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PREFACE

This thesis is a report of work carried out in the 

Department of Applied Mathematics, Research School of Physical 

Science, Australian National University between January and 

August 1977.

The results in this thesis are original, in the sense 

that they are the product of a close collaboration between 

myself and my supervisor Allan Snyder. These results are 

also being reported in a paper entitled "Modes of Optical 

Waveguides" which has been accepted by the Journal of the 

Optical Society of America.
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ABSTRACT

This thesis develops a method for finding the modes of 

optical waveguides with a cladding refractive index that 

differs only slightly from the refractive index of the core. 

The method applies to waveguides of arbitrary refractive 

index profile, arbitrary number of propagating modes and 

arbitrary cross section.

Particular problems investigated include the consequences 

of a small elliptic deformation of the core of a circular step 

index fiber. Only a minute eccentricity is necessary for the 

well known LP modes to be stable on an elliptical core.
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CHAPTER 1 

PRELIMINARIES

1.1 Introduction

1 2
The optical fibers used in communications technology '

and the optical fibers which form the retinas of verterbrate 

3 4
eyes ' have a cladding refractive index, n that differs 

only slightly from the maximum refractive index of the core, 

n (see Figure 1). This observation has important theore­

tical consequences; previously it has been used to substan­

tially simplify the modal fields and the eigenvalue equation 

of a step index circular fiber.’'" The simplification achieved 

in this particular problem is one of the most important 

theoretical advances in fiber optics.

In this thesis I shall present a simple method for 

determining the bound modes of any n̂ <o = n  ̂waveguide. This

procedure, called the n = n .. method, applies to n = n n
co cl co cl

waveguides of arbitrary cross section and profile grading.

It is a generalisation of the ncQ = n  ̂approximation of the

bound modes of the step index circular fiber"̂  and provides

results consistent with the properties of graded profiles

5-7
previously reported. Besides being applicable to a much

wider class of fibers, the n = n , method also clarifies
co cl

the physical principles underlying the mathematical simpli­

fications which occur when n = n _.
co cl

From a practical point of view, the most important 

results in this thesis are probably those concerning the 

consequences of a small deformation of the core of a fiber. 

Minuscule imperfections, such as a slightly elliptic core, 

are inevitable in the manufacturing process. We shall see
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Figure 1.1: (a) A waveguide with cylindrical symmetry.

(b) The refractive index profile in some 

arbitrary cross section.
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that small perturbations of the waveguide geometry often 

dramatically affect the modes of the structure.

1.2 A Review of Basic Fiber Optics

Some significant events in the history of fiber optics

are summarized in Table 1.1. I shall now briefly review

some fundamental concepts required for this thesis. In

order to streamline the presentation the definitions of the

symbols have been relegated to Table 1.2.

A mode of a cylindrical (not necessarily circular)

waveguide is a field configuration which satisfies the source-

free Maxwell equations and propagates unchanged except in

phase (i.e., the modal fields depend on z and t only through

ei(3z ^t)j^ A dielectric waveguide has both a discrete set

0
of bound modes and a continuous set of radiation modes ; 

only the bound modes are considered in this thesis. Once the 

modes of a structure are known a field at one position on the 

fiber can be expressed as a superposition of modes; the modes 

in the superposition then propagate individually. The modal 

expansion method outlined above is physically intuitive and 

mathematically simple, once the modes are known.

The modal electric and magnetic fields of a cylindrical 

waveguide (i.e., a structure whose electric permittivity 

e(x,y) does not depend on z) have the form

E (x, y , z) = e(x,y)ei^Z = (efc + 

H (x, y , z) = h(x,y)ei(3z = (ht +

v ißz 
e )e (l.i)
— z

, v ißz 
h ) e 
— z

(1.2)
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Table 1.1: Significant Events in the History of Fiber Optics.

Date Event

1730
9

Newton's speculation on Goos Hänchen shift.

1897 Rayleigh's investigation of the modes of a dielectric 

cylinder.

1936 Carson, Mead and Schelkunoff consider using dielectric

11
cylinders as microwave waveguides.

1948 Toraldo di Francia suggests an explanation of the

Stiles-Crawford effect, based on the acceptance

19
properties of optical fibers.

1949 Chandler demonstrates experimentally that dielectric

cylinders guide more energy around a bend than metal 

12
waveguides. Adler investigates the general

g
properties of inhomogeneous dielectric cylinders.

1951
13

Kapany and van Heal develop the cladded fiber.

1958
14

Schawlow and Townes propose the laser.

1961 Snitzer develops a losing fiber.

Snitzer and Osterberg observe isolated modes on 

15 16
fibers. ' Enoch shows that retinas are optical

fiber bundles. ̂

1966 Kayo and Hockam suggest that dielectric rods are a

18
practical way of transmitting information.

1969 Snyder simplifies the modes and eigenequation of a step 

index circular fiber using nCo ~  ncl approximation."*"

1970-

75

20-22
Development of fibers with low material loss.
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Table 1.2: 

Symbol

Glossary of 

First

Occurrence 

(page #)

Symbols

Meaning and other useful information

n ncl
7 Refractive index of the cladding.

n 7 Maximum refractive index of the core.
CO

3 8 Modal propagation constant.

CO 8 Radian frequency.

E & H 8 Generic symbols of electric and 

magnetic fields.

e & h 8 Modal electric and magnetic fields.

e. & h. 8 Transverse modal fields.
— t — t

e & h 
— z — z

8 Longitudinal modal fields.

'1 13 Transverse vector Laplacian.

13 Transverse differential operator.

k (x,y) 13 Local wavenumber, k(x,y) = 

co (ye (x,y)1//2 = 27rn(x,y)/A .

e(x,y) 13 Electric permittivity.

y 13 Magnetic permeability.

n (x,y) 13 Local refractive index.

A 13 Wavelength.

e
o

13 Permittivity of free space, 
2

e(x,y) = eQn (x,y).

kco and kcl 13 kco = 2Trnco/A and kcy = 27rnc^/A .

P 13 Modal power.

(1 if i = j

6. . 
ID

14 6 = 1
1-̂ (0 otherwise .
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Table 1.2: 

Symbol

continued

First
Occurrence 
(page #)

Meaning and other useful information

A
oo

14 The Transverse plane.

n 14 Fraction of modal power in the core.

V

g

14 Modal group velocity

w 14 Modal energy stored per unit length.

e 2
C

14
6c = 1 - (nco/ncl)2 •

V 18 v = {k2 - k 2 }1/2= (2tt/A) {n2 -n2 }1/2.
CO cl CO cl

p 19 Radius of a circular fiber.

V 19 Waveguide parameter of a circular 

fiber.

19 Denotes quantities associated with the

n = n n waveguide,
co cl

20 Solution of the scalar wave equation.

p
CO

20 Characteristic length of a fiber 

cross section.

n 23 Outward unit normal of the core­

cladding interface of a step-index 

fiber.

a
n

23 Generic symbol for coefficients in a 

linear combinations.

C. . 
13

23 Generic symbol for elements of a 

perturbation matrix.

ip ,ip 
e 0

29 Even and odd solutions of the scalar

wave equation.
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Table 1.2: continued

First

, _ Occurrence
Symb°l (page #) Meaning and other useful information

f^(r) 29 Generic symbol for radial dependence 

function of a circular waveguide.

e , e 29
—xe —xo

Generic symbol for transverse

e , e 
—ye —yo

nco = ncl modal electric fields of a 

circular waveguide.

£ 29 Azimuthal wavenumber.

—11' —12 31 & 32
Generic symbol for transverse

—t 3 1 4
nco ^ ncl modal electric fields of a 

circular waveguide.

ßHE and ßEH 34
Propagation constants of modes 2,3 

and modes 1,4 respectively.

3e ^ß0 35
Progagations constants of even and 

odd solutions of the scalar wave 

equation.

A 35 Generic symbol for the parameter which 

determines the composition of a mode.

U,W 39 Normalised transverse wavenumbers of 

a circular fiber.

• V V h  39 & 45
Standard symbols for Bessel functions.

e Fig. 3.3 Eccentricity of an ellipse,

/T .minor axis 2
e = / 1 - (  -----t— )

major axis

\l>+ 46 Symmetric and antisymmetric solutions 

of the scalar wave equation for two 

parallel waveguides.
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(see Table 1.2). The field et (x,y) is a solution of the 

reduced wave equation

V 2e. + (k2-B2 )e. = -V (e • V.tnc) 
t~t —t —t —t t

(1.3)

2 23
where V is the transverse vector Laplacian. The local

wavenumber k(x,y), electric permittivity s(x,y) and

refractive index are related by

k (x,y) = üj (ye (x,y) )
1/2

2im (x,y) /X (1.4)

and

e(x,y) = eQn (x,y) (1.5)

(see Table 1.2). The remaining field components are 

determined from et using Maxwell's equations. The allowed 

values of ß result by demanding only that the solutions of 

equation 1.3 be bounded, since effects of any discontinuities 

in e are fully contained within the V^£ne term. For bound

g
modes ß is real and restricted to the range

k , < ß < k 
cl — —  co

(1 .6)

The modal fields are in general hybrid possessing both

g
e and h components. Furthermore, for the bound modes of 
z z

a lossless structure the normalisation can be chosen so that 

e_t ,h are real, while e -h are imaginary. The time averaged 

power of a mode is

= 1/2/ e x h* • z dAP (1.7)



14

where * is complex conjugate, and A m is the infinite cross 

section. The bound modes of a lossless structure obey power 

orthogonality^

/_ e . x h* • z dA = 2p5. . 
A — l j i]

CO J
(1 .8)

where p is equation 1.7 and 6 ^  is the Kronecker delta.

Not all the power in a waveguide is transmitted within the 

core, only a fraction

/ e x h* • z dA//_ e x h* • z dA 
core— A —

(1-9)

is carried within the core. The group velocity of a mode is

Vg = 9w/3ß = 4p/W (1 .10)

where W, the stored energy per unit length, it

W — f {e|e|^ + y|h|^ + oj | e | ̂  (ds/dco) }dA . (1.11)

The reason for having a small difference between n and n ,
r co cl

in communications technology is theit delay distortion 

(derivative of group velocity with respect to frequency) is 

proportion to

7 7 7
0 = 1 - (n Ai-, ) .
C CO cl

(1 .12)
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CHAPTER 2

THE n = n _ METHOD 
---- c o --- c l ---- ---

In this chapter I present the n = n ^  method. This

procedure synthesises the vector modal fields of the

n = n .. waveguide from linear combinations of solutions of 
co cl

the scalar wave equation. The appropriate linear combinations

are dictated by properties of the V^£ne term in equation 1.3.

