MODES OF OPTICAL WAVEGUIDES

William R. Young

A thesis submitted to the Australian National
University in March 1978 for the degree of

Master of Science.



 PREFACE

This thesis is a report bf work carried out in the
Department of Applied Mathematics, Research School of Physical
Science, Australian National University between January and
August 1977. |

The results in this thesis are original, in the sense
that they are the product of a close collaboration between
myself and my supervisor Allan Snyder{' These results are
also being reported in a>paper entitled_"Modes of Optical
Waveguides" which has been accepted by the journal of the

Optical Society of America.

William R. Young



ACKNOWLEDGEMENTS

No acknowledgement can express sufficient gratitude to
my supervisor_Allan Snyder. The short period of time in
which this thesis was researched'is.adequate evidence of his
industry and insight. The other_members of the fiber optics
group contributéd to many long and illuminating discussions.

I must also thank Barry Ninham for arranging financial
support. My stay in his department was a stimulating and

enjoyable introduction to the scientific profession.



ABSTRACT

This thesis develops a method for finding the modes of
optical waveguides with a cladding refractive index_that
differs only slightly from the refractive index of the core.
The method appliesrto waveguides of arbitrary refractive
index profile, arbitrary number of propagating modes and
arbitrary cross section.

Particular problems investigated include the conseguences
of a small elliptic deformation of the core of a circular step
index fiber. Only a minute eccentricity is neceséary for the

well known LP modes to be stable on an elliptical core.
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CHAPTER 1

PRELIMINARIES

1.1 Introduction

The optical fibers used in communications»technologyl’2
and the optical fibers which form the retinas of verterbrate

eyesB’4 have a cladding refractive index, ﬁcl'

only slightly from the maximum refractive index of the core,

that differs
n., (see Figure 1l). This observation has important>theoref
tical consequences; previously it has been used tovsubstan-
tially simplify the modal fields and the eigenvalue egquation
of a step index circular fiber.l _The simplification achieved
in this éarticﬁlar problem'is one of the most important
theoretical advances in fiber optics.

In this thesis I shall present a simple method for
determining the bound modes of any n = n |

co cl

o n_q method, applies to nco,= n.q

waveguides of arbitrary cross section and profile grading.

waveguide. This

il

procedure, . called the n

i

n
cO cl

bound modes of the step index circular fiberl and provides

It is a generalisation of the n approximation of the

results consistent with the properties of graded profiles

previously reported.s—7 Besides being applicable to é much

il

wider‘class,of‘fibers, the n, n method also clarifies

cl
the physical principles underlying the mathematical Simplir
fications which occur when n =n ..
lole) cl .
From a practical point of view, the most important
results in this thesis are probably those concerning the
consequences of a small deformation of the core of a fiber.

Minuscule imperfeétions, such as a slightly elliptic core,

are inevitable in the manufacturing process. We shall see
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Figure 1l.1: (a) A waveguide with cylindrical symmetry.

(b) The refractive index profile in some

arbitrary cross section.



that small perturbations of the waveguide geometry often

dramatically affect the modes of the structure.

1.2 A Review of Basic Fibher Optics

Some significant events in the history of fiber opticé
ére summarizéd in Table 1.1. I shall now briefly.review
some fundamental concepts reqﬁired for this thesis. 1In
order to streamline the presentation the definitions of the
vsymbols have been relegated to Table 1.2.

A mode of a cylindrical (not necessarily circular)
waveguide is a field configuration which satisfies the source—:
'free'Maxwell equations and propagates unchanged except ih
phase (i.e., the modal fields depend on z and t only through

el(Bz—wt))_ A dielectric waveguide has both a discrete set

of bound modes and a continuous set of radiation modesg;
only the bound modes are considered in this thesis. Once the
modes of a structure are knqwn a field at one position on the
fiber can be expressed as a superposition of modes;.fhe modes
in theAsuperposition theh propagate individually. Lrhe modal
. expansion method outlined above is physicaliy intuitive and
mathematically éimple, once the modes are knOWn;

The modal electric and magnétic fields of a cylihdrical
waveguide (i.e., a strﬁctufe whose electric permittivity
e({x,y) does not deéend on z) have the form

E(x,y,z) = g(x,y)eiSZ = (e, + gz)eiBz , (1.1)

iRz iBz

1l
il

H(x,y,2) = h(x,y)e (h, + h )e (1.2)

t



Table 1.1: Significant Events in the History of Fiber Optics.

Date Event

1730 Newton's speculation on Goos Hanchen shift.9

1897 Rayleigh's investigation of the modes of a dielectric

cylinder.lO

1936 Carson, Mead and Schelkunoff consider using dielectric.
cylinders as microwave waveguides,ll

1948 Toraldo di Francia suggests an explanation'of the

Stileé—Crawford effect, based on the acceptance
properties of optical fibers.19

1949 Chandler demonstrates experimentally that dielectric

cylinders guide more energy around a bend than metal

waveguides.lg Adler investigates the general

properties of inhomogeneous dielectric cylinders.8

1951 Kapany and van Heal develop the cladded fiber.ls_

1958 Schawlow and Townes propoée the laser'.14

1961 Snitzer develops a losing fiber.

Snitzer and Osterberg observe isolated modes on

15,16

fibers. Enoch shows that retinas are optical

fiber bundles.l7’3
1966 Kayo and Hockam suggest that dielectric rods are a
practical way of transmitting information.18

1969 Snyder simplifies the modes and eigenequation of a step

index circular fiber using nco ¥ nci approximation.l

1970- Development of fibers with low material 1055.20—22

75



Table 1.2:

10

Glossary of Symbols
First _
Occurrence . h ful inf .
Symbol (page #) Meaning and other useful information
n.q 7 Refractive index of the cladding.
D 7 Maximum refractive index of the core.
B 8 Modal propagation constant. .
w 8 Radian freguency.
E&H 8 Generic symbols of electric and
' magnetic fields.
e&h 8 Modal electric and magnetic fields.
gt&IH: 8 Transverse modal fields.
e &h 8 Longitudinal modal fields.
Vi 13 Transverse vector Laplacian.
v, 13 Transverse differential operator.
ki{x,y) 13 Local Wavenumber, k(x,y)é
, w(m(x,y)l/z = 2mn(x,y)/X .
e(x,y) 13 Electric permittivity.
U 13 Magnetic permeability.
n(x,y) 13 ‘Local refractive index.
A 13. Wavelength.
Eo 13 Permittivity of free space,
2
e(x,y) = e n (x,vy).
kco and kei 13 Koo = 2Mngo/A and kg1l = 2mng3 /X -
P 13 Modal power.
1 if i =3
8. . 14 §.. =
i3 1]

0 otherwise .
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Table 1.2: continued
First ,
Occurrence . . .

Symbol (page #) Meaning and other useful information

A 14 The Transverse plane.

n 14 Fraction of modal power in the core.

vg 14 ‘Modal group velocity

W 14 Modal energy stored per unit length.

2 2 2 |
4 = - .

ec 1 Gc 1 (nco/ncl)

o2 2,172 2 2 ,1/2

v 18 v = {kco kcl} -—(Zﬂ/k){nco ncl}' .

p 19 Radius of a circular fiber.

\Y 19 Waveguide parameter of a circular
fiber.

gV 19 Denotes quantities associated with the
N6 é N,y waveguide.

P 20 Solution of the scalar wave equation.

Peo 20 Characteristic length of a fiber

| o cross section.

n 23 Outward unit normal of the core-
cladding interface of a step-index
fiber.

a, 23 Generic symbol for coefficients in a

- linear combinations.

Cij 23 Generic symbol for elements of a
perturbation matrix.

we'wo 29 Even and odd solutioné of the scalar

wave equation.
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Table 1.2: continued
~ First
Symbol Ochr;ence Meaning and other useful information
(page #)
fl(r) 29 Generic symbol for radial dependence
function of a circular waveguide.
é_ ,e 29 ‘Generic symbol for transverse
=xe'—=x0 :
8,5 Neg = Ng] Mmodal electric flelds of a
Y& “Yo circular waveguide.
2 29 AZimuthal wavenumber.
1782 - 31 & 32 Generic symbol for transverse
o Ngo = negl modal electric fields of a
3'=t4 . i _ .
circular waveguide.
BHE and B 34 Propagation constants of»modes 2,3
~and modes 1,4 respectively.
ée’éo 35 Progagations constants of even and
' odd solutions of the scalar wave
equation. ’
35 Generic symbol for the parameter which
determines the composition of a mode.
ﬁ,ﬁ 39 Normalised transverse wavenumbers of
a 01rcu1ar flber.
J KQ,IQ 39 & 45 Standard symbols for Bessel functions.
e Fig. 3.3 Eccentricity of an ellipse,
o = /E:_(minor axis)2
major axis
v, 46 Symmetric and antisymmetric solutions
of the scalar wave equation for two

parallel waveguides.
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(seé Table 1.2). The field gt(x,y) is a solution of the
reduced wave equation
2 2 .2 _
vtgt,+ (k=B )gt = _\Z.t(gt VthE) o »(1.3)
where Vi is the transverse vector Laplacian.23 The local
wavenumber k(x,y), electric permittivity e(x,y) and .

refractive index are related by

k(x,y) = wlue (6,y) Y2 = 2m(x,y) /A (1.8
and
e{x,y) = e 0 (x,y) : (1.5)
(see Table 1.2). The remaining field components are

determined from e using Maxwell's equations; The allowed
values of B result by demanding onlyvthat the solutions of.
equation 1.3 be bounded, siﬁce effects of any-disconﬁinuities
in € are fully contained within the Z#lnaAterm. 'For bound

modes B'is real and restricted to the range8

c1 = B < kco . .- _ (1.6)

The modal fields are in general hybrid possessing both

e, and h, components.8 Furthermore, for the bound modes of

a lossless strucfure the normalisation can be chosen so that
e.rh, are reai, while e ,h 6 are imaginary. The time averaged

power of a mode is

p=1/2/, exh*- % da .
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where * is complex conjugate, and A_ is the infinite cross
section. The bound modes of a lossless structure obey power

o_rthogonality8

) * L ] 5 —_ ’ '
wagi><hj zZ da 2p6ij (1.8)
where p is equation 1.7 and'cSij is the Kronecker delta.
Not all the power in a waveguide is transmitted within the -

core, only a fraction

= < h* . 5 .z .
N =J ore® X h* 2 dn/J, §}<h*i z dA - (1.9)

[es)

is carried within the core. The group velocity of a mode is

vy = dw/9B = 4p/W , (1.1

where W, the stored enefgy per unit length, it

W=7, {elel® + ulnl? + wlel®@e/av)}an . .1

The reason for having a small difference between o and n.y
in communications technology is that deléy'distortion
(derivative of group velocity with respect to freguency) is

proportion to

Y ) _ .
| 8 =1 (nco/ncl) . . (1.12)
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CHAPTER 2

THE n = n METHOD
co cl

{2

n method. This
cl

procedure synthesises the vector modal fields of the

In this chapter I present the nog

n_, = n_q wavequide from linear combinations of solutions of

the scalar wave equation. The appropriate linear combinations
are dictated by properties of the V _fne term in equation 1.3.

