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Abstract

Introduction: While influenza A and B viruses can be transmitted via respiratory droplets, the importance of small droplet
nuclei ‘‘aerosols’’ in transmission is controversial.

Methods and Findings: In Hong Kong and Bangkok, in 2008–11, subjects were recruited from outpatient clinics if they had
recent onset of acute respiratory illness and none of their household contacts were ill. Following a positive rapid influenza
diagnostic test result, subjects were randomly allocated to one of three household-based interventions: hand hygiene, hand
hygiene plus face masks, and a control group. Index cases plus their household contacts were followed for 7–10 days to
identify secondary infections by reverse transcription polymerase chain reaction (RT-PCR) testing of respiratory specimens.
Index cases with RT-PCR-confirmed influenza B were included in the present analyses. We used a mathematical model to
make inferences on the modes of transmission, facilitated by apparent differences in clinical presentation of secondary
infections resulting from aerosol transmission. We estimated that approximately 37% and 26% of influenza B virus
transmission was via the aerosol mode in households in Hong Kong and Bangkok, respectively. In the fitted model, influenza
B virus infections were associated with a 56%–72% risk of fever plus cough if infected via aerosol route, and a 23%–31% risk
of fever plus cough if infected via the other two modes of transmission.

Conclusions: Aerosol transmission may be an important mode of spread of influenza B virus. The point estimates of aerosol
transmission were slightly lower for influenza B virus compared to previously published estimates for influenza A virus in
both Hong Kong and Bangkok. Caution should be taken in interpreting these findings because of the multiple assumptions
inherent in the model, including that there is limited biological evidence to date supporting a difference in the clinical
features of influenza B virus infection by different modes.
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Introduction

Influenza viruses are believed to be spread between humans

through a number of modes of transmission, including primarily

through inhalation of respiratory droplets containing infectious

virus, and possible contact of respiratory secretions containing

infectious virus with mucous membranes. A distinction is
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sometimes drawn between larger versus smaller respiratory

droplets, as large droplets quickly fall to the ground [1,2], while

droplet nuclei can remain suspended in the air for prolonged

periods because of their low settling velocity [3]. However,

aerosols are easily removed from the environment through

ventilation, and infectious virus suspended in aerosols could be

fragile and easily lose infectivity. The threshold for small particles

is typically drawn in the range 5 mm to 20 mm [3–5]. Only a small

number of pathogens are thought to transmit via aerosols,

including varicella virus, M. tuberculosis and rubeola virus

(measles) [6]. The potential for influenza virus to spread by

aerosols remains controversial [3–5,7,8]. There is growing

evidence that influenza A virus can spread by aerosols [3–5,8–

10], but less discussion over the potential role of aerosols in

influenza B virus transmission with limited published literature.

Infectious influenza B virus can be detected in the aerosol fraction

(particles ,5 mm) of exhaled breath of subjects with influenza B

virus infection [11].

Influenza B viruses can infect all age groups. Compared to

influenza A viruses, infections with influenza B virus are more

commonly identified in children compared to adults [12], perhaps

because of slower evolutionary rates [13] leading to greater herd

immunity among adults. Influenza B virus infections can cause

severe illness in all ages [14], and the mortality impact of influenza

B epidemics in populations is generally estimated to be compa-

rable to the impact of influenza A(H1N1) epidemics but somewhat

less than influenza A(H3N2) epidemics, with the majority of excess

deaths occurring in the very young and very old [15–18].

Historical volunteer challenge studies reported a difference in

clinical presentation of influenza A virus infections depending on

the mode of infection [9]. In one classic study, 23 people were

experimentally inoculated with aerosols, 7 subsequently had

serologic evidence of infection and virus was recovered from one

additional volunteer without serologic evidence of infection, and 4

of those 8 had typical ILI with fever [19].

In another study, 24 people were inoculated intranasally and

had milder illness than people with naturally-acquired illness [20].

In some infectious diseases (e.g. smallpox, plague), the clinical

severity is known to depend on the mode of acquisition, and this

property has recently been termed ‘anisotropic’ infection [21]. We

previously assumed that influenza A virus also has the anisotropic

property, and based on that property, further assuming that hand

hygiene and face masks act primarily against contact and large

droplet transmission respectively, we estimated that up to 50% of

influenza A virus transmission within households in Hong Kong

and Bangkok occur via the aerosol route [9]. Here, we propose

that the same anisotropic nature may hold for influenza B virus

infections, specifically that the mode of exposure leading to an

infection may affect the pattern in subsequent signs and symptoms

[21], and we use the same modeling framework to infer the

proportion of household transmission of influenza B virus that

occurs via the aerosol route.

