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Abstract 

Investigation of the hydraulic aspects of spillways is one of the important issues regarding hydraulic structures. This study 

presents a modified horseshoe spillway (MHS) constructed by adding a flow passage and an internal weir in the bed of a 

classical horseshoe spillway (CHS). This modification increased the discharge efficiency and eliminated the rooster-tail 

hydraulic jump in CHSs. Eighteen laboratory-scale MHSs in various geometric sizes, six various CHSs, and a rectangular 

weir of the same width were constructed and tested under the same flow conditions. Results showed that in terms of 

discharge efficiency and water head reduction, CHSs and MHSs were superior to the rectangular weir. Compared to CHSs, 

the increased discharge flowrate in MHSs due to the internal weirs could further reduce the water head and thus increased 

their overall efficiencies. Design parameters effecting spillways’ discharge efficiencies were investigated based on 
dimensional analysis. The internal to external weir length ratio in MHSs was found to be a key design factor. To determine 

the optimal geometric design of CHS and MHS models, cubic polynomial models considering dimensionless parameters 

and their interactions were fitted to the experimental results. The cubic models revealed that higher discharge efficiencies 

in MHSs tended to occur at relatively low water heads and high internal to external weir lengths ratios. 

Keywords: Curved Spillways; Discharge Coefficient; Dimensional Analysis; Stage-discharge Equation; Hydraulic Structures; Dam Construction. 

 

1. Introduction 

The main objective of building a spillway is to safely convey the excess flood from a reservoir to the downstream of 

a dam. According to the U.S. Bureau of Reclamation [1], a spillway usually consists of a control structure to control 

flow of water, a chute or conduit to convey water out of the reservoir, and a terminal stilling basin to dissipate the energy 

of water flowing downstream of the dam. The weir length in a spillway is one of the most important parameters to control 

the spillway’s discharge capacity [2]. The flowrate in a standard weir can be calculated as [2, 3]: 

3 / 22

d 3
Q C L 2gh   (1) 

Where Q (m3/s) is the discharge flow, h (m) is the water head over the spillway, g (m2.s-1) is the acceleration due to 

gravity, L (m) is the spillway crest length, and Cd is the discharge coefficient. 

In the plan-view, spillways can have various shapes, including labyrinth, curved, and straight (known as rectangular 

weir) [4]. A labyrinth spillway is a corrugated form of a rectangular weir whose overall crest length is elongated in order 
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to obtain a higher discharge efficiency [5]. Similarly, the increased crest length of curved spillways can enhance their 

overall discharge efficiency. Horseshoe, duckbill, and semi-circular spillways are common forms of curved spillways. 

Generally, when compared to standard rectangular weirs, curved and labyrinth spillways have some advantages, 

including increased effective length, less flow fluctuations within the intake channel, a greater flow aeration ability, and 

the capability to convey a greater flow rate with a smaller change in the water head over the spillway [2]. In places where 

topographic conditions restrict the width of the approach channel, labyrinth spillways can be employed to concentrate 

the discharge into a chute or narrow conveyor. This would significantly reduce the spillways’ approach excavation [6,7]. 

In order to develop an equation for predicting the head discharge in submerged labyrinth weirs, Tullis et al. [8] 

investigated the dimensionless relationship of the water head over the weir to the weir’s height ratio, the length 
magnification which is the sidewall’s length to the width of a single labyrinth weir cycle, the side wall angle, and the 

vertical aspect ratio 

 Crookston [9] investigated the discharge coefficient of labyrinth spillways using physical labyrinth spillways models 

with sidewall angles ranging from 6º to 35º with semi-circular and quarter circular crests. Results showed that the 

labyrinth spillways with a semi-circle crest had higher performance when h/p > 0.4. Crookston and Tullis [10] tested the 

hydraulic performance of linear and half-round arced labyrinth weirs with 6º and 12° sidewall angles and compared their 

results to half-round crest horseshoe weirs. They observed a local submergence in the labyrinth weirs with increasing 

upstream head on the weirs. However, despite local submergence, they found that arced labyrinth weirs had higher 

discharge capacities than horseshoe weirs. Seamons [11] investigated the effects of upstream apex width, sidewall angle, 

and channel width on the discharge efficiency of labyrinth spillways. Seamons [11] tested various laboratory-scale 

labyrinth weirs with sidewall angles of 12° and 15° with different upstream apex widths under flow conditions of 

0.1<h/p<0.8. Results agreed with those of Crookston's study [9] on half-round trapezoidal arced labyrinth weirs with 

sidewall angles of 6° and 12°. Kaya et al. [12] investigated effects of geometric parameters on discharge capacity of 

semi-elliptical side spillways under subcritical flow conditions. They studied the effects of dimensionless length of 

spillway, dimensionless effective length, dimensionless height, dimensionless ellipse radius, and upstream Froude 

number on the discharge coefficient. Their results indicated that the discharge coefficient of a semi-ellipse spillway 

generally was higher than that of a classical side spillway. Tiwari and Sharma [13] used physical models to investigate 

hydraulic efficiencies of an ogee and a piano key weir in a laboratory flume. Their results indicated that reducing the 

water head over the weir enhanced the efficiency of both types of spillway. Lapotre and Lamb [14] investigated the 

acceleration of upstream water into horseshoe canyons and waterfalls. Their numerical experiments revealed that normal 

flow, the Froude number, the ratio of the flood’s width relative to the lateral backwater length and the canyon’s width, 
and the ratio of canyon’s downslope length to backwater length were the key factors influencing the acceleration factor 
around a canyon’s brink. Dabling and Tullis (2018) [3] experimentally studied the influence of approach flow angle on 

the hydraulic efficiency of labyrinth weirs. They investigated the head–discharge characteristics for three different 

approach flow angles of 0°, 15°, and 45°. Compared to an approach flow angle of 0°, they reported no decrease in 

discharge efficiencies for approach flow angles < 15°, but 11% decrease for an approach flow angle of 45°.  