Failure to account for the effects ofiﬂuaztlne term, however
1

small, leads to the well known LP or Ny = Doy modes.” The
cross sectional intensity and polarisation pattern of the

Do, = N,y modes changes as the modes propagate.l'z’g'g_

2.1 The ngo = nel Waveguide - No Polarisation Properties

We begin by finding the modes of a waveguide in the

artificial limit_
n *n,4y =n or -equivalently BC +~ 0 o (2.1)

which, by itself, amounts to assuming that the medium is
homogeneous, without the capacity to guide waves. ‘To avoid
the trivial consequences of this limit, we impose the crucial
constraint that A ~ 0 in such a way that the parameter

2 2 }1/2

v = {k% -k

2.1/2 | A .
co ¢l } = koofe (2.2)

— 2—-
- 2'H/ano Doy co ' c

equals an arbitrary constant. This second constraint
ensures that the structure guides waves. A similar approach
is used in deriving the modes of a circular step index

waveguide,3 in which the waveguide parameter V is held
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constant,

v = p(kz —k2 )1/2

o) cl (2.3)

where p is the core radius. In other words by holding v

constant and letting n > n (or equivalently, GC + 0)

co cl
10

the waveguide is not merely a homogeneous medium. We now
‘investigate the properties of the bound modes on this

n = n

co cl waveguide, anticipating that these modes should have

e

n

some properties in common with modes of the n_g cl

waveguide.
Because the B of a bound mode is restricted to the rangé_'

of values in equation 1.6, the limit n, =n demands that

cl

B - kCO > kcl‘» o . : (2.4)

This condition is satisfied only by a z-directed transverse
electromagnetic (TEM) wave, i.e., a wave for which the
electric and magnetic field vectors lie in a plane that is

transverse to the axis of the waveguide. - Accordingly, the

modal flelds of the Do = gy waveguide satlsfy‘

h =3 =0 - | (2.5)

(é/u)l/zéxg: - (2.6)

| =%
i

where ~ is used to indicate guantities associated with the

n = n

waveguide.
co cl g

Secondly, because n,=n all polarisation dependent

cl’

properties of the structure are removed. If this is not
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obvious, then recall that as n - TE and TM waves

co Re1”
uhdergo identical reflection at an interface between two
semi~infinite media or at a caustic.4 Since the ztlne term
in the reduced vector wave equation (1.3) is the only term
which distinguishes between pblarisationé, it_ié omitted when

solving for the & fields of then = n
= co cl

other words, the fields of the n = n
co cl

essentially solutions of the scalar wave equation. These

waveguide. . In-

waveguide are

n_, ="ncl or LP modal fields are expressed in rectangular

coordinates as
& = Vg _ | o R (2.7a)
& = v§ | .(2‘__.7_b)
where Y is a sblutiOn of

wZ + 1?-E = 0 e

and Vi is the transverse portion of the scalar Laplacian

ll The solution ¥ must be bounded everywhere and

operator.
have the well known property of fhe scalar wave equation that
Y and its normal derivative are continuous everywhere, even
if kz(x,y)bis discontinuous. These constraints lead to an
eigenvalue equation from which the allowed values of B are

found. We anticipate that these values of g are nearly equal.

to k. Furthermore, as n +~n ., p__B becomes arbitrarily
co cl co
large, where Peo is a characteristic length of the cross

section.
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In conclusion, the N ='ncl waveguide was invented to

physically motivate the introduction of the L fields

in equation 2.7. It is important to realise that the
n., = D,y waveguide has no polarisation dependent properties

i.e., the n_, = N,y waveguide has no preferred direction for

12

the electric field of a mode. Notice also that nowhere in

this section has an appeal been made to the often quoted

condition that
AV, e/e] << 1. (2.9

All that has been used is n =n ..
. co cl

2.2 The ngg = ncil Waveguide—Inclusion of Polarisation

Properties

The significant consequence of having ncoldifferent from
n., is that the waveguide has polarisation properties. The

‘polarisation properties are contained within the V_f%ne terms

t

of the vector wave equation. The modes of an n_. = n.;-

waveguide are solutions of the vector wave eqguation and

therefore have polarisation properties. However, since the

term Vt(gt' Vtzne) is zero when N, = 0.qv it must be small

co cl
can be approximated by finite linear combinations of the

. 3 ' ~ .
when nco = ncl' Hence, the modes of the n = n ‘waveguide

n = n modal fields.
co cl

From a mathematical point of viaw, the n.g = n method

cl
is a variant of the familiar Rayleigh-Schrodinger perturbation

theory,,s_7 developed especially to treat equation 1.3 with
a maximum of algebraic economy and physical insight. As a

general rule in perturbation theory, unperturbed modes which
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are nearly degenerate {(in this particular problem, modes
with nearly equal B's) are "mixed"” or "hybridized" by a
perturbation}A'The more nearly degenerate the modes are,
the more readily they are hybridized by a perturbation. This

provides one criterion for deciding which n = n

modes are
co cl o

included in the linear combination: "one combines

groups of nearly degenerate modes.

In Chapter 3 I return to the problem of deciding which €

are included in the linear combination. Frequently physical,
considerations enable one to eliminate some terms from the 
linear combination. I shall now explain how the coefficients
in.the linear combination are obtained, once one has decided

which n = n fields are to be included.
co cl

We begin by proving an important intermediate result

which relates an n = n mode to an n = n modeQ‘ The
co cl co cl

result is obtained by a deviation of the method used to

obtain mode orthogonality. The exact field satisfies

a2 2 2., _
(Vi + (k"-B7)}e, = -V (e

cleg - Vtzne) | | (2.10)

- while ann__ = n field satisfies
co cl

2

2‘\!2 .~ 3 ' " . .
{vt + (k“-B )}_gt =0 | (2.11)

Dot product equation 2.10 with ét and equation 2.11 with -

gt, subtract the two equations and then integrate over the

2
plane. The term fAm{gt Vi€ ~ &8¢

to a line integral at infinity using the vector Green's

' 2~ .
. Vtet}dA is converted

theorem. This term vanishes since e

© and e

" decay

exponentially. The final result is



23

B - B" = [, & - Y (e, -ytzne)/fAmg + e, dA (2.12)

when e(x,y) is a step function, as in Figure 1.1, equation
2.12 can be simplified using integration by parts and

: Ztkne dA = &n ecl/ec

o §(Boundary)n dg - (2.13a)

-62 &(Boundary)f s (2.13b)

where h is the outward normal of the boundary and 4% is an

elemental length at the boundary. Using equation 2.13 one has

2

c%Boundary(z

J mg  . yt(gt- ytzne)dA = 0 " -g:_t)(g_t +n)de (2.14)
Equation (2.12) is an exact result, no approximations have

been made.

Now, suppose that one hypothesises the approximation

N o
e. = Lagé . (2.15)
t n=1 B tn
Substitute e from eguation 2.15 and'ét = éti where
i=1,...,N into equation 2.12. = After some rearranging an
N XN eigeﬁvalue equation is obtained
— P | _ 1 —
Cll+81—8 'C12 C13 | o o e ClN al =10
~ w202 ol |
Ca1 Coatby=B " Cy3 <o Gy 2y 0
2 .2 : :
C3y C3s | C33+83—B - oo Coy a, 0
c c. c. ‘¢, +B2-p2 a_ 6
N1 ' N2 N3 " " NN "N N
L — S

e e e e e e . (2.18)
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In equation 2.16, the eigenvalue 1is 82, the eigenvector

[al,az,a3,...,aN] and the coefficients are

~

B, = propagation constant of & i ' (2.17)

2

Ciy = Jp &y = V(& . -V, ne)dn/s, |&

hily A _—ti t'—tj t til da  (2.18)

The easily obtained orthogonality property
Ip 8y v 8y @A =0 | | (2.19)

has been used in deriving equation‘2.16. The solution of our
problem is effectively the eigenvalues and eigenvectofs of
equation 2.16.

It is usually possible to téke advéntage of the
structure of{eaéhbparticular problem to simplify the érocedure
outlined above. In all the examples in this thesis I avoid
evaluating anything more complicated than é'2x 2 determinant .
by using physical arguments to eliminate terms in the initial
linear combination equation 2.15. The details of the.algebra
for the 2 x 2 case are collected in Appendix A. |

After e, has been obtained the remainihg fields are

—t
determined from Maxwell's equations. Because R = k on the
n., = ng wavegulde, = and Et are related by

h, = (scc')/u)l/zﬁxgt : - (2.20)

The.longitudinal fields are then found from Maxwell's

divergence equations, leading to
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hz = (i/B Zt' Et)g (2.21)
= (i/B V- e )% + 0(0%) (é 22)
€z T Le " 22 c’ T | .
When N, = N,yv cho >> 1, so that from equations 2.20-2.22

e

the modes of an n.o n.; waveguide are nearly TEM.

2.3 Summary

The modal fields of the n__ = n,, waveguide are.nearly
TEM waves obeying equationé 2.20-2.22 with corrected propaga-
tion constants obtéined by solving equation 2.16. The
transverse fields are synthesised from linear combinatiéns

of the n = n fields defined in equation 2.7. In the next

co cl

chapter I discuss the physical considerations which ére uéed
to simplify the mathematical prescription given above for
finding e+ In partidular, physically intuitive arguments:
can be used to'eliminate some of the terms in the initial

guess equation 2.15.
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10. Prefious experience warhs that many readers have con-

ceptual difficulties witﬁ the limiting procedufe

‘described above. A point which must be kept in mind at

all times is that despite equation 2.2, v and ec are |

independent variables. As ec deéreases, A decreases in
such a way that v remains‘constaht. .This procedure ié
somewhat similar to the unphysical limit used to construct

the point dipole of electrostatics. The field of a point
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12.