Failure to account for the effects of the V^&ne term, however

small, leads to the well known LP or n = n n modes.^ The
co cl

cross sectional intensity and polarisation pattern of the

1 2  8 9
ncQ = n  ̂modes changes as the modes propagate. ' ' '

2.1 The nCo = nc_l Waveguide - No Polarisation Properties 

We begin by finding the modes of a waveguide in the 

artificial limit

n -> 
co

n  ̂= n or equivalently -> (2 .1)

which, by itself, amounts to assuming that the medium is 

homogeneous, without the capacity to guide waves. To avoid 

the trivial consequences of this limit, we impose the crucial 

constraint that X  ■+ 0 in such a way that the parameter

r ,  2 . 2 ,1/2
v = {k -k _ } ' 

co cl
0 /w 2 2 ,1/2 
2tt/A { n -n , } 

co cl
k 0 
CO c

(2.2)

equals an arbitrary constant. This second constraint

ensures that the structure guides waves. A similar approach

is used in deriving the modes of a circular step index 

3
waveguide, in which the waveguide parameter V is held
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constant,

V = p(kco-kcl)1/2 (2-3)

where p is the core radius. In other words by holding v

constant and letting ncQ -* n  ̂ (or equivalently, 0c ■> 0)

the waveguide is not merely a homogeneous medium.^ We now

investigate the properties of the bound modes on this

ncQ = n  ̂waveguide, anticipating that these modes should have

some properties in common with modes of the n = n n
co cl

waveguide.

Because the 3 of a bound mode is restricted to the range

of values in equation 1.6, the limit n = n n demands that 
 ̂ co cl

3 -* k + k _ + co . (2.4)
co cl

This condition is satisfied only by a z-directed transverse 

electromagnetic (TEM) wave, i.e., a wave for which '„he 

electric and magnetic field vectors lie in a plane that is 

transverse to the axis of the waveguide. Accordingly, the 

modal fields of the ncQ = n  ̂waveguide satisfy

h = e = 0  
—z —z

(2.5)

ht = (e/p)^2zxet (2.6)

where ~ is used to indicate quantities associated with the

n = n _ waveguide, 
co cl 3

Secondly, because ncQ = n^, all polarisation dependent 

properties of the structure are removed. If this is not
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obvious, then recall that as n -> n , , TE and TM waves
co cl

undergo identical reflection at an interface between two

4
semi-infinite media or at a caustic. Since the V^&ns term

in the reduced vector wave equation (1.3) is the only term

which distinguishes between polarisations, it is omitted when

solving for the e fields of the ncQ = n  ̂waveguide. In

other words, the fields of the n = n , waveguide are
co cl

essentially solutions of the scalar wave equation. These 

ncQ = n  ̂ or LP modal fields are expressed in rectangular 

coordinates as

e = ipx (2.7a)
—x —

ly = ’»'i (2.7b)

where b is a solution of

{V? + (k2-ß2) }ip = 0 (2.8)

2
and V is the transverse portion of the scalar Laplacian

operator. ̂  The solution ip must be bounded everywhere and

have the well known property of the scalar wave equation that

\<j and its normal derivative are continuous everywhere, even 

2
if k (x,y) is discontinuous. These constraints lead to an 

eigenvalue equation from which the allowed values of ß are 

found. We anticipate that these values of ß are nearly equal 

to k. Furthermore, as n -*■ n , , p ß becomes arbitrarily 

large, where pcQ is a characteristic length of the cross

section.
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In conclusion, the n = n  ̂waveguide was invented to

physically motivate the introduction of the ncQ = n , fields

in equation 2.7. It is important to realise that the

ncQ = n  ̂waveguide has no polarisation dependent properties

i.e., the ncQ = n  ̂waveguide has no preferred direction for

12
the electric field of a mode. Notice also that nowhere in

this section has an appeal been made to the often quoted 

condition that

I AV ê /e I << 1 . (2.9)

All that has been used is n = n ..
co cl

2.2 The nco = nci Waveguide-Inclusion of Polarisation 

Properties

The significant consequence of having n different from

n  ̂ is that the waveguide has polarisation properties. The

polarisation properties are contained within the Vt°,ne terms

of the vector wave equation. The modes of an n = n T
1 CO cl

waveguide are solutions of the vector wave equation and

therefore have polarisation properties. However, since the

term V,(e, • V̂ itne) is zero when n = n ,, it must be small 
t —t t co cl

13
when n = n ,. Hence, the modes of the n = n n wavequide 

co cl co cl ^

can be approximated by finite linear combinations of the

n = n , modal fields, 
co cl

From a mathematical point of view, the n = n n method
^ co cl

is a variant of the familiar Rayleigh-Schrödinger perturbation 

5-7
theory, developed especially to treat equation 1.3 with 

a maximum of algebraic economy and physical insight. As a 

general rule in perturbation theory, unperturbed modes which
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are nearly degenerate (in this particular problem, modes

with nearly equal (3's) are "mixed" or "hybridized" by a 

14
perturbation. The more nearly degenerate the modes are, 

the more readily they are hybridized by a perturbation. This 

provides one criterion for deciding which ncQ = n  ̂modes are 

included in the linear combination: one combines

groups of nearly degenerate modes.

In Chapter 3 I return to the problem of deciding which e

are included in the linear combination. Frequently physical

considerations enable one to eliminate some terms from the

linear combination. I shall now explain how the coefficients

in the linear combination are obtained, once one has decided

which n = n , fields are to be included, 
co cl

We begin by proving an important intermediate result

which relates an n = n , mode to an n = n mode. The
co cl co cl

result is obtained by a deviation of the method used to 

obtain mode orthogonality. The exact field satisfies

{V2 + (k2-ß2)}et = -Vt(et - V^ne) (2.10)

while an n = n , field satisfies 
co cl

{V2 + (k2-ts2)}et = 0 (2.11)

Dot product equation 2.10 with e and equation 2.11 with

e , subtract the two equations and then integrate over the

2 2~

plane. The term / {e • V e - et • V^e^jdA is converted
oo

to a line integral at infinity using the vector Green's 

theorem. This term vanishes since e^ and ê_ decay 

exponentially. The final result is
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32 -  §2 = fA e * V (e • V. t o e ) / /  e • e dA (2.12)
OO 03

when e(x,y) is a step function, as in Figure 1.1, equation 

2.12 can be simplified using integration by parts and

V^£ns dA = £n ecg/eco 6(Boundary)n d£ (2.13a)

-0 6(Boundary)h d£ (2.13b)

where n is the outward normal of the boundary and d£ is an 

elemental length at the boundary. Using equation 2.13 one has

'ft • V S t  • 2tto£)dA = ^ B o u n d a r y  < A  * at> (̂ t * n)d* (2'14)

Equation (2.12) is an exact result, no approximations have 

been made.

Now, suppose that one hypothesises the approximation

N

e , = E a e (2.15)
—t -» n—tn

n=l

Substitute e^ from equation 2.15 and e = e  ̂where 

i = 1,...,N into equation 2.12. After some rearranging an 

N x N eigenvalue equation is obtained

c l l + g l - ß2 C 12 C 13
c

* * IN a i
=

- -

0

rH
CN

u

C 2 2 + ^ 2 - ^ C 23
c

* * 2N a 2
0

C 31
c
32 C 33+ ^3~^

c
* * jN a 3

0

C N1
c
N2 C N3 • * CN N + ^N _f3

_ Y
0

i-

(2.16)



(2.17)

In equation 2.16, the eigenvalue is 3 , the eigenvector 

[a^' a2 ' a3 ' ’ * * ' aN^ and coeff ioients are

~2
3^ = propagation constant of e .

Cij “ —ti * Vt^-tj * Vtinc)dA//A |eti | dA (2.18)
CO J oo

The easily obtained orthogonality property

•̂ A -ti * -tj dA = 0 (2.19)

has been used in deriving equation 2.16. The solution of our 

problem is effectively the eigenvalues and eigenvectors of 

equation 2.16.

It is usually possible to take advantage of the 

structure of each particular problem to simplify the procedure 

outlined above. In all the examples in this thesis I avoid 

evaluating anything more complicated than a 2 x 2 determinant 

by using physical arguments to eliminate terms in the initial 

linear combination equation 2.15. The details of the algebra 

for the 2 x 2  case are collected in Appendix A.

After e has been obtciined the remaining fields are 

determined from Maxwell’s equations. Because 3 = k on the 

n = n .. waveguide, e and h are related by
C O C x L. u

ht = (sco/p)1/2zx et (2.20)

The.longitudinal fields are then found from Maxwell's 

divergence equations, leading to

2
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hz = (i/ß Vt • hfc)2 (2.21)

ez = (i/ß Vfc • efc)z + 0(0^) . (2.22)

When n == n , , 3p >> 1, so that from equations 2.20-2.22 
co cl co ^

the modes of an ncQ = n  ̂waveguide are nearly TEM.

2.3 Summary

The modal fields of the ncQ = n  ̂waveguide are nearly 

TEM waves obeying equations 2.20-2.22 with corrected propaga­

tion constants obtained by solving equation 2.16. The 

transverse fields are synthesised from linear combinations

of the n = n n fields defined in equation 2.7. In the next 
co cl ^

chapter I discuss the physical considerations which are used 

to simplify the mathematical prescription given above for 

finding e^. In particular, physically intuitive arguments 

can be used to eliminate some of the terms in the initial 

guess equation 2.15.
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dipole is specified by one parameter, the dipole moment 

p. The field of a point dipole is constructed from that 

of a finite dipole by an unphysical limiting procedure; 

the distance d. between the equal and opposite charges,

Q and -Q, is decreased, while Q is increased so that 

p = Qd remains constant.

2 ~2
11. Note that equation 2.4 does not imply that k - 3 0

in equation 2.8. It is entirely possible for, say,

2 2
x -* y -* oo and yet for x — y to equal a constant (for 

example, if x = cosht, y = sinht and t -* °°) .