Despite merits claimed in the literature, most studies on nonlinear spillways focused on labyrinth spillways. To the 

best knowledge of the authors, there are only a limited number of studies conducted on horseshoe spillways [6, 10, 14] 

There is a lack of study particularly focused on horseshoe spillways to characterize and optimize their hydraulic behavior. 

This study presents a modified version of horseshoe spillway by adding an additional flow passage and an internal 

weir to the classical horseshoe spillway, thereby allowing more flow of water entering the trough. Eighteen different 

geometric designs of laboratory-scale modified horseshoe spillways (MHSs) were constructed and tested under different 

flow conditions. For comparison, six various classical horseshoe spillways (CHSs) having the same sizes as MHS 

models, and a rectangular weir having the same width as CHS and MHS models were constructed and tested under the 

same flow conditions. This is the first study that investigates effects of geometric design on various hydraulic 

characteristics including discharge coefficient, water head, and flow profile in classical and modified horseshoe 

spillways. Factors affecting discharge coefficient in CHS and MHS models were determined based on dimensional 

analysis. Finally, cubic regression models were fitted to the experimental data, and subsequently used to determine the 

optimized geometric designs yielding the highest efficiencies in both CHS and MHS spillways. 

2. Materials and Methods 

2.1. Modification of Classical Horseshoe Spillways 

In a CHS, the surplus water overflows from the right, left, and curved walls. The overflowing water in the trough 

then is conveyed through a chute to the downstream of the dam. Figure 1a shows a schematic CHS, and Figures 1b and 

1c show the flow in a laboratory-scale CHS model built in this study. In order to improve the efficiency of the CHS, a 

modified version of horseshoe spillways (MHS) was constructed by introducing an opening and an internal weir into 

the middle of the CHS’s trough (Figure 1d) to allow more flow of water entering the trough. Figures 1e and 1f show the 

flow in a laboratory-scale MHS model constructed in this study. 
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Figure 1. (a) Schematic diagram of a CHS, (b) view from the downstream and (c) view from the top of a laboratory-scale 

CHS model; (d) schematic diagram of an MHS, (e) view from the downstream and (f) view from the top of a laboratory-

scale MHS model 

2.2. Laboratory-scale Sizes of CHS, MHS, and Rectangular Spillways  

In this study, six various CHS models, eighteen various MHS models, and a rectangular spillway were constructed 

using Plexiglas®. Sample pictures and videos of constructed CHS, MHS, and rectangular spillways could be found in 

the supplementary files (Figure S1 in supplementary word file and videos S1 and S2). The CHS models had various 

weir lengths of 76.0, 88.0, 100.0, 112.0, 124.0, and 136.0 cm. Each CHS model consisted of a semi-elliptical segment, 

two straight parallel walls, and a floor with a slope of 0.036. The length and semi-minor axis of the semi-elliptical 

segment in all CHS models were fixed at 74.0 cm and 23.0 cm, respectively. To construct six different sizes of CHS 

models, two parallel walls were varied in six different lengths of 1.0, 7.0, 13.0, 19.0, 25.0, and 31.0 cm, resulting in total 

weir lengths of 76.0, 88.0 100.0, 112.0, 124.0, and 136.0 cm. The height of the semi-elliptical wall in all CHS models 

at the most upstream of the spillways was 15.0 cm. Plan and section views of CHS models are shown in Figure 2a.  

Geometric design of MHS models was similar as CHSs, but with an additional internal wire constructed by 

introducing a duct in the spillway’s bed and erecting walls around it in the spillway’s trough. For the internal weir 

lengths in MHS models, 1:2.5, 1:5, and 1:10 scales of the largest CHS model with a total weir length of 136.0 cm were 

constructed. These three different scales resulted in the total weir lengths of 54.4 cm, 27.2 cm, and, 13.6 cm, and semi-

minor axes of 9.2 cm, 4.6 cm, and 2.3 cm, respectively, for the internal weirs in MHSs. Figure 2b shows plan and section 

views of MHS models. Detailed information about dimensions of different CHS and MHS models is presented in Table 1.  

In addition, a straight rectangular weir with a width of 46.0 cm, the same as widths of CHS and MHS models, was 

also constructed and its experimental results were compared with those of the CHS and MHS models.  