13.

14.

boundary conditions. In the sequel I show that the n,,=n

27

dipole is specified by one parameter, the dipole moment

p- The field of a point dipole is constructed from that

of a finite dipole by'an unphysical limiting procedure;

the distance d between the equal and opposite charges,

Q and -Q, is decreased,rwhile Q is increased so that

p = 0d remains constant.

Note that équation 2.4 does not imply that k2-§2 - 0

in equation 2.8. It is entirely possible for, say,

Xx »y > o and yet for x2-y2 to equal a constant (for
example, if x = cosht, y = sinht and t - «).

In equations 2.7, % and ¥ were choosen purely for
convenience. Actually any two linearly independent

vectors could be uséd to construct the éffields from Y.

If this is not clear consider the extreme example of a step.
profile, where Vtxn e=_626(r—-p). The perturbation is zero
except in a small region of space near r=p where it has
minute strength eé. when n__ is quite différent from o
thn.e is no longer small, but bé@ause it is spatially
localized it is incorporated into the mathematics via fhe

cl
method gives accurate results for the éextreme case of a step
index fiber provided 6é<< 1. It is iﬁportant to realize that
physically fhis is because as I TE and TM waves have
identical reflection properties at a caustic, no matter

how rapidly the refractive index changes from-nc;O to Ny
The reader is reminded that the stfategy of the Rayleigh-
Schrodinger perturbation theory‘is to approximate a mode of

the perturbed structure by a two or three term linear

combination of unperturbed modes.
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CHAPTER 3

SIMPLIFICATION OF THE n = n
co cl-

USING PHYSICAL ARGUMENTS

METHOD

The‘philosophy of the Do = n_, method, presented in

Chapter 2, was to approximate an n g

= Ny field by a linear

combination of n__ = n_, fields. The problem of finding the
correct linear combinations was reduced to two steps?

a) Fdrming the initial linear combination equation 2.15,
this necessitates deciding which modes to include.

b) Solving the eigenvélue problem equation 2.16.
Naturally the more mbdes‘which are included in step (a), the
more accurate the final answer is} the price of the increased
accuracy is the.algebraic compiexity of step (b) for N > 3.
In Chapter 2 one criterion for deciding which modes to
include was mentioned, viz one includes all modes which have
B's well separated from the 8's of the excluded modes. 1If
one follows this criterion and solves equation 2.16 an answer
is obtained slowly but surely. However, in many prdblems

the final answer is simpler than the initial linear combina-
}tion suggests because some of the coefficients, a; vanish 3
identically. In this Chapter I shall discuss the physical.
arguments which enable one to anticipate this simplification.
Besides reducing the labour involved in solving equation 2.15
the physical insight obtained is worthwhile for its own sake;

The feasoning in this section pivots on two concepts:

a) Symmetry. If a waveguide is invariant under a
geometric transformation then under the>same transformation a

mode of the waveguide must transform into a mode of the same

8.
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b} Limiting cases. By examining certain limiting cases
where the correct linear combinations are known one can guess

at the included modes in the linear combinations appropriate

for the intermediate cases.

3.1 Waveguides with Circular Symmetry

The n_, = n, g modes are given by equation 2.7 in terms -
of the scalar function . Because of circular symmetry,
there are in general two solutions of the scalar wave

equation 2.3 for each allowed value of B. One solutionrwe,'

has even symmetry while the other, wo' has odd symmetry
we = fg(r)cosz¢ : wo = fQ(r)51n2¢ ) o (3.1)’

In equatioﬁ 3.1, ¢ is the azimuthal angle and fz(r) is a

solution of
{a%/ar® + 1/r a/ar + K2 (x) - B2 - 2%/x%YE, (0 = 0 (3.2)

Note when 2 = 0 there is only one solution of the scalar
wave equation, we(r) = fo(r).
Combining the above results, the n., = nci waveguide

in genéral has 4 modes for each value of g, i.e.,

il

é. = fg(r)cosl¢ X; @

€ve €. o fz(r)51n2¢ X . (3.3a)

Cye = £,(r)cosid ¥ ; S0 = fz(r)51n2¢ Yy (3.3b)

I shall now discuss how to linearly combine these nco’= n_,

or LP modal fields to form approximate modal fields of
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the n__ = n_, waveguide.
co cl

1. The Fundamental (£ = 0) Modes

When % = 0 there are only two n = n modes, e and
co cl —xe
éye' These two degenerate modal fields exist at all
frequencies and depend only on r. The fundamental N, E‘ncl
modal fields are a linear combination of the n = Ny

modes. From circular symmetry it is obvious that any linear

combination of these two n_, =n fields is a fundamental

o cl

modal field of the n,, = n,; waveguide and therefore is also
n

a modal field of the n.. = cl waveguide. In particular
e and e - are individually n = n modal fields:
—xe T —ye co cl
ey = € = fo(r)x ;e =€ = £ (r)y (3.4)

Y —vye O

CircularVSYmmetry implies that ey and gyvare degenerate as
can be verified from.equatioﬁ 2.12.

The two fundamental modal fields of the n_ = n_qy
waveguide are the samé as the fundamental modal fields of
‘the n., = nci waveguide. Notevhowever that from equation
2.12, B # B,Ai.e., the ncé = Ny modes and n.g = n.,
have different prdpagation constants when polarisation

modes

‘effects are_included.

2. The Higher Order (& > 1) Modes

When £ # O the’circularly symmetric n,, =N waveguide

‘has four degenerate n,, =n modes. Unlike the fundamental

o cl

modes, none of the 2 > 1, n = n

modes are modes of the
co cl

I

n n

co ol waveguide. This is proved by observing that a

circularly symmetric waveguide is unéhanged if it is rotated
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through an arbitrary angle. Hence if a mode of the waveguide
is rotated through an arbitrary angle, it must remain a mode
(not necessarily the same mode) with the same B. Now, if

any one of the four n_ =10 modes in equation 3.3 is

rotated through an arbitrary angle it is then represented by

a linear combination of all four n,, = nclvmodes.4 Thus, if

the n = n modes are also modes of the n = n waveguide,
co cl co cl

all four must have the same B. But if the n, = D,y fields

are substituted into equation 2.12 one finds that the four

corrected é's are not all equal. This contradiction between
the requirements of circular symmetry and equation 2.12 proves
that n., = ncl modes are not N, = ncl

Thus, we require linear combinations of &

modes when % > 1.

, &€ , & , and
e’ =xo’ —ye

éyo to formAhigher order modes.
To form the correct linear‘combinations, one combines
those modes which have the same propertieé under a rotation
by 90° and under refleétions in the x and y'axeé. '(It may -
help at this point to consider a specific éxample, say the
% = 1 modes shown in Figure 3.1.) Thus, éxe is combined with
éyo becguse one rotates into the other,}While éxo is combined
with éye because one rotates into minus the other. Taking

symmetric and antistmetric combinations leads to the four

modes of the n = n waveguide:
co . cl :

e = €. + e ;vv§2 = e . - e (3.5a)

€3 €xo + g-ye P84 T Exo T E-ye - (3.5b)

Using conventional nomenclature,l’2 modes 1 to 4 refer to the
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(o)

€= Exet8yo BT Be- By €3 Bxot &y € = Exo= &y,

(Even EH,, =TMy)  (Even HE,)  (Odd HE,)  (Odd EH,, = TE,)

Figure 3.1: (a) The n., = nCl or LP modes for ¢ = 1.

Note that §Xe and é&o are symmét;ic undér
reflections in thé x and y axes, while §Xo_andi
éye are antisymmetric. If any one”of»the above
fields is rotated through an arbitrary angle it
transforms into a linear combinatién of ali 4,

Note also that €ve T &1 + €y .0 T 83 ~ 34,'

a = a = — '
»§ye ez t e, and &0 e gz-where the e’s are
“shown in (b).

(b) The n., = n_q nmodee for 2 = 1. Under an

arbitrary reflection and rotation, €, and g, are

unchanged‘while either e, or e, transform into

linear combinations of e, and e,-
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even EHl—l o’ even HE , odd HE and odd EH, " modes
I

2+1,m L+1,m 2-1,m

respeétively. Figure 3.1lb illustrates the modes for % = 1.
_ These combinations are consistent with the requirements of
symmetry and equation 2.12. Consider £ = 1 for example.

The patterns e

1 and e

4 of Figure 3.1 are unchanged by

reflection in an arbitrary axis and by rotation through an
arbitrary angle, consistent with their being nondegenerate
modes of a circularly symmetric waveguide. However, under

arbitrary rotation and reflections e changes into a linear

t2

combination of SIS and i3 Symmetry demands that this new

combination is also a mode, which in turn requires that gtz

and e.3 are degenerate. This is consistent with the results
of equation 2.12. Analogous arguments show that the 1inear"
combinations in equation 3.5 are‘consistent also when & #_l;
one finds that &1 is degenerate with e end e is

t4 t2

degenerate with €¢3- |
The difference in the modal propagation constahts gives -
rise to a beat phenomenon causing a retation'of the n., = héi
or LP patterns.‘ The stability of the LP mode patterns is set
by the difference BHE-_BEﬁ in the propagation constants of
the constituentAmodes‘of an LP pattern.. When the difference
is large an LP ?attern rotates rapidly, when it ie zero the
LP modes are also modes of the n = n waveguide.

co el

3.2 Waveguides with Two Preferred Axes of Symmetry

Many structures of practical interest have a pair of
preferred orthogonal axes of symmetry, e.g., the ellipse .

and composite two cylinder waveguide of Figure 3.2. When

~

n n

co cl’ the modes of the waveguides can be formed by linear
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(a)

(b)

2
1 — |minor axis
| major axis

Figure 3.2: Waveguides with preferred axes of symmetry.
(a) Composite, two parallel waveguide system,

and (b) an Elliptical core.
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co cl

form these linear combinations, beginning with the fundamental

combinations of n = n_ . modal fields. I now show how to

modes.