12. In equations 2.7, x and y were choosen purely for 

convenience. Actually any two linearly independent 

vectors could be used to construct the e-fields from ip.

13. If this is not clear consider the extreme example of a step 

profile, where V̂_ In e = 0^5 (r - p) . The perturbation is zero 

except in a small region of space near r = p where it has 

minute strength 0*. When ncQ is quite different from n^,

V̂_ £n g is no longer small, but because it is spatially 

localized it is incorporated into the mathematics via the 

boundary conditions. In the sequel I show that the ncoSncg 

method gives accurate results for the extreme case of a step 

index fiber provided 0^ << 1. It is important to realize that 

physically this is because as n -*-nc ,̂ TE an<̂  ™  waves have 

identical reflection properties at a caustic, no matter

how rapidly the refractive index changes from n^o to n

14. The reader is reminded that the strategy of the Rayleigh-

Schrodinger perturbation theory is to approximate a mode of 

the perturbed structure by a two or three term linear 

combination of unperturbed modes.
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CHAPTER 3

SIMPLIFICATION OF THE n = n , METHOD 
---------------- -------- £0 --- cl_---- --

USING PHYSICAL ARGUMENTS

The philosophy of the ^ n  ̂method, presented in

Chapter 2, was to approximate an ncQ = n^^ field by a linear 

combination of ncq  =  n  ̂ fields. The problem of finding the 

correct linear combinations was reduced to two steps:

a) Forming the initial linear combination equation 2.15, 

this necessitates deciding which modes to include.

b) Solving the eigenvalue problem equation 2.16. 

Naturally the more modes which are included in step (a), the 

more accurate the final answer is; the price of the increased 

accuracy is the algebraic complexity of step (b) for N _> 3.

In Chapter 2 one criterion for deciding which modes to 

include was mentioned, viz one includes all modes which have 

B's well separated from the ß's of the excluded modes. If 

one follows this criterion and solves equation 2.16 an answer 

is obtained slowly but surely. However, in many problems 

the final answer is simpler than the initial linear combina­

tion suggests because some of the coefficients, a^ vanish 

identically. In this Chapter I shall discuss the physical 

arguments which enable one to anticipate this simplification. 

Besides reducing the labour involved in solving equation 2.15 

the physical insight obtained is worthwhile for its own sake.

The reasoning in this section pivots on two concepts: 

a) Symmetry. If a waveguide is invariant under a 

geometric transformation then under the same transformation a 

mode of the waveguide must transform into a mode of the same

ß.
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b) Limiting cases. By examining certain limiting cases 

where the correct linear combinations are known one can guess 

at the included modes in the linear combinations appropriate 

for the intermediate cases.

3.1 Waveguides with Circular Symmetry

The ncQ = n  ̂modes are given by equation 2.7 in terms 

of the scalar function ip. Because of circular symmetry, 

there are in general two solutions of the scalar wave 

equation 2.3 for each allowed value of B* One solution ip , 

has even symmetry while the other, \pQ , has odd symmetry

ijj = f (r)cos&4> ; \p = f (r) sin£<j) (3.1)
0 36 O 36

In equation 3.1, <J> is the azimuthal angle and f (r) is a 

solution of

{d^/dr^ + 1/r d/dr + k^ (r) - - £̂ /r̂ ' }f 0 (r) = 0  (3.2)

Note when Z = 0 there is only one solution of the scalar 

wave equation, ij; (r) = f (r) .

Combining the above results, the ncQ = n  ̂waveguide 

in general has 4 modes for each value of ß, i.e.,

e = f (r)cos£cf> x ; e = f (r)sin£<J> x (3.3a)
v̂.0 36 X O  36

e^e = f ̂ (r) cos£(j) y ; e^Q = f ̂ (r) sin&cj) y (3.3b)

I shall now discuss how to linearly combine these n = n _
2 CO cl

or LP modal fields to form approximate modal fields of
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the n = n , waveguide, 
co cl

1. The Fundamental (£ = 0) Modes

When £ = 0 there are only two n = n , modes, e and
J co cl —xe

e . These two degenerate modal fields exist at all 
—ye

frequencies and depend only on r. The fundamental n = n ^

modal fields are a linear combination of the n = n n
co cl

modes. From circular symmetry it is obvious that any linear

combination of these two n = n , fields is a fundamental
co cl

modal field of the ncQ = n ^ waveguide and therefore is also

a modal field of the ncQ = n ^ waveguide. In particular

e and e are individually n = n n mod^l fields:
—xe —ye co cl

e = e 
—x —xe

f
o
(r) x e

-y
f
o
(r)y (3.4)

Circular symmetry implies that e^ and e^ are degenerate as

can be verified from equation 2.12.

The two fundamental modal fields of the n = n ,
co cl

waveguide are the same as the fundamental modal fields of 

the ncQ = n ^ waveguide. Note however that from equation 

2.12, ft 4 ft, i.e., the n = n , modes and n = n . modes 

have different propagation constants when polarisation 

effects are included.

2. The Higher Order (£ _> 1) Modes

When £ ^ 0 the circularly symmetric ncQ = n ^  waveguide

has four degenerate n = n , modes. Unlike the fundamental 
 ̂ co cl

modes, none of the £ > 1, n = n , modes are modes of the
—  co cl

ncQ = n^^ waveguide. This is proved by observing that a 

circularly symmetric waveguide is unchanged if it is rotated
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through an arbitrary angle. Hence if a mode of the waveguide

is rotated through an arbitrary angle, it must remain a mode

(not necessarily the same mode) with the same 3. Now, if

any one of the four ncQ = n  ̂modes in equation 3.3 is

rotated through an arbitrary angle it is then represented by

4
a linear combination of all four n = n modes. Thus, if

co cl

the n = n , modes are also modes of the n = n , waveguide, 
co cl co cl

all four must have the same 3- But if the n = n , fields
co cl

are substituted into equation 2.12 one finds that the four

corrected 3*s are not all equal. This contradiction between

the requirements of circular symmetry and equation 2.12 proves

that n = n , modes are not n = n .. modes when £ > 1. 
co cl co cl —

Thus, we require linear combinations of e , e , e , and 
' ^ —xe —xo —ye

e to form higher order modes.
—yo ^

To form the correct linear combinations, one combines

those modes which have the same properties under a rotation

by 90° and under reflections in the x and y axes. (It may

help at this point to consider a specific example, say the

£ = 1 modes shown in Figure 3.1.) Thus, e is combined with
xe

e because one rotates into the other, while e is combined 
—yo —xo

with e because one rotates into minus the other. Taking 
—ye

symmetric and antisymmetric combinations leads to the four

modes of the n = n , wavequide: 
co cl ^

e
—xe

+ e ;
-yo

en = e 
—2 —xe -yo

(3.5a)

e
—xo

+ e ;
-ye

e . = e 
—4 —xo -ye

(3.5b)

1 2
Using conventional nomenclature, ' modes 1 to 4 refer to the
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e] = ^xe+  ®yo e 2 ~ ®xe ^yo e3 = ®xo + ^ye e4 = ^xo~ ®ye

(Even EHom = TMo]) (Even HE21) (Odd HE21) (Odd EHom = TEJ

>

Figure 3.1: (a) The ncQ = n  ̂ or LP modes for £ = 1.

Note that e and e are symmetric urder 
—xe —yo

reflections in the x and y axes, while e and

e^e are antisymmetric. If any one of the above

fields is rotated through an arbitrary angle it

transforms into a linear combination of all 4.

Note also that e_xQ = e± + e2, exQ = e3 - e4,

e = e 0 + e, and e = en - en where the e's are
—ye — 3 —4 —yo —1 —2 — .

shown in (b).

(b) The n = n , modes for £ = 1. Under an 
co cl

arbitrary reflection and rotation, and e^ are 

unchanged while either e2 or e^ transform into 

linear combinations of e^ and e4 .
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even EH£-l,m' even HEW , m '  odd HEW , m  and odd EHit-l,m modes 

respectively. Figure J.lb illustrates the modes for & = 1.

These combinations are consistent with the requirements of

symmetry and equation 2.12. Consider Z = 1 for example.

The patterns e ^  and e  ̂of Figure 3.1 are unchanged by

reflection in an arbitrary axis and by rotation through an

arbitrary angle, consistent with their being nondegenerate

modes of a circularly symmetric waveguide. However, under

arbitrary rotation and reflections e  ̂ changes into a linear

combination of e ^  and —t3" Symmetry demands that this new

combination is also a mode, which in turn requires that e ^

and e 2 are degenerate. This is consistent with the results

of equation 2.12. Analogous arguments show that the linear

combinations in equation 3.5 are consistent also when Z ^ 1;

one finds that e  ̂ is degenerate with e ^  and is

degenerate with e^*

The difference in the modal propagation constants gives 

rise to a beat phenomenon causing a rotation of the ncQ = n  ̂

or LP patterns. The stability of the LP mode patterns is set 

by the difference 3™™ “ 3™* i-n the propagation constants of
lit til

the constituent modes of an LP pattern. When the difference

is large an LP pattern rotates rapidly, when it is zero the

LP modes are also modes of the n = n , waveguide.
co cl 3

3.2 Waveguides with Two Preferred Axes of Symmetry

Many structures of practical interest have a pair of 

preferred orthogonal axes of symmetry, e.g., the ellipse 

and composite two cylinder waveguide of Figure 3.2. When 

ncQ = nc /̂ the modes of the waveguides can be formed by linear
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(a)

Fiber 1 Fiber 2

pO + i e 2)

minor axis

m a jo r axis

Figure 3.2: Waveguides with preferred axes of symmetry.

(a) Composite, two parallel waveguide system, 

and (b) an Elliptical core.
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combinations of n = n , modal fields. I now show how to
co cl

form these linear combinations, beginning with the fundamental 

modes.

