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A more useful number conserving basis which takes the place of the BCS quasi-particle 

basis is constructed. The nucleon operator is expressed in terms of two kinds of operators 

which represent J =0-coupled nucleon pairs and unpaired nucleons. The pairing states are 

treated by a linearization technique which makes use of the boson-like property of operators. 

The motion of unpaired nucleons is described by a modified quasi-particle. The method is 

applicable not only to the super-conducting phase but also to the normal one. It gives number 

conserving treatments of the pairing vibration and of the coupling with quadrupole phonon. 

§ 1. Introduction 

The BCS quasi-particle theory, which offers a useful basis to treat the residual 

interaction in nuclei, has been conventionally applied to the study of collective 

excitations. A serious defect of the theory is the fact that the basis states are 

not eigenstates of nucleon number. The problem has been extensively investigated 

since early works.n Recently, the importance of number conserving treatment has 

been recognized again in the study of multi-phonon states. 2l. 3l On the other hand, 

starting with the quasi-particle basis, it was indicated that the coupling between the 

pairing and surface vibrations plays an important role in some nuclei!l,ol The 

accuracy of the BCS quasi-particle basis must be, however, investigated simulta

neously when it is used as a starting point. 

A number conserving basis was developed by the number fixed BCS (FBCS) 

formalism. 6l-1ol The multi-phonon states are similar to the FBCS basis states. A 

characteristic of the formalism is that a distribution of J = 0-coupled nucleon pairs 

among various orbits is determined by the variational principle with a number 

fixed trial wave function. The variational equation is, however, considerably com

plicated. The approach fails for forces which do not give a sufficient configuration 

mixing in the seniority zero space, because the trial wave function cannot describe 

such a non-superconducting situation. 10l 

A theory proposed by Suzuki and Matsuyanagiw, 12) opened a hopeful prospect 

in the study of interplay between the pairing and other correlations. The pairing 

collective and intrinsic degrees of freedom are exactly separated in the "ideal boson

quasi-particle space". The nucleon operators are expressed by the pairing bosons 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/6

3
/2

/4
6
9
/1

8
8
7
5
8
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



470 "~1. ~Iasegawa and 1V. Kanesal<i 

and ideal quasi-particles in a form of the Holstein-Primakoff representation. 
In the previous paper,l3l the authors separated the pairing collective and m

trinsic degrees of feedom within the original nucleon space and developed a Dyson
like representation. A method suitable for describing proper eigenstates of nucleon 
and seniority numbers was obtained. The advantage of the Dyson-like representa
tion in contrast with the Holstein-Primakoff one is the fact that it gives a finite 
and hermitian Hamiltonian, which is simply divided into three parts; the pairing 
collectiYe, intrinsic and their coupling parts. The representation, however, leads 
to asymmetric matrices of some physical quantities like the two-nucleon transfer 
strength. 

The purpose of this paper is to construct a more practicable number conserving 
basis which takes the place of the BCS or the FBCS Yersion and is capable of 
systematic further development. For this purpose, making use of the advantage 
of the Dyson-like representation, we formulate a method in the Holstein-Primakoff
like representation without a perturbative expansion of operators. A special ap
proximation, vvhich makes it possible to contain the same eigenvalue equation deter
mining the self-consistent pairing field in the Dyson-like representation, is adopted. 
It is essential to use the particle-hole representation so that the ground state may 
'.Yell represent not only the super-conducting phase but also the normal one. 

The present treatment of the seniority zero space (in § 3) is analogous to the 
ones inyoh·ing use of the equation of motion and lie1earization procedure.w~Js' The 
pairing modes are expressed in terms of the "quasi-bosons" which mean the J=O·· 
coupled pairs of particle and hole. Once the description of the pairing collective 
subspace is finished, a "modified" quasi-particle, which represents the motion of 
unpaired nucleon, plays an important role instead of the BCS quasi-particle (in § 4). 
We haye a basis suitable for describing configuration mixing in both the normal 
and super-conducting phases. \V e show a guide to treat the residual interaction 
on this basis (in § 6). The present number conserving treatment brings about a 
new knowledge regarding the coupling between pairing vibration and quadrupole 
phonon. 

