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In conventional lasers, the optical cavity that confines the photons also deter-
mines essential characteristics of the lasing modes such as wavelength, emis-
sion pattern, directivity, and polarization. In random lasers, which do not have
mirrors or a well-defined cavity, light is confined within the gain medium by
means of multiple scattering. The sharp peaks in the emission spectra of semi-
conductor powders, first observed in 1999, has therefore lead to an intense de-
bate about the nature of the lasing modes in these so-called lasers with resonant
feedback. We review numerical and theoretical studies aimed at clarifying the
nature of the lasing modes in disordered scattering systems with gain. The past
decade has witnessed the emergence of the idea that even the low-Q resonances
of such open systems could play a role similar to the cavity modes of a conven-
tional laser and produce sharp lasing peaks. We focus here on the near-
threshold single-mode lasing regime where nonlinear effects associated with
gain saturation and mode competition can be neglected. We discuss in particu-
lar the link between random laser modes near threshold and the resonances or
quasi-bound (QB) states of the passive system without gain. For random lasers
in the localized (strong scattering) regime, QB states and threshold lasing
modes were found to be nearly identical within the scattering medium. These
studies were later extended to the case of more lossy systems such as random
systems in the diffusive regime, where it was observed that increasing the open-
ness of such systems eventually resulted in measurable and increasing differ-
ences between quasi-bound states and lasing modes. Very recently, a theory
able to treat lasers with arbitrarily complex and open cavities such as random
lasers established that the threshold lasing modes are in fact distinct from QB
states of the passive system and are better described in terms of a new class of
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states, the so-called constant-flux states. The correspondence between
QB states and lasing modes is found to improve in the strong scattering limit,
confirming the validity of initial work in the strong scattering limit. © 2011
Optical Society of America

OCIS codes: 140.3460, 140.3430, 290.4210, 260.2710.
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1. Introduction

The investigation of laser action in complex media with disorder has a long his-
tory going back to the early days of laser physics (for a review, see [1–5]). Be-
ginning in the mid 1990s there was a resurgence of interest in this topic both for
its intrinsic interest and because of a possible relation to the phenomenon of
Anderson localization [6], previously studied mainly in the context of electronic
systems. Random lasers are disordered media with gain that do not possess a
light-trapping cavity beyond the confinement provided by multiple-scattering
from the disorder itself. Hence they are usually extremely open, low-finesse la-
sers. Initially it was unclear whether such systems could produce narrow lasing
lines without any well-confined electromagnetic modes, and while initial experi-
mental studies did find strong amplification near the transition frequency deter-
mined by the gain medium, discrete lines were not observed [7–9]. Subsequent
studies in smaller systems with focused pumping did find discrete lasing lines,
not necessarily located at the center of the gain curve, and photon statistics char-
acteristic of gain saturation [10–15], demonstrating that in some cases random
lasers behave very much like conventional multimode lasers except for their
relatively high thresholds and their pseudorandom emission patterns in space.
The experimental observations of laser peaks have naturally called for the search
for a feedback mechanism leading to light trapping within the scattering me-
dium. There is in fact a case where light can be well confined inside an open dis-
ordered medium. Such confinement occurs when the scattering is extremely
strong and the system is in the regime of Anderson localization [16]. However,
except in quasi-1D geometries [17], the vast majority of experiments on random
lasers do not appear to be in the localized regime, so the question of whether la-
ser action in a diffusive !L≫!" or quasi-ballistic !L#!" medium has a qualita-
tively different nature and origin with respect to conventional lasers remained
open for some time (here L is the system size and ! is the optical elastic mean
free path).

With the renewed experimental interest in random lasers came also a number of
attempts to generalize laser theory to describe such a system. Early on a major
distinction was made between conventional lasers, which operate on resonant
feedback, and random lasers, which at least in some cases were supposed to op-
erate only on nonresonant feedback [4]. In the case of nonresonant feedback the
light intensity in the laser was described by a diffusion equation with gain, but
the phase of the light field and hence interference did not play a role. A key find-
ing is that there is a threshold for amplification when the diffusion length for es-
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cape LD#dL2 /! becomes longer than the gain length (here d=2,3 is the dimen-
sionality). The spatial distribution of intensity above threshold would be given
by the solution of a diffusion equation. In this approach there would be no fre-
quency selectivity, and the amplified light would peak at the gain center. Clearly
such a description would be inadequate to describe random lasers based on
Anderson localized modes, as such modes are localized in space precisely owing
to destructive interference of diffusing waves arising from multiple scattering.

This question itself is related to a basic question in nonlinear optics: can a sys-
tem, disordered or not, which is so leaky that it has no isolated linear scattering
resonances, nonetheless have sharp laser lines due to the addition of gain? And if
so, how are the modes associated with these lines related to the broad and diffi-
cult to observe resonances of the passive cavity? For an open diffusive or quasi-
ballistic medium in two or three dimensions the resonance spacing in the wave
vector will decrease as !d−1 /Ld, whereas the linewidth will scale as ! /L2 (diffu-
sive) or as 1 /L (ballistic). Therefore (unless !$! in d=2) the disordered passive
cavity resonances strongly overlap and cannot be directly observed in linear
scattering.

In the search for a feedback mechanism responsible for the sharp laser peaks ob-
served experimentally [18], different scenarios have been proposed. As an alter-
native to the early picture of closed scattering loops, the probability of having
ring-shaped resonators with index of refraction larger than average in the diffu-
sive regime was calculated and shown to be substantially increased by disorder
correlation due to finite-size scatterers [19,20]. Another scenario was put for-
ward where spontaneously emitted photons accumulate gain along very long tra-
jectories. This follows the observation of random spikes in the emission spec-
trum of weakly active scattering systems in single-shot experiments [21,22].
These “lucky photons” accumulate enough gain to activate a new lasing mode
with a different wavelength after each excitation shot. The experimental study of
the modal decay rates in microwave experiments leading to the observation of
anomalous diffusion has brought forward the existence of longer-lived prelocal-
ized modes in an otherwise diffusive system [23]. An experimental indication of
the coexistence of extended and localized lasing modes was presented recently
[24]. It was suggested that these longer-lived modes could be responsible for las-
ing. However, although they are possibly achieved in some specific situations,
those different scenarios cannot explain the whole set of experimental observa-
tions

In this paper, we present recent work, both numerical and analytical, which has
shown that within semiclassical laser theory, in which the effects of quantum
noise are neglected, definite answers to these questions can be given, without re-
sorting to exotic scenarios. Sharp laser lines based on interference (coherent
feedback) do exist, not only in strongly scattering random lasers where the lo-
calized regime is reached [25–27], but also in diffusive random lasers [28,29]
and even for weak scattering [30]. Numerical studies have shown that they are
associated with threshold lasing modes (TLMs), which, inside the cavity, are
similar to the resonances or quasi-bound (QB) states of the passive system (also
called quasi-normal modes). The resemblance is excellent in the localized case
[26,27] and deteriorates as scattering is reduced. A new theoretical approach
based on a reformulation of the Maxwell–Bloch (MB) equations to access the
steady-state properties of arbitrarily complex and open cavities allows one to
calculate the lasing modes in diffusive and even in weakly scattering random la-
sers !!#L" [31–35]. A major outcome of this approach is the demonstration that
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although lasing modes and passive modes can be very alike in random systems
with moderate openness, in agreement with the above numerical results, they
feature fundamental differences. Their distinctness increases with the openness
of the random system and becomes substantial for weakly scattering systems.
Constant-flux (CF) states are introduced that better describe TLMs both inside
and outside the scattering medium for any scattering strength. In addition this
theoretical approach allows one to study the multimode regime in diffusive ran-
dom lasers and get detailed information about the effects of mode competition
through spatial hole burning, which appear to differ from those for conventional
lasers.

In this past decade, different types of random lasers (semiconductor powders, pi-
conjugated polymers, scattering suspension in dyes, random microcavities, dye-
doped nematic liquid crystals, random fiber lasers…) have been considered in
the literature. We will focus throughout this review mostly on 2D random lasers
that consist of randomly distributed dielectric nanoparticles as scatterers. This
choice makes possible the numerical and theoretical exploration of 2D finite-
sized opened samples where transport can be made ballistic, diffusive (in con-
trast to 1D), or localized [36] by adjusting the index contrast between the scat-
terers and the background medium.

The outline of this review is as follows: in Section 2 we review early numerical
explorations of localized and diffusive random lasing demonstrating the exis-
tence of TLMs in all regimes. In Section 3 we present recent numerical work
based on a time-independent model, which indicates the difference between pas-
sive cavity resonances and TLMs, discussing only single-mode random lasing.
The following section will explain why, in principle, QB states cannot describe
TLMs. Section 5 will introduce the concept of CF states and describe the self-
consistent time-independent approach to describe random lasing modes at
threshold as well as in the multimode regime.