Methods

Sources of Data
During 2008–2011, large randomized controlled trials were

conducted in Hong Kong and Bangkok to study the efficacy of

hand hygiene and surgical face masks in reducing influenza virus

transmission in households [22,23]. In each study, local residents

who had acute respiratory illness and living in a household with at

least 2 other people of whom none had reported acute respiratory

illness in the preceding 14 days were enrolled. Pooled nasal and

throat swab (NTS) specimens were collected from each participant

for testing with the QuickVue Influenza A+B rapid diagnostic test

(Quidel, San Diego, California). Participants with a positive rapid

influenza test result were further followed up along with their

household contacts. Households were randomly allocated in equal

proportions into one of three intervention groups: (1) a control

intervention, (2) control plus hand hygiene intervention, and (3)

Table 1. Minor differences between the study designs in Hong Kong and Bangkok.

Study component Hong Kong Bangkok

Recruitment locations 45 public and private outpatient clinics across Hong Kong
(population 7 million).

Outpatient department of a large pediatric public hospital
in Bangkok (population 8 million).

Study period January 2008–June 2009 April 2008–February 2011

Age of index cases Any age Children 1 m to 15 y of age

Eligibility of index case
(symptoms)

Presenting with at least two of: fever $37.8uC, cough,
sore throat, headache, runny nose, phlegm, and myalgia;
living with
at least two other people.

For ,2 years: fever .38uC and one or more of the
following
symptoms; nasal congestion, cough, conjunctivitis,
respiratory
distress, sore throat, new seizure. For .2 years:
Presenting with influenza-like illness (fever plus cough or
sore throat);
living with at least two other people.

Exclusion criteria Recent (within 14 d) acute respiratory
illness in any
household member

Recent (within 7 d) influenza-like illness in any household
member;
recent (within 12 m) influenza vaccination in any
household member.

Hand hygiene intervention Distribution of alcohol hand rub to each household member
in addition to liquid hand soap
to the household

Distribution of liquid hand soap to the household

Measurement of body
temperature

All households were provided and instructed in the use
of a free tympanic thermometer and
asked to record their body
temperature daily.

Thermometers were not provided to households,
and participants recorded either measured body
temperature or ‘feverishness’.

doi:10.1371/journal.pone.0108850.t001
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control plus facemasks and hand hygiene interventions. A home

visit was scheduled as soon as possible after randomization to

implement the intervention, collect baseline demographic data

and NTS specimens from all household contacts aged $2 years,

and to describe the information to be recorded in daily symptom

diaries. Further home visits were scheduled at 3 and 6 days after

the first home visit to monitor adherence to intervention and to

collect further NTS specimens from all household contacts

regardless of illness. The two study protocols were very similar,

and notable differences are summarized in Table 1.

All NTS specimens were tested by reverse-transcription

polymerase chain reaction (RT-PCR) for influenza A and B

Table 2. Characteristics of index cases with confirmed influenza B virus infection and their household contacts in Hong Kong, by
intervention group.

Control Hand hygiene Face mask+hand hygiene

Characteristics n (%) n (%) n (%)

Index cases 35 36 33

Age group

#5 y 5 (14%) 3 (8%) 4 (12%)

6–15 y 25 (71%) 21 (58%) 21 (64%)

.16 y 5 (14%) 12 (33%) 8 (24%)

Male 16 (46%) 19 (53%) 10 (30%)

Median household size (IQR) 4 (3, 5) 4 (3, 4) 4 (3, 5)

Household contacts 112 101 106

Age group

#5 y 6 (5%) 1 (1%) 5 (5%)

6–15 y 13 (12%) 12 (12%) 12 (11%)

16–30 y 21 (19%) 17 (17%) 17 (16%)

31–50 y 58 (52%) 48 (48%) 51 (48%)

.50 y 14 (12%) 23 (23%) 21 (20%)

Male 39 (35%) 40 (40%) 46 (43%)

Received seasonal influenza vaccination in the previous 12 m 15 (13%) 12 (12%) 14 (13%)

doi:10.1371/journal.pone.0108850.t002

Table 3. Characteristics of index cases with confirmed influenza B virus infection and their household contacts in Bangkok, by
intervention group.