§ 2. Holstein-Primakoff-likc representation and Dyson-like 
one of the pairing Hamiltonian 

2.1. Separation (~f tlze pairing collective and intrinsic degrees of freedom 

As \\'as shown in the previous paper, 13J the nucleon operator C} is expressed 
m terms of two kinds of operators sj~ and (d}, da! (or .'/'j, and da<")) which 
represent the motion of J = 0-coupled nucleon pairs and that of unpaired nucleons 
respectiYely: The Holstein-Primakoff-like representation 1s g1ven by 

(2 ·1) 
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Modification of Quasi-Particle Theory in Spherical Nuclei. I 471 

where SJ_ = SH. The Dyson-like representation is given by 

c t =d (+) +-~.i_+d_(-) 
a a 2Sj a ' 

Ca;~- //'j-da(+) + (1-.5/J+?j-)da;(-). 
2S1 

(2·2) 

Here, for simplicity we denote a- (j, m) and Ca;= (- )1 -mCJn<> omitting additional 

quantum numbers. The quasi-spin operators sj and Sjo are written as 

where 

N 1 =SJ+S1_=.9'1+.9'1_, 

n1=:Z.: datda=:Z.: da<+)daH· 
m m 

(2. 3) 

(2· 4) 

(2· 5) 

The operator ~ represents the number of J = 0-coupled nucleon pairs and n1 the 

number of unpaired nucleons, i.e., the seniority v1 of orbit j, We shall say that 

the states composed of S1+ span "pairing collective" subspace and the states com

posed of d]m "intrinsic" subspace. 

The detailed definitions and properties of S1± and (dat, da) (.9'1 ± and da<±)) 

are given in Ref. 13). vV e repeat only a few points. The two kinds of operators 

commute with each other 

The commutation relations about S1+ and S1 _ are written as 

[Sh SF+] =o1d'11 +S1+S1_ ('1;1-1)}, 

[sh sj'-J = [S1+, sj'+J =O, 

where the operator '1;1 is defined by 

for jShS 1o=S1), 

for other states. 

(2·6) 

(2·7) 

(2·8) 

The operators (S1+, S1 _) satisfy the boson-type commutation relation except for the 

state ISJ> S1o = S1). In this sense we shall call the operators (S1+, S1_) quasi-boson 

operators. The intrinsic operators (d}, da) satisfy the following relations :11l,Jsl 

Jd dt } - " - ~ d t 1 d \a, a/ -Uaa' Ojj' a-.--....- a/, 
2S1 

{d), d1.} = {da, da•} =0. (2 ·9) 

As the relation n1 + N1 < Q1 is derived from Eq. (2 · 3), the square-root 

../Q 1 ~n 1 - -~ in Eq. (2 ·1) never becomes imaginary. One can also show the 
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472 A1. Flasegawa and N. Kanesa!?i 

relations such as 

(2 ·10) 

and vi21 -n1 -N1 =vS21 -n1 -N1 .1;1• 

The operators .'7'1 ± and dac±l in the Dyson-like representation satisfy the same 

relations as Eqs. (2 · 6) "-/ (2 ·10). The Holstein-Primakoff-like and Dyson-like re

presentations are connected with each other through the following transformation: 

(2 ·11) 

d (-)=0-d o-- 1-j IJ--;-nj .. -
a J a J - -- -- · ---d 

S21 -n 1 -N1 "' 

(2 ·12) 

where 

(2 ·13) 

It should be noticed that .'7'1 ± and da (±) can be expressed in terms of S1 ± and 

(d,/, da) and the converse is also true. We make use of the merit in the follow

ing treatment. 

2.2. The pairing Hamiltonian and operation formulae 

As the pairing correlation is superior to other long range correlations in 

spherical nuclei, it is useful to deal with the pairing force first. We then consider 

the usual pairing Hamiltonian 

(2 ·14) 

where S+(j)=t.L:mC}Cat and S_(j)=(S+(j))t. 