2. Early Numerical Explorations: Time-Dependent

Model

2.1. Localized Case

From a modal point of view, Anderson localization means that for strong disor-
der, the eigenmodes of the wave equation are spatially localized in a volume of
finite size 2", where " is the localization length. More precisely, they are spa-
tially localized solutions of the Maxwell equations with tails, which decay expo-
nentially from their center, " being the decay length. In the case of scattering par-
ticles, the value of the localization length is controlled by the index contrast
between the particles and the background medium, the size of the particles, the
optical wavelength, and the amount of disorder. In practice, when finite-size sys-
tems in the localization regime are considered, two opposite cases may occur: (1)
"#L and (2) "$L, where L is the system size. In the first case, the system is not
large enough for the light to be confined by disorder within the volume of the
system. In case (2), light is localized, since it cannot escape domains larger than
". More precisely, localized modes are coupled to the boundaries via their expo-
nential tails. The leakage rate of an exponentially localized QB state varies as
exp!−2r /"" with r the distance to the boundaries [37]. Hence, in sufficiently large
systems QB states located far from the boundaries (which constitutes majority of the
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QB states except a fraction proportional to " /L) feature a very small leakage, i.e., a
good quality factor.

In this subsection, we will consider case (2). Localized modes in a disordered
scattering system are quite like the modes of standard optical cavities, such as
the Fabry–Perot [38]. Hence, one can expect that in the presence of gain the las-
ing modes in this regime of strong disorder will be close to the localized QB
states of the passive system without gain, in the same way as the lasing modes of
a conventional cavity are built with the QB states of the passive cavity. To verify
that this is really the case one must have access to the individual modes of both
the passive system and the active system. Experimentally, such a demonstration
has not been achieved yet, essentially because the regime of Anderson localiza-
tion is difficult to reach and to observe in optics. Besides, until recently there was
no fully developed theory describing random lasing modes and their relationship
with the eigenstates of the passive system. The easiest way to check this conjec-
ture has been to resort to numerical simulations.

Historically, most of the early numerical studies of random lasers were based on
the diffusion equation (see references in [4]). However, it is not possible to take
into account under the diffusion approximation the interference phenomena that
are at the heart of Anderson localization. This is why Jiang and Soukoulis [25]
proposed to solve the time-dependent Maxwell equations coupled with the
population equations of a four-level system [40]. The populations Ni,
i=1 to i=4 satisfy the following equations:

dN1/dt = N2/%21 − WpN1, !1"

dN2/dt = N3/%32 − N2/%21 − !E/&'a"dP/dt , !2"

dN3/dt = N4/%43 − N3/%32 + !E/&'a"dP/dt , !3"

dN4/dt = − N4/%43 + WpN1, !4"

where Wp is the rate of an external mechanism that pumps electrons from the
fundamental level (1) to the upper level (4). The electrons in level 4 relax quickly
with time constant %43 to level 3.The laser transition occurs from level 3 to level 2 at
frequency 'a. Hence, electrons in level 3 can jump to level 2 either spontaneously
with time constant %32 or through stimulated emission with the rate !E /&'a"dP /dt.
E and P are the electric field and the polarization density, respectively. Eventually,
electrons in level 2 relax quickly with time constant %21 from level 2 to level 1. In
these equations, the populations Ni, the electric field E, and the polarization density
P are functions of the position r and the time t.

The polarization obeys the equation

d2P/dt2 + ('adP/dt + 'a
2P = ) · (N · E , !5"

where (N=N2−N3 is the population density difference. Amplification takes
place when the rate Wp of the external pumping mechanism produces inverted
population difference (N$0. The linewidth of the atomic transition is ('a

=1/%32+2/T2, where the collision time T2 is usually much smaller than the lifetime
%32. The constant ) is given by )=3c3 /2'a

2%32 [40].

Finally, the polarization is a source term in the Maxwell equations,
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!H/!t = − c " * E , !6"

+!r"!E/!t = c " * H − 4,!P/!t . !7"

The randomness of the system arises from the dielectric constant +!r", which de-
pends on the position r. This time-dependent model has been used in random 1D
systems consisting of a random stack of dielectric layers separated by gain me-
dia [25] and in random 2D systems consisting of a random collection of circular
particles embedded in a gain medium (Fig. 1) [26]. In both cases, a large optical
index contrast has been assigned between the scatterers and the background me-
dium to make sure that the regime of Anderson localization was reached. The
Maxwell equations are solved by using the finite-difference time-domain
method (FDTD) [41]. To simulate an open system, perfectly matched layers are
introduced at the boundaries of the system [42]. The pumping rate Wp is adjusted
just above lasing threshold in order to remain in the single-mode regime.

In one dimension, the QB states of the passive system were obtained indepen-
dently using a time-independent transfer matrix method [43]. In two dimensions,
the Maxwell equations were solved without the polarization term in Eq. (7),
again using the FDTD method. First, the spectrum of eigenfrequencies was ob-
tained by Fourier transform of the impulse response of the system. Next, QB
states were excited individually by a monochromatic source at each of the eigen-
frequencies.

Finally, in 1D systems [43] as well as in 2D systems [27], lasing modes obtained
by the full time-dependent model with gain and localized QB states of the cor-
responding passive system without gain were compared and found to be identi-
cal with a good precision. This was verified for all modes obtained by changing
the disorder configuration. An example of a 2D lasing mode and the correspond-
ing QB state of the same system (Fig. 1) without gain are displayed in Fig. 2.

Figure 1

Example of a random realization of 896 circular scatterers contained in a square
box of size L=5 -m and optical index n=1. The radius and the optical index of the
scatterers are, respectively, r=60 nm and n=2. The total system of size 9 µm is
bounded by perfectly matched layers (not shown) to simulate an open system.
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These results confirmed that the QB states of a localized system play a role simi-
lar to the eigenmodes of the cavity of a conventional laser. The only difference is
the complicated and system-dependent nature of the localized modes as opposed
to the well-known modes of a conventional cavity. These results are in good
agreement with the theoretical results described in Section 5, which show that
inside systems in the localized regime, the single lasing modes just above thresh-
old are close to the high-Q resonances of the passive system.

2.2. Diffusive Case

We have seen in the previous section that random lasers in the Anderson local-
ization regime should behave like conventional lasers. They should exhibit dis-
crete laser peaks above threshold in agreement with the experimental observa-
tions of laser action with resonant feedback. However, subsequent
measurements of the mean free path showed that none of the experimental cases
that displayed discrete laser peaks were in the localized regime. Instead, they
were found to be in the diffusive regime and some even in the quasi-ballistic re-
gime [30]. In such systems, there are no localized modes, so that the observation
of laser action with resonant feedback has been the subject of much debate.

Only very recently, numerical evidence was given that even diffusive systems
with low-Q resonances could exhibit lasing with resonant feedback [28]. The
random 2D systems described in the previous subsection consisting of random
collections of circular particles embedded in a gain medium have been investi-
gated with the same time-dependent model. To be in the diffusive regime instead
of the localized regime, a smaller optical index contrast .n=0.25 instead of .n

=1.0 has been assigned between the scatterers and the background medium. Solving
the Maxwell equations coupled to the population equations, laser action character-
ized by a sharp peak in the emission spectrum was observed just above a threshold,
albeit high. An example of the corresponding lasing mode is displayed in Fig. 3(a).

Figure 2

(a) (b)

(a) Spatial distribution of the amplitude of a lasing mode in the localized regime
!n=2" and (b) that of the corresponding QB states of the same random system
without gain. The squares delimit the scattering medium. The amplitude rather
than the intensity is represented for a better display of the small values of the
field.
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In contrast to the localized case, the lasing mode is now extended over the whole sys-
tem. Moreover, this is a complex mode in the sense that it contains a substantial trav-
eling wave component [28]. However, in this work comparison of the lasing modes
with the QB states of the passive cavity could not be carried out by using the time
domain method as it was done in the localized regime. Due to strong leakage
through the boundaries, resonances are strongly overlapping in the frequency do-
main, and one cannot excite them individually by a monochromatic source.