 

 

 

 

 

 

 

 

 

 

Figure 2. Plan and section views of (a) CHS, and (b) MHS models. Water flow directions from the upstream to the 

downstream are shown by arrows. All length numbers are in cm 
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Table 1. Dimensions of different constructed CHS, MHS, and rectangular weir models used in experiments 

Spillway 

type 

External weir’s 
semi-minor axis, cm 

Length of semi-elliptical 

segment in the external 

weir, cm 

Total length of the 

external weir 

(Lext), cm 

Internal weir’s semi-
minor axis, cm 

Total length of the 

internal weir (Lint), cm 

CHS 23.0 74.0 
76.0, 88.0, 100.0, 

112.0, 124.0, 136.0 
N/A N/A 

MHS 

23.0 74.0 
76.0, 88.0, 100.0, 

112.0, 124.0, 136.0 
9.2 54.4 

23.0 74.0 
76.0, 88.0, 100.0, 

112.0, 124.0, 136.0 
4.6 27.2 

23.0 74.0 
76.0, 88.0, 100.0, 

112.0, 124.0, 136.0 
2.3 13.6 

Rectangular N/A N/A 46.0 N/A N/A 

2.3. Experimental Setup 

Water supply system used in this study consisted of an underground pool equipped with a pump with a maximum 

flowrate of 60 L.s-1. The pump was used to transfer water from the underground pool to a free-surface cylindrical tank 

with a volume of 2.5 m3. The cylindrical tank was equipped with an internal weir to keep water at a constant level of 

3.7 m to maintain a constant water head in all experiments. An open-top rectangular cube with dimensions of 180 cm 

length × 100 cm width × 120 cm height was used as the main reservoir. The crest heights in both CHS and MHS were 

95 cm above the reservoir’s bed. In order to simulate quiescent conditions in the reservoir, a flow tranquilizer was 

employed at 100 cm upstream of the spillways. Figure 3a shows a schematic of the experimental setup.  

The flow tranquilizer was made of two meshed-metallic frames (100 cm width × 120 cm height) with 10 cm distance 

in between. The distance between the frames was filled with wool fabrics and gravel with a grain size ranging from 10.0 

mm to 18.0 mm. The use of a flow tranquilizer resulted in velocities of less than 6 cm.s-1 at spillway’s crest elevation. 

2.4. Experimental Measurements 

The inflow water head was measured at 60.0 cm upstream of the spillways using a point gauge. Current velocity was 

measured with a micro-current meter. Using a point gauge with an accuracy of ±0.1 mm, flow profiles over and inside 

the spillways were measured every 2.0 cm along the A-A and B-B axes shown in Figure 2. The total outflow discharge 

from the spillways was measured using a stilling basin equipped with a calibrated triangular spillway, with an apex angle 

of 53º 8´ at the downstream of stilling basin (see Figure S3 in supplementary information). The relationship between the 

discharge flowrate and the water head overflowing the triangular weir was calculated as [15]: 𝑄 =  8/15 √2𝑔 𝐶𝑑𝑒  𝑡𝑎𝑛  𝜃/2 𝐻𝑑2.5   (2) 

Where Q (m3 s-1) is discharge flow, g (m.s-2) is gravitational acceleration, Cde is the discharge coefficient, θ is the apex 

angle of triangular weir, and Hd is the water head overflowing the triangular weir. Rating curve of the triangular weir 

downstream of the model is presented in Figure 3b. 

 

(a) (b) 

 

Figure 3. (a) Schematic of the experimental setup, and (b) rating curve of a triangular weir used 

2.5. Experimental Design 

In this study, three sets of experiments were conducted using CHS, MHS, and rectangular spillways to investigate 

the hydraulic efficiency of spillways under a variety of flow conditions. Table 2 describes the objectives of different 

experiments. 
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Table 2. Description of experiments for investigating hydraulic efficiency of spillways under various flow conditions 

Set No. Description Variable parameters Objective(s) 
Number 

of tests 

1 Experiments on CHSs Flowrate, water head, spillway’s weir length To investigate hydraulic efficiency of CHSs 42 

2 Experiments on MHSs 

Flowrates in internal and external weirs, 

water head, internal and external weir 

lengths 

To investigate hydraulic efficiency of MHSs 126 

3 
Experiments on 

rectangular weir 
Flowrate, water head 

To compare hydraulic efficiency of the 

rectangular weir with CHS and MHS models 
7 

In the first set of experiments, six different CHS models were tested under various water heads and flowrates 

conditions. The second set of experiments was conducted on eighteen different MHS models, and the third set of 

experiments was conducted on a straight rectangular weir. In all three experimental sets, hydraulic efficiency of 

spillways was investigated under seven different flowrates of 7.5, 8.5, 9.5, 10.5, 11.5 12.5, and 13.5 L.s-1. 

2.6. Calculation of Discharge Coefficients 

Equation 1 was used to calculate the discharge coefficient through CHSs and external weirs in the MHSs. Since an 

MHS is a combination of a CHS (external weir) and an internal weir, the total discharge (Q) through the entire MHS 

consisted of discharges through the external and internal weirs, expressed as: 

 𝑄 =  𝑄1  +  𝑄2  (3) 

Where Q1 and Q2 are the discharge overflowing the external and internal weirs, respectively. As mentioned, Equation 2 

was used to calculate the total discharge (Q) based on the water head measured at the downstream triangular weir. To 

obtain stage-discharge equations for different weir lengths of CHSs (that functioned as the external weirs in MHSs), 

steady-state water heads above the weirs of all CHS models at various flowrates were measured. Then, by fitting a non-

linear least-square regression model to the flowrate and water head (h) data points, a stage-discharge equation for each 

weir length was obtained. Table 3 summarizes the stage-discharge equations obtained for various CHS sizes.  