Control Hand hygiene Face mask+hand hygiene

Characteristics n (%) n (%) n (%)

Index cases 37 38 38

Age group

#5 y 12 (32%) 14 (37%) 10 (26%)

6–15 y 25 (68%) 24 (63%) 28 (74%)

.16 y 0 (0%) 0 (0%) 0 (0%)

Male 24 (65%) 23 (61%) 23 (61%)

Median household size (IQR) 2 (2, 3) 3 (2, 3) 3 (2, 5)

Household contacts 84 91 89

Age group

#5 y 1 (1%) 5 (5%) 4 (4%)

6–15 y 10 (12%) 14 (15%) 10 (11%)

16–30 y 13 (15%) 18 (20%) 15 (17%)

31–50 y 49 (58%) 41 (45%) 37 (42%)

.50 y 11 (13%) 13 (14%) 23 (26%)

Male 35 (42%) 39 (43%) 33 (37%)

Received seasonal influenza vaccination in the previous 12 m 0 (0%) 0 (0%) 0 (0%)

doi:10.1371/journal.pone.0108850.t003
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viruses using standard methods as described elsewhere [22,23]. In

the present analyses only the households of index cases with RT-

PCR-confirmed influenza B virus infection are included; results for

index cases with influenza A were reported elsewhere [9].

In the present analyses, we used data on influenza B virus

transmission in families from the studies in Hong Kong and

Bangkok. Specifically, we identified all index cases with confirmed

influenza B virus infection, and their household contacts. We then

determined which household contacts had RT-PCR confirmed

infection, the corresponding times of illness onset, and whether

fever and cough were reported. In the analyses we also used the

allocated intervention group for each household, and the age of

each household contact.

Ethics Statement
All subjects 18 years of age and older gave written informed

consent, and proxy written consent was obtained from parents or

legal guardians for children aged 17 years old or younger. The

protocols for the studies in Hong Kong and in Bangkok were

approved by Institutional Review Board of the University of Hong

Kong, and the Institutional Review Board of Queen Sirikit

Hospital Bangkok, respectively [22,23].

Statistical Analysis
We used the Nelson-Aalen non-parametric estimator of the

cumulative hazards of infection with or without febrile disease plus

cough in each intervention group [24]. We constructed a

competing risks survival analysis model that accounted for the

alternative modes of transmission and used it to infer the relative

importance of alternative modes of transmission assuming that the

risk of fever plus cough higher in aerosol transmission, compared

with the other two modes. We assumed independent hazards over

time of influenza transmission in households with one or more

secondary cases. The cause-specific probability of aerosol trans-

Figure 1. Cumulative hazards of RT-PCR-confirmed influenza B virus infections presenting with fever plus cough or not presenting
with fever plus cough, among the household contacts in 104 and 113 households of index cases with RT-PCR-confirmed influenza
B virus infection in Hong Kong and Bangkok, respectively.
doi:10.1371/journal.pone.0108850.g001
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mission was estimated to measure the relative contribution of

aerosol transmission among all three modes.

A mixture model was used to allow for a certain proportion (h)

of subjects to be immune or not exposed, with the density of

infection described as f tð Þ~ 1{hð Þfu tð Þ, where fu tð Þ is the

probability density function for the exposed and susceptible group.

The time to infection (T) for each of three modes of transmission

was assumed to follow a Weibull distribution with an identical

shared shape parameter (w) and mode-specific scale parameters

(lj ). The sub-hazards for modes of transmission, j = 1, 2 and 3

representing contact, large droplets and aerosols respectively were

written as follows:

hu1 Ti,Xhi,Xmið Þ~wlw
1T

w{1
i exp b1Xhið Þ, where b1~ log 1{r1ð Þ;

hu2 Ti,Xhi,Xmið Þ~wlw
2T

w{1
i exp b2Xmið Þ, where b2~ log 1{r2ð Þ;

hu3 Ti,Xhi,Xmið Þ~wlw
3T

w{1
i ,

where Xhi=Xmi are the dichotomous indicator variables represent-

ing the allocation of hand hygiene/surgical mask interventions

respectively to individual i, and r1=r2 represent the relative risk

reductions in contact/large droplet transmission by hand hygiene/

surgical masks respectively. We assumed that the risk of fever plus

cough caused by infections follows a Bernoulli distribution with

mean parameter pj , j = 1, 2, 3 for three arms, respectively. We

estimated w,l1,l2,l3,p1,p2,p3,h1,h2. We were unable to estimate

r1 and r2 so we examined the estimates of the other parameters for

a range of values of r1 and r2. Further technical details of the

model are provided in an earlier publication [9].