To circumvent this difficulty, an indirect method has been used to compare the
lasing modes with the resonances of the passive system. This method is inspired
by the Fox-Li modes, which in conventional laser physics are modes of an open
cavity [40,44–46]. The Fox-Li modes are field distributions whose profile is self-
repeating in a complete round trip within the Fabry-Perot laser cavity while de-
caying because of the diffraction losses due to finite surface area of the end mir-
rors. Analogously, if the lasing modes of the diffuse system are related to the
resonances of the passive system, they should decay by self-repeating them-
selves when pumping and population inversion are turned off. To study the evo-
lution of the mode profile with time, the following spatial correlation function
was introduced [28]:

CE!t0,t" =% %
D

d2r!E!r!,t0"E!r!,t" , !8"

which compares the mode profile E!r! , t" at time t with the mode profile at the
initial time t0. Here, D is the scattering medium. The field has been normalized,
E!r! , t"=E!r! , t" / &''Dd2r!E2!r! , t"(1/2, to counterbalance the decay due to the leak-
age through the boundaries. This correlation function oscillates at the laser fre-
quency between −1 and +1 if the normalized mode profile is recovered at each
period (Fig. 4). Otherwise, the amplitude of the oscillations should decay with
time. This correlation function was used in [28] to check whether the first lasing
mode at threshold for diffusive random laser indeed corresponds to a Fox-Li

Figure 3

(a) (b)

(a) Spatial distribution of the amplitude of a lasing mode in the diffusive regime.
(b) Spatial distribution of the field amplitude after the pump has been stopped
and the polarization term has been set to zero. The spatial distribution of scatter-
ers is the collection shown in Fig. 1, but here the optical index of the scatterers is
n=1.25 instead of n=2 in Fig. 2
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mode of the passive system. The pumping is set to zero after the lasing mode has
been established so that at later times the field can evolve by itself. The long time
evolution of the spatial correlation function associated with this free field is dis-
played in Fig. 5(a). The decay of the total energy of the system is also shown.
While energy decay is observed over 6 orders of magnitude, the spatial correla-
tion function is seen to oscillate between values close to −1 and +1, meaning that
the initial lasing mode profile E!r! , t0" is reproduced at each period with a good
accuracy. The decaying field amplitude has the spatial distribution that is shown
in Fig. 3(b) until, eventually, the correlation function decays to zero when the de-
caying field reaches the noise level. This result demonstrates that the TLM is
very close to a resonance of the passive system when measured inside the scat-
tering medium. For comparison, the evolution of the spatial correlation function
for an initial field created by an arbitrary distribution of monochromatic sources
at the laser frequency is displayed in Fig. 5(b). The fast decay of CE!t0 , t" after the
sources have been turned off indicates that this field distribution is not a QB state
of the passive system.

The decay rate observed corresponds to a quality factor of 30, to be compared
with the value 104 found in the localized case. This result shows that a bad reso-
nance in a leaky disordered system can nevertheless turn into a lasing mode in the
presence of an active medium.This result is in stark contrast with the common belief

Figure 4
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Short-time behavior over a few cycles of the correlation function, CE!t0 , t", for
(a) a localized lasing mode as in Fig. 2 and for (b) a diffusive lasing mode as in
Fig. 3. The periodic square function in (a) is typical of a standing wave, while the
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that random lasing with resonant feedback involves the presence of resonances with
high quality factors. It provides a consistent explanation for the experimental obser-
vation of random lasing with resonant feedback even far from the localized regime,
without resorting to other scenarios such as those reviewed in Section 1 [19–22].

The comparison of patterns between Fig. 3(a) and Fig. 3(b) shows that the lasing
mode and the QB modes are close to each other inside the scattering system as
confirmed by the evolution of the correlation function, which has been defined
only inside the system. However, one also notices that outside the scattering me-
dium the field distributions differ substantially. The free propagating field out-
side the scattering system in Fig. 3(b) reproduces the laser field distribution in
Fig. 3(a) with significant distortions that are due to the enhancement of the am-
plitude towards the external boundaries of the total system. Hence, the compari-
son between both figures indicates that if the lasing modes and the QB modes are
similar inside the scattering system, they differ noticeably outside. Moreover, a
careful examination of the correlation function in Fig. 5(a) shows that it oscil-
lates between two extremal values, which slowly depart from −1 and +1 well be-
fore the ultimate fast decay. This is in contrast with the long time behavior of the
correlation function in the localized regime (not shown), which displays oscilla-
tions between −1 and +1 with a very good precision for time scales much longer
than the time scale in Fig. 5(a). This result also indicates that inside the scatter-
ing system, the lasing mode is close to but not identical to a QB state.

Figure 5
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time of (a) the lasing mode when the pump is turned off and (b) an arbitrary field
distribution at the frequency of the lasing mode.
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In conclusion, the time-dependent model has provided direct evidence of the
closeness of lasing modes and passive cavity resonances, at least in the localized
case. In the diffusive regime, the lasing modes are also found rather close to the
QB modes, although small discrepancies manifest themselves. We also found
that this holds inside the scattering medium. Outside the scattering system, how-
ever, differences become more significant. The advantage of the time-dependent
model is that one has access in principle to the full nonlinear dynamics of the
laser system. However, QB states with low quality factors are not accessible with
this approach. Hence, the measure of the difference between TLM and QB states
has been indirectly achieved by using the spatial correlation function. Another
limitation of this method is related to the various time constants involved in this
model, which lead to time-consuming computations, particularly when one
wishes to vary disorder and study an ensemble of disorder configurations. To
overcome these limitations, different approaches such as solving the wave equa-
tion in the frequency domain have been used. Several approaches of this kind
will be described in the next section [14,47–49]. The recent theoretical approach
based on a different class of states, the so-called constant flux (CF) states, and
taking into account nonlinear interactions, will be described in Section 5.

3. Numerical Simulations: Time-Independent

Models

Different models have been proposed in the frequency domain to solve the wave
equation. In one dimension, it is possible to employ the transfer matrix method
similar to that used in [43] for studying the lasing modes in an active layered ran-
dom system. A direct comparison between TLMs and QB states of the corre-
sponding passive random system is proposed in the first part of this section. In
two dimensions, the multipole method has been used, which also provides a di-
rect comparison of the QB states and the lasing modes of a 2D disordered open
system. The comparison presented in the second part of this section has been
carried out for refractive index of the scatterers ranging from nl!=2.0 (localized
regime) to nl!=1.25 (diffusive regime). We alternatively used a different approach
based on the finite element method to obtain the passive modes, which turned out to
be much less computationally demanding in the weakly scattering regime. A brief
description of both methods is provided in Appendices A and B.

3.1. One-Dimensional Random Lasers

Employing the transfer matrix method, similar to that used in [43], we study the
lasing modes in a 1D random system and compare them with the QB states of
the passive random system. The random system is composed of 161 layers. A di-
electric material with index of refraction n1=1.05 separated by air gaps !n2=1"
results in a spatially modulated index of refraction n!x". Outside the random me-
dium n0=1. The system is randomized by specifying thicknesses for each layer as
d1,2= )d1,2*!1+/0", where )d1*=100 nm and )d2*=200 nm are the average thick-
nesses of the layers, /=0.9 represents the degree of randomness, and 0 is a random
number in !−1,1". The length of the random structure L is normalized to )L*
=24,100 nm. Linear gain is simulated by appending an imaginary part to the dielec-
tric function +!x"=+!!x"+ i+"!x", where +!!x"=n2!x".This approximation is valid at
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or below threshold [49]. The complex index of refraction is given by ñ!x"=++!x"
=n!!x"+ in", where n"$0. We consider n" to be constant everywhere within the
random system. This yields a gain length lg= ,1/k" , =1/ ,n" ,k (k=2, /! is the
vacuum frequency of a lasing mode), which is the same in the dielectric layers and
the air gaps.The real part of the index of refraction is modified by the imaginary part

as n!!x"=+n2!x"+n"
2
.

We find the frequency k and threshold gain k" of each lasing mode within the
wavelength range 500 nm$!$750 nm. The results are shown in Fig. 6. Finding
matching QB states for lasing modes with large thresholds (large ,k",) is challenging
because of large shifts of the solution locations [Fig. 6, region (c)]. However, there is
a clear one-to-one correspondence with QB states for the lasing modes remaining
[Fig. 6, regions (a) and (b)]. It is straightforward to find the matching QB states for
these lasing modes and calculate their differences. The average percent difference
between QB state frequencies and lasing mode frequencies in Fig. 6, region (a), is
0.013%, while it is 0.15% in Fig. 6, region (b). The average percent difference be-
tween QB state decay rates k0" and lasing thresholds k" in Fig. 6, region (a), is 2.5%
and in Fig. 6, region (b), is 21%.

The normalized intensities of the QB states IQB and lasing modes with linear gain
ILG are also compared. Figure 7 shows representative pairs of modes from the three
regions shown in Fig. 6. The spatially averaged relative difference between each pair
of modes is calculated by

Figure 6
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The frequencies k of QB states (crosses) and lasing modes with linear gain (open
diamonds) together with the decay rates k0" of QB states and the lasing thresholds
k" of lasing modes. The horizontal dashed lines separate three different regions
of behavior: (a) lasing modes are easily matched to QB states, (b) clear differ-
ences appear but matching lasing modes to QB states is still possible, (c) lasing
modes have shifted so much it is difficult to match them to QB states. The QB
state with the largest decay rate and the lasing mode with the largest threshold
are circled, though they may not be a matching pair.
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)1d* =

% ,IQB − ILG,dA

% ILGdA

* 100%. !9"

For small thresholds [Fig. 7(a)] the difference between the lasing modes and the
matching QB states is very small. The average percent difference between all
pairs of modes in this region is )1d*=4.2%. For lasing modes with slightly larger
thresholds [Fig. 7(b)] there are clear differences. Nevertheless, we may confidently
match each lasing mode in this region with its corresponding QB state. The average
percent difference between all pairs of modes in this region is )1d*=24%. As men-
tioned above, it is challenging to find matching pairs of lasing modes and QB states
for large thresholds. Figure 7(c) compares the lasing mode with the largest threshold
and the QB state with the largest decay rate [circled in Fig. 6, region (c)]. Though
these two modes are fairly close to each other in terms of k, k0", and k", their intensity
distributions are quite different. Indeed, there may be no correspondence between
the two.