Table 3. Stage-discharge equations obtained for different CHS sizes that functioned as external weirs in MHS models 

Weir length (cm) Stage-discharge equation R2 

76.0 Q1 = 1.363 × h1.5 0.979 

88.0 Q1 = 1.657 × h1.5 0.975 

100.0 Q1 = 1.966 × h1.5 0.994 

112.0 Q1 = 2.191 × h1.5 0.981 

124.0 Q1 = 2.321 × h1.5 0.968 

136.0 Q1 = 2.622 × h1.5 0.947 

 

Values of Q1 in MHS models were determined based on the stage-discharge equations obtained for CHS models of 

the same size. Having the values of Q from the downstream triangular weir and Q1 values obtained from the stage-

discharge equations (Table 3), discharge overflowing the internal weirs (Q2) in MHSs were determined according to 

Equation 3.  

The equal elevations of the internal and external weirs’ walls in MHSs resulted in equal water heads (h) above both 

the internal and external weirs. The values of Q2, h, and length of the internal weir were substituted into Equation 1 and 

the discharge coefficient for the internal weirs in MHS models were also calculated. 

2.7. Dimensional Analysis of CHSs and External Weirs in MHSs 

The discharge coefficient in a spillway can be described as a function of parameters affecting the flow of water in the 

spillway. Dimensional analysis based on π-Buckingham theorem can be employed to determine the dimensionless 

parameters affecting the efficiency of a spillway. Applying dimensional analysis, the discharge coefficient in CHSs, Cc, 

can be written as [16-19]: 𝐶𝑐  =  𝑓 (ℎ 𝑝⁄  , 𝐿𝑒𝑥𝑡 𝑝⁄ )  (4) 

Where, h is water head above the spillway, p is spillway’s height from the reservoir’s bed, Lext is the spillway’s weir 
length, and b is the width of the spillway. 

Similarly, the discharge coefficient for the internal weirs in MHSs, Cint, can be written as [16-19]: 
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𝐶𝑖𝑛𝑡  =  𝑓 (ℎ 𝐿𝑒𝑥𝑡⁄ , ℎ 𝑝⁄ , ℎ 𝐿⁄ 𝑖𝑛𝑡)  (5) 

Where, Lint is internal weir length. In this study the heights of both internal and external weir walls from the reservoir’s 
bed were the same, resulting in equal values of p for both the internal and external weirs in MHS models. 

More details regarding dimensional analysis and simplifications used for deriving Equations 5 and 6 can be found in 

the supplementary information. 

2.8. Statistical Analysis and Design Optimization of Spillways 

From an economical point of view, the main objective in design of a spillway is to reduce spillway’s size while still 
obtaining a desired discharge flowrate. Hence, the interactions between the spillway size and the water head, as well as 

their effects on the discharge efficiency needs to be taken into account.  

In order to consider the simultaneous effects of independent dimensionless parameters and their interactions on the 

discharge efficiency of spillways, cubic polynomial models were fitted to the experimental results from both CHS and 

MHS models. A cubic model with Cc as the response (dependent variable) and h/p and Lext/b as the independent variables 

were considered for CHSs, and a separate cubic model with Cint as the response (dependent variable) and h/p and Lint/Lext 

as the independent variables were considered for the internal weirs in MHSs. Analysis of variance (ANOVA) was 

performed to ensure the statistical significance of the independent variables and their interactions in the fitted cubic 

models. All statistically non-significant interactions (p-value > 0.05) were excluded from the cubic models in a stepwise 

manner, and the subsequent reduced cubic models were used to evaluate the optimal geometric design of the spillways.  

3. Results and Discussion 

3.1. Flow Pattern in CHS and MHS Models 

Experiments conducted on CHSs showed that a cross-sectional flow profile inside a CHS could be divided into two 

parts: 1) the two overflowing nappes from the sidewalls and the stream between them, and 2) water flowing between 

the spillway’s walls and the two overflowing nappes from the side walls. Figure 4a shows that in a CHS, the stream 

overflowing the curved segment collided with the streams overflowing the side walls, resulting in the creation of a 

rooster tail jump in spillway’s trough. The cross-sectional flow profile in the MHS could be divided to three parts: (1) 

overflowing nappes from the external and internal weirs and the stream between them, (2) flow behind the nappes of 

the external weir, and (3) flow behind the nappes of the internal weir (see Figure 4b).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. (a) Flow in a CHS showing: (1) overflowing nappe from the sidewall, (2) stream between the overflowing nappes, 
(3) rooster-tail jump, and (4) flow behind the overflowing nappe; (b) flow in an MHS showing: (1) overflowing nappe from 
the external weir, (2) overflowing nappe from the internal weir, (3) flow behind the overflowing nappe of the internal weir, 
and (4) flow behind the overflowing nappe of the external weir 
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Figure 5 shows the measured cross-sectional and longitudinal flow profiles in CHS and MHS models with different 

weir lengths at a total flowrate of 11.5 L.s-1. 

Figure 5. Cross-sectional and longitudinal profiles along A-A and B-B axes for (a, b) CHSs and (c, d), MHSs with an 
internal weir length of 54.4 cm (Q = 11.5 L s-1, Lext values are in cm, A-A and B-B axes are shown in Figure 2) 

As seen in the cross-sectional profiles of the flow in CHSs (Figures 5a and 5b) for a constant discharge, reducing the 

weir length increased the water head over the spillway, which subsequently resulted in an increase in the distance of the 

overflowing nappe from the spillway’s walls. In addition, reducing the weir length increased both the height and length 
of the rooster-tail jump in CHSs. 

