of SCM Mode
into Block Cipher (BC) Mode

A binary block cipher is a secret-key-dependent one-to-one function {0,1}" —
{0,1}" that maps binary strings of length n (plaintext blocks) into binary strings
of the same length (ciphertext blocks), where the block length n is usually fixed
and relatively short. The function is called the encryption function, and its in-
verse is called the decryption function. Both the functions should be easy to
compute when the secret key k is known and infeasible to compute when k is
not known, in the (adaptive) chosen plaintext/ciphertext scenario, possibly key
related as well. More precisely, an attack on a block cipher is an algorithm that,
on the basis of a training set consisting of a number of known, arbitrarily chosen
plaintext/ciphertext block pairs, produces one or more new plaintext/ciphertext
block pairs, where either plaintext or ciphertext blocks are assumed to be given.
A block cipher is said to be secure with respect to cryptanalytic attacks if no
suck attack is computationally feasible.

Typically, the objective of cryptanalytic attacks on block ciphers is to re-
construct the secret key, in which case the attacks are successful for all the
plaintexts. The differential cryptanalysis [4] in the chosen plaintext scenario and
the linear cryptanalysis [I7] in the known plaintext scenario are the well-known
examples. The vast majority of existing proposals for block ciphers use the prod-
uct structure composed of a number of rounds each involving a relatively simple
one-round function, such as the Feistel type ciphers like DES.

We will now describe a simple and general way to construct a secure block
cipher (BC) mode starting from any secure stream cipher in the SCM mode.
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The construction essentially requires only three rounds and works for variable
block sizes that are practically limited only by the memory space available. We
are interested in the SCM mode whose initial state depends on the secret key
only, without using any randomizing key to satisfy the one-time-pad assumption.
Such a mode is not secure with respect to the so-called trivial attacks, as it is
possible to generate, with high probability of success, new plaintext/ciphertext
string pairs by modifying a number of end bits in the plaintext/ciphertext string
pairs already known. So, what is essentially needed is a construction that would
prevent such attacks.

We propose a product connection of three stream ciphers in the same SCM
mode whose secret keys are the same, independent, or different (but related).
Product ciphers with independent keys are usually called cascade ciphers (see
[18]). In fact, we suggest different keys related in a very simple way, which
removes the need for a special key schedule. For example, the keys for the second
and the third cipher can be obtained as cyclic shifts of the key for the first stream
cipher (represented as a binary string). The main point is to use the output bits
from the first/second stream cipher in the reverse order to define the input
bits for the second/third stream cipher, respectively. This creates the required
forward propagation effect for the second half of the plaintext bits, as noted in
[11] in a different context of block ciphers based on specific finite automata. It is
required to memorize the outputs of the first and the second stream cipher. One
can also use a product connection of only two stream ciphers, but in this case
the change of the last plaintext bit necessarily gives rise to the change of the first
ciphertext bit, which may be considered as a weakness for some applications.

For the encryption of long messages, the proposed BC mode can be used in
its basic, ECB form with a large block size. Also, it can be used in the usual
CBC and CFB modes, with a finite input memory of the decryption transform.
This may be suitable for some applications, e.g., for the encryption of random
access files. In addition, one may also use the existing internal memory of the
underlying stream cipher. For example, one can use the last generated internal
state for the current plaintext block as the initial state for the next one. The
obtained cipher can then be considered as an enhanced version of the original
stream cipher in the SCM mode, because of the triple encryption.

By using the standard argument (e.g., see [18]), we obtain the following two
propositions, which essentially show that the BC mode is at least as secure as
the underlying SCM mode with respect to nontrivial attacks, as trivial attacks
on the SCM mode are prevented by reversing the intermediate ciphertexts. It is
assumed that the attacks work for any secret key.

Proposition 3. If the underlying SCM mode is secure with respect to nontriv-
ial cryptanalytic attacks, then the derived BC mode with the cascade connection
is secure. If the underlying SCM mode is secure with respect to secret key re-
construction cryptanalytic attacks, so is the derived BC mode with the cascade
connection.