1. The Fundamental Modes

It is intuitive that the fundamental modes, those modes 

which propagate for all frequencies, have electric fields that 

are polarised along one of the two axes of symmetry. Thus, 

the ncQ = n  ̂or LP modal fields are the correct approxima­

tions of the fundamental fields of the n = n , wavequide
co cl 3

provided the x and y directions of equation 2.7 are aligned 

with the symmetry axes. Therefore, the fundamental mode has 

vector fields of the form

iß z iß z
E = e e  X = ipe X x (3.6a)

iß rz iß z ^

Ey = eye * = ^e y £ . (3.6b)

The modal propagation constant ß r is found by substituting

e^ = e^ = e_x into equation 2.12, while ß^ is found by

substituting ê_ = = ê _ into equation 2.12. I have now

fully specified the general characteristics of the fundamental

modes on waveguides with a pair of preferred symmetry axes.

The details depend upon knowing the solution of the scalar

wave equation. The transmission properties of such waveguides,

when propagating only the fundamental modes, are similar to

these of anisotropic crystals, in that the waveguide has a

3
pair of optical axes.
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2. The Higher Order Modes

In general, the higher order modal fields of structures 

with two preferred axes of symmetry are more complicated than 

those of the fundamental modes. In order to appreciate this 

complication, begin by considering the ellipse. It is clear 

that for a sufficiently large eccentricity the field of any 

particular mode is given by equation 2.7, so that the only 

difference between it and a fundamental mode is in ip and 

3- However it is equally clear that for a sufficiently small 

eccentricity, this same mode resembles a modal field of a 

circularly symmetric waveguide, with x and y parallel to the 

symmetry axes of the ellipse. This transition is sketched in 

Figure 3.3. We can associate each ellipse mode with the fields 

of a distorted circle mode. For example, the ellipse mode 

that corresponds to distorting either e  ̂ or e ^  of Figure 

3.1 is formed by a linear combination of e and e , where

these e 's are now solutions to the scalar wave equation in 

elliptical geometry. Consequently, the fields of the ellipse 

modes e  ̂ and e £ are

-ti

i i
a ip x + a ip y 
ex e— oy o--

(3.7)

where i = 1 or 2, ip and ib are solutions of the scalar wave 

equation in elliptical geometry and are analogous to ip and 

ip given by equation 3.1 for the scalar wave equation in 

cylindrical geometry. Figure 3.4 provides an example of ip 

and ipQ . The propagation constants associated with and 

ipQ are denoted 3^ and 3Q respectively. The 3's are different, 

the difference increases as the eccentricity increases.
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Figure 3.3: Transition from circle to ellipse mode6* for

£ = 1 modes. An electric field vector maintains 

its orientation to the interface, i.e., if it 

was initially perpendicular it remains perpen~ 

dicular, as the eccentricity increases. Using 

this heuristic principle one can anticipate 

the way in which a particular circle mode 

changes as the eccentricity increases.
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CIRCULAR CORE ELLIPTICAL CORE

Figure 3.4: An example' of a solution of 'the scalar wave

equation corresponding to the £ - 1  mode. 

The 3's of the even and odd circle mode are 

identical unlike the 3's for the even and 

odd modes of the elliptical core.
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A heuristic argument can be used to determine the

minimum eccentricity necessary for the £ >_ 1 ellipse modes

to be uniformly polarised, i.e., to have the form given by

equation 3.6. Anticipating that only a slight eccentricity is

necessary, the fields of the ellipse can be approximated by

linear combinations of the circle n = n , fields e , eco cl —xe —yo

as far as the present discussion is concerned.

Now there are two small parameters which determine the 

composition of a mode, the eccentricity e and the critical 

angle 0 . It is clear that as these two parameters go to 

zero they have competitive effects since:

a) When e ^ 0 and 0 = 0  the n = n , or LP modes in 

equation 2.7 are the modes of the structure. The stability 

of linear combinations of these modes depends on ß - ß .

b) When e = 0 and 0c ^ 0 the circle modes in equation 

3.5 are the modes of the structure. The stability of linear 

combinations of these modes depends on ß - ß (see the
f l E i  t H

discussion at the end of Section 3.1).

Consequently the parameter

A - (3e-3Q)/(3eh“&he) (3.8)

is influential in determining the composition of the modes of 

a structure with e ^ 0 and 0c^ 0. When|A| >> 1/ the modes 

are LP or n = n , modes. When I AI << 1, the modes are
co Cx 1 1

circle modes.

The argument above is tantamount to determining the 

limiting behavior of a^ /a"*" of equation 3.7. An expression
G X  O X

for this ratio can be found using the prescription outlined
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in Section 2.2. The ß of the ellipse vector modal field

equation 3.7 is by substituting e ^  in equation 2.12 for e

and substituting either or e^Q in equation 2.12 for e^.

The fact that we have two expressions for the same ß gives

us two equations which determine the ratio a^ /a^ of
ex oy

equation 3.7 in addition to ß^. The algebra has been rele­

gated to Appendix A. For small eccentricity

aex/aoy = A ± (a2 + 1)1/2 O •9)

ß? = U ß g + ß h / 2 } + [{ (ß2 - ß l / 2 } 2 + C 2 }1/ (3.10)

where i = 1 is associated with + while i = 2 is associated 

with -. The parameter C is

e
A —xe00

V, (e • V £nc)dA/f |e 1 dA
-1 —yo “t ' A '-xe1

U  CO

(3.11)

ÊII ” ^HE 2k(ß£H - ßRE) (3.12)

and A is

A = (ß2 - e 2)/2CS (jj g )/(ß ß ) (3.13)
0 O 0 O X

which is the same as the intuitively derived equation 3.8.

Thus, the composition of a mode depends only on the parameter 

A. When A = 0, the modes are essentially circle modes. When 

A >> 1 the modes are n = n , modes. Equations 3.3 to 3.12 

are for modes 1 and 2 of the ellipse, when £ _> 1. The 

remaining two ellipse modes are found analogously.
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Identical arguments can be applied to all structures 

with two preferred axes of symmetry, e.g., the composite 

two waveguide system of Figure 3.2. Furthermore, the 

procedure can clearly be generalized to other waveguides.
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, ,1 - -1 . -1
<f> = 4> + a , x = cosax - sinay

then the field in terms of the new coordinates is

—ex
2  o . l  - 1  • n , lcos a cos£<J) x - sina cosa cos&4> y

- sina cosa sinA<J>̂  x^ + sin^a sin£c})̂  y^

2 ~  1 . ~  1
= cos a e - sina cosa e

—xe —ye

~ 1 2 ~ 1
- sina cosa e + sin a e

—xo — yo

i.e., a linear combination of all four e . Of course, 

rotating the coordinates through an angle -a is equivalent 

to rotating the waveguide through an angle a.



39

CHAPTER 4

EXAMPLES: STEP REFRACTIVE INDEX WAVEGUIDES

Chapters 2 and 3 show how to construct the vector modal

fields e, h and their propagation constants 3 from linear

combinations of solutions \p to the scalar wave equation,

equation 2.8. Thus, when ^ is known the modes are fully

specified. I shall first determine the modes of a step

profile with circular symmetry, since the results can then be

1 2
compared with the exact forms. ' Next, I consider a wave­

guide with an elliptic core and then a composite two parallel 

cylinder waveguide. These last two examples exhibit several 

interesting physical properties which the ncQ = nc  ̂ method 

readily displays.

4.1 Step Index Waveguide with Circular Symmetry

The radial function f^(r) for a step profile is found 

from equation 3.2 and can be written as

f£ (r) = J £ (Ür/p)/J£ (U) r £ p (4.1a)

f£ (r) = K Ä (Wr/p)/K£ (W) r > p (4.1b)

where the notation ~ indicates a quantity derived from the 

scalar wave equation. Note that £ = 0 is the fundamental 

mode, £ = 1 the second mode set and so on. The requirement 

that f ̂ (r ) and df^(r)/dr be continuous at r = p gives the 

eigenvalue equation

U JÄ+1(Ü)KÄ (W) = W K£+1(W)J£ (U) (4.2)
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after using the well known recurrence relations for Bessel 

functions. U and W are related to the dimensionless parameter 

V defined by equation 2.3 as

~2 ~2 2
u + W  = v . (4.3)

The modal propagation constant 3 is given by

(pß)2 = (pkco)2 - Ö2 = (Pkcl)2 + W2 . (4.4)

The modal vector fields can then be formed as discussed in 

Section 3 and are listed in Table 4.1. The propagation 

constants 3 are found by substituting the expressions for 

e in Table 4.1 into equation 2.12 for ê_ and substituting 

either of the two e fields used to form e into equation 2.12 

for ê _. All the integrals are elementary or have been

3
calculated elsewhere and included in Table 4.1. The correc­

tions to 3 are also listed in Table 4.1. The corrections 

to 3 obtained using the ncQ = n  ̂method agree with the 

corrections obtained from the exact eigenvalue equation, see 

Appendix B. The present approach streamlines the original

3
derivation and in addition provides simple analytic expres­

sions for improving 3 by including the effects of the V̂ _£ne

term in the vector wave equation. Discarding terms of order

2 3
0 from the exact expression for e , terms of order 0 for e 
C t c z

5
and terms of order 0 for 3 leads to the results in Table 4.1.

c

Finally, because the step profile is the most rapidly 

varying e (x,y) possible, it is therefore the most sensitive 

to polarisation effects, i.e., most sensitive to the V^ne
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term in the vector wave equation. Thus the step profile 

provides a stringent test of the ncQ = n  ̂method.

4.2 Stability of the LP or nGO = ncq Modes

The n = n or LP modes are not modes of an n = n n 
co cl co cl

waveguide. Each LP mode is formed by combining two proper

modes, an HE , and EH , mode. These proper modes have 
3o I" j- f m 3 v *m JL j m

different propagation constants, 3EE and 3EH- Because of the 

beat phenomenon, when 3ttt-, ^ 3^/ the LP modes rotate or fade
riiij hiti

4
into each other, e.g., e r of Figure 3.1 after propagating

a distance tt/ | 3TTn”3™, I , which equals half the beat length,BE EB

rotates into e^Q of Figure 3.1. The greater |3HE-3E H |, the 

shorter the beat length and hence the more rapidly the LP 

modes rotate. From Table 4.1 when £ = 1

= 6^U2k L w ) {2-(WK (W)/K. (W) ) }/2pV3K (W)K,(W) (4.5a)
TM BE C l  O 1 O Z

ß = 63U2K2 (W){2+ (WK (W)/Kn (W)) }/2pV3K (W)K„(W) (4.5b)
TE HE c l  o 1 O 2

and when £ > 2

eEH~ßHE = (4.6)

(recall that the 4 £ _> 2 modes occur in two degenerate pairs,

the EH and HE pairs). The results for £ = 1 are shown in

Figure 4.1. Note the special characteristic that at

V = 3.8 the e and e LP modes are true modes of the 
—xe —yo

ncQ = n  ̂waveguide because 3HE = 3TM at this frequency. In

3
contrast, at V = 3.8 3mT-. - 3tIT̂ = 0.25 G /p corresponding to a

1E B E  C
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/ ,  -  1 modes of a circular fiber

Cut off

Figure 4.1: The difference in ß's for £ = 1 modes of the

circularly symmetric, step profile waveguide. 