For MHSs, Figures 5c and 5d show that decreasing the length of external weir (Lext), increased the water level in both 

the cross-sectional and longitudinal profiles. Decreasing the external weir length in MHS models increased the distance 

between the junction of the two overflow nappes and the spillway’s bed.  

Comparison of the flow profiles in CHS and MHS models shows that the addition of internal weirs to a CHS could 

eliminate the formation of the rooster-tail jump, hence increasing the durability of the spillway’s structure. 

3.2. Head Reduction in CHS and MHS Models  

Figure 6 shows the experimental results of water head measurements and compares the water head over CHS and 

MHS models with a rectangular spillway of the same width under the same flow conditions. As seen from Figure 6, 

significantly greater water heads occurred in the rectangular weir compared to CHS and MHS models, in all the 

experimented flowrates. In addition, the water heads over the MHSs were considerably lower than the heads in CHSs. 
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Figure 6. Water heads over MHS models with three different internal weir lengths of 13.6, 27.2, and 54.4 cm having different 

external weir lengths of (a) 76.0 cm, (b) 88.0 cm, (c) 100.0 cm, (d) 112.0 cm, (e) 124.0 cm, and (f) 136.0 cm, compared to 

water heads over CHS and a rectangular weir of the same width 

As Figure 6 shows, effects of increasing the internal weir length on water head reduction in MHSs were more 

pronounced in spillways having smaller external weir lengths. For instance, the water head over an MHS with internal 

and external weir lengths of 54.4 cm and 76.0 cm, respectively, was 30% lower than a CHS of the same weir size. 

However, water head in an MHS with internal and external weir lengths of 54.4 and 136.0 cm was only 17% lower than 

for a CHS of the same external weir size. Reducing the water head in MHSs affected the fraction of water flowing 

through internal and external weirs. Figure 7 shows a comparative diagram of the contribution of various sizes of external 

weirs to the total discharge (Q) flowing through MHSs. As observed, increasing the external weir length (Lext) in MHSs 

increased the discharge overflowing the external weirs (Q1) and, consequently, decreased the discharge flowing through 

the internal weirs (Q2). Hence, shorter length of external weirs (i.e. smaller Lext) could increase the fraction of discharge 

flowing through the internal weirs. 
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Figure 7. Contribution of various sizes of external weirs to the total discharge flowing through the MHS models with 
internal weir lengths of (a) 13.6 cm, (b) 27.2 cm, and (c) 54.4 cm, at different flowrates 

3.3. Effects of h/p and Weir Length on the Discharge Coefficient in CHSs 

Figure 8 shows the effects of the dimensionless parameter h/p on the discharge coefficient (Cc) in CHSs, where a 

constant p of 95.0 cm was used in all the experiments. As Figure 8 shows, increasing h/p in all weir lengths resulted in 

a linear decrease of the discharge coefficients. Characteristics of the linear regression models fitted to the experimental 

data obtained from CHSs with different weir lengths are listed in Table 4.  

 

 

 

 

 

 

 

 

 

 

Figure 8. Variations in the discharge coefficient (Cc) versus h/p in CHSs having various external weir lengths and in a 
rectangular weir with a width of 46.0 cm. Dotted lines represent the fitted linear regression models 
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Table 4. Linear regression relationships obtained for the discharge coefficient in CHSs and rectangular weir for the 
dimensionless parameter h/p 

Weir type Weir length, cm Least-squares linear regression model R2 

Classical horseshoe spillway 

(CHS) 

76.0 Cc= -3.0373(h/p) +0.7737 0.962 

88.0 Cc= -3.5915(h/p) +0.7737 0.992 

100.0 Cc= -3.7564(h/p) +0.7893 0.992 

112.0 Cc= -4.5418(h/p) +0.8030 0.963 

124.0 Cc= -4.6089(h/p) +0.7756 0.991 

136.0 Cc= -7.6328(h/p) +0.8633 0.996 

Rectangular weir 46.0 CRect = -1.0873(h/p) +0.06816 0.927 

As seen in Figure 8 and Table 4, by increasing weir length (Lext) in CHSs from 76.0 to 136.0 cm, the slope of Cc 

versus h/p regression lines gradually decreased. Therefore, it can be concluded that CHS models with greater weir 

lengths could more efficiently reduce the greater water heads over the spillway. It was also shown in Figure 6 that CHSs 

with longer weir lengths could maintain lower water heads above their weirs. Figure 8 also shows that increasing the 

flowrate, in turn, increased the water head and thus decreased efficiencies of CHSs and the rectangular weir. 

In the dimensionless parameter Lext/b, the variable b for all the experiments was equal to a constant value of 46.0 cm; 

therefore, the values of Lext/b for all the experiments conducted on a specific weir length were also constant. Hence, 

the effects of Lext as the main variable in dimensionless parameter Lext/b on discharge efficiencies at different flowrates 

can also be inferred from Figure 8. Hence, due to constant values of Lext/b in all experiments conducted on a specific 

weir length, Cc versus Lext/b graphs were not plotted.  