1. The Fundamental Modes

It is intuitive that the fuhdamental modes, those modes
which propagate for all frequencies, have electric fields that
are polarised along one of the two axes of symmetry. Thus,
the n_. ='nCl or LP modal fields are the corfect apprpxima—‘

tions of the fundamental fields of the noo = ncl'waveguide
provided the g and i directions of equation 2.7 are aligned
with the symmetry axes. Therefore, the fundamental mode has

"vector fields of the form

iB_z if_z
Bx Bx
= e e = YJe

E, = &y X ‘ (3.6a)

1Byz ‘ iB =z

E, = &° T ve T ¥ . v o (3.6b)

The modal éropagation constant Bx'isbfound by substitﬁting

e = &, = gxrinto equation 2.12, while By is found by
substituting e = ét = Ey into equation 2.12. I have now |
fully specified fhe geheral characteristics of the fundamental
modes on wavegﬁidesvwith a pair of preferred symmetry axes.
The details depend upon knowing the solution of the scalar
wave equation. The transmission properties of such waveguides,
- when propagating only the fundamental modes, are similar td

‘these of anisotropic crystals, in that the waveguide has a

pair of optical axes.3
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2., The Higher Order Modes

In general, the higher order modal fields of strucﬁﬁres
with two preferred axes of symmetry are more complicated than
those of the fundamental modes. In order to appreciate  this
complication, begin by considering the ellipse. It is clear
that for a sufficiently large eccentricity the field of any
particular modg is given by equation 2.7, so that the 6nly
difference between it and a fundamental mode 1is in V¥ and
B. Héwever it is egually clear that for,é sufficiently small
eccentricity, this same mode resembles a modal field of a
circularly symmetric waveguide, with g and 2 parallel to.the
symmetfy axes of the ellipse. This transition is sketched in
Figure 3.3. We can associate each ellipse mode with the fields
of a distorted circle mode. For example, the ellipse mode |

that corresponds to distorting either e or e

tl1 —t2

3.1 is formed by a linear combination of & _ and éyo' where

of Figure

these €'s are now solutions to the scalar wave equation in

elliptical geometry.. Consequently, the fields of the ellipée

modes g, ; and e, , are
i A, i -
Cri T qox¥eX t aoywoX B ' (3'7)
where i = 1 or 2, we and wo are solutions of the scalar wave

equation in elliptical geometry and are analogous to we and
wo giveh by equation 3.1 for the scalar'wave equation in
cylindtical éeometry. Figure 3;4 provides an example of Ve
and Vg - The prépagation constants associated with we and

wo are denoted §e and éo respectively. Thelé's are different,

the difference increases as the eccentricity increases.



34a

= INCREASING ECCENTRICITY

") QD &
NS
Qa5
0O =

figure 3.3: Tiénsition from circle:to ellipse mddes for
| 2 = 1 modes. An electric field vector maintains .
its orientation to the interface, i.e., if it
was initially perpendicu}ar it remains;perpenf
diéulaf, as the eccentricity increases. Using
this heuristic principle one can anticipafe |
the way in which. a parﬁicular circle»mddé

changes as the eccentricity increases.
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- CIRCULAR CORE | ELLIPTICAL CORE

Figure 3.4:

Odd

~ Even

An example of a solution of ‘the scala:r wave

equation corresponding to the £ = 1 mode.
The B's of the even and odd circle mode are
identical unlike the é‘s for the even and

odd modes of the elliptical core.;
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A heuristic argument can be used to determihe the
minimum eccentricity necessary for the % > 1 ellipse modes
to be uniformly polarised, i.e., to have the form given by
equation 3.6. Anticipating that only a slight eccentricity is
necessary, the fields of the ellipse can be approximated by
linear ¢ombinatiqns of the circle n =n

co cl

as far as the preseht discussion is concerned.

fields éxe’ §yo
Now there ére two‘small parameters which determine the
composition of a mcde, the eccentricity e and the critical
angle Gc. It is clear that as these two parameters go to
zero they haVe competitive effects since:
‘a) When e # 0 and 6, = 0 the n__ = n_

e} cl

or LP modes in
equation 2.7 are the modes of the structure. The stability

of linear combinations of these modes depends on ée-éo

b) When e = 0 and ec # 0 the circle modes in‘equation
3.5 are the modes of the structure. The stability of linear

combinations of these modes depends on BHE-B (see the

EH
discussion at the end of Section 3.1).

Consequently the parameter
A= (BB / (BgyBug) (3.8)

is influential in determining the composition of the modes of
a structure with e # 0 and 6_# 0. When |A] >> 1, the modes
are LP or n__ = n_., modes. When |A]| << 1, the modes are

co cl

circle modes.
The argument above is tantamount to determining the
limiting behavior of aéx/aéx of equation 3.7. An expression

for this ratio can be found using the prescription outlined
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in Section 2.2. The B of the ellipse vector modal field

equation 3.7 is by substituting e in equation 2.12 for e

tl -t

and substituting either e or € in equation 2.12 for é&_.
: —xe —yO -t
The fact that we have two expressions for the same B gives

1 /al of
ex’ "oy

egquation 3.7 in addition to Bi. The algebra has been rele-

us two equations which determine the ratio a

gated to Appendix A. For small eccentricity

i, i 2 1/2 | |
aex/aoy = A+ (A f 1) - (3.9)
' ’ ‘ : 1/2
2 ~2 =2 ~2 =2 2 2 _
By = {(BZ+B2)/2} + [{(B] - B)/2}° + ¢ (3.10)
where i = 1 is associated with + while i = 2 1is associated
with -. The parameter C is

da C O (3.11)

_ L ~ . . L 12
VC - fAmgxe y-t(gyo ytlnL)dA/walgxel
= 82 - 8% = 2k(B..-8..) | (3.12
- PEH. PHE EH HE : : A )
and A is
A= (B2-82)/2¢ 2 (B -F) /(8. - 8.) (3.13)
e o e o 1 2 i f'

which is the'same as the intuitivély derived equation 3.8.
Thus, the composition df a mode depends only on the parameter
A. When A % 0, the modes are essentially circle modes. When
A >> 1 the-modes are nco = n_, modes. vKuations 3.3 to 3.12
are for modes 1 and 2 of the ellipsé, when £ > 1. .The

remaining two ellipse modes are found analogously.
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Identical arguments can be applied to all structures
with two preferred axes of symmetry, e.g., the composite
two waveguide system of Figure 3.2. Furthermore, the

procedure can clearly be generalized to other waveguides.
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Take the field éex = cosl¢ X for example. If one rotates

the coordinates through an angle -o, i.e.
PN ~1 . ~
¢ = ¢ + a , X = CcOosoxX - sihay

then the field in terms of the new coordinates is

~1

cosza_cosz¢l X~ ~ sina coso cos£¢l §l

&m
»

—- sino cosa sin2¢l 2t + sin®a sinJLq)l §l

~1 . ~1
cos®a & - sina cosa &

Xe

. ~1 2 0.1
- sino cosa & + sin“a e
X0 - yo
i.e., a linear combination of all four él. of coutse,
rotating the coordinates through an angle -0 is equivalent

to rotating the waveguide through an angle o.
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CHAPTER 4

EXAMPLES: STEP REFRACTIVE INDEX WAVEGUIDES

Chapters 2 and 3 show how to construct the vector modal
fields e, h and their propagation constants f from linear
combinations of solutions Yy to the scalar wave equation,
equation 2.8. Thus, when ¥ is known the modes are fully
specified. I shall first determine the modes of a step
profile with circular symmetry, since the results can then be
1,2

compared with the exact forms. Next, I consider a wave-

guide with an elliptic core and then a composite two parallel

cylinder waveguide. These last two examples exhibit several

e

n method

interesting physical properties which the-nCOv cl

readily displays.

4.1 Step Index Waveguide with Circular.SymmetrX

The radial function fg(r) for a step prdfile is found

from equation 3.2 and can be written as

£,(r) = 3, (Bx/p)/3, (D)

r<op (4.1a)
£,(x) = K, (We/p) /K, (W)t >0 (4.1b)
where the notation 7 indicates a guantity derived from the

scalar wave equation. - Note that £ = 0 is the fundamental
mode, £ = 1 the second mode set and so on. The requirement

that fg(r) and dfg(r)/dr be continuous at r = p gives the

eigenvalue equation

U J£+1(U)K2(W) = W K2+1(W)J£(U) : (4.2)
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after using the well known recurrence relations for Bessel
functions. U and W are related to the dimensionless parameter

V defined by equation 2.3 as
g + W = v° . » T (4.3)

The modal propagation constant $f is given by .

(pB)% = (pk )2 - G = (pk %+ W . (4.4)

The modal vector fields can then be formed as discussed in
Section 3 ~and are listed in Table 4.1. The propagation
constants B are found by substituting the expressions for |

= in Table 4.1 into equation 2.12 for e

either of the two &€ fields used to form gt'into equation 2.12

for ét' All the integrals are elementary or have been

and substituting

calculated elsewhere3 and included in Table 4.1. The correc-

tions to B are also listed in Table 4.1. The corrections

e

to B obtained using the n

n method agree with the
co cl :

corrections obtained from the exact eigenvalue equation, see
Appendiﬁ B. The present approach streamlines the original
derivation3 and in addition provides éimple analytic expres—
_ sions for iméroving g by including the effects of the thna
term in the vector wave .equation. Discarding £erms‘of‘order
Bc from the exact expression‘for s terms of order 82 for eé
and terms of order 62 for B leads to the results in Table 4.1.
Finally, because the step profile is the most rapidly

varying €(x,y) possible, it is therefore the most sensitive

to polarisation effects, i.e., most sensitive to the Vtzne
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term in the vector wave equation. Thus the step profile

i

n method.

provides a stringent test of the n.. el

4.2 Stability of the LP or ncg = ngl Modes

The n, =n or LP modes are not modes of an nco'é n

cl

waveguide. Each LP mode is formed by combining'two proper

cl

modes, an HE2+l,m and EHQ—l;m

different propagation constants, BHE and BEH' Because of the -

nmode. These proper modes have

the 1P modes rotate or fade

beat phenomenon, when BHE # BEH'

into each other,4 e.qg., éxe of Figqgure 3.1 after propagating

a distance 7/|B , which equals half the beat length,

HE"BEHI

rotates into & , of Figure 3.1. ‘The greater |8 the

_ e Penl ’
shorter the beat length and hence the more rapidly the LP

modes rotate. - From Table 4.1 when 2 = 1

3~2_2 3

BB = 800 Ky () (2= (K () /) () 1720V K (K, () (4.52)
B, -8 = 8°0°KZ (W) {2+ (WK (W) /K (v”v>)}/2p'v3x‘ (WK, (W) (4.5b)
TE "HE c 1 , o) 1 o) 277 °

and when & > 2

_ 3222 ~ 3 -~ ~ 4

(recall that the 4 & > 2 modes occur in two degenerate pairs,
the EH and HE,pairé). ‘The results for & = 1 are shown in
Figure 4.1. Note the special charéctefistic that at