Each LP mode of Figure 3.1(g) is formed by 

linear combination of ß̂ , modes or ß̂ , ß̂

modes.
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4
half beat length of 1.3x 10 p for a typical value of

0 = .1. Thus near V = 3.8, the mode patterns e and e 
c —xe —yo

should appear stable compared to the other two patterns

—xo and —ye* when V >:> 1/ I t̂ E~^He I “ I ̂ TM~^HE I ~ °cd //pV *

From equation 4.6, the 0's are never equal for

£ > 2., so the £ > 2 LP modes are never modes of the circularly

symmetric waveguide. Futhermore, the greater £, the greater

Iß -ß I, which approximately equals 0 £U /2pV for £ >> 1.
xlxli ill II C

Consequently for fixed V, the greater £ the less stable the 

LP modes.

4.3 The Step Index Ellipse

The consequences of an elliptic deformation of a 

circular waveguide are sketched in Figure 3.3. As the 

eccentricity increases the ellipse modes become uniformly 

polarised, i.e., e is parallel to one of the two symmetry 

axes. It is interesting to determine the minimum eccentricity 

required for the ncQ = n  ̂ or LP modes of Figure 3.1 to be the 

proper ellipse modes. On a waveguide with this minimum 

eccentricity, the modes of a circularly symmetric waveguide 

are unstable, i.e., they couple power among themselves as they 

propagate, while the ncQ = n  ̂modes are stable. It was 

shown in Section 3.2(2) that the composition of the proper 

modes depends crucially on

A
«ee -e0)/(eE H - W

(4.7)

where 3^TT ßTJT;, are the propagation constants for the two 
E H , HE

g
mode types on a circular waveguide (Sections 4.1 and 4.2)
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while 3̂  and 3q are the propagation constants of the even and 

odd solutions of the scalar wave equation in elliptical 

geometry. When A >> 1, the modal fields are LP fields while 

when A << 1 the modal fields are circle fields.

1. £ - 1 Ellipse Modes

The quantity -3Ttt- in equation 4.7 has been stated in
t i t l  rib

equations 4.5 and 4.6. When the eccentricity is small 

3e~30 is determined from the scalar wave equation in circular 

geometry using the scalar perturbation theory in Chapter 5 

(see Section 5.2(2)), leading to

3e-§0 = 6ce2U2K^(W)/4pVKo (W)K2(W) (4.8)

where U and W are found from equations 4.2 and 4.3 and e is 

the eccentricity of the waveguide. Consequently for £ = 1,

A in equation 4.7 is

A = e2V2/20^{2 + (WK (W)/K1(W))} (4.9)

where the negative sign is for Am.., i.e., for ß̂ Tj-ßTT-c in 

equation 4.7 to be 3TM”3^E while the positive sign applies 

to Ate, i.e., for 3TE“3HE in equation 4.7. Equation 4.9 

exhibits the sensitivity of A to eccentricity, e, defined in 

Figure 3.2, and the refractive index difference, defined by 

equation 1.12. If V is fixed, the smaller 0 , the less 

eccentricity is required for the LP modes of the circular 

cylinder to be stable modes of the ellipse. Figure 4.2

o
provides a graph of (8 /e) A vs. V. Remembering that when 

A >> 1, the LP modes are the modes of the ellipse while when
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£  -  1 modes

.  A y ^  is positive to the 

le ft  o f  the vertical  

asym ptote

is negative  to the right 

o f  the vert ical asymptote

---  f2lATMhvyi2-iv/K0(w)/K,(w)H .

e’ ~ V

----------A t e = vyi2+|WK0(w)/K,(w)H

~ S

Cut off

Figure 4.2: The parameter A defined by equation (b-9)

determines the ratio a^/b^ of the ellipse 

£ = 1 fields, equation (3.9)* When | A | >> 1, 

the modes are uniformly polarized (LP modes) 

while when |A| << 1 the modal fields are those 

of a circular core.
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A << 1 the linear combinations in equation 3.5 are modes of

the ellipse, we see that no eccentricity is required for the

LP modes e and e to be ellipse modes at V = 3.8. This 
—xe —yo L

is anticipated from Figure 4.1, since at V = 3.8, 3TM = 3 ,

i.e., the LP modes e and e are true modes of the circular
—xe —yo

cylinder without any perturbation. Since even the minimum

2
value for A = 2(e/Qc) , only a minute eccentricity (e > 20c)

is required for the LP modes to be stable. The stability of 

the higher order ellipse modes can be investigated in a 

similar fashion. In general the compositions of the higher 

order circle modes are much less sensitive to small elliptic 

deformations of the core.

2. Fundamental or £ - 0 Ellipse Modes

In Section 3.2(1) it was noted that the transmission

properties of an elliptical waveguide propagating only the

two fundamental modes are similar to those of an anisotripic

crystal, i.e., both structures have orthogonal optical axes.

The optical properties of the waveguide depend on the

difference in propagation constants 3 ,3 of the x and y
x y

polarised ellipse modes. This difference can be found by

substituting the fields e ipx and e = ipy into equation 2.12

to determine 3 and 3 / where ip is a solution to the scalar 
x y y

wave equation in elliptical geometry. It'is not sufficient 

to approximate ip by solutions of the scalar wave equation in 

circular geometry as was done in Section 4.3(1). Instead 

higher order terms in an expansion in powers of eccentricity 

are necessary. Alternatively, one can use the second per­

turbation method in Chapter 5 (see Sections 5.3, 5.4) and 

perturb about Maxwell's equations in circular geometry.
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The result obtained there is

3,-3 = e203U2W2{l + (UK2 (W) J (U)/K^ (W) J (U) ) }/8pV3 (4.10)
yz. y c o  ̂ _L

2 2 -  
assuming e << 1 and 0̂  << 1. In equation 4.10 U and W

are found from equations 4.2 and 4.3 for l =  0. If the fiber

is illuminated by linearly polarised light at 45° to the

optical or symmetry axes, then both fundamental modes are

equally excited and the guided wave is elliptically polarised.

Because of the beat phenomenon the E vector rotates. The

length for a 360° rotation is 2it/  | 3 _3 | • ln Figure 4.3x y

3x~8y vs. V from equation 4.10 has been plotted.

4.4 Two Identical Parallel Step Index Waveguides

The determination of the modes of the composite two 

waveguide system of Figure 3.2 is completely analogous to that 

of the ellipse as outlined in Section 3.2(2), except that the 

scalar solution ij; for the two cylinder geometry is required. 

There is no exact solution for ijj. Instead \p is approximated, 

in the usual manner, by a symmetric and antisymmetric super­

position of the fields of the waveguides in isolation. The 

scalar propagation constant 3 is approximated using the same 

perturbation method on the scalar wave equation as with the 

ellipse (see Chapter 5).

The scalar wave equation appropriate to the present 

problem is

{V2 + k2 }ij> = ß 2 ip (4.11)

where



45a

P(ßx-ßy)
Fundamental modes

Figure 4.3: The difference in 3's of the x and y polarized,

fundamental ellipse modes.
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k

kcg elsewhere

co in the cores of the fibers

(4.12)

The approximate solutions of equation 4.11 used in this 

section are

where is a scalar mode of fiber 1 in isolation and i|Jj 

is the corresponding scalar mode of fiber 2 in isolation.

The scalar modes ^  and ip̂  satisfy the scalar wave equations

where k^ and k^ are the local wavenumbers of the isolated

fibers 1 and 2 respectively.

The propagation constant, 3 in equation 4.14, is an

approximation of 3 in equation 4.11. This approximation is

improved using the scalar perturbation theory of Chapter 5.

The results for the fundamental mode (i.e., p, = f (r, ) andY1 o 1

h  = fo (r2) are

± (4.13)

(4.14)

3 2 = 32 + 2U2Kq (Wd/p)/p2V2K^(W) (4.15a)

2U2Kq (Wd/p)/p2V2K2 (W) .
2t 2 2

(4.15b)

1. The Fundamental Modes

Once the scalar wave equation has been solved, one 

constructs approximations of the electric fields of the four
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fundamental modes viz

(4.16a)

e = \b x 
— x -  r -  —

(4.16b)

%+ = *
(4.16c)

(4.17d)

The electric fields of the four fundamental modes are sketched 

in Figure 4.4; each mode has a different 3 and an electric 

field parallel to one of the two axes of symmetry (see 

Section 3.2(1)).

Equations 4.16 are now substituted into equation 2.12 

to correct the model propagation constants for polarisation 

effects. The details of the algebra are collected in 

Appendix C; the final results are:

el = ft + e^/p2 (U/V)2 [WK (W)/K (W) 
x+ + c o r

+ {1 - 2I1 (W)K1 (W) } • KQ (d/pW)/K^(W) ] (4.18a)

3^_ = 3^ + 0^/p 2 (u /v )2 [w k o (w )/k 1 (w )

+ {1 - 2I1 (W)K1 (W) } • KQ (d/pW)/K2 (W) ] (4.18b)
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SYMMETRIC I + ] MODES ANTISYMMETRIC ( -  | MODES

F i g u r e  4 . 4 :  T h e  4 f u n d a m e n t a l  m o d e s  o f  t h e  tw o  p a r a l l e l

w a v e g u i d e  s y s t e m  s h o w n  i n  F i g u r e  3 . 2  -
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02 = ß+ + 6^/p2 (U/V)2 [WKo (W)/K1 (W)

- {1 - 2I1 (W)K1 (W) } • Ko (d/pW)/K2 (W) ] (4.18c)

ß2 = ß2 + 62/p2 (U/V)2 [WKo (H)/K1 (W)

- {1 - 2I1 (W)K1 (W) } • KQ (d/pW)/K2 (W) ] (4.18d)

~2 ~2
where 3+ and 3_ are given by equation 4.15. Note how the

inclusion of the effects of the polarisation term ensures

that all four modes have different 3's.