3.4. Discharge Coefficient in MHSs 

3.4.1. Effects of the h/Lint Ratio on the Discharge Coefficient of Internal Weirs 

Figure 9 shows variation of discharge coefficient in internal weirs (Cint) versus h/Lint in MHSs with external weir 

lengths of 76.0, 112.0, and 136.0 cm. These three sizes were selected as the representative of short, medium, and long 

external weir lengths. Characteristics of the linear regression models fitted to the data points in Figure 9 (dotted lines) 

are listed in Table 5. 
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Figure 9. Variations in the discharge coefficient in the internal weirs (Cint) versus h/Lint, in MHSs with external weir 
lengths of (a) 76.0 cm, (b) 112.0 cm, and (c) 136.0 cm. Dotted lines represent the fitted linear regression models 

Table 5. Linear regression relationships between h/Lint and the discharge coefficient in MHSs (Cint) for different lengths of 
internal and external weirs 

External weir lengths 

(Lext), cm 

Internal weir lengths 

(Lint), cm 
Least-squares linear regression model R2 

76.0 

13.6 Cint = -1.2886(h/Lint) + 0.7232 0.990 

27.2 Cint = -2.3617(h/Lint) + 0.8284 0.990 

54.4 Cint = -2.2200(h/Lint) + 0.6584 0.932 

112.0 

13.6 Cint = -0.6865(h/Lint) + 0.5825 0.980 

27.2 Cint = 1.8399(h/Lint) - 0.3151 0.978 

54.4 Cint = 7.7328(h/Lint) + 0.9306 0.931 

136.0 

13.6 Cint = 1.0413(h/Lint) - 0.2340 0.915 

27.2 Cint = 3.8347(h/Lint) - 0.1355 0.946 

54.4 Cint = 12.2050(h/Lint) + 0.0080 0.973 

As seen from Figure 9a, when the external weirs in MHSs were small (Lext = 76.0 cm), increasing the water head over 

the spillway decreased the discharge efficiency of the internal weirs. This can be observed as the negative slopes for all 

three various sizes of the internal weirs. It could be inferred that in this situation, the internal weirs could not effectively 

accommodate the flowrate passing through them. Since increasing the size of the internal weirs could increase their 

capacities, higher efficiencies were observed as the size of the internal weirs increased (Figure 9a).  

It was previously shown in Figure 7 that increasing the size of the external weirs in MHSs from 76.0 to 112.0 cm 

decreased the fraction of water flowing through the internal weirs. Therefore, as shown in Figure 9b for Lext = 112.0 cm, 

a small internal weir of Lint = 13.6 cm still could not efficiently accommodate the fraction of water flowing through it. 

Hence, increasing the head resulted in bottlenecking, and thus, a decreasing trend in discharge coefficient was observed 

by increasing the water head over the spillway (Figure 9b, red diamonds). However, for Lext = 112.0 cm, by increasing 

the internal weir length to 27.2 or 54.4 cm (Figure 9b, green triangles and magenta squares, respectively), the efficiency 

of the internal weir increased. This reflected as positive slopes, indicating that bottlenecking did not occur. Increasing 

the external weir length to Lext = 136.0 cm (Figure 9c) could even further decrease the fraction of the flowrate passing 

through the internal weirs; thus, bottlenecking did not occur. Hence, by increasing the size of the internal weirs in MHS 

models, the positive slope of the Cint versus h/Lint also increased.  

3.4.2. Effects of the h/Lext Ratio on the Discharge Coefficient of the Internal Weirs 

Figure 10 shows variations in the discharge coefficient of internal weirs (Cint) versus h/Lext in MHSs with internal 

weir lengths of 13.6, 27.2, and 54.4 cm. Characteristics of the linear regression models fitted to the data points in Figure 

10 (dotted lines) are listed in Table 6. 
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Figure 10. Variations in the discharge coefficient of internal weirs (Cint) versus h/Lext, in MHSs with external weir lengths 
of (a) 13.6 cm, (b) 27.2 cm, and (c) 54.4 cm. Dotted lines represent the fitted linear regression models 

Table 6. Linear regression relationships between h/Lext and the discharge coefficient in MHSs (Cint) for various internal and 
external weir lengths 

Internal weir length 

(Lint), cm 

External weir length, 

(Lext), cm 
Least-squares linear regression model R2 

13.6 

76.0 Cint = -7.2009(h/Lext) + 0.7232 0.990 

112.0 Cint = -5.6551(h/Lext) + 0.5817 0.962 

136.0 Cint = 10.4130(h/Lext) + 0.2340 0.915 

27.2 

76.0 Cint = -3.2410(h/Lext) + 0.6892 0.985 

112.0 Cint = 7.5760(h/Lext) - 0.3151 0.978 

136.0 Cint = 19.1740(h/Lext) + 0.1355 0.946 

54.4 

76.0 Cint = -3.1014(h/Lext) - 0.6584 0.932 

112.0 Cint = 15.9200(h/Lext) - 0.2070 0.931 

136.0 Cint = 30.5130(h/Lext) + 0.0080 0.973 



Civil Engineering Journal         Vol. 5, No. 10, October, 2019 

2105 

 

 

Figure 10a shows that for MHS models with the smallest internal weir length (Lint = 13.6 cm), increasing the water 

head over the spillways (h/Lext) for the models with external weir lengths of 76.0 cm and 112.0 cm resulted in negative 

slopes. The slope was greater for the model with external weir length (Lext) of 112.0 cm. This means that increasing 

water head above the spillway decreased the discharge coefficient in these MHSs. However, increasing the external weir 

length to 136.0 cm resulted in a positive regression slope (Figure 10a). Figures 10b and 10c show the same trend for 

fixed internal weir lengths of 27.2 and 54.4 cm, respectively. In these models, increasing external weir length increased 

the slope of Cint versus h/Lext regression lines (Table 6), indicating enhanced discharge efficiencies at higher flowrates. 