The deviation of the lasing modes from the QB states can be explained by the
modification of the transfer matrix. In the passive system, k0" is constant, but
k"i=k0"n!x" varies spatially. With the introduction of gain, k"=k"n becomes con-
stant within the random system, and feedback due to the inhomogeneity of k" is
removed. However, introducing gain generates additional feedback inside the
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Spatial intensity distributions of QB states IQB!x" (red solid lines) and lasing
modes ILG!x" (black dashed lines) from each of the three regions in Fig. 6. Repre-
sentative samples were chosen for each case. (a) The lasing mode intensity is nearly
identical to the QB state intensity with 1d=1.7%. (b) A clear difference appears be-
tween the lasing mode and the QB state, with 1d=21.8%, but they are still similar.
(c) The lasing mode with the largest threshold and QB state with the largest decay
rate are compared, with 1d=198%. Though these two modes are fairly close to each
other [circled in Fig. 6 region (c)], their intensity distributions are quite different.
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random system caused by the modification in the real part of the wave vector
k!=kn!!x". Neglecting this effect results in some correspondence between lasing
modes and QB states even at large thresholds [50]. Furthermore, since there is
no gain outside the random system, k" suddenly drops to zero at the system
boundary. This discontinuity of k" generates additional feedback for the lasing
modes. In this weakly scattering system, the threshold gain is high. The large
drop of k" at the system boundary makes the additional feedback stronger.

3.2. Two-Dimensional Random Lasers

We turn now to the 2D case. A different approach based on the multipole method
has been used. The multipole method is best suited to characterize multiple scat-
tering problems involving scatterers with circular cross section. This method has
been used to compute the scattering of a plane wave by a random collection of
cylinders [30,51], to calculate the defect states in photonic crystals [52], to con-
struct the exact Green’s function of a finite system [53], or to calculate the local
density of states [54]. This method has also been used to explain the anoma-
lously large Lamb shift that occurs in photonic crystals by calculating the QB
states in such structures [55]. Finally, the multipole method can be used to char-
acterize the modes of 3D structures composed of cylinders [56] and in particular
to find the modes of the photonic crystal fibers [57–59]. It will be used here to
calculate the QB states and the lasing modes of the 2D disordered scattering sys-
tems of the kind shown in Fig. 1 and studied in the previous section for different
regimes of scattering. Details about this method can be found in Appendix A.

This method is based essentially on a search for the poles of a scattering matrix.
Because the system is open, the problem is not Hermitian, and hence there are no
modes occurring for real wavelengths. The poles of the QB states all occur in the
complex plane at wavelengths !=!!+ i!", with causality requiring that !"#0.
The real part of the wavelength !! determines the resonance wavelength of the
QB state, while the imaginary part !" determines the quality factor Q

=!! / !2!"" of the mode [55].

The same method is used to find the lasing modes (TLM) at threshold. It is nec-
essary this time to find the poles of the scattering matrix in the 2D space !!! ,+b""
of real wavelengths !!"=0" and the imaginary component of the complex dielec-
tric constant outside the scatterers where the gain is distributed. It can also be
used to find the lasing modes when gain is localized inside of the scatterers. In
this case the poles of the scattering matrix are searched in the space of real wave-
lengths !!"=0" and the imaginary part of the dielectric constant of cylinders +l".

The multipole method is both accurate and efficient: the boundary conditions are
analytically satisfied, thus providing enhanced convergence, particularly when
the refractive index contrast is high. However, in the case of large systems the
method can be slow (given that field expansions are global, rather than local)
when it is necessary to locate all poles within a sizable wavelength range. An-
other extremely efficient time-independent numerical method based on the finite
element method [60] has been tested. This method is briefly described in Appen-
dix B. We confirmed that the results obtained by both methods, the (purely nu-
merical) finite element method and the (semi-analytic) multipole method were
identical with a good precision.

3.2a. Localized Case

We first consider the localized case !nl!=2.0" for which a complete comparison of
the QB states and the lasing modes was possible with the time-dependent FDTD-
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based method (Subsection 2.1), thus providing a reference comparison for the mul-
tipole calculations. The lasing mode is found at a wavelength !!=446.335 nm for a
value of the imaginary part of the refractive index nl"=−1.967*10−4, representing
the pumping threshold for this mode. The spatial distribution of its amplitude is
shown in Fig. 8(b). The QB states of the passive system are calculated in the spectral
vicinity of the lasing mode. The number of required multipoles was Nmax=4 (see
Appendix A). Figure 8(a) shows the QB state that best resembles the lasing mode. Its
wavelength and quality factor are, respectively, !!=446.339 nm and Q=8047. The
relative difference between the two modes is )1d*=0.05%. These calculations pro-
vide confirmation that the lasing modes and the QB states are the same inside the
scattering region for high-Q-valued states.

3.2b. Diffusive Case

We next consider the diffusive case and choose nl!=1.25. This is where the time-
independent method becomes interesting since, in contrast to the FDTD approach, it
gives direct access to the QB states. They are accurately calculated in this regime for
Nmax=2 multipoles. Figure 9 shows a lasing mode and its corresponding QB state.

Figure 8

(a) Intensity ,E,2 of the localized QB state (Media 1) and (b) corresponding las-
ing mode (Media 2) calculated by using a multipole method for a 2D disordered
scattering system of the kind shown in Fig. 1 with the refractive index of the cyl-
inders nl!=2.0.

Figure 9

(a) Intensity ,E,2 of the diffusive QB state (Media 3) and (b) the lasing mode
(Media 4) calculated by using the multipole method for the same random con-
figuration as in Fig. 8 but with the refractive index of the cylinders of nl!=1.25.
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The lasing mode is found at !!=455.827 nm for an imaginary part of the refractive
index nl"=−3.778*10−2. The wavelength and the quality factor of the QB state are,
respectively, !!=456.79 nm and Q=29.2. The lasing mode is therefore redshifted
relative to the QB state’s wavelength, as a result of the mode-pulling effect. The QB
state and the lasing mode appear similar in Fig. 9. However, the relative difference
between the two modes is larger than in the localized case, )1d*=14.5%. Figure 10
shows the cross section of the spatial intensity of both modes along x=2.75. In spite
of the resemblance, the two profile display visible dissimilarities. This suggests, in
the diffusive case, that QB states and lasing modes are not exactly the same, though
they exhibit quite similar features. These results are consistent with the findings pre-
sented in Subsection 2.2.

3.2c. Transition Case

It is both informative and interesting to follow the evolution of the lasing modes
and the QB states spatial profile when the index of refraction is decreased pro-
gressively, allowing one to compare the QB states and the random lasing modes
(TLM) systematically in a regime ranging from localized to diffusive. The QB
state and lasing modes calculated for intermediate cylinder refractive indices
nl!=1.75 and nl!=1.5 are displayed in Figs. 11 and 12. We note that the highly spa-
tially localized mode for nl!=2 (Fig. 8) is replaced for nl!=1.75 by a mode formed by
two spatially localized peaks and several smaller peaks. For a refractive index of nl!

=1.5, the mode is still spatially localized, although in a larger area, but is now
formed with a large number of overlapping peaks. A more systematic exploration of
the nature of the lasing modes at the transition between localized states and extended
resonances can be found in [29]. There, a scenario for the transition has been pro-
posed based on the existence of necklace states which form chains of localized
peaks, resulting from the coupling between localized modes.The modes shown here
support this scenario. It is important to note that the decreasing scattering and in-
creasing leakage not only affect the degree of spatial extension of the mode but also
the nature of the QB states. Indeed, it was shown in [29] that, because of leakage,
extended QB states have a nonvanishing imaginary part associated with a progres-
sive component, in contrast to the purely stationary localized states. In Media1-4 we
present animations of the time oscillation of the real part of the field

Figure 10
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Intensity ,E,2 of the diffusive QB state (blue dashed curve) and lasing mode (red
solid curve) for x=2.75 and nl!=1.25.
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R&2 exp!−i't"( of the QB state and of the corresponding TLM for n!=2 and n!

=1.25. The QB state is exponentially decaying in contrast to the lasing mode. The
diffusive lasing mode clearly exhibit a progressive component, which does not exist
in the localized lasing mode.

The values of wavelengths and quality factors of the QB states, lasing frequen-
cies of the corresponding TLMs, and associated imaginary part of the refractive
index are summarized in Table 1, together with the relative difference )1d* as de-
fined in Eq. (9).