We performed statistical inference under a Bayesian framework,

using Markov chain Monte Carlo (MCMC) to obtain parameter

estimates from the posterior distributions [25]. We specified flat

priors for each parameter. For each MCMC chain we ran 120,000

iterations, discarding the first 20,000 iterations as burn-in, and

drawing every tenth subsequent value to compose the posterior

distribution. All the statistical analyses were conducted in R

version 2.15.1 (R Foundation for Statistical Computing, Vienna,

Austria).

Results

In Hong Kong and Bangkok there were 104 and 113

households, respectively, with an index case with RT-PCR-

confirmed influenza B virus infection. The characteristics of index

cases and their household contacts are shown in Tables 2 and 3 for

Hong Kong and Bangkok respectively. We examined the

cumulative hazard of RT-PCR-confirmed influenza B virus

infections for household contacts, and found increases in the risk

of infection with fever plus cough, and decreases in the risk of

infection without fever plus cough, in the intervention arms

compared to the control arm. The change was particularly

apparent in the households in Bangkok (Figure 1). To be more

specific, we found a statistically significant decrease in the risk of

infection without fever plus cough, in the hand hygiene plus face

masks arm compared to the control arm in the households in

Bangkok.

Under the scenario where randomization to the hand hygiene

intervention reduced contact transmission by 50% while random-

ization to face mask and hand hygiene interventions reduced both

contact and droplet transmission by 50%, we fitted the transmis-

sion model to the Hong Kong and Bangkok data. We estimated

that in the absence of interventions, aerosol transmission was

responsible for 37% and 26% of secondary infections in Hong

Kong and Bangkok, respectively (Table 4). We also varied the

assumed efficacy of hand hygiene and face masks from 0% to

100% and estimated the relative importance of aerosol transmis-

sion in the absence of interventions, which ranged from

approximately 20% to 80% in Hong Kong and 20% to 32% in

Bangkok (Figure 2).

Table 4. Point estimates and 95% credible intervals of model parameters under an exemplar plausible scenario that hand hygiene
and surgical face masks reduced contact and droplet transmission respectively by 50% from the time of application of those
interventions.

Hong Kong
(104 households
with 319 contacts)

Bangkok
(113 households
with 264 contacts)

Parameters Estimate (95% CI) Estimate (95% CI)

q Shape of the Weibull distribution 2.16 (1.30, 3.12) 0.77 (0.39, 1.28)

l1 Force of contact transmission* 0.18 (0.01, 0.40) 0.16 (0.01, 0.48)

l2 Force of droplet transmission* 0.20 (0.01, 0.40) 0.07 (0.00, 0.24)

l3 Force of aerosol transmission* 0.22 (0.02, 0.38) 0.08 (0.00, 0.25)

p1 Risk of fever plus cough for
infections by contact route

23% (1%, 66%) 25% (1%, 63%)

p2 Risk of fever plus cough for
infections by droplet route

24% (1%, 60%) 31% (2%, 75%)

p3 Risk of fever plus cough for
infections by aerosol route

56% (26%, 97%) 72% (41%, 99%)

h1 Proportion of household adults
immune or not exposed

90% (85%, 94%) 65% (45%, 79%)

h2 Proportion of household
children immune or not exposed

69% (54%, 82%) 61% (34%, 82%)

*The forces of infection in combination with a shared shape parameter determine the hazard associated with each competing mode of transmission. The relative
contribution of each mode j is calculated as the cause-specific probabilities lw

j = lw
1zlw

2zlw
3

� �
.

doi:10.1371/journal.pone.0108850.t004
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We compared the cause-specific probabilities of each mode of

transmission as well as the associated illnesses in the control arm

for influenza A and B virus infections, in Hong Kong and Bangkok

respectively (Figure 3). Data for influenza A were extracted from a

previous report [9]. Both influenza A and B virus infections

attributed to aerosol transmission were associated with a higher

risk of fever plus cough, compared with the other two modes of

transmission. The point estimates of aerosol transmission were

lower for influenza B compared to influenza A in both Hong Kong

and Bangkok.