Let us divide single nucleon orbits into particle and hole orbits. In the limit 

of no perturbation, i.e., G = 0 case, the orbits which are completely occupied by 

nucleons are the hole ones, and the other orbits are the particle ones. Hereafter 

we distinguish between the particle orbits and the hole ones by subscripts j and 

k, respectively. For the particle operators, we use the same notations as in the 

last subsection. We denote respectively the quasi-boson and intrinsic operators of 

the hole orbits by Tk± and (d1m, dkm) in the Holstein-Primakoff-like representation, 
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A1odification of Quasi-Particle Theory in Spherical Nuclei. I 473 

and denote them by c:Jk± and (dk+),, d~-;,2) in the Dyson-like representation. The 

number operators Nk of J = 0-coupled hole pairs and nk of unpaired holes are 

defined by the same equations as Eqs. (2 · 4) and (2 · 5). The relation between 

(c:Jk±' dk+,;{, d~-;2) and (Tk±' dJm, dkm) lS given by 

(2 ·15) 

It is an advantage of the Dyson-like representation that the pairing Hamil

tonian is divided into three parts, the pairing collective, intrinsic and their coupling 

parts: 

H =canst+ He+ Hintr + Hcauvl, 

He= L, 2< jNj -G 'E, YF+ (!2j -Yi+Yi_)Yj-
m jj/ 

(2 ·16) 

(2 ·17a) 

(2 ·17b) 

(2·17c) 

The ground state of the pairing system under consideration is one of the state 

with the total seniority v = 2vi = 0. Let us determine a self-consistent pairing field 

in this v = 0 subspace (i.e., the pairing collective subspace), where ni and nk vanish, 

and then both Hintr and Hcoupl do not contribute. We diagonalize the pairing 

collective Hamiltonian written in the Holstein-Primakoff-like representation: 

(2 ·18) 

where 

(2 ·19) 

With the use of Eqs. (2 · 7) and (2 ·10), we can obtain the following impor-
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474 111. Hasegawa and N. Kanesaki 

tant formulae for the quasi-boson operators sj+: 

[.Nj, Sj+J =Sj+, 

[R (2Vj), SH] =Sj+dRj, 

dRj=R(Nj+1) -R(Nj) 

= ---1: -{1+ ~ -~~- 1 l!!_(2R(Njr)-n}. 
2R(Nj) n~l (n+1)! 

These equations are formally rewritten as 

In addition we have the relation 

j!fc_= [H S · ] fJS. c, J+ • 
J-

The operators Tk+ satisfy the same equations as Eqs. (2 · 20) ~ (2 · 24). 

§ 3. Self-consistent pairing field 

3.1. Linearized equation of motion 

(2 ° 20) 

(2 · 21a) 

(2·21b) 

(2 ° 22) 

(2 ·23) 

(2 ·24) 

As mentioned so far, we deal with the pairing collective Hamiltonian He to 
determine the self-consistent pairing field in the ground state with v = 0. Let us 
introduce the particle-hole vacuum IO) with nucleon number ~4. 0 which has no 
particles and no holes (i.e., Sj-10) = Tk-10) = 0) and consider the systems with even 
numbers of nucleons A=A0 +2N and .il.=A0 +2(N+1).**) vVe shall call these 
systems "1V"-system and "1V +1"-system and denote their ground states by 11/o) and 
liFo (N + 1) ), respectively. The unperturbed ground state of the "N"-system 1s 
written as 

(3 ·1) 

where Jo represents the lowest particle orbit and o<~v <JJj,· 
\Ve aim at obtaining the one-quasi-boson mode from 11/o) to IP"oCV +1)) by 

the linearized equation of motion in the following way: 

''l If we replace 8R(N1)/8S1_ by 8N1/8S1_·8R(N1)/8N1, approximating operators by c-numbers, 
it is reduced to -S1+·1/2R(N1), which corresponds to pick up the first term in Eq. (2·2lb). 

**l In our definition of the particle and hole orbits, the particle-hole vacuum does not corre
spond to the closing of a major shell but the filling of each orbit i.e. Ao=2Jcho!e)2.Q1. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/6

3
/2

/4
6
9
/1

8
8
7
5
8
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



1\Iodification of Quasi-Particle Theory zn Spherical Nuclei. I 475 

With the aid of the formulae in § 2, the commutation relation m Eq. (3 · 3) 1s 

calculated as 

[Ho Sj+] = 2tjSj+ + GSj+ {Sj+Sj-} 

~ G I: Sj+ {dRiSF+Sj_R (Nj,) + R (Nj,) Sj, SF_dRj} 
j'"ej 

+ G I: Sj+ {Sj+ Tk+R (Nk) dRj + dRjR (N") Tk-Sj-} 
k 

[Ho Tk_] =2(fk~G) Tk_~G{Tk~Tk_}Tk-

+ G I: {dRkTk'+ T"_R (Nk,) + R (Nk,) Tk+ Tk,_dRk} Tk-
k'~k 

~ G I: {SH Tk+R (1~) dR" + dRkR (Nj) Tk-Sj-} Tk
j 

+ G I: {R (Nk,) R (Nk)} Tk'- ~ G I: Sj+ {R (1~) R (Nk)}. 
k' j 

(3 · 4a) 