In order to visualize the increasing difference between TLM and QB states, the
cross section of their spatial intensity profile at x=2.75 is plotted in Fig. 13. In Fig.
13(a) one cannot distinguish between the lasing mode and the QB state for n!

=1.75, while for n!=1.5 (Fig. 13(b)) differences begin to emerge, becoming more
pronounced for the case of n!=1.25 (Fig. 13(c)). This is seen also in the increase of
the relative difference from 5% to 14.5%. Clearly, there is a systematic increase of
the discrepancy between QB states and lasing modes when index contrast and scat-
tering decrease and leakage increases. For very low scattering n!=1.05, we could
not find the QB state corresponding to the TLM. Although we may have missed a
pole in the complex plane, this raises, however, a serious question on the validity of
the comparison of the threshold laser mode with QB states when weakly scattering

Figure 11

(a) Intensity ,E,2 of a QB state and (b) a lasing mode calculated by using multi-
pole method for the same random configuration as above but with the refractive
index of the cylinders nl!=1.75.

Figure 12

Same as in Fig. 11 but for nl!=1.5.

Advances in Optics and Photonics 3, 88–127 (2011) doi:10.1364/AOP.3.000088 105



Figure 13
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Table 1. QB State Valuesa for Four Index Values n! of Scatterers

nl!

Value 2.0 1.75 1.5 1.25

!! (nm) (QB) 446.339 451.60 456.60 456.79

Q 8047 161.28 87.8 29.2

!! (nm) (laser) 446.335 451.60 456.5 455.827

nl" −1.967*10−4
−0.0055 −0.0124 −0.0378

)1d* (%) 0.05 3 8.4 14.5

aWavelength !! and quality factor Q of the QB states; lasing frequency !! and imaginary
part of the refractive index nl" obtained for the threshold lasing modes; relative index differ-
ence )1d* between QB states and TLM.
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systems are considered. In the next section we will argue that, in principle, QB states
cannot be the support of theTLM. Section 5 will introduce a different class of states,
which offer a valid basis on which the TLMs can be described.

4. Threshold Lasing States versus Passive Cavity

Resonances

Semiclassical laser theory treats classical electromagnetic fields coupled to
quantized matter and yields the thresholds, frequencies and electric fields of the
lasing modes, but not their linewidths or noise properties. To treat the spatial de-
pendence of lasing modes, one must go beyond rate equation descriptions and
use the coupled nonlinear Maxwell-Bloch (MB) equations for light coupled to
homogeneously broadened two-level atoms or multilevel generalizations
thereof. These equations will be presented in Section 5 below. While the MB de-
scription has been used since the inception of laser theory [61,62], in almost all
cases simplifications to these equations were made, most notably a neglect of the
openness of the laser cavity. As random lasers are strongly open systems, it is
necessary to treat this aspect of the problem correctly to obtain a good descrip-
tion of them.

Historically a first breakthrough in describing Fabry-Perot type lasers with open
sides was the Fox-Li method [44,45], which is an integral equation method of
finding the passive cavity resonances of such a structure. It is widely assumed
and stated that these resonances or QB states are the correct electromagnetic
modes of a laser, at least at threshold. Often the nonlinear laser equations are
studied with Hermitian cavity modes with phenomenological damping constants
representing the cavity outcoupling loss obtained, e.g., from a Fox-Li calcula-
tion. It is worth noting that there are two kinds of cavity loss that occur in lasers;
there is the outcoupling loss just mentioned and also the internal absorption of
the cavity, which can be taken into account via the imaginary part of the passive
cavity index of refraction. These are very different processes, as the former de-
scribes the usable coherent light energy emitted from the laser and the latter sim-
ply energy lost, usually as heat, in the laser cavity.

The QB states of an arbitrary passive cavity described by a linear dielectric func-
tion +c!x ,'" can be rigorously defined in terms of an electromagnetic scattering
matrix S for the cavity. This matrix relates incoming waves at wave vector k (fre-
quency '=ck) to outgoing waves in all of the asymptotic scattering channels
and can be calculated from the wave equation. Note that while we speak of the
frequency of the incoming wave, in fact the S matrix is a time-independent quan-

tity depending on the wave vector k. This is the wave vector outside the cavity; in
random lasers we will be interested in spatially varying dielectric functions so
that in the cavity there is no single wave vector of the field. For any laser, includ-
ing the random laser, the cavity can be defined as simply the surface of last scat-
tering, beyond which no backscattering occurs. The QB states are then the eigen-
vectors of the passive cavity S matrix with eigenvalue equal to infinity; i.e., one
has outgoing waves with no incoming waves. Because this boundary condition is
incompatible with current conservation, these eigenvectors have the complex

wave vector k̃µ; these complex frequencies are the poles of the S matrix and their
imaginary parts must always be negative to satisfy causality conditions. There is
normally a countably infinite set of such QB states. Because of their complex
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wave vector, asymptotically the QB states vary as r−!d−1"/2 exp!+,Im&k̃µ( ,r" and
diverge at infinity, so they are not normalizable solutions of the time-independent
wave equation.Therefore we see that QB states cannot represent the lasing modes of
the cavity, even at threshold, as the lasing modes have a real frequency and wave vec-
tor outside the cavity with conserved photon flux.

When gain is added to the cavity the effect is to add another contribution to the
dielectric function +g!x ,'", which in general has a real and imaginary part. The
imaginary part of +g has an amplifying sign when the gain medium is inverted
and depends on the pump strength; it compensates for the outcoupling loss as
well as any cavity loss from the cavity dielectric function +c. The specific form of
this function for the MB model will be given in Section 5 below. The TLMs are
the solutions of the wave equation with +total!x"=+c!x"++g!x" with only outgoing
waves of real wave vector kµ [we neglect henceforth for simplicity the frequency
dependence of +c!x"]. The kµ are the wave vectors of the TLMs with real lasing
frequencies 3µ=ckµ. These lasing wave vectors are clearly different from the

complex k̃µ; moreover they are not equal to Re&k̃µ( as often supposed. This can be
seen by the following continuity argument. Assume that +c!x" is purely real for sim-
plicity, so that the S matrix is unitary and all of its poles are complex and lie in the
negative half-plane. Turn on the pump, which we will call D0, anticipating our
later notation, so that the inversion rises steadily from zero, continuously in-
creasing the amplifying part of +g. The S matrix is no longer unitary, and its poles
move continuously upward towards the real axis until each of them crosses the
axis at a particular pump value, D0 (see Fig. 14); the place where each pole
crosses is the real lasing frequency kµ for that particular TLM. Note that the
poles do not move vertically to reach the real axis but always have some shift of
the lasing frequency from the passive cavity frequency, mainly due to line-
pulling towards the gain center. As the Q value of the cavity increases, the dis-

Figure 14
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Shift of the poles of the S matrix in the complex plane onto the real axis to form
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simple 1D edge-emitting cavity laser [34]. The cavity is a region of length L and
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tance the poles need to move to reach the real axis decreases, so that the fre-

quency shift from Re&k̃µ( can become very small, and the conventional picture
becomes more correct. In general the poles of the S matrix are conserved quantities
even in the presence of loss, so that the TLMs are in one-to-one correspondence
with the QB states and thus are countably infinite, but for any cavity the pole that
reaches the real axis first (i.e., at lowest pump D0) is the actual first lasing mode.
At higher pump values the nonlinear effects of saturation and mode competition
will affect the behavior; so only the lowest-threshold TLM describes an observ-
able lasing mode for fixed pumping conditions, the first lasing mode at thresh-
old. Which pole gets there first depends not only on the Q of the passive cavity
resonance before gain is added, but also on the parameters of +g!x", which in-
clude the atomic transition frequency, the gain linewidth, and the pump condi-
tions, as will be discussed below.

5. Self-Consistent Time-Independent Approach to

Random Lasing

In Section 4 we gave a general argument based on the scattering matrix with the
addition of gain to show that in general the QB states (passive cavity resonances)
are never exactly the same as the TLMs, even inside the cavity. However the
same argument indicated that inside a high-Q cavity the two sets of functions be-
come very similar, since the poles of the S matrix are very close to the real axis
and only a small amount of gain is required on order to move them to the real
axis, which maps QB states onto TLMs. For localized states in the center of the
sample the Q values should be exponentially large and, as found numerically,
QBs and TLMs should be indistinguishable (again, inside the cavity; outside the
QB states have an unphysical growth). As already noted, the set of TLMs defines
only threshold modes; as soon as the first TLM has turned on, it will alter the
gain medium for the other potential modes through spatial hole burning, and a
nonlinear approach needs to be considered. Very recently such an approach has
been developed that has the major advantage of being time independent and par-
tially analytic, providing both ease of computation and greater physical insight.
The approach, due to Türeci-Stone-Ge, is known as steady-state ab initio laser
theory (SALT) [31,34,35]. It finds the stationary solutions of the MB semiclas-
sical lasing equations in the multimode regime, for cavities of arbitrary com-
plexity and openness, and to infinite order in the nonlinear interactions. As such
it is ideal for treating diffusive or quasi-ballistic random lasers, which are ex-
tremely open and typically highly multimode even slightly above threshold. In
this section we present the basic ideas with emphasis on TLMs, which are the
focus of this review. The nonlinear theory has been reviewed in some detail else-
where [35], and we just present a brief introduction to it here.