The difference between 3 , and 3 _ (which equals

3^+ - ßy_) gives rise to the familiar phenomenon of power

] 5
transfer between parallel fibers. ' For example, suppose 

that initially the field on the waveguide is

—+x
e
— x 1

x (4.19)

so that, in effect, the fundamental mode of fiber 1 in

isolation has been excited. Since 3, ^ 3 r the modes
+x -x

present in the initial field beat. The beat length (i.e., 

the length in which all the power is transferred from fiber 

1 to fiber 2 and back again) is

L
trans

2tt/|3+x-3 (4.20a)

= TrpV3K^ (W)/0cU2Kq (Wd/p) (4.20b)
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The difference between 3X+ and (which equals

3x_~3y_) can produce a rotation of the electric field of the 

waveguide. For example, suppose that initially the field 

on the waveguide is

£x+ + ey+ = + itj2) (x + Y) . (4.21)

The beating of the modes produces a rotation of the electric 

field vector. The beat length in this case (i.e., the length 

in which the electric field rotates 2tt) is

Lrot = 2P/|ex+-ßy+l (4.22a)

= 2iTpV2K2(W)/eh2K (Wd/p) U-2I1 (W) K1 (W) }. (4.22b)

It is interesting to determine the angle a° that E

rotates in the length necessary for total power transfer

between the cylinders. This angle is 180° times L l/L, :
rot trans

ct° = 0^{1 - 2I1 (W)KX (W) }90° . (4.23)

At V = 2 and 9 = 0.1, E rotates by 0.36° from its initialc —

orientation of 45° to the symmetry axis in one exchange 

length.

2. The Higher Order Modes

From the four £ = 1 modes of an isolated waveguide one 

can form eight symmetric and antisymmetric combinations, 

i.e., immediately above the four fundamental modes of the 

parallel waveguide system there are eight higher order modes.
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The dependence of the higher order modes on the center to

center separation d is directly analogous to the dependence

of the ellipse modes on eccentricity. When the fibers are

close, the modes of the two fiber system are well approximated

by the ncQ = n  ̂ fields, i.e., by symmetric and antisymmetric

combinations of the LP or n = n , modes of each fiber in
co cl

isolation, but with E parallel to the axes of symmetry. When 

the fibers are sufficiently separated, the modes are 

approximated by symmetric and antisymmetric combinations of 

the n = n , modes of each fiber in isolation. An example 

is sketched in Figure 4.5. In other words, large eccentricity 

is analogous to small separation distance between the 

cylinders. The modes of the two waveguide system are formed 

by a linear combination of the same modes as for the ellipse. 

Accordingly, the logic of Section 3.2(2) applies directly.

The parameter A is again important in establishing the 

limiting behaviour of the modal fields. As in the ellipse, 

the parameter A determines the composition of the modes.

Consider, for example, the symmetric solutions of the 

scalar wave equation

= fg (rj_) cos^ + f 1 (r2) cos ({>2 (4.24a)

ij>+ = fi (rg) sincj)1 + fi (r2) sin(j>2 (4.24b)

where
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Figure 4.5: The transition of an £ = 1 mode of the two

parallel waveguide system as the separation 

increases. When the fibers are close, the 

composite mode appears like a superposition 

of two e r̂  modes of Figure 3.1(d). When the 

fibers are well separated, the composite 

mode appears like a superposition of the e^ 

mode of Figure 3.1(b).
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(J (Ur/p) /J (U) r/p < 1

fl {r) = \ ~
( (Wr/p) /K1 (W) r/p > 1

(4.25)

The 3's of the fields in equations 4.24 are (see Section 

5.2(3))

3^e = 32 + U2{K1 (Wd/p) + K2 (Wd/p)}/p2V2KQ (W)K2 (W)■ (4.26a)

32q = 32 + U2{KQ (Wd/p) - K2 (Wd/p)}/p2V2KQ (W)K2 (W) (4.26b)

where 3 is defined in analogy with 3 in equations 4-.14, 4.15.

Now that the scalar equation has been solved we

construct the n = n n fields
co cl

^■ex ^+e ^
(4.27a)

^a-ey ^+e —
(4.27b)

A

5+OX ^+0 —
(4.27c)

i+oy = *+o 2.
(4.27d)

(there are four more n = n , fields formed from the
co cl

antisymmetric solutions of the scalar wave equation). The

ncQ = nc  ̂ fields are linearly combined to approximate

n = n n fields, e.q.. the linear combination
co cl ^

the

e = a, e , + a , e .
— +ex— hex toy— h-oy

(4.28)
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is motivated by the transition sketched in Figure 4.4. The 

parameter A in the equations analogous to equations 3.8 and

The negative sign in equation 4.30 applies for

-3tttW which is shown in Figure 4.6, while the 
EH HE TM HE 3

positive sign is for 3 - 3 ™ .  When A << 1, the modes of the
i E HE

two cylinder waveguide are approximated by a mode of the 

circularly symmetric waveguide on each of the two cylinders. 

When A >> 1, the modes of the two cylinder waveguide are 

approximated by an ncQ = n  ̂ or LP mode on each of the two 

cylinders. Note that A << 1 when the two cylinders are well 

electromagnetically separated, i.e., when d > 5p or when 

V >> 1. On the other hand, A >> 1 when the cylinders are

3.9 is

(4.29)

= 2K2 (Wd/p)/e^K^(W) {2 + (WKq ( W ) ( W )  ) } . (4.30)

electromagnetically close, i.e., when d = 2p or V = 2.4.
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2  = l modes

d------I

A i s  p o s i t iv e  to the 

le f t  o f  the ve r t ica l  

asym p to te

A is  ne ga t ive  to 

the r ig h t  o f  the 

ve r t ica l

asym p to te

Cut off 

2.4

3 4

V

Figure 4 . 6 : The parameter A defined by equation ( l+ ,30 )

which determines the composition of Z = 1

modes.
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CHAPTER 5

TWO PERTURBATION THEORIES

In this chapter I present two related perturbation 

theories. Both theories are derived by a deviation of the 

usual method used to prove orthogonality of solutions of a 

Sturm-Liouville equation.

5.1 Scalar Perturbation Theory

Solving the scalar wave equation is an important part

of the n = n , method. It is useful to be able to use co cl

known solutions of a scalar wave equation to approximate 

solutions of a scalar wave equation which cannot be solved 

exactly. This has been done in an ad hoc fashion in Sections 

4.3 and 4.4. In this chapter I present a systematic approach 

to the problem.

Suppose one has two different scalar wave equations

{vt + k2 }i|j = fj2^ (5.1a)

and (V2 + k Vf = $ g (5.1b)

(the ~ indicates a 3 associated with a scalar wave equation). 

Multiply equation 5.1a by \p and equation 5.1b by ifj and 

subtract,

{ -  î V2 }̂ + {k2 - k2}<^ = {§2 - . (5.2)

Equation 5.2 is now integrated over the whole plane; Green's 

theorem is used to convert the first term to a line integral
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at infinity, which is zero. The final result is

ß2 - ß2 = f A  (k2-k2)ri dA//Ä H  dA . (5.3)
CO oo

Equation 5.3 is an exact result, no approximations have been

made yet. In the next section we illustrate by example how

~2
equation 5.3 is employed to obtain approximate values of 3 ,

given that equation 5.1b can be solved exactly. Essentially,

the strategy is to approximate ip in 5.3 and then evaluate

~2
the integrals to obtain 3 .

5.2 Examples of Scalar Perturbation Theory

In this section I use equation 5.3 to obtain some results 

which are used in Chapter 4.

Example 1: Change in 3 due to a small change in the radius

of a circular fiber.

In this problem, using the notation of equations 5.1,

and k 2

k2
Kco r

k2
cl

r

k2Kco r

i—
i 

CM Ü r

P

P

P

P

(5.4a)

(5.4b)

where |(p-p)/p| << 1. We suppose that 3 and are known.

2 ~  -2 ~  -  

Because k = k , it is plausible that ip = \Jj  . In the pertur­

bation region, ip(r,(J>) = ( P,4>). With these two approximations

equation 5.3 becomes
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p2 = ß2 + l(k2o-k^) p(p-p) /2V ( p ,  4>) <1<J>//A iJj2 (r, 4>) dA] (5.5)
00

= ß2 + {2U2K2 (W)/p2K £_1 (W)KJ + 1 (W) } • { ( p-p) / p} (5.6)

where equations 3.3, 4.1 and Table 4.1 have been used. The 

result in equation 5.6 could, of course, also be obtained by 

differentiating the eigenvalue equation with respect to p.

The derivation above is a quicker method of obtaining the 

same answer.

Example 2 : Change in (3 due to a small elliptic deformation

of a circular fiber.

This problem is similar to Example 1. Since the defor­

mation is very small we again take ip  =  ip (in this problem \fj 

is the known solution for a circular fiber). The ellipse 

departs only slightly from the circular geometry within a

crescent shaped region about the x-axis of Figure 3.2, so that 

2 - 2  2 2
k -k = 6 k in this perturbation region and zero elsewhere, 

c co c

The perturbation is close to the circle boundary, so that

_ _ - 2 2
ip (r, 4>) = i|j(r,<f>) = ip(p,<p) and dA = 1/2 (ep) “cos (+>

in the perturbation region. With these approximations 

equation 5.3 leads to

a) Z = 0 : 32 = ß2 + {e2Ü2R2 (W)/p2K2 (W)} (5.7a)

^ e — q 9 »V 9 9 -v 9

b) £ = 1 even symmetry : 3 = 3  + {3e U K^(W)/4p Ko (W)K^(W)}

(5.7b)
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£ = 1 odd symmetry : ß2 = ß2 + {e2U2R2(W)/4p2KQ (W)K2(W) }

(5.7c)

c) £ _> 1 : ß2 = 32 + o(e4) (5.7d)

In Section 4.3 the difference between the ß's of the two 

£ = 1 modes was required. In the notation of that section,

g -e = (ßf-£sh/2k = e e2U2Khw)/4pVK (W)K, (W) (5.8)

which is one of the intermediate steps leading to equation

4.9.