(3. 4b) 

In order to linearize the right-hand sides of Eqs. (3 · 4), let us replace the 

pairs of quasi-boson operators in the brackets { } by their expectation values with 

respect to I ¢0) as follows: 

Sj:·SF-----"(Si+SF-), Tk+Tk'-->(Tk+Tk'-), 

Sj+ Tk+ ----"(Sj+ Tk+), Sj- Tk- ----"(Sj- Tk-). (3. 5) 

Then the operators J.~ and Nk appearing in R (1~), R (Nk), dRi and dRk are 

replaced by their expectation values 

(3. 6) 

For example, R (Ni) and dRi are replaced by 

R(Nj) _,. R(Nj) = -/Qj-:_N1 , (3·7a) 

dRj ----" (dRj) = ~ 1 {1 + _!_R(N ·) - 2 +- ···}. 
2R(Nj) 4 J 

(3 ·7b) 

In this approximation, Eq. (3 · 3) leads to the following equation for the amplitudes 

"fr/ and (/Jk0 : 

(3 ·8) 
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476 M. Hasegawa and N. Kanesaki 

where 

+2G<dR1) 2: R (Nk) <Tk_S1_)} -GR(Nj) R(Nj,), (3 · 9a) k 

- 2G<dRk) 2: R (Nj) <S1+ Tk+)} + GR (Nk) R (Nk,), (3 ° 9b) j 

(3 ·9c) 

In Eq. (3 · 8), the symbol :E means that repeated indices (j' and k') are summed. 
We shall use the convention hereafter. Equation (3 · 8) is an eigenvalue equation, 
although the expectation values (3 · 5) are not yet :fixed. 

3.2. Structure of the eigenvalue equation 

Equation (3·8) approximately determining X 0t has additional solutions. Denot
ing the numbers of the particle orbits and hole ones by J and K respectively, we 
have (J +K) sets of solutions. If we arrange the eigenvalues according to their 
magnitudes, the large J eigenvalues correspond to the pair additional modes X} and 
the other K eigenvalues correspond to the pair removal modes Yv. The lowest 
X}, i.e., the J-th eigenmode is X 0t between j¢0) and jP"0(N +1)). The new 
modes X/ and Yv are written as 

(3 ·10) 

The orthonormality relation can be expressed by 

(3 ·11) 

The completeness relation is given by the inverse transformation of Eq. (3 ·11) 
and we have 

S1+ = 2: '1/J'/X} + 2: ¢/Yv, 
tl v 

Tk- = 2: '1/J'k"Yv+ 2: q;/X~~t· (3 ·12) 
tl 

In the approximation 7;1 j¢0)::::::7Jkj¢0)::::::j¢0), or the boson approximation 

(3 ·13) 

the new modes (X/, Y}) satisfy similar relations 

(3·14) 
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1\11odijication of Quasi-Particle Theory in Spherical Nuclei. I 477 

We thus obtain an orthogonal set of "one-body" modes in the self-consistent pairing 

field. The ground state is the lowest energy state composed of the new modes. 

By analogy with the unperturbed ground state (3 -1), we approximate the ground 

state [ ¢o) of the "N" -system by 

(3 -15) 

where [0) IS the new vacuum for XPt and Y}, which is defined by X~[O) = Y,[O) 

= 0. Then we have the relation 

X ~"col¢o) = 0, (3 -16) 

After these preparations, we can evaluate the expectation values of the pairs of 

quasi-boson operators (3 · 5) 