5.1. Maxwell-Bloch Threshold Lasing Modes

The MB semiclassical laser equations describe a gain medium of identical two-
level atoms with energy level spacing &'a=&cka and relaxation rate 4., being
pumped by an external energy source, D0 (which can vary in space), contained in
a cavity that can be described by a linear dielectric function, +c!x". This leads to
a population inversion of the atoms, D!x , t", which in the presence of an electric
field creates a nonlinear polarization of the atomic medium, P!x , t", which itself
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is coupled nonlinearly to the inversion through the electric field, E!x , t". The
electric field and the nonlinear polarization are related linearly through Max-
well’s wave equation, although above the first lasing threshold the polarization is
implicitly a nonlinear function of the electric field. The induced polarization also
relaxes at a rate 4! that is typically much greater than the rate 4. at which the
inversion relaxes, and this is a key assumption in our treatment of the nonlinear
regime, but will not be needed in the initial discussion of TLMs.

The resulting system of nonlinear coupled partial differential equations for the
three fields E!x , t" ,P!x , t" ,D!x , t" are !c=1"

Ë+ =
1

+c!x"
"

2E+
−

4,

+c!x"
P̈+, !10"

Ṗ+ = − !i'a + 4!"P+ +
g2

i&
E+D , !11"

Ḋ = 4.!D0 − D" −

2

i&
!E+!P+"* − P+!E+"*" . !12"

Here g is the dipole matrix element of the atoms, and the units for the pump are
chosen so that D0 is equal to the time-independent inversion of the atomic sys-
tem in the absence of an electric field. This pump can be nonuniform: D0

=D0!x" based on the experimental pump conditions, but we will not discuss that
case here. The electric field, polarization, and inversion are real functions (E ,P
are vector functions in general, but we assume a geometry where they can be
treated as scalars). In writing the equations above we have written these fields in
the usual manner in terms of their positive and negative frequency components,
E=E++E−, P=P++P−, and then made the rotating wave approximation in which
the coupling of negative to positive components is neglected. There is no advan-
tage in our treatment to making the standard slowly varying envelope approxi-
mation, and we do not make it.

5.2. Self-Consistent Steady-State Lasing Equations

The starting point of our formulation is to assume that there exists a steady-state
multiperiodic solution of Eqs. (10)–(12) above; i.e., we try a solution of the form

E+!x,t" = /
µ=1

N

2µ!x"e−ikµt, P+!x,t" = /
µ=1

N

Pµ!x"e−ikµt. !13"

Having taken c=1 we do not distinguish between frequency and wave vector.
The functions 2µ!x" are the unknown lasing modes, and the real numbers kµ are
the unknown lasing frequencies; these functions and frequencies are not as-
sumed to have any simple relationship to the QB states of the passive cavity and
will be determined self-consistently. As the pump increases from zero the num-
ber of terms in the sum will vary, N=0,1 ,2 , . . .; at a series of thresholds each
new mode will appear. The general nonlinear theory is based on a self-consistent
equation that determines how many modes there are at a given pump and solves
for these modes and their frequencies. However in this section we will discuss
TLMs, and so we need only consider one term in the sum. Furthermore, at the
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first threshold the electric field is negligibly small, and so the inversion is equal
to the external pump profile, assumed uniform in space, D!x , t"=D0. Assuming
single-mode lasing, the equation for the polarization becomes

Pµ!x" =
− iD0g

22µ!x"

&!4! − i!kµ − ka""
. !14"

Having found Pµ!x" in terms of 2µ!x" ,D0, we substitute this result into the right-
hand side of Maxwell’s equation along with 2µ!x" for the electric field on the
left-hand side. The result is

&"2 + +c!x"kµ
2(2µ!x" =

iD04,g2kµ
22µ!x"

&!4! − i!kµ − ka""
, !15"

which can be written in the form

&"2 + !+c!x" + +g!x""kµ
2(2µ!x" = 0, !16"

where +g!x" is the dielectric function of the gain medium, which only varies in
space if the external pump or the gain atoms are nonuniform. Defining conve-
nient units of the pump D0c=&4! /4,ka

2g2 and replacing D0⇒D0 /D0c, we find
that

+g!x" =
D0

ka
2 0 4!!kµ − ka"

4
!

2 + !kµ − ka"
2

+
− i4

!

2

4
!

2 + !kµ − ka"
21 . !17"

Equation (16) is to be solved with the boundary condition that at infinity one has
only an outgoing wave at frequency kµ, i.e., "r2µ!x"=+ikµ2µ!x" when r→5. In
general this equation with this boundary condition cannot be solved for an arbi-
trary choice of the lasing frequency kµ and for arbitrary values of the pump D0; it
is necessary to vary kµ and the pump strength D0 to find the countably infinite set
of values !kµ ,D0

!µ"" at which a solution exists. This variation is equivalent to the
pulling of the S-matrix poles onto the real axis discussed in Section 4 above; D0

!µ"

defines the threshold pump for that pole, and kµ the point at which it crosses the
real axis. As noted, while all of these solutions can be classified as TLMs, only
the solution with the lowest value of D0

!µ" will actually be a physical lasing state,
as higher lasing modes are altered by nonlinear modal interactions.

Equation (16) shows that the TLMs are the solutions of the original Maxwell
equation with the addition of a complex, pump- and frequency-dependent di-
electric function that is uniform in space (for the assumed uniform pumping).
The imaginary and the real parts of the gain dielectric function have the familiar
symmetric and antisymmetric two-level resonance forms, respectively. The de-
pendence on the atomic frequency ka encodes the usual atomic line-pulling ef-
fect. In the limit of a very broad gain curve !4!→5" the line-pulling effects can
be neglected, and we find the simple result

+g → − iD0/ka
2, !18"

i.e., a constant imaginary (amplifying) part of +g proportional to the pump
strength. Such linear gain models have been studied before, although typically
with a constant imaginary part of the index of refraction instead of a constant
imaginary part of the dielectric function. Our results show that, in order to re-
produce the TLMs of the MB equations, one needs to take
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n!x" = ++c!x" + +g!D0,kµ − ka,4!" !19"

so that the pump changes both the real and the imaginary parts of the index of
refraction.

5.3. Solution for Threshold Lasing Modes and Constant-Flux
States

The differential equation (16) is self-consistent in the sense that the boundary
conditions depend on the eigenvalue kµ that one is solving for, and so some form
of nonlinear search is required. The required search turns out to be much more
convenient if one writes an equivalent integral form of the equation transform-
ing it into a self-consistent eigenvalue problem. For this purpose we rewrite it in
the form

&+c!x"−1
"

2 + kµ
2(2µ!x" =

− +gkµ
2

+c!x"
2µ!x" , !20"

and then, treating the right-hand side as a source, invert the equation with the ap-
propriate Green function to obtain

2µ!x" =
iD04!

4! − i!kµ − ka"

kµ
2

ka
2%

D

dx!

G!x,x!;kµ"2µ!x!"

+c!x!"
. !21"

Here the integral is over the gain region, which we will assume coincides with
the cavity region D. The appropriate Green function satisfies

&+c!x"−1
"

2 + k2(G!x,x!,k" = .d!x − x!" !22"

and is non-Hermitian because of the outgoing wave boundary conditions:
,"rG!x ,x! ,k",r→5= ,"r!

G!x ,x! ,k",r!→5= ikG!x ,x! ,k", where "r is the radial de-
rivative. G!x ,x! ,k" has the spectral representation

G!x,x!,k" = /
m

6m!x,k"6̄
m
* !x!,k"

!k2
− km

2 "
. !23"

We refer to the functions 6m!x ,k" in Eq. (23) as the CF states. They satisfy

&+c!x"−1
"

2 + km
2 (6m!x,k" = 0 !24"

with the corresponding non-Hermitian boundary condition of purely outgoing
spherical waves of fixed frequency k (eventually set equal to the lasing fre-
quency) at infinity. Their dual (biorthogonal) partners 6̄m!x! ,k" satisfy the com-
plex conjugate differential equation with purely incoming wave boundary con-
ditions. These dual sets satisfy the biorthogonality relation

%
D

dx6m!x,k"6̄
n
*!x,k" = .mn !25"

with appropriate normalization.