Example 3: Modes of the two parallel nonidentical fibers.

This problem is somewhat different to the preceeding two; 

a simple approximation such as \Jj = \}j is no longer possible.

In Section 4.4 this problem was discussed for two identical 

fibers; the familiar symmetric and antisymmetric combinations 

in equation 4.13 are no longer approximate solutions of

(V2 + k2 } ij.i - ß2tp (5.9)

when the fibers are nonidentical. Instead it is necessary 

to form a more general linear combination

\\) = a1xp1 + a 2 ip 2 (5.10)

where ijj is a solution of the scalar wave equation of fiber 

1 in isolation and tp2 is a solution of the scalar wave



equation of fiber 2 in isolation. Note that

fA  ^ 2  dA ? 0
oo

(5.11)

since and ^  are solutions of different scalar wave 

equations. Now one substitutes equation 5.10 and either 

or ^2 into equation 5.3 and obtains a 2 x 2  system of 

linear equations

{C11 + " £2}ai + fci2 + DX (̂ X _ 52))a2 = 0 (5.X2a)

{C2X + D2 d 2 " ß2) ̂  + {c22 + §2 “ §2}a2 (5.X2b)

where

C . . = /_ (k -k.)i|/.ip. 
11 A 1 1 1

CO

dA//A ijr dA
OO

(5.13a)

Di =  fA V 2 dÄ//A *i
dA . (5.13b)

~2 ~  2
Equations 5.12 determine 3 , in addition to a^/a?- 3 is

obtained by equating the determinant of equation 5.12 to

~2
zero and solving the resulting quadratic. Once 3 is known,

al//a2 Can ke determined from either of equations 5.12. When

the term D_̂  << 1, as happens when the fibers are far enough

apart or far from cutoff, it can be neglected and the problem

discussed in Appendix A is recovered.

We now make several assumptions to simplify the algebra

~2  ~  2
(a) Assume that 3^ >> C-^, 32 >> C22 and

I §  ̂— §2 I >> lCll"~C22l' SO that Cn  and C22 Can
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be neglected.

(b) Assume that the fibers differ only slightly in

~2 ~2
radius, so that C^2 ~ C21 ~  ^ anc* ^1 ~ 2̂ 

is given by equation 5.6.

(c) Assume that the fibers are far apart or far 

from cutoff, so that D^,D2 << 1 and can be 

neglected.

As mentioned before, assumption (c) is sufficient to ensure 

that the results of Appendix A are recovered. Assumptions 

(a) and (b) are equivalent to the two assumptions leading to 

equations A.4 and A.5. Hence, from Appendix A,

32 = {(ß2 + ß2)/2} + C [A2 + 1]1/2 (5.14)

a /a = A + [A2 + 1 11/2 (5.15)

A = (ß2 - ß2)/2C . (5.16)

The quantity C is given in reference 1, one has

C = U2(K9£(Wd/p) + KQ (Wd/p)}/p2V2K;_1 (W)K£+1(W)

(5.17a)

if = f ̂ (r^) cosÄ^ , ^  = f ̂ (r2) cosily and

C = U2{ (-) £K2J (Wd/p) + Ko (Wd/p) }/p2V2Kjl_1 (W)Ks,+1(W)

(5.17b)
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if \[i ̂ = f (r̂ ) sinftjĵ  , \p̂  = f ̂ (r 2) sin • Since the radii

~2 ~2
of the two fibers are nearly equal, 3^ “ 32 is given by 

equation 5.6,

I ̂ - §2 = {2U2K2 (W)/p2 (K£_1 (W)Kjl+1(W) }{6p/p} . (5.18)

Equation 5.17 and 5.18 are used to calculate A (equation 

5.16). For example, when £ - 0,

A = {V2K2 (W)/2KQ (Wd/p) } { 6 p/p } . (5.19)

Note how the answer reduces to the symmetric and anti- 

symmetric combinations in equation 4.13 when 6p = 0.

Equations 4.15 follow from equations 5.14 and 5.17a.

5.3 Vector Perturbation Theory

Sections 5.3 and 5.4 are a digression from the mainstream 

of this thesis. In these two sections a method for perturbing 

about a known solution of Maxwell's equations is presented 

This method is similar to those in references 2 and 5, though 

more general.

Consider two different modal solutions of Maxwell's 

equations

(a) E (x, y, z) = e(x,y)elpZ, H(x,y,z) = h ^ y j e 1^2 

corresponding to an electric permittivity e(x,y).

(b) E(x,y,z) = e(x,y)eißz, H(x,y,z) = h ^ y j e 1^2 

corresponding to an electric permittivity e(x,y).
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Using the curl equations and well known vector identities it 

is easily shown that if

(5.20)

(5.21)

Integrating equation 5.21 over the whole plane and using the 

two dimensional Gauss theorem

3/9z/ z • F dA = fA V • F dA (5.22)
CO CO

one has

3 - 3  = m / (e - e) e • e dA/ f ( e x h * + e * x h ) • z dA . (5.23)
CO CO

Equation 5.23 is an exact result, no approximations have 

been made yet. In the next section we illustrate by example 

how equation 5.23 is employed to obtain approximate values 

of 3/ given that E, H and 3 cire known.

5.4 Examples of Vector Perturbation Theory

1. Elliptic Deformation of the Core of a Step Index Fiber

The consequences of an elliptic deformation of a step-

index waveguide have already been discussed in Section 4.3.

Recall that in order to apply the n = n , method one must

first solve the scalar wave equation for an elliptic fiber.

The n = n n method is not restricted to slightly deformed 
co cl

E x H* + E* x H

then

•iu){ e - s } E E*
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circles, ellipses with arbitrary eccentricity can be treated 

provided one is willing to manipulate the Mathieu functions 

which arise from the scalar equation. In this subsection 

we avoid doing this by using the results of Section 5.3 to 

perturb around the exact modes of a circular step index wave­

guide. This second method requires that the eccentricity 

of the ellipse is small, however it does not require that

n = n , . 
co cl

The fundamental modes are discussed first (see Section

3.2(1) and 4.3(2)). I shall calculate the difference in

the modal propagation constants, ß r-ß , using equation 5.23.
x y

The quantities E, H and $ are the modal quantities associated 

with the circular fiber. Since the deformation is small we 

let e = e and h = h in equation 5.23 and then calculate $.

The integrals over the crescent shaped perturbation region is 

evaluated as in Section 5.2(2).

For example, consider the predominantly x-polarised 

fundamental mode. For the present I shall write the electric 

field of this mode as

e = g (r)cosd) r - g (r)sincj) (J> - i0 g (r)coscf> z (5.24a)
— r — ~(p — c z  —

{f (r)x + 0 ( 0 c ) } - i0cgz (r) cosij) ẑ . (5.24b)

Expressions for g^, g^ and g^ are given in references 4 and

6. Unfortunately equation 5.24b is not sufficiently accurate

2
for our purposes, the order 0^ corrections to the transverse

field give rise to an important contribution to .

-  -  -  2 
Substituting e(r,(p) = e(r,<j>) = e(p,4>) and dA = l/2(ep)cos (p
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into 5.23 gives

3x = 3 + cü£ c o  (ep0c) 2 {ĝ . (p) + 3g2(p) + 02g2 (p) }/16/A ex h* • z dA
^ oo

(5.25)

Similarly for the predominantly y-polarised fundamental

mode

8 = 8 + co£co(epec)2{3g^(p) + g2(p) + 302g2 (p) z dA

(5.26)

From equations 5.25 and 5.26

3X~3 = meco(ep0c)2{g2 (p)-g2 (p)-02g2(p) }/8fA e x h* • z dA
J  t  CO

(5.27a)

= {a)eco(ep0c)2{g2(p)-g2 (p)-02g2(p) }/16/“dr rf2 (.r)

+ 0(0^) (5.27b)

2 2
where q (r) + 0(0 ) = g,(r) +0(0 ) = f (r) has been used

^r c  ̂ c o

in the transition from equation 5.27a to 5.27b. The integral

2 -  2 -

in equation 5.27b is listed in Table 4.1,g (p) - gr (p) can be 

calculated from the material in reference 4. The final 

result, which was quoted previously in equation 4.10, is

3 -3 = e203U2W2{l + (UK2(W)J (U)/K2(W)J (U))}/8pV3 . (5.28)
x y c o z _L

This result does not agree with an earlier calculation by

5
Marcuse, to obtain Marcuse's result replace the curly-
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bracketed term in equation 5.28 by unity. This significant

2 -  2 -

difference is due to Marcuse's neglect of g^(p) -g^(p) in

equation 5.27b. Clearly this term is of the same order as

2 2 -

the term he retained viz 9c9z(p)*

Equation 5.23 can also be used to investigate the higher 

order modes of a slightly elliptic fiber, the results of 

Section 4.3 are easily recovered. For the higher order modes 

(in this case the £ = 1 modes) one is primarily interested 

in determining the composition of the modes as the parameters 

defining the waveguide, e and V, are altered. (This has been 

done previously using the ncQ = n  ̂method and the answer is 

contained in equations 3.7, 3.9 and 4.9.) We know from the 

discussion in Section 3.2 that an elliptic perturbation 

hybridises or mixes the HE mode with the TM mode and the

HE dd mo<̂ e with the TE mode. Thus a plausible candidate for 

the electric field of an ellipse mode is

e^ = + a^e^ (i = 1,2) (5.29)

where e, and e0 are the TM and HE electric fields
—1 —2 even

respectively (the superscript has been used for consistency 

with equation 5.23). The analogy between equations 3.7 and 

5.29 is clear; in both equations an ellipse mode is repre­

sented as a linear combination of unperturbed modes.^ The 

ratio a^/a^ in equation 5.29 (which clearly equals

{(â  /a^ ) + l}/{(a^ /a^ ) - 1}, from equation 3.5 and 3.7) is 
ex oy ex oy

obtained by substituting equation 5.29 and either e^ or e  ̂

into equation 5.23 and then solving the resulting 2x2 

eigenvalue problem using the results of Appendix A. The
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result is

ajjyâ  = A' + (A' 2 + 1)1/2 (5.30)

A' = 1/A (5.31)

= (ß1-ß2)/(3e-3o) (5.31b)

where A is given by equations 3.13, 4.9. It is easily

shown from 5.30 and â /ai; = { (â  /a^ ) + l}/{(a^ /a^ ) - 1}
1 2 ex oy ex oy

that

a1 /a1 = A + (A2 + 1)1/2 (5.32)
ex oy — '

in agreement with equation 3.9. Thus the two theories agree 

when 0̂  << 1 and e << 1, as expected.