Proof. Tt should be proved that any computationally feasible attack on the BC
mode with the cascade connection can be converted into a nontrivial attack on
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the SCM mode at an additional computational cost that is not comparatively
significant. Consider the BC mode where the secret key for the first stream cipher
is unknown and arbitrary and where the keys for the second and the third stream
cipher are known and fixed. Then any plaintext/ciphertext block pair for the BC
mode can be converted into the corresponding plaintext/ciphertext string pair
for the SCM mode of the first stream cipher and vice versa, at a computational
cost of two SCM encryptions/decryptions (with known keys) per pair.

Accordingly, one can modify the training set for any attack on the BC mode
into the corresponding training set for an attack on the SCM mode and vice
versa. Also, producing an unknown plaintext/ciphertext block pair for the BC
mode directly extends into producing an unknown ciphertext string for a known
plaintext string for the SCM mode. This is a nontrivial attack on the SCM
mode, since the reversion of intermediate ciphertexts renders the produced plain-
text/ciphertext string pair(s) different from those obtained by trivial attacks
(i.e., by modifying pairs from the training set).

A similar proof holds for secret key reconstruction attacks. a

Proposition 4. If the underlying SCM mode is secure with respect to secret
key reconstruction cryptanalytic attacks in the related key scemario, then the
derived BC mode with the product connection is secure with respect to secret key
reconstruction cryptanalytic attacks.

Proof. Tt should be proved that any computationally feasible secret key recon-
struction attack on the BC mode with the product connection can be converted
into a secret key reconstruction attack on the underlying SCM mode at an ad-
ditional computational cost that is not comparatively significant. As the keys
of the second and the third SCM mode are derived from the secret key of the
first SCM mode, any given plaintext/ciphertext block pair for the BC mode
can be converted into the corresponding plaintext/ciphertext string pair for the
first SCM mode and vice versa if two more plaintext/ciphertext string pairs
are known: one for the second SCM mode and one for the third SCM mode in
the product connection, both obtained from the (related) keys derived from the
secret key of the first SCM mode.

Accordingly, the training set for any secret key reconstruction attack on
the BC mode can be obtained from the corresponding training set for the
SCM mode with the same secret key and from two additional training sets for
the SCM modes with related keys. This is achieved by combining the plain-
text/ciphertext string pairs from the three training sets into the corresponding
plaintext/ciphertext block pairs for the BC mode, respectively. The secret key
for the first SCM mode can then be produced by the secret key reconstruction
attack on the corresponding BC mode. O

Note that in a special case, Proposition [ is true for cryptanalytic attacks
successful for particular plaintexts only, as the plaintexts for the first SCM mode
in the cascade and for the whole cascade are the same (see [I8]). If very simple
stream ciphers are used so that the security of the SCM mode may be question-
able, then the number of rounds can be increased.
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8 Conversion of SCM Mode
into Hash Function (HF) Mode

A binary hash function (HF) is defined in the same way as a KHF except that
the secret key parameter is not used. One-wayness and collision-resistance (or
collision-freedom) are the two main computational security properties required
from a HF. A HF is called one-way if it is computationally infeasible to find any
input that hashes to a given output, for almost all outputs. Ideally, the random
guessing, with the computational complexity O(2"), should be the most efficient
way of inverting a HF. A HF is called collision-resistant if it is computationally
infeasible to find any two distinct inputs that hash to the same output. Ide-
ally, the birthday attack, with the computational complexity 0(2”/ 2), should be
the most efficient way of producing collisions. Note that the existing proposals
for HF’s are either dedicated or are based on block ciphers like DES, and are
typically defined in terms of a so-called compression function which is applied
iteratively (e.g., see [20] and [1]).

By fixing the value of the secret key, any KHF obtained from the SCM mode
of a given stream cipher becomes a candidate HF. However, its security is no
longer guaranteed by the security of the SCM mode. Namely, the one-wayness
and collision-resistance properties impose stronger requirements for the SCM
mode which do not involve the output function of the SCM mode at all and are
hence more difficult to satisfy. For example, collision-resistance implies that it
should be computationally infeasible to find any two different plaintext sequences
that will, starting from the same initial state, produce the same internal state
at a given time in future.