The CF states satisfy the standard wave equation, Eq. (24), but with the non-
Hermitian boundary condition already mentioned; hence their eigenvalues km

2

are complex, with (it can be shown) a negative imaginary part, corresponding to
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amplification within the cavity. However, outside the cavity, by construction,
they have the real wave vector kµ and a conserved photon flux. They are a com-
plete basis set for each lasing frequency kµ, and hence they are a natural choice to
represent the TLMs as well as the lasing modes above threshold. Hence we make
the expansion

2µ!x" = /
m=1

5

am
µ 6m

µ !x". !26"

Substituting this expansion into Eq. (21), using biorthogonality, and truncating
the expansion at N terms, leads to the eigenvalue problem

am
µ = D07m!kµ"%

D

dx!

6̄
m

µ*!x!"/
p

N

ap
µ6p

µ!x!"

+c!x!"
- D0/

p

N

Tmp
!0"ap

µ, !27"

where 7m!k"- i4!!k2 /ka
2" / &!4!− i!k−ka""!k

2
−km

2 !k""(.

One sees that the TLMs in the CF basis are determined by the condition that an
eigenvalue of the matrix D0T

!0"!kµ" is equal to unity. Since the matrix T!0"!kµ" is
independent of D0, it is natural to focus on this object, which we call the thresh-

old matrix. It is a complex matrix with no special symmetries, implying that its
eigenvalues !µ are all complex for a general value of kµ. If the real control pa-
rameter D0 (the pump) is set equal to 1/ ,!µ,, then the matrix D0T

!0"!kµ" will have
an eigenvalue of modulus unity, but not a real eigenvalue equal to unity as re-
quired, and no solution for the TLMs exists for this choice of kµ. It is the phase
condition that !µ !kµ" must be real that determines the allowed lasing frequen-
cies. In practice one orders the !µ in decreasing modulus based on an initial ap-
proximation to the lasing frequency, kµ, and then tunes kµ slowly until each ei-
genvalue flows through the real axis [which is guaranteed by the dominant k

dependence contained in the factor 7m!k"]. Normally the eigenvalues do not
switch order during this flow, and the largest eigenvalue !µ will determine the
lowest threshold TLM, with threshold D0

!µ"=1/!µ!kµ", where kµ is the frequency
that makes the largest eigenvalue T!0"!kµ" real. The eigenvector corresponding to
!µ gives the coefficients for the CF expansion of the TLM of the first mode
2µ!x". TLMs with higher thresholds can be found by imposing the reality con-
dition on smaller eigenvalues of T!0"!kµ". This approach has been described in
detail elsewhere [33,35], and provides a much more efficient method for finding
TLMs than solving the self-consistent differential equation, Eq. (16).

We immediately see from Eqs. (25) and (27) that for an arbitrarily shaped cavity
of uniform dielectric constant +c the matrix T!0"!kµ" is diagonal owing to the bior-
thogonality of the CF states. Thus each TLM is a single CF state, corresponding
to one of the kµ that satisfies the reality condition. In this case the expansion of
2µ!x" consists of just one term, and the threshold lasing equation is equivalent
to Eq. (24) with appropriate relabeling. When +c varies in space, as for random
lasers, the threshold matrix is not diagonal, and there can in principle be many
CF states contributing to one TLM [63]. However, since 6m!x" , 6̄p!x" are uncor-
related fluctuating functions of space, it turns out that the threshold matrix in
random lasers is approximately diagonal and the threshold modes are dominated
by one, pseudorandom CF state determined by solving Eq. (24) for the appropri-
ate random dielectric function +c!x". This is shown in Fig. 15. In summary, the
theory leading to the threshold equation (27) gives an efficient time-independent
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method for finding the TLMs of random lasers in any disorder regime. In general
these TLMs are very close to a single CF state determined by Eq. (24) at the las-
ing frequency kµ. With this new method TLMs of random lasers can be found for
complex 2D and even 3D geometries. In Figs. 16 and 17 we compare TLMs, CF
states and QB states for the 2D random laser model used in [33], illustrating the
agreement of TLMs with CF states even for weak scattering, while a significant
deviation from the closest QB state is found.

This SALT is well-suited to describe not just TLMs but to find the true multi-
mode lasing spectrum of random lasers above threshold. This will not be treated
in detail here, but in the next section we briefly explain the basic approach in the
nonlinear theory and show one representative result.

5.4. Nonlinear Steady-State ab Initio Laser Theory

The key to generalizing SALT to the multimode nonlinear regime is to return to
the fundamental MB equations and go beyond the assumption that the inversion
D!x , t" is equal to the constant threshold pump D0. Once lasing modes have
turned on, their spatially varying electric fields cause varying degrees of stimu-
lated emission from the gain atoms and hence tend to reduce the inversion D

from the pump value D0 in a manner that varies in space and in principle in time.
However it has been shown that if 4!≫4., then the time dependence of the in-
version is weak, and although D varies in space, it is a good approximation to
take D!x , t"=D!x". This stationary inversion approximation has been used in la-
ser theory for many years, going back to Haken [62], but has not been incorpo-
rated into an ab initio method such as SALT. We will not review the details of the
derivation of the nonlinear multimode theory of Türeci-Stone-Ge, which have
been given elsewhere [31,35]. Instead we just state that the net effect of the non-
linear interactions within the stationary inversion approximation is just to re-
place the uniform inversion, as follows,

Figure 15

1

5

10

15

5
10

15

1

0

0.005

0.01

0.015

Typical values of the threshold matrix elements T!0" in a 2D random laser sche-
matized in the inset of Fig. 18 below, using sixteen CF states. The off-diagonal
elements are one to two orders of magnitude smaller than the diagonal ones.
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D0 →

D0

1 + /
8

9!k8"!,28!x",2"
, !28"

in all of the equations of the theory of the TLMs. Here 8 labels all above-
threshold modes and 9!k8" is a Lorentzian centered at the lasing frequency of
mode 8 with width 4!. If we make this substitution into Eq. (21), we arrive at the
fundamental integral equation of SALT:

2µ!x" =
iD04!

4! − i!kµ − ka"

kµ
2

ka
2%

D

dx!

G!x,x!;kµ"2µ!x!"

+c!x!"21 + /
8

98,28!x!",23
. !29"

Note that this equation shows that each lasing mode interacts with itself (satura-
tion) and all other lasing modes (mode competition) via the hole-burning de-

Figure 16
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(a) False color plot of one TLM in a 2D random laser modeled as an aggregate of
subwavelength particles of index of refraction n=1.2 and radius r=R /30 against
a background index n=1 imbedded in a uniform disk of gain material of radius R

[see inset, panel (d)]. The frequency of the lasing mode is kR=59.9432, which is
pulled from (b) the real part of the dominating CF state kmR=59.8766−0.8593i to-
wards the transition frequency kaR=60. The spatial profile of the TLM and CF state

agree very well, whereas (c) the corresponding QB state k̃mR=59.8602−0.8660i

differs from that of theTLM and the CF state noticeably, as can be seen in (d), where
we plot the internal intensity along the :=200° direction [white line in (a)].
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nominator of Eq. (28). This set of coupled nonlinear equations is still conve-
niently solved in the basis of CF states for each modal frequency kµ, as for the
TLMs; the details have been given elsewhere [33,35].

The first results of the SALT for the modal properties of multimode random la-
sers in weak-scattering 2D media were given in [33]. We will not present a full
picture of these results here, but just show some properties of the random laser
lasing frequencies in Fig. 18. The model is explained in the figure caption (see
inset). The complex CF and QB frequencies are shown to be distinct, and the las-
ing frequencies are subject to very strong line-pulling effects.

The new tool of SALT allows one to study random lasers with full nonlinear in-
teractions in 2D and even in 3D. The elimination of time dependence in this
theory makes larger and more complex cavities computationally tractable. The
theory also provides a new language based on CF states to describe the lasing
modes. Now detailed statistical studies as well as comparisons to statistical mod-
els based on random matrix theory, disordered media theory, and wave chaos
theory are needed. Such studies are in progress.

Figure 17
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(a) False color plot of one TLM in a 2D random laser similar to that in Fig. 16 but
with particles of radius r=R /60, corresponding to weaker scattering [see inset,
panel (d)]. The frequency of the lasing mode is kR=29.9959, which is very close to
(b) the CF state kmR=30.0058−1.3219i but shifted from (c) the corresponding QB

state k̃mR=29.8813−1.3790i. (d) Internal intensity of the three states in the :=,
direction [white line in (a)]; because of weaker scattering the QB state now differs
substantially from the CF and TLM, which still agree quite well with each other.
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6. Conclusion

A decade of theoretical study of random lasers has clarified the nature of the las-
ing modes in disordered systems with multiple scattering and gain. Most impor-
tant, it has been established that high-Q passive cavity modes such as those cre-
ated by Anderson localization or by rare fluctuations of various kinds are not
necessary in order to have self-organized laser oscillation at a frequency distinct
from the atomic transition frequency (gain center). In addition, this study has
emphasized a point of general importance in laser theory, that TLMs are not
identical to the QB states (resonances) of the passive cavity. This point is dem-
onstrated by a number of numerical calculations presented above and also can be
understood from the realization that the QB states are eigenvectors of the unitary
S matrix of the cavity without gain, but at complex frequency, whereas the TLMs
are eigenvectors of the nonunitary S matrix of the cavity with gain and with real
frequency. The difference between these eigenvectors (within the cavity), which
is large in the weak scattering limit, becomes small in the diffusive regime as the
Q of the cavity increases and is negligible, e.g., for Anderson localized modes
and for high-Q modes of conventional cavities. The new basis set of constant flux

(CF) states provides a better approximation for finding the TLMs of random la-
sers and coincides with the exact lasing modes of uniform index cavities. Further
statistical and analytical study is necessary to characterize the properties of ran-
dom lasers in the different regimes, weak scattering, diffusive, and localized, and
to understand the effects of nonlinear interactions.