 Figure 10 and Table 6 show that stepwise increasing of Lint (i.e. from 13.6 cm to 27. 2 cm and then to 54.4 cm) for 

all external weir lengths, increased the slope of the fitted linear regression models.  

3.4.3 Effects of the h/p Ratio on the Discharge Coefficient of Internal Weirs 

Figure 11 shows variations in the discharge coefficients of internal weirs (Cint) versus h/p, in MHSs with external 

weir lengths of 76.0, 112.0, and 136.0 cm, considering a distance of p = 95 cm from the reservoir’s bed to the top of the 
internal weirs’ walls in all experiments. Characteristics of linear regression models fitted to the data points in Figure 11 

(dotted lines) are listed in Table 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Variation of discharge coefficient in internal weirs (Cint) versus h/p, in MHSs with external weir lengths of (a) 
76.0 cm, (b) 112.0 cm, and (c) 136.0 cm. Dotted lines represent the fitted linear regression models 
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Table 7. Linear regression relationships between h/p and the discharge coefficient in MHSs (Cint) for different internal and 
external weir lengths 

External weir length (Lext), 

cm 

Internal weir length (Lint), 

cm 
Least-squares linear regression model R2 

76.0 

13.6 Cint = -9.0011(h/p) + 0.7232 0.990 

27.2 Cint = -8.2486(h/p) + 0.8284 0.990 

54.4 Cint = -3.8768(h/p) + 0.6584 0.932 

112.0 

13.6 Cint = -4.7952(h/p) + 0.5825 0.980 

27.2 Cint = 6.4261(h/p) - 0.3151 0.978 

54.4 Cint = 13.504(h/p) + 0.9306 0.931 

136.0 

13.6 Cint = 7.2741(h/p) - 0.2340 0.915 

27.2 Cint = 13.3930(h/p) - 0.1355 0.946 

54.4 Cint = 21.3150(h/p) + 0.0080 0.973 

In general, the efficiency of the internal weirs is related to the flowrate passing through them. As mentioned, the use 

of a small external weir length of Lext = 76.0 cm increased the fraction of the flowrate passing through the internal weirs 

in MHSs. In Figure 11a, the negative slope for Cint versus h/p could indicate bottlenecking in the internal weirs. 

Increasing the slope of the regression models in Table 7 from negative to positive when using greater sizes of Lext and 

Lint indicates the capability of longer internal weirs to convey higher flowrates. Although adopting longer Lext and Lint 

could resolve the issue of bottlenecking and produced positive slopes in Figures 11b and 11c (and Table 7), in order to 

utilize the full capacity of the internal weirs and thus obtaining higher discharge coefficients, higher flowrates or higher 

values of h/p were also required. This indicates that in order to obtain a high discharge coefficient in an MHS model, 

geometric design of the spillway needs to be optimized. 

3.5. Economical Design of Classical and Modified Horseshoe Spillways 

As discussed, variations in the water head as well as the internal and external weirs lengths affected the discharge 

efficiency of CHSs and MHSs. Dimensional analysis showed that the length of external weirs in MHSs affected the 

fraction of the flowrate passing through the internal weirs. Therefore, the proportion of the internal weir length to the 

external weir length is a key factor in controlling bottlenecking in internal weirs. Figures 12 and 13 represent the three-

dimensional surface and contour plots of reduced cubic models fitted to the data points obtained from the experiments 

conducted on CHS and MHS models, respectively.  

 

 

 

 

 

 

 

 

Figure 12. 3D surface and contour plots for the effects of h/p and Lext/b on the discharge coefficient in CHSs 

 

 

 

 

 

 

 

 

Figure 13. 3D surface and contour plots for the effects of h/p and Lint/Lext on the discharge coefficient in MHSs 
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ANOVA was performed to evaluate the significance of h/p and Lext/b factors as independent variables and their 

interactions on the discharge coefficient in CHSs. Similarly, for MHSs, ANOVA was performed considering h/p and 

Lint/Lext as independent variables. Results are presented in Tables 8 and 9 for CHSs and MHSs, respectively. All 

variables’ interactions that were statistically non-significant (p-value > 0.05)–i.e. (h/p)2, (Lext/b)(h/p)2, (Lext/b)3, and 

(h/p)3 for CHSs, and (h/p)2 (Lint/Lext) and (Lint/Lext)3 for MHSs–were excluded from the cubic models. 

Table 8. Analysis of variance for the reduced cubic model fitted to the experimental results of CHSs 

Source Sum of squares Degrees of freedom Mean square F-value p-value 

Model 0.032 5 6.388×10-3 85.82 < 0.0001 

Lext/b 4.119×10-3 1 4.119×10-3 55.34 < 0.0001 

h/p 6.162×10-3 1 6.162×10-3 82.79 < 0.0001 

(Lext/b)×(h/p) 1.866×10-3 1 1.866×10-3 25.07 < 0.0001 

(Lext/b)2 3.765×10-3 1 3.765×10-3 50.58 < 0.0001 

(Lext/b)2×(h/p) 1.080×10-3 1 1.080×10-3 14.51 0.0005 

Residual 2.679×10-3 36 7.443×10-5 - - 

Total 0.035 41 - - - 

R2 0.923 - - - - 

Adjusted R2 0.912 - - - - 

Table 9. Analysis of variance for the reduced cubic model fitted to the experimental results of MHSs 