<Sj+SF_)=N'{F/'1/F~, + :E ¢/¢'r, 
v 

<Tk+Tk'-)=Ncpk 0 cp~,+ :E cp/cpf,, (3 -17) 
~ 

<sj+ Tk+> = <Tk-sj-> 

=N1/F/cpk 0 + :E ¢/'{Fkv=Ncpk0'1/F/+ :E (fJk~'I/F/. 
v p 

Since the matrix in Eq. (3 · 8) itself contains the amplitudes yj, cpk> t/Jk and 

¢h the eigenvalue equation (3 · 8) must be solved self-consistently. The expecta

tion value <dRj) C<dRk)) in Eq. (3-7b) is expanded in the power series of 

(2R (Nj) 2) - 1 ( (2R (Nk) 2) - 1). As the value NJ/ Qj (R (Nk) 2/ Qk) corresponds to the 

occupation probability in a orbit j(k), it is expected that Njj!Jj<1/2, R(Nk) 2 j!Jk 

> 1/2 and Nj 0 <Qjo -1 in our particle-hole treatment. Therefore the series in Eq. 

(3 · 7b) converges to a finite number. Even if we adopt the lowest order approxi

mation: 

~ 1 <dR)-- ·····--
1 2R (Nj) 

(3 -18) 

the eigenvalue equation (3 · 8) is expected to be of use. Under this approximation, 

Eq. (3 · 8) is actually reduced to the equation obtained in the Dyson-like representa

tion. 13l, *' 

3.3. Low-lying states zn the seniority v = 0 space 

The ground state of the "1V"-system is approximately written as Eq. (3-15) 

*l In Ref. 13), the second terms of the right-hand sides in Eqs. (3 ·17) were neglected. The 

seemingly asymmetric equation is symmetrized by the approximate relations: 

<IJ! o (N + 1) [.9j+ [¢,):::::<1Jf o (N +1) [Si+ [¢o)R (Nt), 

<¢,[ .9j_[IJf o (N + 1) ):::::<¢o[S1_ [IJ! o (N + 1) )/ R (N1), etc. 
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478 }\.f. Fiasegawa and 1V. Kanesaki 

in our theory. In this self-consistent pairing field, the occupation probabilities 

V/ (Yk2) introduced in the BCS theory are given by 

17j= J(Nj)jfJj = JN('f;'/f + "'£(¢??;Ji2;, 
v 

(3 -19) 

yk = R(N k) I J .Qk = Jl={N (97:"? + "'£ (9kl') 2}/S2k. 
Ji 

Equation (3 -11) and the completeness relation lead to the relation "'£k 1, 

= "'£j, ( ¢/) 2 • Combining this relation and Eq. (3 ·11), one can show the number 

conservation relation 

(3. 20) 

vV e can define an orthogonal basis of the v = 0 states m the "1V + 1" -system 

or "1V -1"-system by using the new "one-body" modes obtained in the previous 

subsections as follovvs: 

for the ".iV + 1" -system , 

for the "~V -1" -system . (3. 21) 

These states are not eigenstates of the pairing collective Hamiltonian He in general. 

The matrix elements of He with respect to this basis define a Hamiltonian matrix, 

and the nwre precise determination of low-lying states may proceed from an ap

proximate diagonalization of this matrix. However, as sho\vn in the two-level 

model calculation in Ref. 13), it will be a good approximation to describe the low

lying states of the "N+1"("N-1")-systeln by X/l¢o)(Y,1I¢0)) and to e\·aluate 

the diagonal elements of lie. \Ve adopt this first order perturbation theory. The 

energies E 11 and E, of X/l¢o) and Y/lrp0 ) measured from the ground state l¢o) 

are calculated by 

Eli=(¢oi"YAIIo X}] l¢o), 

E,=(r/JoiY,[IIc, Y}] l¢o). (3. 22) 

For the ground state llf10 (N+1)):::::::(1/Jiv+l));:}i¢o), the solution E 0 of Eq. 

(3 · 8) can be regarded as an approximate value of E 0• If we define a chemical 

potential AN by the half of the energy difference between I rp0) and liFo (N + 1) ), 

we can write 

(3. 23) 

In the case N = 0, i.e., l¢0) = IO), the lowest Y} (we denote by Y 01) is the mode 

betvveen l¢o) and the ground state of the system with nucleon number .,:10 -2 

(l0o; ito-2):::::::Y0tiO)). 

The energies of the excited states x;1 "'ol¢o) and Y}"'olrPo) in the "N+1"-and 

"1V -1" -system have correction terms in addition to the eigenvalues E 11 and E, of 
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lvfodification of Quasi-Particle Theory m Spherical Nuclei. I 479 

Eq. (3 · 8). The correction terms are somewhat complicated. If we neglect the 

terms such as dR1 -dRF, [S1_, dR1] etc. in the double commutators [X~, [Ho X/]] 

and [Y"' [HoY}] J, we can get the same form of corrections as those obtained in 

Ref. 13). The approximated values of E~ and Ev are shown in the Appendix. 