Appendix A: Multipole Method

This appendix details the principle of the multipole method as used in this paper
and its implementation. Although we describe here the method for 2D systems,
it can be also applied to 3D structures.

We consider a random collection of Nc nonoverlapping cylinders with arbitrary
complex dielectric constant +l=+l!+ i+l"=nl

2 and arbitrary radii al located in a uni-

Figure 18

(a) CF (dots) and QB (crosses) frequencies in a 2D random laser modeled as an
aggregate of subwavelength particles of index of refraction n=1.2 against a back-
ground index n=1 imbedded in a uniform disk of gain material (see inset). The two
sets of complex frequencies are statistically similar but differ substantially.The solid
curve shows the gain curve 9!k" with 4!=1. (b) Lasing frequencies of the same ran-
dom system well above threshold (colored lines). Colored circles denote the CF state
dominating the correspondingly colored modes at threshold.
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form medium with complex dielectric constant +b=+b!+ i+b"=nb
2 (Fig. 19), where

nl=nl!+ inl" and nb=nb!+ inb" are the refractive indices of the cylinders and the
background. The complex dielectric permittivities of the cylinders and the back-
ground can be arbitrary and may be frequency dependent.

In two dimensions, the solution of the electromagnetic field problem decouples
into two fundamental polarizations, in each of which the field may be character-
ized by a single field component: V!r"=Ez (for TM polarization) and V!r"=Hz

(for TE polarization). In the coordinate system that is used, the z axis is aligned
with the cylinder axes.

The field component V satisfies the Helmholtz equation

"
2V!r" + k2n2!r"V!r" = 0. !A1"

For TM polarization, both V!r" and its normal derivative ! ·"V!r" are continu-
ous across all boundaries, while for TE polarization the corresponding boundary
conditions are the continuity of V!r" and its weighted normal derivative
! ·"V /n2!r". Here, n!r" denotes the refractive index of the relative medium and
! is an unit outward normal vector.

In the vicinity of the lth cylinder, we may represent the exterior field in the back-
ground medium (refractive index nb) in local coordinates as rl= !rl ,:l"=r−cl,
where cl represents the center of the cylinder, and we write

V!r" = /
m=−5

5

&Am
l Jm!knbrl" + Bm

l Hm
!1"!knbrl"(e

im:l. !A2"

This local expansion is valid only in an annulus extending from the surface of
the cylinder l to the surface of the nearest adjacent cylinder.

Figure 19
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Geometry and local coordinate systems.
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The global field expansion (also referred to as a Wijngaard expansion), which is
valid everywhere in the background matrix, comprises only outgoing cylindrical
harmonic terms:

V!r" = /
q=1

Nc

/
m=−5

5

Bm
q Hm

!1"!k,r − cq,"e
im arg!r−cq". !A3"

Correspondingly, the field inside any cylinder l is written in an interior expan-
sion:

V!r" = /
m=−5

5

Cm
l Jm!knl,r − cl,"e

im arg!r−cl". !A4"

Then, applying Graf’s addition theorem [53] to the terms on the right-hand side
of Eq. (A3) (see Fig. 19), we may express the global field expansion in terms of
the local coordinate system for the lth cylinder. Equating this with the local ex-
pansion (A2), we deduce the field identity (also known as the Rayleigh identity):

Am
l = /

q=1,q#l

Nc

/
p=−5

5

Hmp
lq Bp

q, !A5"

where

Hmp
lq = Hm−p

!1" !kclq"e
−i!m−p":lq. !A6"

Here, !clq ,:lq" are the polar coordinates of the vector clq=cq−cl, the position of
cylinder q relative to cylinder l.

This is the first connection between the standing wave !4Am
l 5" and outgoing

!4Bm
l 5" multipole coefficients, one which follows solely from the system geom-

etry. Equation (A5) indicates that the local field in the vicinity of cylinder l is due
to sources on all other cylinders !q# l", the contributions of which to the multi-
pole term of order m−p at cylinder l are given by Hmp

lq .

The second relation between the 4Am
l 5 and 4Bm

l 5 multipole coefficients is ob-
tained from the field continuity equations (i.e., the boundary conditions) at the
interface of cylinder l and the local exterior (A2) and interior field (A4) expan-
sions. From these, we obtain

Bm
l = Rm

l Am
l , !A7"

Cm
l = Tm

l Am
l , !A8"

where the interface reflection and transmission coefficients, for both Ez and Hz

polarization, are given by

Rm
l = −

"nlJm! !knlal"Jm!knbal" − nbJm!knlal"Jm! !knbal"

"nlJm! !knlal"Hm
!1"!knbal" − nbJm!knlal"Hm

!1"!!knbal"
, !A9"

Tm
l = −

2i/!,kaL"

"nlJm! !nlkal"Hm
!1"!knbal" − nbJm!knlal"Hm

!1"!!knbal"
, !A10"

in which "=1 for TM polarization and "=nb
2!r" /nl

2!r" for TE polarization.
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To derive a simple closed form expression for the solution of the problem, we
use partitioned matrix notation, introducing vectors Al= &Am

l ( and Bl= &Bm
l ( and

expressing Eq. (A5) in the form

Al = /
q

HlqBq, !A11"

where Al and Bl denote vectors of multipole coefficients for cylinder l. The ma-
trix H is block partitioned according to Hlq= &Hmp

lq ( for l#q (A6), and Hll= &0(,
each block of which is a matrix of Toeplitz form. Correspondingly, the matrix
forms of Eqs. (A7) and (A8) are

B = RA , !A12"

C = TA , !A13"

where R=diag Rl is a block diagonal matrix of diagonal matrices Rl=diag Rm
l , and

with corresponding definitions applying for the transmission matrices.

Then, with the introduction of the partitioned vectors A= &Al(, B= &Bl( and the
partitioned matrix H= &Hlq(, we form the system of equations

!I − RH"B = 0. !A14"

The problem has now been reduced to the solution of a generalized eigenvalue
problem for matrix equation (A14). The nontrivial solutions of secular equation
(A14) determine modes of the random system. Finding the nontrivial solutions
of the linear system of equations (A14) requires that the determinant of the sys-
tem matrix vanish:

D = 0, where D = det!S−1" !A15"

with

S−1!!" = !I − RH" . !A16"

Equivalently, this problem may be recast as a search for the poles of the scatter-
ing matrix S!!" (i.e., solutions of det S−1!!"=0). Once the pole is located, the cor-
responding null vectors B of Eq. (A14) are the multipole coefficients of the scattered
field, which are used to calculate the QB state profiles exterior to the scatterers by
using Eq. (A3). The field inside a cylinder is calculated according to the interior ex-
pansions, Eqs. (A13) and (A4). The TLM poles must be searched in the !! ,+c" do-
main, given that the pump changes not only the imaginary part of the refractive in-
dex but the real part as well [Eq. (4)].

Formal system (A15) is of infinite dimension and so must be truncated to gen-
erate a computational solution, the accuracy of which is governed by the number
of retained multipole coefficients Nm=2Nmax+1, where Nmax is the truncation or-
der of the multipole series; i.e., only the terms corresponding to the cylindrical har-
monics of order n=−Nmax , . . . ,Nmax are retained.

Appendix B: Finite Element Method

We have also used the finite element method [60], implemented in a commercial
software (Comsol), to solve wave equation (A1) and calculate the complex ei-
genvalues and eigenfunctions of the passive modes of the systems that were cal-
culated by the multipole method. The method suitably applies for modeling pas-
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sive or active modes in a cavity, which is surrounded by perfectly matched layers
[64] to simulate open boundaries. It is possible to obtain all the leaky modes,
even the resonances characterized by a very small quality factor (as small as 5),
in a reasonable computation time with a commercial PC, provided the size of the
geometry is smaller than hundred times the wavelength. This is in contrast with
the other methods described in this paper, which require much heavier compu-
tation.

One of the most important steps of the finite element method is the creation of
the mesh that describes the system. Figure 20 shows a close up of a typical mesh
calculated for the 2D random system of Fig. 2. The maximum size of elements
must be smaller than seven times the wavelength [65].
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