V = 3.8 the éxe‘and éyé\LP modes are true modes of the

n = n

co cl HE

~

= 0.25 eg/p corresponding to a

waveguide because B = BTM.at this frequency. 1In

contrast, at v = 3'8VBTE-BHE
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03 T T | T T T T T 1 T T 7
Z = 1 modes of a circular fiber
0.2} ' » o
BBy = Brr:mipﬂsz,
pop o
3 Ol -
0:
' Cut!off
00 1 2 3 5 ] 7 8 9 10 n 12
Bi- B, = pTMO,"BHE,,
-0.1 1 1 { 1 1 { ) 1 1 Il 1 !

v

Figure 4.1: The difference in B's for 2 =1 mbdes of AthAe'
circﬁlarly symmetric, step.prof.ilevwavéguide. .
Each LP mode of Figure 3,1(a) is formed by
linéar combination of Bi, Bz'modes or 83., 64

nodes.
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half beat length of l.3><104 p for a typical value of

GC = .1. Thus near V. = 3.8, the mode patterns € and éyo
should appear stable compared to the other two patterns
8 and 8 _.WhenV >> 1, |B.=B..] = |BmBuym| = 6352/ pv?
Exo Syer ¥ r 1 PpET PHE T™ PHE e /PY -

From equation 4.6,  the B's are never equal for
£ > 2, so the £ > 2 LP modes are never modes of the circularly
symmetric waveguide. Futhermore, the greater £, the greater

g262/2pv3 for 2 >> 1.

IBHE_BEHI’ which approximately equals 6
Consequently for fixed V, the greater {& the less stable the

LP modes.

4.3 The Step Index Ellipse

The consequences of an elliptic deformation of a
circular waveguide aré sketched in Figure 3.3. As the
eccentricity increases the ellipse modes become uniformly
polarised, i.e., e is parallel to one of the two symmetry 
axes. It is interesting to determine the minimum eccéntricity

required for the n = n

co c1 ©F LP modes of Figure 3.1 to be the‘

propér ellipse modes.6 On a waveguide with this minimum
eccentricity, the modes of a circularly symmetric waveguide
are unstable, i.e., they couple power among themselves as they

propagate, while the n,, =n modes are stable. It was

cl

shown in Section 3.2(2) that the composition of the proper’

- modes depends crucially on

where B

B

are the propagation constants for the twao

EH, "HE

mode‘types on a circular waveguide6 (sections 4.1 and 4.2)
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while ée and éo are the propagation constants of the even and
odd solutions of the scalar wave equation in elliptical
geometry. When A >> 1, the modal fields are LP fields while

when A << 1 the modal fields are circle fields.

1. & = 1 Ellipse Modes

The quantity BEH— in equation 4.7 has been stated in

BHE

equations 4.5 and 4.6.6 When the eccentricity‘is small

we

e_éo is determined from the scalar wave equation in circular
geometry using the scalar perturbation theory in Chapter 5
(see Section 5.2(2)), leading to

~

2~2_2
B

e_Bo = Sce U Kl(W)/4pVKO(W)K2(W).- | » (4.8)
where U and W are found from equations 4.2 and 4.3 and e is

the:eccentricity of the waveguide. Consequently for & = 1,

A in equation 4.7 is
2.2, 2 _— no |
A= e’V /260{2 + (WKO(W)/Kl(W))} R : (4.9)

where the negative 51gn is for ATM' i.e., for BEH—BHE in
equation 4.7 to be BTM—BHE while the positive sign applies
to ATE’ i.e., for BTE-BHE in equation 4.7. Equation 4.9
exhibits the sensitivity of A to eccentricity, e, defined in
Figure 3.2, and the refractive index difference, defined by
equation 1.12. If Vv is fixed, the smaller ec, the less
eccentricity is required for the LP modes of the circular
cylinder to be stable modes of the ellipse. Figure 4.2

provides a graph of (Gc/e)zA vs. V. Remembering that when

A >> 1, the LP modes are the modes of the ellipse while when
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Figuré 4.2: Thé parameter A defined by‘equationv(hﬁ)
determines the ratio ai/bi of the elliése |
% = 1 fields, equation (3.9). When |[A] >> 1,
the modesv are uniformly polarized (LP modes) -
-while when |A| << 1 the modal fields are those

of a circular core.
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A << 1 the linear combinations in equation 3.5 are modes of

the ellipse, we see that no eccentricity is required for the

LP modes éxe and éyo to be ellipse modes at V £ 3.8. This

Bom = Buge

i.e., the LP modes éxe and §yo are true modes of the circular

is anticipated from Figure 4.1, since at V = 3.8,

cylinder withbut any perturbation. Since even the minimum
value for A = 2(e/6c)2, only a minute'eccentricity (e > 2ec)
is required for the LP modes to be stable. ‘Thé stability of
the higher order ellipse modes can be investigated in a
similar fashion. In general the compositions of.fhe higher
order circle modes are much less sensitive to small elliptic

deformations of the core.

2. Fundamental or 2 = 0 Ellipse Modes

In Section 3.2(l) it was noted that thé tranémission
properties of an elliptical waveguide propagéting bnly the
two fundamental modes are similar to those of an anisotripic
crystal, i.e., both structures havevorthogonal optizal axes.
The optical properties of the waveguide depend on the
differencebin propagation constantsvsx,ﬁy'of the x aﬁd y
polarised ellipse modeé. \This difference can:bevfound by‘,
substituting the fields g, = P& and éy = Y9 into eguation 2.12
to determine Bx and By,'where Y is a solution to the scalar_
wave equation in elliptical geometry. It'is not sufficient
to approximate y by solutions of the scalar wave equation in
circular geometry as was done in Section 4.3(1)..'In$tead
higher oxder terms_in an expansion in powers of eccentricity
~are necessary. Alternatively, one can use the second per-
turbation method in Chapéer 5 (see Sections 5.3, 5.4)Aand '

perturb about Maxwell's equations in circular geometry.
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The result obtained there is

2,322 3

_ R 5y Rl (1 o
Bx—sy = e’ 8. U'W {1+ (CKR_(W}J, (U) /K] (W) T, (U)) }1/8pV (4.10)
assuming e? << 1 and 62 << 1. 1In equation 4.10 U and W

are found from equations 4.2 and 4.3 for L = 0. If therfiber
is illuminated by linearly polarised light at 45°¢ to thé
optical or symmetry axes, then both fundamental modes are
equally excited and the guided‘wave is elliptically polarised.
Because of the beat phenomenon the E vector rotates. The

length for a 360° rotation is 2Tr/|BX—By . In Figute 4.3

'BX—BY vs. V from equation 4.10 has been plotted.

4.4 Two Identical Parallel Step Index Waveguides

The determination of_the nodes of the composite'twb
~waveguide systém of Figure 3.2 is completely anaiogous to that
of the ellipse as outlined in Section 3.2(2), except thét'the"
scalar solution‘w for the two cylinder géometry is required.
‘'There is no exaét sblution for Y. Instead Y is approximated,
»in the usual manner, by a symmetric and antisymmetric super-—
position of the fields of the waveguides,in isolation. The
scalar propagation constant 8 is épproximated using the same
perturbation method on the séalar wave équation'as with the
ellipse (see Chapﬁer 5).

The séalar wave equation appropriate to the present

problem is

{v

ot N

+ k% = By | (4.11)

where
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Figure 4.3: The difference in B8's of the x and y polarized,

fundamental ellipse modes.
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{ch in the cores of the fibers

k = (4.12)
ko1 elsewhere
" The approximate solutions of equation 4.11 used in this
section are
b, =¥ £ ¥, | - o (4.13)

where'xpl is a scalar mode ofAfiber 1 in isolation and ¢2
is the corresponding scalar mode of fiber 2 in isolation.

The scalar modes wl and wz satisfy the scalar wave equations
2 . .2 =z A o
{vt + kl’z}lpl’2 = B Wl,z » (4.14)

where kl and k2 are the local wavenumbers of the isolated

fibers 1 and 2 respectively.

~

The propagation constant, B in equation 4.14, is an
approximation of é in equation 4.11. This approximation is
improved using the scalar perturbation theory of Chapter 5.

The reésults for the fundamental mode (i.e., wl = fo(rl) and

wz = fo(rz) are

éi =A§2 + 252 2.2_2

K, (Wa/p) /p°v?x? (i) S (4.15a)
B2 = 52 - 20%k_(ia/p) /0 2vPK2 (i)  (4.15b)

1. The Fundamental Modes

Once the scalar wave equation has been solved, one

constructs approximations of the electric fields of the four
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fundamental modes viz

ey = ¥, X (4.16a)
Sy = U X (4.16b)
ey = Uy ¥ (4.165)
ey =W ¥ - | | :(4.17d)

The electric fieids of the four fundamental modes are sketched
in Figure 4.4; each ﬁode has a different B and an electric
field parallel to one of the two axes of symmetry (éeé_
Section 3.2(1)).