§ 4. A modified quasi-particle 

As we have finished the treatment of the pairing collective Hamiltonian, we 

consider the intrinsic motion. 

The single particle and single hole states in the odd nuclei with ll ± 1 (A 

= A 0 + 2N) nucleons are written as 

d~mlr/Jo)=d);Jj QJ~NJ lr/Jo)' 

dtml¢o) =d1;Jj~kN; l¢o). 

( 4 ·1) 

We approximate the operators -~ and Nk in Eqs. (4·1) by their expectation values 

Nj and Nk with respect to l¢0). We can then regard the single particle (hole) 

states as d);J I ¢0) ( d1-;J I ¢0)) except for the normalization constant. As d);J and 

d1iJ commute with H 0 the energies of the single particle and single hole states 

are calculated by 

(4· 2) 

The energies c1 and (- ck) measured from I ¢0) are given by 

(4·3) 

Inside the space without X1""o and Y!"'o' one can replace the pairs of quasi-boson 

operators in ]-{intr +II coup! by their expectation values: 

Jlintr = Hintr + Hcoupl = L::; c jUJ- L::; c knk . (4· 4) 
j k 

Equation (4·4) introduces a modified quasi-particle. The energy C-1-J..N corresponds 

to the quasi-particle energy in the 1-i + 1 nucleus. The energy AN- 1 - ck corresponds 

to the quasi-particle energy in the A -1 nucleus, where J..N_ 1 should be determined 

111 the "N -1" -system. It should be noticed that d,,t and da (da <+> and da H) 
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480 A1. 1-Iasegawa and .N. Kanesahi 

satisfy the commutation relations (2 · 9) and represent the motion of unpaired nu

cleons. In our treatment, the nucleon number is conserved and then there is 

no spurious states. 

In the same manner, we can approximately obtain the energies of the v=2 

states. For example, the energy Ev~z (jl?) of the state (d/dkt)nrlr/Jo) is given by 

Ev 2 (jk) = 2;- 8"' and the energy Ev~ 2 (jj') of the state (d/dJ,)JJI[(/)0 (N -1)) is given 

by Ev~2UJ') = (c/N-D_AN- 1) + (c}lf-Jl_lx. 1). Here c/N-D and AN-! should be deter

mined for the ground state [(/)0 (N -1)) in the "N -1"-system. If N dependence 

of these quantities is negligible, we can use 2; and kv determined in the "iV"

system like the BCS quasi-particle treatment. 

§ 5. Contents of the approximation 

It is easily shown that the basic equation (3 · 8) is reduced to the RP A one 

for the pairing vibration on the particle-hole basis, in the limit (S;+SF-) 

= (Tk+ Tk'-) = (S;., Tk.,.) = (Tk_S;-) = 0. 

On the other hand, the BCS equation is obtained as follows: Let us approxi

mate sjJc as 

(5·1) 

where the particle-hole transformation is not introduced and the subscripts j imply 

all orbits. The variational equation, 

(5·2) 

leads to the BCS equation 

(5. 3) 

where U; = .J1 ~V}. The bar over operators represents replacing S;± by Eq. 

(5-1). Replacing operators by e-n umbers suggests us to approximate ait/aS;

=fJHc/ aS;- and dR; =oR (N;) I aN;= -1/2R (NJ. In this approximation, Eq. 

(5 · 2) combined with Eq. (2 · 24) is written as 

[.He, SH] -2JcSH=0. (5· 4) 

This equation is similar to our basic equation (3 · 3). 

It is actually shown that Eq. (3 · 8) without the amplitudes '-/J/c'-'0 , , '-/Fkv and 

r/J/ is reduced to the same form as Eq. (5 · 3) under the approximation (3 ·18) and 

(S;+S;_)=N('/r/) 2 =!2;V/. However, if N is larger than !2; of the lowest orbit, 

the boson approximations (3 ·13), (3 ·15) and (3 ·17) are not good. The introduc

tion of the particle-hole basis guarantees these approximations and smoothly con-
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1\1odification of Quasi-Particle Theory in Spherical Nuclei. I 481 

nects the correlated ground state (3 ·15) with the unperturbed one (3 ·1) in small 

G limit. This makes it possible to describe the normal phase as well as the 

superconducting phase. The denominators R (Nj) and R (Nk) appearing in Eq. 