Source Sum of squares Degrees of freedom Mean square F-value p-value 

Model 0.51 7 0.073 163.80 < 0.0001 

h/p 0.024 1 0.024 54.98 < 0.0001 

Lint/Lext 0.081 1 0.081 182.45 < 0.0001 

(h/p)×(Lint/Lext) 0.025 1 0.025 55.16 < 0.0001 

(h/p)2 0.066 1 0.066 148.98 < 0.0001 

(Lint/Lext)
2 0.082 1 0.025 185.00 < 0.0001 

(h/p)×(Lint/Lext)
2 0.025 1 0.025 55.37 < 0.0001 

(h/p)3 0.015 1 0.015 33.94 < 0.0001 

Residual 0.052 118 4.448×10-4 - - 

Total 0.56 125 - - - 

R2 0.908 - - - - 

Adjusted R2 0.901 - - - - 

According to Tables 8 and 9, the models’ p values of < 0.0001 indicate that the retained independent variables could 

explain a significant proportion of the variance and show that the fitted reduced cubic models were statically significant. 

In addition, high values of R2 and adjusted R2 for both the reduced cubic models confirmed the accuracy of these models 

to describe experimental results. 

The least-squares relationship between discharge coefficients in CHSs and MHSs in the reduced cubic models are 

shown in Equations 14 and 15, respectively. 

Cc = 1.1377 - 0.4017(Lext/b) - 25.7294(h/p) + 22.9984(Lext/b)(h/p) + 0.1065(Lext/b)2 - 5.8264(Lext/b)2(h/p) (6) 

Cint = -0.9215 + 132.9068(h/p) - 1.3361(Lint/Lext) + 77.2904(h/p)(Lint/Lext) - 4153.5448(h/p)2 + 2.0198(Lint/Lext)
2 -

98.8135(h/p)(Lint/Lext)
2 + 36963.5881(h/p)3                                                                                                                     (7) 

From an economical point of view, the goal is to design spillways with the highest discharge efficiencies while 

adopting the minimum sizes of internal and external weirs, in order to reduce the construction costs. As seen from Figure 

12, higher discharge coefficients in CHSs occurred for low h/p values. For h/p < 0.03, increasing the weir length could 

not significantly increase the discharge coefficient. In higher h/p values (h/p > 0.04), increasing the weir length to 

Lext/b=2.1 increased the discharge coefficient; however, longer weir lengths resulted in decreased efficiency of CHSs.  

For internal weirs in MHSs, adopting very low and very high ratios of Lint/Lext decreased efficiencies of the internal 

weirs. In addition, h/p ratio significantly affected the efficiency of internal weirs. It was shown that variations in the 

water head and sizes of internal and external weirs caused significant changes in the hydraulic behaviour of flow passing 
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through the internal weirs. This reflected in the high interactions between h/p and Lint/Lext, as shown in Table 9. As 

Figure 13 shows, higher efficiencies for the internal weirs occurred for rather high ratios of Lint/Lext (Lint/Lext > 0.50) and 

low h/p values (0.2 < h/p < 0.3).  

As a conclusion, using small external weir lengths in MHSs would reduce construction costs and still could result in 

acceptable discharge efficiencies in the external weirs. Adopting a Lint/Lext ratio between 0.5 to 0.6 would result in high 

discharge coefficients in internal weirs. Using higher ratios of Lint/Lext could reduce h/p and increase efficiencies in both 

the internal and external weirs. 

4. Conclusion 

Results of this study showed that compared to a rectangular weir, an increased weir length in a CHS could reduce the 

water head more efficiently and increase the spillway’s discharge efficiency. For high flowrates or high h/p values, 

increasing the weir length could enhance the discharge efficiency of CHSs.  

Incorporating an internal weir in a CHS to create an MHS not only could improve the overall efficiency of the 

spillway and allow it to convey more flow of water, but also could reduce water head over the spillway. In turn, reduced 

water head (i.e., reduced h/p) resulted in increased efficiencies of both the internal and external weirs. Incorporating an 

internal weir could also eliminate the formation of rooster-tail hydraulic jump in a CHS, increasing the durability of the 

spillway. 

The relative size of the internal weir compared to the length of the external weir (Lint/Lext) was found to be a key 

parameter in design of MHSs. Increasing the size of external weirs in MHSs increased the discharge overflowing the 

external weirs and, consequently, decreased the discharge flowing through the internal weirs. Hence, adopting a short 

external weir could increase the fraction of discharge flowing through the internal weirs. In addition, increasing the size 

of the internal weir could resolve issues of bottlenecking in the internal weir and allowed the length of the external weir 

to be decreased. Experimental results showed that the highest discharge efficiencies in MHSs occurred for low h/p and 

high Lint/Lext values. 

This study mainly investigated the hydraulic characteristic of classical and modified horseshoe spillways. Further 

experiments are recommended to investigate energy dissipation as well as the effects of other parameters on efficiencies 

for both classical and modified horseshoe spillways. This can include (1) the effects of size and height of an end sill on 

energy dissipation and the efficiency of spillways, (2) the effects of flowrate on the height and length of rooster-tail 

jumps in classical horseshoe spillways, and (3) the effects of the internal weir’s height on submergence, efficiency, and 
energy dissipation in modified horseshoe spillways. 
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