Equations 4.16 are now substituted into equatioh 2.12
to correct the model propagation constants for polarisation
effects. The details of the algebra are collecﬁed in

Appendix C; the final results are:

2 . ~2 2, 2 ~ 2 ~ =N e
B, = By + 8-/p (U/V) “ WK (W) /%, (W)
~ ~ - ) -~ 2 ~ .
+ {l-ZIl(W)Kl(W)} . Ko(d/pW)/Kl(W)] | (4.18a)
B2_ = B2 + 02/0% (0/v) P tWK (W) /K, (i)
’ ~ ~ S PP
+ {1-2I; (WK (W} « K (3/pW) /K] (W) ] - (4.18Db)
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Figure 4.4: The 4 fundamental modes of the two parallel

waveguide system shown in Figdre 3.2 .
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~ 2 ~. ~ —~ ~
B§+ = Bi + ec/pz(U/V)z[WKO(W)/Kl (W)
- {1-—2Il(W)Kl(W)} - K, (d/pW) /K] (W) ] | . (4.18c)
2 _ z2 2,2~ 2 = ~ ~
By— = B+ 65/0% (/W) TIWK () /%, ()
_ 3 _ 5 y o
- {1-21, (WK, (W)} '.Ko(d/pW)/Kl(W)] '(4.18d)
where éi and EE are given by equation 4.15. Note how the

inclusion of the effects of the polarisaticn term ensures
that all four‘modes have different B's;

The aifference between B _, and B _ (which equals
By+-8y_) gives‘rise to the familiar phenomenon of power

transfer between parallel fibers.l’5 For example, suppose

that initially the field on the waveguide is
e ~e . =¥, x | (4.19)

so that, in effect, the fundamental mode of.fiber 1 in
isolation has béen ékcited. Since B, # B_x} the modes
present in the initial field beat. The beat length (i.e.,
the length in which all the power is transferred from fibér
1 to fiber 2 and back again) is | |

= 2ﬂ/{8+x—8_

(4.20a)

Ltrans x’

3

2,~ ~2
mpV Kl(W)/ch

l

Ko(ﬁd/p) . ’ (4.20b)
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The difference between Bx+ and By+ (which equals
BX_—By_) can produce a rotation of the electric field of the
waveguide. For example, suppose that initially the field

on the waveguide is

EX+'+ Sy+ = (lPl + '~P2) (_;E + :\Y__)- o (4.21)

The beating of the modes produces a rotation of the electric

field vector. The beat length in this case (i.e., the length

in which the electric field rotates 27) is

L = 20/!8

rot (4.22&)

X+ y+'

2

2mpV KZ(W)/e 52

il

K (Wd/p){l 214 (W)K (W) 3. (4;22b).

It is interesting to determine the angle a° that E
rotates in the length necessary for total. power transfer

. . . o a: .
between thg cyllnders. This angle is 180° times Lrot/Ltrans'

[- - - [°] . . )
Q ec{l le(W)Kl(W)}9O . _ _ (4.23)
At V = 2 and GC = 0.1, E rotates by 0.36° from its initial

orientation of 45° to the symmetry axis in one exchange

length.

2. The Higher Order Modes

From the four £ = 1 modes of an isolated wavegulde one
can form elght symmetric and antisymmetric comblnatlons,
i.e., immediately above the four fundamental modes of the

parallel waveguide system there are eight higher order modes.



50

The dependence of the higher order modes on the center to
center separation d is>directly analogous to the depéndence

of the ellipse modes on eccentricity. When the fibers are
close, the modes of the two fiber system are well approximated
by the n = nél fields, i.e., by symmetric and antisymmetric

combinations of the LP or n =n

modes of each fiber in
co cl .

isolation, but with E parallel to the axes of symmetry. When"
the fibers are sufficiently separated, the modes are
approximated by symmetric}and antisymmetric combinations of
the n.o = n.y modes of each fiber in isolation. An example
is sketched in Figure‘4.5.. In other words, large eccentricity
is analogous to small separation distance between the
cylinders. The modes of the two waveguide system‘are-formed.
by a linear combination of the same modes as for the ellipse.
Accordingly, the logic of.Section 3.2(2) applies directly.
The parameter A is again imporﬁant in establishing the |
limiting behaviour of the modal fields. As in the ellipse,
the parameter A determines the'composition of the modes.
Consider, for example, the stmetric solutions of the-

scalar wave equation

Vo fl(rl)coscbl + fl(rz)cos¢2 (4.24a)

n

¢+o fl_(rl)sinqbl + fl(rz)sinqb2 (4.24b)

where
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Figure 4.5:

fhe tranSition of an- & = 1 mode of _thé two
parallel waveguide system as the separation
increaseé. Whén the fibers are close, the
composite mode appears like a»superposition
of two éxé modes of‘Eigure 3.1(a). When the
fibers are well separated, the cdmposite
méde appears iike a superposition of the e,

mode of Fiéufe 3.1(b).
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3, (Ur/p)/3,(0)  x/p <1
£,.(x) = _ . (4.25)

K, (Wr/p) /K (W) r/p > 1
The B's of the fields in equations 4.24 are (see Section
5.2(3))
~2 = Y P . 2.2 =~ -~ |
Bra = B + UZIKl (Wad/p) + K, (Wd/p) }/p V'K (WK, (W) (4.26a)
%2 _ =2 =2, = ' - 2.2 oo »
Bio = B” + UT{K _{Wd/p) - K, (Wd/p)}/p VK (W)K, (W) (4.26Db)

where B is defined in analogy with E in equations 4.14, 4.15.

Now that the scalar équation has been solved we

construct the Do = D fields
§+ex = Ve g 7(4?275)
§+ey = V,. ¥ (4727b)
Erox = V4o % (4f27¢?
é&oy = VYo ¥y _(4527d).

(there are four more N,y = Dy fields formed from the
antisymmetric solutions of the scalar wave equation). The

n = n

co el fields are linearly combined to approximate the

N = n., fields, e.g., the linear combination

e = (4.28)

N . N
rexStex © %+oyStoy
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is motivated by the transition sketched in Figure 4.4. The

parameter A in the equations analogous to equations 3.8 and

3.9 is

- Byy) - (4.29)

| ~ 2.2~ S - -
2K, (Wd/p) /6 K] (W) {2+ (WK_(W)/Ky(W))} . (4.30)

The negative sign in equation 4.30 applies for
BEH—QHE = BTM_BHE' which is shown in Figure 4.6, while the
positive sign is for B

B When A << 1, the modes of the

TE "HE®
two cylinder waveguide are approximated by a modé of the
circularly symmetric waveguide on each of the two cylinders.
When A >> 1, the ﬁodes of the two cylinder waveguide are
approximated by én nco’: n, or LP mode on each of the two
cylinders. Note that A << 1 when the two cylinders are well
electromagnetically separated, i.e., when d > 5p or when

V >> 1. On the other hand, A >> 1 when the cylinders are

electromagneticallyclose, i.e., when d = 2p'or vV = 2.4.
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We shall ultimately see that when ec << 1, this minimum

eccentricity is very small; despite this the perturbation

method of this chapter is based on small ec,'not small
eccentricity. However, small eécentricity is nsed to

simplify some of the intermediate steps in the

e

application of the n n

o cl method. In parthular,

A is evaluated approximately using the solution of the

circular scalar wave equation.
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CHAPTER 5

TWO PERTURBATION THEORIES

In this chapter I present two related perturbation.
theories. Both theories are derived by a deviation of the

usual method used to prove orthogonality of solutions of a

Sturm-Liouville equation.

5.1 Scalar Perturbation Theory

Solving the scalar wave equation is an important part
of the N = ncl method. It is useful to be able to'use
known solutions of a scalar wave equation tQ approximate
‘solutions of a scalar wave equation which cannot be solved
‘exactly. This has been done in an ad hoc fashion in Sections
4.3 and 4.4. In this chapter I present a systematic approach
to the problem. | |

Suppose one has two different scalar wave equations

(v2 + k°1y = By S o (5.1a)
and o {Vi + E2}$ = Eza | (5.1b)
(the 7 indicates a B associated with a scalar wave equation).
Multiply equation 5.la by § and equation 5.1b by y and
subtract,

-2 - - - ~ =2, =
Gv2y - i) + % - B30 = (B - B21T . (5.2)

Equation 5.2 is now integrated over the whole plane; Green's.

theorem is used to convert the first term to a line'integral
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at infinity, which is zero. The final result is

B2-8% = 5, P-R%) 9D an/r, o aa . (5.3)

[e]

Equation 5.3 is an exact result,.no approxiﬁatiéns ha&e been
madevyet. In the next section.we illustrate by example how
equation 5.3 is employed to obtain approximate values of éz,
given that equétion S.lb'can be solved exactly.' EsSentially,
the strategy is to épproximate Y in 5.3 and then evaluate

the integrals to obtain 62.

5.2 Examples of Scalar Perturbation Theory

In this section I use equation 5.3 to obtain some results

which are used in Chapter 4.

"Example l: Change in é due to a small change in the radius
of a circular Ffiber.

~ In this problem, using the notation of equaticns 5.1,

2

. k r < p .
K2 = )% (5.4a)
kgl .r > p o
: . -2 k?:o r < 5
and’ k® = - _ (5.4b)
' kg r>e

= _—

where |(p-p)/p| << 1. We suppose that B and y are known.
Because k2 = Ez, it is plausible that ¢ = ¢. In the pertur-
bation region, U(r,¢) = $(p,¢). With these two approximations

equation 5.3 becomes
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= B 100,k B TV e dw sy Ve paal (5.5)

_ =2 ~2. 2 o~ 2 ~ ~ = - |

= B + {20°KS (W) /e K, (MK, (1)} ((0-0)/7) (5.6)
where equations 3.3, 4.1 and Table 4.1 have been used. The
result in equation 5.6 could, of course, also be obtained by
differéntiating the eigenvalue equation with respect to E.
The derivation above is a quicker method of obtaining the

same answer.

Examgle 2: Change ih 8 due to a small ellipfic deformation
of a circular fiber.: | |
This problem is similar to Example 1. Since the defor-

mation is very small we again take ¢ = ¢y (in this problem "
is the known solution for a circular fiber). The eliipse
départs only slightly from the circular geometry within é‘.
crescent shaped region about the x-axis of Figure 3.2, so that

2 =2 |

k“-k“ = eékio in this perturbation region and zero =lsewhere.

The perturbation is close to the circle boundary, soO that
_ - A . _ . ., 2
v(xr,¢) = Y(xr,¢) = ¥(p,9) and dA = 1/2(ep) cos™¢

in the perturbation region. With these approximations

equation 5.3 leads to

a) £ =0 : 8% = B% + (20K (W) /p kS (W)} (5.7a)
b) £ = 1 even symmetry': éz = EZ + {BeZﬁzKi(W)/4p2KO(W)K2(ﬁ)}

(5.7b)



g = 1 odd symmetry : B° = B2 + {ezﬁzxi(ﬁ)/4szo(ﬁ)K2(ﬁ)}'
(5.7¢)
¢) £>1: B2 =824+ o(eh - (5.7d)

In Section'4.3_the difference between the é's of the two
£ = 1 modes was required. In the notation of that section,
2~2_ 2

s - =2 = -, ~ ~ -
B-B, = (BZ-B2y/2x__ = o _e’UKS (W) /4pVK (WK, (W)  (5.8)

which is one of the intermediate steps leading to equation

4.9.