2. Two Parallel Step Index Fibers

This problem is discussed in reference 2 using equation 

5.23 and from the previous example it is clear that results 

consistent with those of Section 4.4(2) will be obtained.
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APPENDIX A

SOLVING THE 2 x 2  EIGENVALUE PROBLEM

An essential step in the application of the perturbation 

theories in this thesis is the solution of the 2 x 2  eigen­

value problem. For convenience, the details of the algebra 

as well as some remarks about the properties of the solution 

have been collected in this appendix.

Recall that the basic strategy of the Rayleigh-Schrödinger 

perturbation theory^- is to approximate a mode of the perturbed 

system by a linear combination of modes of the unperturbed 

system. The unknown coefficients in the linear combination, 

a^ and a0, and the propagation constant of the perturbed mode, 

3, are obtained from the 2 x 2  eigenvalue problem

cn + »i-e2

'21

C
12

+ a:

o

(A . 1)

The definitions of . and 3^ depend on which theory is

being applied. Equation A. 1 is a system of linear homogeneous

equations. For a nontrivial solution to exist the determinant

of the system must be zero.'1' Equating the determinant to

zero and rearranging one obtains a quadratic equation for

2
the eigenvalue 3

{CH  + 31 + C22 + 32} 3 + { (C1]L + 3X) (C22 + 32)

- C C } 
12 zl1

0 . (A.2)
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The solutions of this quadratic are

[{C11 + ßl + C22 + ß2 }/2] ± [{C11 + ßl - C2 2 - ß2 }2

+ C12C21]

1/2
(A.3)

Once 3 has been obtained, equation A.l is used to calculate 

a2//al‘ Thls completes the discussion of the general solution 

of equation A.l.

In many problems the results above can be further 

simplified because

a)
ßi ^ cn' ß2

>> C

hence
cn

and
C22

b) C =
12 C21'

hence C

2 2 

11 ~ 2̂ 11 22 I'

12 21

by C throughout.

Note that because of (b) the perturbation matrix is symmetric 

and consequently the eigenvectors are perpendicular With 

approximations (a) and (b) the solutions of equation A.l can 

be written as

+ [{ß2 + ß2}/21 + c t'1 + a 2]1/2 (A.4a)

+ / + 

al//a2
A + [1 + A2]1/2 (A.4b)

and

[{&l + ß2}/2] - C[1 + A2]1/2 (A.4c)

ax/a2 A - [1 + A2]1/2 (A.4d)
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where

A = (B^- B2>/2C (A.5)

When the approximations (a) and (b) are made the composition 

of the perturbed modes (i.e., the ratio a^/^) depends only 

on the important parameter A.

The physical significance of the above solution is best 

appreciated if we consider a particular problem. Suppose, 

for example, that an unperturbed mode is excited at z = 0 on 

the perturbed structure. The subsequent development of the 

field is analyzed using the modal expansion method described 

in Chapter 1; the unperturbed mode is expanded in terms of 

the true modes of the structure using equations A.4b and A.4d.

In the scalar perturbation theory of Chapter 5, for 

example, let ij; and be the modes of the perturbed system 

and an<3 ’̂ 2  the m°des of the unperturbed system. 

Apparently

If is excited at z = 0, the field at z ^ 0 is given by:

(A.6a)

and =  a1^1 +  a 2 ^ 2  * (A.6b)

+ ,
- V _ e

iß z

(A.7)

iß z iß z

(A.8)
iß+z iß_z
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= A1(z)^1 + A2(z)ip2 . (A.9)

Note that since A-̂ (O) = 1 and A2(0) = 0 the initial conditions

are satisfied. In equation A.9, the field at z ^ 0 has been

2
cast into the form favoured by coupled mode theory. The 

power in modes 1 and 2 is proportional to the quantities

IA (z) I 2 = 1 - F sin2 [(ß -ß /2)z] (A.10a)
I ' +  —

|A2 (z) |2 = F sin2 [ (3+-3_/2)z] (A.10b)

where

F = [1 + A2]“1 . (A.11)

All the power starts in mode 1 and a fraction F is then 

exchanged periodically between the two unperturbed modes 

^  and $2 • The beatlength

L = 2ir/ j ß+ - ß_| (A. 12)

is the length over which the fraction F is transferred from 

mode 1 to mode 2 and back again. The fraction F depends on 

the important parameter A; when A >> 1 essentially all the 

energy stays in the unperturbed mode 1, when A = 0 all the 

energy is periodically exchanged between the two unperturbed 

modes.

In conclusion, the parameter A defined in equation A.5 

determines two important physical quantities
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a) the composition of the perturbed modes in terms 

of the unperturbed modes through equations A.4b 

and A.4d;

b) the fraction of power periodically exchanged between 

two unperturbed modes through equations A.10 and A.11.
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APPENDIX B

CORRECTION OF 3 FROM THE EXACT EIGENVALUE EQUATION 

In Section 4.1 the 3 of the circular step-index wave­

guide was corrected using equation 2.12. In this appendix

1 2
I prove, using the exact eigenvalue equation, ' that the

. 3
corrected 3 s  are exact to order 0 (i.e., terms of order

c
5

6^ have been neglected).

First I prove an important general result. Suppose 

that the solution of the transcendental equation

f (x ) = g(x) (B.l)

is known (f and g are initially well behaved functions).

How can the knowledge be used to obtain an approximate 

solution of

(1 + e)f(x) = g(x) (B. 2)

when e << 1? Equation B.2 defines x as a function of £ 

implicitly. Differentiating equation B.2 with respect to e, 

setting £ = 0 and solving for dx(0)/ds leads to

dx(0)/d£ = f(x(0))/{g* (x(0)) - f ’ (x(0)) } (B.3)

where ' indicates differentiation with respect to argument. 

The number x(0) in equation B.3 is known, since by assumption 

equation B.l can be solved exactly. Hence, since e << 1,

x (e) x (0) + edx(0)/d£ + 0(£ 2) ( B . 4)
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where x(0) is known from equation B.l and dx(0)/de is known 

from equation B.3.

Now 3, which is considered known, is defined implicitly 

by the equations

J£_1 (U)/UJ£ (U) = k £_1 (w )/w k £ (w ) 

or equivalently

JÄ+1(U)/UJ£ (U) = -Kä+1(W)/WKä (W) (B.5)

(pß)2 = (pkco)2 - Ö 2 = (pkcl) 2 + w 2 . (B.6)

(3 is an approximation of 3 which ignores terms of order 

3 3
0^. Gloge has shown that to obtain a more accurate

5
approximation of 3/ which ignores terms of order 

equation B.5 must be replaced by

a) For the TM mode: J-^(U)/UJo (U) = - (1 + 0^) (W)/WKq (W) (B.7a)

b) For the EHp_1 modes:

Jj, (U)/UJ!,_1 (D)=-(1+(1/2)62)Kj, (I-J)/WKJl_1 (W) (B.7b)

c) For the HE^-j modes:

Jj, ( U l / U J ^  (U) = (l+(1/2)6 2)Kj, (VO/WKll + 1 (W) (B.7c)

d) For the TE modes: J^(U)/UJo (U) = -K^ (W) /WKq (W) . (B.7d)
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2
Note how if one ignores terms of order 9c compared to 1 in 

equation B.7, equation B.5 is recovered. Also, the 

degeneracies between EH and HE modes in equation B.5 have been 

removed in equation B.7.

The analogy between equations B.5, B.7 and equations 

B.l, B.2 is clear. For example, consider the TM mode, then

g = J1/UJq (B.8a)

-K-, /WK 
1 o

£  =  9 '

x = 3‘

x(0) = 3'

(B.8b)

(B.8c)

(B.8d)

(B.8e)

dx(0)/de = d(ß2 (O)/d(0^) . (B.8f)

2 2
The quantity d3 (O)/d(0 ) is obtained mutatis mutandis from 

equation B .3,

d32 (O)/d0^ = - K ± (W)/2p2WKQ (W){1/W d/dW(K1 (W)/WKq (W))

- 1/U d/dU(J1 (U)/UJo (U))} (B.10)

= -2U2WK1 (W)/p2V2K2 (W) (B.ll)

where the eigenvalue equation and standard Bessel function
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identities have been used. From equation B.ll, 

B2 = B2 - {2ö2u2w k1(w )/p2v 2k2(W) } + 0(0^)

which agrees with the correction obtained from equation 

2.12. The other corrections obtained from equation 2.12 

can be verified similarly.

.12)
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APPENDIX C

THE PROPAGATION CONSTANTS OF 

THE FUNDAMENTAL MODES OF THE TWO FIBER SYSTEM - 

DETAILS OF THE ALGEBRA

The four fundamental modes of the two fiber system are 

given in equation 4.16. (3+ and 3_ are corrected using 

equation 2.12 with = e = e^+ and so on for the remaining 

three modes. Taking e , for example, and using equation
“T“

2.14 one has

^+ (V^+ • x) (n • x)d£//A ijĵ dA} (C.l)
OO

where the line integral is over both circles in Figure 3.2. 

Clearly the contribution of each circle is equal and so

fBoundaryh(VL  ■ g) ( n  ■ g)&l  = 2 [ jcircle x(n • 

+ ip 2 • x) + * x)}d£] (C.2)

where the term containing two evanescent functions has been 

neglected. The first term on the- right hand side of equation 

C.2 has been evaluated previously; it is the polarisation 

correction to ß of an isolated fiber (see Section 4.1 and 

Table 4.1). The remaining two integrals are evaluated using

OO

V W ^ / p )  = Z (-) £cosi>(t>2I£ (Wr2/p)K? (Wd/p) (C.3)
z=-°°

where r^, r and (p̂ are defined in Figure 3.2. Only the 

A = 0 and £ = 2 terms survive the integration. The integral

x+ + Boundary
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in the denominator of equation C.l is evaluated elsewhere^;

it is assumed that / ^1^2 ne9li-9ikle.
OO
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