(3 · 8) never become zero in our particle-hole treatment, whereas ~ in the BCS 

equation is zero for small G below a critical value Gc. 

Within an extent where the BCS approximation is good, one may substitute 

the BCS equation (5 · 3) for Eq. (3 · 8) to obtain the occupation probabilities Vi 

of orbits j (including k). From Eqs. (4·3), (5·1) and (5·3), the excitation 

energies of the single nucleon states in the .fl.+ 1 nucleus are approximated by 

(5· 5) 

where 11-2 .. :dcgiuivi. The Hamiltonian representing the intrinsic motion is writ

ten as 

Hfrr~; =I:,/( f j- A) 2 + 11 2 I: djmd jm, (5·6) 
j m 

where ni = L.:md]mdim is still the seniority number operator and (d]m, dim) satisfy 

the commutation relations (2 · 9). 

§ 6. Application to pairing plus quadrupole force model 

The pairing plus quadrupole force model, which is capable of accounting ap

proximately for low-lying states of spherical nuclei, has been conventionally treated 

by the BCS quasi-particle theory. The present theory offers an alternative basis 

to describe the model. The pairing Hamiltonian (2 ·16) is written as 

H =I: EfiX} X"+ I: EX}Yv 
" v 

For the present, we neglect the pairing residual interaction ri~es. 

ing problem is to take account of the quadrupole force 

(6 ·1) 

The remain-

(6·2) 

In our representation, the quadrupole operator Qtw can be expressed 1n terms of 

(d]m, dim), (dZm, dkm), (X}, X") and (Y}, Yv). The expression of 1-I QQ which 

includes both the particle and hole operators is straightforward but lengthy. 

For simplicity of the explanation, we study the case in which the hole orbits 

do not exist and N is smaller than gj of the lowest orbit. In this case, our 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/6

3
/2

/4
6
9
/1

8
8
7
5
8
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



482 Ai. Hasegawa and N. Kanesal::i 

equation (3 · 8) is reduced to the BCS equation (5 · 3), *' if we adopt the approxima

tion (3 ·18). Let us approximate Cjm in Q1M as follows: 

(6. 3) 

where 2Si = gi (1- ni/ gi) is approximated by gi· The neglect of nj/ gj may be 

good for the collective states with small seniority, because the occupation proba

bility of d]m in a orbit j is small for these states. We approximately write the 

quadrupole force ~I QQ as 

(6· 4) 

The three parts Hx, Hy and .lfv transfer the seniority number 0, 2 and 4, re

spectively. 

First, we consider the subspace which does not include the excited v = 0 

modes x;,"~o· For example, the matrix element of VJ, Uj, Uj, Vj, in this subspace is 

calculated as 

4 

<¢o[Vj.Uj,Uj,Vjzl¢o)~R(N jJR (N j,) INj,N d n /Qj,, (6· 5) 
i:::d 

where we approximate as (N/gj)("fr/)'=((N -1)/Qi) ("f~'/)". Equation (6·5) is re

written as the familiar form Uj, Vj, Uj, Vj, by using the expression Vj = J 1Vj72; 

and uj = R (Nj) I J gj· This means that the operators lJj and Vj within the sub

space under consideration can be replaced by their expectation values uj and vj 
in the approximation neglecting terms of the order of 1/ gj· The replacement in Eq. 

(6 · 4) directly leads to the same form as usual quasi-particle expression of HQQ· 

This is a foundation of the quasi-particle treatment of the quadrupole phonon 

states. The simple replacement is, however, not correct in general cases incl ucling 

the pairing vibrational modes X1"eo· 

Next, we consider the couplings between the pairing vibration and quadrupole 

phonon, the importance of which has been discussed recently." We show a method 

how to calculate the couplings, taking up the following matrix element as an 

example: 

In this case, the BCS equation has a non-trivial solution in any G. 
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l\1odification of Quasi-Particle Theory zn Spherical Nuclei. I 483 

(6· 6) 