Example 3: Modes of the two parallel nonidentical fibers.
This problem is somewﬁat different to the preceéding}two;'
a simple approximation such as ¢ = ¥ is no longer’possiblé.
In Secfion 4.4 this problem was discussed for two identical’
fibers; the familiar symmetric and antisymmetrié combinations

in equation 4.13 are no longer approximate solutions of

v? + k%1 = B3y R (5.9)

when the fibers are nonidentical. Instead it is necessary

'to form a more general linear combination
Y = alwl + a2w2 | _ (5.10)

where ﬁl is a solution of the scalar wave equation of fiber

1l in isolation and E2 is a solution of the scalar wave
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equation of fiber 2 in isolation. Note that
Ip Bybp an # 0 | (5.11)
since @l and @2 are solutions of different scalar wave
equations. Now one substitutes eqguation 5.10 and either .

@1 or $2 into equation 5.3 and obtains a 2x 2 system of -

linear equations

(), + B2 - éz}ai +{Cy, + Dltéf—jézi}az -0 (5.12a)
{c,y + D, (B2-F%)Ya, + {c,, + B2 - B¥la, = 0 (5.12p)
where
c;s = fAm(kz-Ei)Eiﬁj dA/fAmwi aa - (5.13)
Di.¥ fAmwlwz dA/fAm¢idA . L - (5.13b)

Equations}5.12 deﬁermiﬁe é% in additionvto al/az.' 52 is
obtainéd by eéuating the determinant of equétion 5.12Hto;
zero and solviﬁg the resulting quadratic.. Oncé Ez.is known,>
al/a2 can be determined_from either of équations 5.12. When
the term Di,<<Al,ras happens when the fibers aré far enough
apart or far from cutoff, it can be neglected and the problem
discussed in'Appendix A is recovered.

We now make‘Several assumptions to simplify the algebra

(a) Assume that Ei >> C and

=
117 By >> Cyy

=2 T2 ‘
IBl—le >> lCll—szl, so that C;; and C,, can
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be neglected.

(b) Assume that the fibers differ only siightly in
radius, so that C,, = C,, = C and Ei - Eg'
is given by equation 5.6. '
(c) Assume that the fibers éré far apart or far

from»cutoff, so that Dl'DZ << 1 and can be
neglected.

As mentioned before, assumption (c) is sufficient‘té ensure

that the results of Appendix A are recovered. Assumptions

(a) and (b) are equivalent to the two assumptions leading to

equations A.4 and A.5. Hence, from Appendix A,

B™ = {(El +_§§)/2}Ai cia? + 13172 © (5.14)
.al/az = n+ (2% + 11172 © (5.15)
32 %2 S - |

A= (BT -B5)/2C . . ~ (5.16)

The quantity C is given in reference 1, one has

2, -
Kﬂ—l(“) (W)

'c = 52{K22(ﬁd/0) + Ko(ﬁd/p)}/OZV K2+l

(5.17a)
if ¥y = £, (r;)coslé,, ¥, = £, (r,)coso, and

2., | ~ =~
Ko 1 (WK, ;W)

C = 52{(-)2K22(%d/p)_+ Ko(ﬁd/p)}/ozv

(5.17b)
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if wl = fg(r1)51n2¢1' wz = fg(r2)51n2¢2. Since the radii

~

of the two fibers are nearly equal, Bi-—ég is given'by

equation 5.6,

(207K (W) /0% (x,_ (K, (@) Hep/p} (5.18)

<9 =92

Equation 5.17 and 5.18 are used to calculate A (equation

5.16). For example, when % = 0,
2.2 ~ _ < :
b= {VIR_(W) /2K (Wd/p) Fdp/p) . - (5.19)
Note how the answer reduces to the symmetric and anti-
symmetric combinations in equation 4.13 when §p = 0.

Equations 4.15 follow from equations 5.14 and 5.17a.

5.3‘ Vector Perturbation Theory

Sections 5.3 and 5.4 are a digression f:om the mainstream
of this thesis. 1In these two sections_a method for perturbing
.about a known solution of Maxwell's equations is presented
Thié method is similar to those in references 2 and 5, though

more general.

Consider two different modal scolutions of Maxwell's

equations

(a) E(x,y,2z) = g(x,y)eiBZ, H(x,y,z) = g(x,y)eiBz

corresponding to an electric permittivity e(x,y) .

(6) E(x,y,2) = a(x,y)e P?, f(x,y,2) = h(x,y)e*F?

corresponding to an electric permittivity e(x,y) -

‘
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Using the curl equations and well known vector identities it

is easily shown that if

F=E X H* + E* xH - (5.20)
then

VeF = -iw{e-e}E « B¥ . (5.21)

Integrating equation 5.21 over the whole plane and using the

two dimensional Gauss theorem

9/9z/, 2 + Fdr = [, V- Fdan - (5.22)

(o] oo

oo

(e~€)e - & dA/f, (exh* + g*xh) -2 da . (5.23)

Equation 5.23 is an exact result, no approximationes have
been made yet. In the next section wevillustrate by example
how equation 5.23 is employed to obtain approximate values

of B, given that E, H and B are known.

5.4 Examples of Vector Perturbation Theory

1. Elliptic Deformation of the Core of a Step Index Fiber
The consequences of an elliptic deformation of a step-

index waveguide have already been discussed in Section 4.3.

ie

Recall that in order to apply the néo n,y method one must

first solve the scalar wave equation for an elliptic fiber.

The n., = n.q method is not restricted to slightly deformed
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circles, ellipses with arbitrary eccentricity can be treated
‘ provided one is Willing to manipulate the Mathieu functions
which arise from the scalar equation. In thié subsection

we avoid doing this by using the results of Section 5.3 tol
perturb around the exact modes of a circular étep index wave-
guide. This second method requires that the'eccentricity'

of the ellipse is small, however it does not require that
Deo = o A
‘The fundamental modes are discussed first (see Section
3.2(1) and 4.3(2)). I shall calculate the difference in
.the modal propagation coﬁstants, BX—By, ﬁsing equation’5.23.
The quantities E, H and B are the modal quantities associéted
with the éircular fiber. Since the deformation.is small we
let e = e and h = h in equation 5.23 and then calculate.B;'
The integrals over the crescent Shaped perturbation fegion,is
evaluated as in Section 5.2(2)} | |
For example, consider the predominantiy x—-polarised
fundamental mode. . For the present I shall write therelectric‘

field of this mode as

Tl
It

gr(;)cos¢ g - g¢(r)sin¢ § - ieégz(r)cos¢ é (5.24a)

il

(£ ()% + 0(02)} - i6_g (ricosp 2 . ~  (5.24b)

Expressions for Iyr g¢'and g, are given in references 4 and
6. Unfortunately equation 5.24b is not sufficiently accurate

. 2 ) :
for our purposes, the order ec corrections to the transverse

Y
l/2(e5)cosz¢_

field give rise to an important contribution to BX—B

i

Substituting e(x,¢) = é(r,¢) = é(p,¢) and dA
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into 5.23 gives

_ — 2, 2= 5 S xE* -2
B, = B + we_ (epd ) {gr(p) + 391(9) + eigi( )1/164 g><g*-‘z oA

Similarly for the predominantly y-polarised fundamehtal

mode

e _ 2, 2. 2 - .
By = B + weco(epﬁc) {3gr(p) + g¢(p) + 38 <95 (p)}/l6f ooe><_kl*»f z dA

(5.26)
" From equations 5.25 and 5.26
BX-BY = (epe ) {g¢(p) g (p) - 6.9 (p)}/8f e><E*-'2 da
| (5.27a)
2.2 2= 2 2o w2
= {@eco(epec) {g¢(p)—gr(p)~8cgz(p)}/16fodr_rfo(r)
4 , .
+ 0(ec) . : (5.27b)

where gr(r)_¥>0(6§) - g¢(r) + 0(62) ='fo(r) has been used.
in the transition from equation 5.27a to 5.27b. ‘The_ihtegral
in equation 5.27b is listed in Table 4qui(5)-gi(5) can be
calculated from the material in referehce 4. The final
result, which was quoted previously in equation.4.10, is

B.—B. = 263U W {1 + (UK (W)J (U)/K (W)J (U))}/8pv3 . (5.28)

This result does not agree with an earlier calculation by

Marcuse,5 to obtain Marcuse's result replace the curly-
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bracketed term in equation 5.28 by unity. This significant

2
¢

equation 5.27b. Clearly this term is of the same order as

difference is due to Marcuse's neglect of gi(ﬁ)-—g (p) in
the term he retained viz eigi(g).

Equation 5.23 can also be used to investigate the higher
order modes of a slightly elliptic fiber, the resulfs of
Section 4.3 are easily recovered. For the higher order modes
(in this case the § =1 modes),oné is primarily interested
in determining the'compésition of the modes as the parameters
defining the waveguide, e and V,.ére altered. (This has been
done previously using the n_, = nél method and the answer»is
contained in equations 3.7, 3.9 and 4.9.) We know ffom the
discussion in Section 3.2 thaf an elliptic pertufbatioﬁ

hybridises or mixes the HEe - mode with the TM mode and the

ven
HEOdd mode with the TE mode. Thus a plausible candidate for
the electric. field of an ellipse mode is
i i- . | 29
e; = aje; + aye, (i = 1,2) 3 - (5.29)
where = and e, are the TM and HEeven electric fields
respectively (the superscript‘— has been used for consistency
with equation 5.23).  The analogy between equations 3.7 and
5.29 is clear; in both equations an ellipse mode is repre~
sented as a linear combination of unperturbed modes.6 The
ratio ai/a;’in equation 5.29 (which clearly equals
i i ' i, i _ . .
~{(aex/aoy) + l}/{(aex/aoy) ‘l}, from equation 3.5 and.3.7) is
obtained by substituting equation 5.29 and either él or e

into equation 5.23 and then solving the resulting 2x 2.

eigenvalue problem using the results of Appendix A. The
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result 1is

i _ 1/2
al/a2 = A + (A + 1)

(5.30)
A= 10 | (5.31)
(B,-8,)/ (BB, (5.3

where A is given by equations 3.13, 4.9. It is easily

i,i ., i i PN DT
shown from 5.30‘and al/azi— {(aex/aoy) + l}/{(aex/aoy) 1}

that
i, i 2 /2 .
aex/aoy = A+ (A" + 1) _ (5.32)
in agreement with equation 3.9. Thus the two theories agree

when ec << 1 and e << 1, as expectedQ

2. Two Parallel Step Index Fibers

This problem is discussed in reference 2 using equation
5.23 and from the previous éxampleAit is clear that results

consistent with those of Section 4.4(2) will be obtained.
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In equation 3.7 the unperturbed modes are nco'=-nCl
fields (with arbitrary eccentricity), the pérturbation
is nonzero Bé (1.e., polarisation dependent effects).'
In equation 5.29 the unperturbed modes are circle fields
(with arbitrary ncé and nél), the perturbatioh is

nonzero eccentricity. When both e and ec << 1, both

theories give equivalent results.
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APPENDIX A

SOLVING THE 2 x 2 EIGENVALUE PROBLEM

An essential step in the application of the perturbation
theories in this thesis is the solution of the 2:{2 eigen—
value problem. For cénvenience, the details of the algebra
as well as some remarks about the properties of the solution
have been collected in this appendix.