We now define a more complicated, but still simple construction of a HF from
the SCM mode whose security relies on the output function as well. The basic
construction consists of two stages. The first stage is similar to one for a KHF,
except that the plaintext sequence for the SCM mode consists of the [ message
bits only and that the (secret) key is fixed and known. The SCM is clocked [
times and the corresponding [ bits of the ciphertext are memorized. In the second
stage, the [ ciphertext bits in the reverse order are used as the plaintext sequence
for the same SCM mode, but now starting from the last internal state produced
in the first stage. The SCM is clocked [ times and an additional number of times
several times bigger than M (as before), and the last n successive ciphertext bits
produced are the hash value.

As in the BC mode, the ciphertext bits are used in the reverse order to
increase the forward propagation effect for the second half of the message bits.
Since finding the collisions necessarily involves the output function of the SCM
mode, the constructed HF seems to be, at least heuristically, at least as secure
as the underlying SCM mode with respect to nontrivial cryptanalytic attacks.
Clearly, the number of stages can be made bigger than two by proceeding in a
similar way. This would increase the security.

If the underlying SCM mode is secure, then the resulting KHF and HF modes
also satisfy a stronger security property that any change of the message bits gives
rise to a random looking change of the corresponding hash value.
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As the basic construction described above requires memorizing intermediate
ciphertext(s) of the same length as the message itself, a derived construction with
lesser memory requirements would be to use the basic construction to define the
compression function which is applied iteratively in the usual way. Namely, let
the message be divided into blocks of a given, relatively large length | with
the last block of variable length as required (without any padding). Let, for
simplicity, the memory size of the SCM mode utilized be equal to the hash value
length n. Then each round of the iterative construction is the basic construction
applied to a new message block and with the hash value from the previous
iteration as the initial internal state.

9 Proposal

The underlying keystream generator to be used in the proposed constructions
can be as simple as a self-clock-controlled nonlinear filter generator, where ir-
regular clocking is needed to ensure that the next-state function is nonlinear.
The nonlinear filter generator, when regularly clocked, should be designed so as
to resist known initial state reconstruction attacks including the fast correlation
attack, the conditional correlation attack, and the inversion attack as well as to
achieve (with a high probability) a long period, a high linear complexity, and
good statistical properties of the output sequence (see [§]). We propose that the
LFSR length be at least 256 and that the LFSR initial state be defined by the
secret key at least 128 bits long. As the next-state function is not one-to-one
due to irregular clocking, one may expect a reduced period of the keystream
sequence, but not less than about 228, which is long enough even for stream
cipher applications.

The binary clock-control output is produced by an additional boolean func-
tion with a few inputs (e.g., three) taken from the LFSR taps chosen according
to a full positive difference set. The difference sets used for clock control and
for the filter function should be disjoint, as in a nonlinear filter generator with
two binary outputs (see [8]). According to the binary clock-control output, the
LFSR is clocked once or twice per each output bit. The SCM mode is formed
by adding the plaintext bit to the feedback bit at each time, with the plaintext
bit repeated if the LFSR is clocked twice.

10 Conclusions

A general stream cipher with memory (SCM) mode, which is typically over-
looked in the open literature, is pointed out. Its main characteristic is that each
ciphertext symbol depends on both the current and previous plaintext symbols.
Similarly, in decryption, each plaintext symbol depends on the current and pre-
vious ciphertext symbols. It is shown how to convert any keystream generator
(KG) mode into the SCM mode and their practical security is discussed. In-
vestigating the practical security of the SCM mode of stream ciphers is a new
interesting research area in public cryptology. Developing attacks on the SCM



246 Jovan Dj. Golié

mode would reveal weaknesses of the underlying KG mode, especially when used
with resynchronization.

It is proposed how to obtain a secure self-synchronizing stream cipher from
any secure stream cipher in the SCM mode. It is then proposed how to construct
secure keyed hash functions, block ciphers, and hash functions from any secure
stream cipher in the SCM mode. In all the modes, the message length can be
made large and variable in a simple and natural way.

The resulting designs are rather new and unusual and are based on the iter-
ative structure of stream ciphers which is symbol rather than block based. The
way the secret key is incorporated is new too. For example, there is no need
for specially designed S-boxes or a special key schedule algorithm. In particular,
the underlying stream cipher can be as simple as a single self-clock-controlled
nonlinear filter generator, with the secret key controlling its initial state only.

All the constructions directly extend from the binary to an arbitrary plain-
text/ciphertext alphabet, e.g., to stream ciphers based on multiple rather than
individual shift registers which are suitable for software realizations.
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