Discussion

We propose that the mode of spread associated with an

influenza B virus infection affects the probability of experiencing

fever plus cough for that infection. Based on that hypothesis, we

estimated that approximately 37% and 26% of transmission was

via the aerosol mode in households in Hong Kong and Bangkok,

respectively. However, we should exercise caution in interpreting

these findings because we have not been able to find literature

supporting the anisotropic nature of influenza B virus infection,

whereas we previously described literature supporting this

Figure 2. The relative importance (cause-specific probability) of aerosol transmission in households in Hong Kong and Bangkok.
The contour lines show the proportion of secondary influenza B virus infections attributed to aerosol transmission in the control arm of each study,
under varying assumptions about the efficacy of randomization to the hand hygiene and surgical mask interventions in reducing contact (x-axis) and
droplet (y-axis) transmission respectively.
doi:10.1371/journal.pone.0108850.g002

Figure 3. The proportion of all influenza A and B virus infections attributed to each mode in the control arms of the studies in Hong
Kong (blue) and Bangkok (brown), and the infections associated with fever plus cough (darker shade) or not associated with fever
plus cough (lighter shade). Data shown on influenza A were extracted from a previous study [9]. The contributions of the three modes sum to
100% within each geographic location and influenza type.
doi:10.1371/journal.pone.0108850.g003

Modes of Influenza B Virus Transmission

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e108850



property for influenza A virus infections [9]. Nevertheless, patterns

in secondary infections and disease in the controlled trials in Hong

Kong and Bangkok were consistent with this hypothesis (Figure 1).

This also implicitly suggested that though hand hygiene and face

masks could reduce the risk of transmission through contact or

large droplets, but meanwhile increase the risk of aerosol

transmission, which was associated with a greater risk of illness

with fever plus cough.

Whereas we previously estimated that approximately half of

within-household transmission of influenza A virus could be

associated with aerosols [9], here we estimated a slightly reduced

importance of aerosols for influenza B virus (Figure 3). One

explanation for such a difference could be the age mix of cases of

influenza A versus B, if aerosol transmission were more important

among adults than children. We did not have sufficient sample size

in the present study to examine whether modes of transmission

might vary by age, but this would be an interesting area for further

exploration.

If aerosol transmission is indeed an important mode of spread of

influenza B virus, this may have important implications for control

efforts. In particular measures targeting contact transmission, such

as hand hygiene, and measures targeting large respiratory droplet

transmission, such as surgical face masks, may not be sufficient to

substantially reduce the risk of transmission. Control measures that

might reduce aerosol transmission indoors include improvement in

ventilation [26], modification of humidity [27], or the use of

personal protective equipment that is more effective against

aerosols than surgical masks. While the use of N95 respirators may

not be practical in community settings and fit-testing is unlikely

although required for optimal performance, other types of face

masks with improved filtration compared to standard surgical

masks or procedure masks may be available in the future.

There are a number of limitations to our analysis. First, our

model did not include the possibility of variability in infectiousness

between index cases, variability in immunity to different modes of

transmission, or variability in within-household transmissibility

associated with physical dimensions of the home, ventilation rates

etc, and inclusion of these or other factors potentially affecting

transmission dynamics could be natural extensions to our model.

Because interventions were allocated randomly among house-

holds, the possibility of confounding should be minimized. Second,

our model implicitly assumes that only the first infectious exposure

is relevant to susceptible contacts, and once infected by that first

exposure, further exposures are unimportant. Our model could be

modified to allow for multiple simultaneous exposures by one or

more modes, if it were understood how this might affect the course

of disease. Third, while we assumed that all infections of household

contacts during the 7-day follow-up were acquired within the

household, it is possible that some infections were acquired

outside. However in a separate study with a similar design in Hong

Kong we used molecular epidemiology analyses of virus sequence

data to demonstrate that most secondary influenza cases acquired

infection from within the household [28], and a similar

observation was reported in a household transmission study in

Canada [29]. Fourth, it is possible that some secondary influenza

virus infections were not confirmed due to poor quality specimens

collected during home visits, or if peak influenza B viral shedding

in the respiratory tract occurred between home visits at 3-day

intervals. We did include serological data although this could have

provided additional information on infections among household

contacts. Fifth, by recruiting in outpatient clinics and using a rapid

test to screen index cases, we may have introduced selection bias

towards index cases with more serious illness or higher levels of

virus shedding, affecting the relative importance of different modes

of transmission. Finally, we did not explicitly account for imperfect

adherence to the interventions, although the parameters in our

model account for moderate efficacy of interventions against

specific modes of transmission. Further improvements in the

model might be obtained by incorporating limited data on

adherence that was mainly self-reported by participants.

In conclusion, we propose that the aerosol route may be an

important mode of transmission of influenza B virus in households.

Further studies of non-pharmaceutical interventions in households

would be improved by more careful monitoring of viral

contamination on surfaces [30,31] and in the air, and inclusion

of this information in transmission models.
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