Recall that the basic strategy of the Rayleigh—Schradingei
perturbation theoryl is to approximate a mode of the perturbed
system by a linear combination of modes of the unperturbed
system. The unknown coefficients in £he linear éombinatién,

a; and 8y and the propagation constant of the perturbed mode,

B, are obtained from the 2x 2 eigenvalue problem

2 2 I
Cip + B8 €12 a; = 0
(A.1) .
2 2 |
€21 Cop T By~ BT 13,
- 4 Lo

The definitions of Cij and Bi depend.on which theory is |
being applied. Equation A.l is a system of linear homogeneous
equations. For a nontrivial solution to exist the determinant
of the system must be zero.l Equating the determinant to

zero and réarranging one obtainsna quadratic equation for

the eigenvalue 82 |

2 2 2 2 2,
B® - {cll + B] + C,, 82}8 + {(cll + Bl)(sz + 82)

= Cy 0yt =

|
o

(A.2)
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The solutions of this guadratic are

2 2 2

+ N

2,2
B 5, = 82)

+ 11/2 (A.3)

Cy12C21

Once 82 has been obtained, equation A.l is used to calculate
a2/ai. This completes the discussion of the general solution

of equation A.l.

In many problems the results above can be further

simplified because

2 2 2 .2, ’ :
a) Bl >> Cyqr B, >> Cyy and IBl-32| >> ]Cll—-szl,_

hence Cll and C22 are neglected throughout.

b) = c

€12 7 Ca1r
by C throughout.

hence Cl2 ;nd C21 a:e both replaced

Note that because of (b) the perturbation matrix is symmetric
and consequently the eigenvectors are perpendicular. With
approximations (a) and (b) the solutions of equation ALl can

be written as

2 2 2' | 2.1/2 . :
B+ = [{Bl + 82}/2] + C[1 + A7) (A.4a)
al/ab = A+ [+ p211/2 (A.4b)
and
82 = 1182 + §23/21 - ci1 + 2%1/? (A.4c)
al/ay = A - [+ p2q1/2 (A.4d)
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where
2 2
A ='(Bl~ 62)/2C . (A.5)

When the approximations (a) and (b) are made the composition
of the perturbed modes (i.e., the retio al/az) depends only
on the important parameter A. |

- The physical significance ef the above solution is best
appreciated if we consider a particular problem.' Suppose,'
for. example, that aﬁ unperturbed mode is excited at z = 0.on
the perturbed structure. The subsequent development of the
field is analyzed using the modal expansion method descrihed
in Chapter 1; the unperturbed mode is expanded in terms of
‘the true modes>of the structure using equations A.4b and A.4d.

In the scaler pertﬁrbation theory of Chapter 5, for

example, let.w+ and §_ be the modes of the perturbed.system '

and wl and wé be the modes of the unperturbed system.

Apparently
o+ + I
l))+ - alq)l + az‘pz . (A_. 6a)
and | ‘ v_ = ajv; +ayy, . (A.6Db)

If ¥y is excited at z = 0, the field at z # 0 is given by:

iB. .z iB 2z _ .
{a£w+e + -—a;w_e B }/{a;az-a;al}, (r.7)
i,z _ iB_z _ B
= {(a;a;e + -—a;ale )/(a{az--a;al)}ll)l

(A.8)
iB z iB =z
+ {a;a;/(aiag-a;ai)}{e t e T }wz
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= Al(z)q)l + Az(z)w2 . _ - (A.9)
Note that since Al(O) = 1 and A2(O) = 0 the initial conditions
are satisfied. In equation A.9, the field at z # 0 has been

cast into the form favoured by coupled mode theory.2 The

power in modes l.and 2 is proportional to the quantities

2, (2) [° = 1 - F sin®[(p,-p_/2) 2]  (a.10a)
A, (2) |2 = Fosin®((p,-p_/2)z] " (A.10b)
where
F=[1+ 22171, | (A.11)

All the power starts in mode 1 and a fraction F is then
exchanged periodically between the two unperturbed modes

by and U, - The beatlength
L = 2r/|8, - B_| - (A.12)

is the lengthAoﬁer which the fraction F isitransferred»from
mode 1 to mode 2 and back again. The fraction F‘dependsAon
the important parameter A; when A >> 1 essentially all the
energy stays in the unperturbed‘mode 1, when L = 0 ail the
energy-is periodically exchanged between the two unperturbed
modes. |

In conclusion, the parameter A defined in equation A.5

determines two important physical quantities
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a) the composition of the perturbed modes in terms
of the unperturbed modes throﬁgh equations A.4Db
and A.4d;
b) the fraétion of power periodically exchanged between

two unperturbed modes through equations A.10 and A.1l.
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APPENDIX B

CORRECTION OF é FROM THE EXACT EIGENVALUE EQUATION

' In Section 4.1 the B of the circular step-index waveQ_
guide was corrected using eéuation 2.12. In this appendix
I prove, using the exact eigeﬁvalue equation,l'2 that the
corrected B's are exact to order_eg {(i1.e., termslpf order

5

BC have been neglected).

First I prove an important general result. Suppose

that the solution of the transcendental equation
£(x) = g(x) (B
is known (f and g are initially well behaved functions).

How can the knowledge be used to obtain an approximate

solution of
(1 + e)E(x) = g(x) ‘ - (B.2)
when € << 1? Equation B.2 defines x as a function of ¢

implicitly. Differentiating equation B.2 with respect to g,

setting ¢ = 0 and solving for dx(0)/de leads to

dx(0)/de = £(x(0))/{g' (x(0)) - £'(x(0))} - (B.3)
where. ' indicates differentiation with respect to argument.
The number x(0) in equation B.3 is known, since by assumption

equation B.1l can be solved exactly. Hence, since g << 1,

x(e) = x(0) + edx(0)/de + 0(e”) (B.4)
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where x(0) is known from equation B.1l and dx(0)/de is known

from equation B.3.
Now B, which is considered known, is defined implicitly

by the equations

Jg_l(U)/UJQ(U) =VK2_1(W)/WK£(W)
. or equivalently

J2+1(U)/UJ2(U)7= —K2+1(W)/WK2(W) o (B.5)

=2 2 a2 2 ~2 -
(0B)% = bk ) * =T = (k) ® W me)

~

B is an approximation of B which ignores terms of order

62. Gloge has shown3 that to obtain a more accurate
approximation of 8, which ignores terms of order 92,

equation B.5 must be replaced by

a) For the TM mo'c_ie:. 7, (0) /U3 () = -1 ei)xl (W)/WKO ). (B.7a)

b) For the EHg_l_modes;

'JQ(U)/UJQ'_l(U)=-(l+(l/2)6i)z<z (W)/WKE_l(W)' (2 # 1) (B.7b)

c) For the HE ‘modes:

2+1

_ :
T (0)/UT, 3 (U)=(1+(1/2) 8K, (W) /WK, 1 (W) (B.7c)

d) For the TE modes: Jl(U)/UJO(U) = -K; (W)/WKo (W) . (B.7d)
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Note how if one'ignores terms of order 82 compared to 1 in

equation B.7, equation B.5 is recovered. Also, the

degeneracies between EH and HE modes in equatibn B.5 have been

removed in equation B.7.

The analogy between equations B.5, B.7 and equations

B.1l, B.2 is clear. For example, consider the TM mode, then

x(0)

dx(0) /de

If

3, /03 | | . (B.8a)
—Kl/WKO ' ! - | ' (Q.Sbf
0 ~ . (B.8c)
ézv R (3}8d)'
B2 | | | (B.8e)
a(g®(0)/a(e’). | S (ﬁ.af)

The quantity de(O)/d(ez) is obtained mutatis mutandis from

equation B.3,

ag® (0) /as?

—262WK1(W)/pzv

~K, (W) /2p%RK_ (W) {1/W a/aif (K, (W) /FK_ (7))

- 1/ a/ab(a, () /65, (5))  (B.10)

%k, (W) | - (B.11)

where the eigenvalue equation and standard Bessel function
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identities have been used. From equation B.1l1,

2€0K1(T/~V)/p2V2K2(V~V) } o+ O(Gi) (B.12)

2 =2 .2
B = 87~ 1{20_U
which agrees with the correction obtained from equation

2.12. The other corrections obtained from equation 2.12

can be verified similarly.
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APPENDIX C

-THE PROPAGATION CONSTANTS OF

THE FUNDAMENTAL MODES OF THE TWO FIBER SYSTEM -

DETAILS OF THE ALGEBRA

The four fundamental modes of the two fiber system are

given in equation 4.16. ’é+ and é_ are corrected using.
equation 2.12 with ét =8, = &, and so on for the remaining
three modes. Taking st

for example, and using equation

2.14 one has |
g2, = B2 + o244 b, (0, - R G- aws, vZaa) (.1
X+ + c ) Boundary'+ + : A T+ T

where the line integral is over both circles in Figure 3.2.

Clearly the contribution of each circle is equél and so

%Boundaryw+(vw;' X) (0 x)ak = 2D%Circle l(ﬁ° E){¢1(V¢l'_%)
Y, (VY 2) o+ Yy (Vo + X) }aL] o (C.2)

whére the term containing two evanescent functidns has been
neglected. The first term on the right hand side of equation
C.2 has been evaluated_previbusly; itvis the polarisatioﬁ
correction to B of an isolated fibér (see Section 4.1 ana
Table 4.1). The remaining two ihtegrals are evaluated using

co

) (—)£c052¢212(ﬁr2/p)K2(ﬁd/p'). - (C.3)

=w=c0

KO(er/p) =

2

2 = 0 and & = 2 terms survive the integration. The integral

where Tys ¥ and ¢2 are defined in Figure 3.2. Only the
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in the denominator of equation C.1 is evaluated elsewherel;

it is assumed that fA wlwz dA is negligible.

[os]
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