The part of commutation relation in Eq. (6 · 6) is calculated by using Eqs. (2 · 7) 

and (2 · 21). If we approximate dRj by -1/2R (Nj) and ( ~, V;) by (Uh Vj), 

the result is as follows: 

(0ol [Ujyjpjyj,, I.; 'Yr/SH]Xotl¢o) 

= JrJ.2-ujyjpj, + JJ~~ujyjpj, 
J 2 J 3 

(6·7) 

\Ve can also calculate other couplings in the same manner. Equation (6·7) con

tains the factors 1/ ( Jgj[Jj) which is derived from dRj = R (1~ + 1) - R (Nj). The 

factors never become extremely large numbers for small G in the case under 

consideration. In general case the factors do not diverge as mentioned in § 3, be

cause \Ve adopt the particle-hole basis. 

The structure of the couplings is different from those obtained on the BCS 

quasi-particle basis in Refs. 5) and 12). The number non-conservation effect 

should be eliminated from the couplings. In order to avoid the mixing of nucleon 

number, the separation bet·ween the pairing collective and intrinsic degrees of free

dom should be performed in the original nucleon space. 

§ 7. Concluding remarks 

vVe have developed a useful method to treat the pmrmg correlation, ·which 

takes the place of the BCS quasi-particle theory or the FBCS version. The prin

cipal aspects of the method are as follows: The distribution of the J = 0-coupled 

nucleon pairs among various orbits is determined by a linearization technique, with 

respect to the nmnber projected ground state. The method describes both the 

normal and super-conducting phases of the pairing system. It gives a number 

conserving treatment of the pairing vibrations. Truncated low-seniority states are 

given by the number conserving basis states which are suitable for dealing with 

configuration mixing caused by other residual interaction. 

An advantage of the method is to be available for the normal and transi:ional 

regions in which the BCS approximation is not applicable. In a forthcoming paper, 

the applicability of the method will be examined in realistic nuclei. Another advan

tage is that the method excludes the number non-conservation effect in the coupl-
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484 1\1. I-Iasegawa and N. Kanesaki 

mgs between pairing vibration and quadrupole phonon. This problem will be more 

extensively discussed in a subsequent paper. 

Appendix 

If we neglect the terms such as dRjdRi', [Sj_, dRi], etc., in the double 

commutators [XM [He, X}]] and [Y" [He, Y}] J in Eqs. (3 · 22), the approximate 

energies E~ and Ev of x;1"'ol¢o) and Y~"'ol¢o) are given by 

where 

C .. ,= G {R (N j') N(·'- _o)2 + R (f'!1 )_ N(·''o,)2} 
11 2 R(Nj) "rJ R(Nj') "rJ 

+ojj,c{~ R(Nj'.)<Si"+Sj_)- ~ _J((Nk) <Tk-Sj->}, 
j" R(Nj) k R(Nj) 

c ,= _ G {R(NdN(m o)2_1_ R(Nk) N(·o.)2} 
kk 2 R(Nk) -rk R(Nk,) cpk 

- o kk'G {" !!-_(N k"L<Tk.L Tk"->- >: _!!-_iN j) <S -+ Tk+>} 
"7;-7 R(Nk) . 7 R(Nk) 1 ' 

C- =-C.-= G {R(Nj)N(r.o o)2+ R(Nk) N(,'r.o)z}. 
Jk kJ 2 R(Nk) -rk R(Nj) I J 

Here <Si+dRjSj-) and <Tk,dRkTk-) are approximated by -N('fr/)"/2R(1Y';-) and 

- N(rpk0) 2/2R (Nk). 

References 

1) A. K. Kerman, R. D. Lawson and M. H. Macfarlane, Phys. Rev. 124 (1961), 162. 

2) A. Arima and F. Iachello, Phys. Rev. Letters 35 (1975), 1069; Ann. of Phys. 99 (1976), 253. 

T. Otsuka, A. Arima, F. Iachello and I. Talmi, Phys. Letters 76B (1978), 139. 

T. Otsuka, A. Arima and F. Iachello, Nucl. Phys. A309 (1978), 1. 

3) T. Suzuki, M. Fuyuki and K. Matsuyanagi, Frog. Theor. Phys. 61 (1979), 1682. 

4) B. Sorensen, Nucl. Phys. A177 (1971), 465. 

5) S. Iwasaki, T. Marumori, F. Sakata and K. Takada, Frog. Theor. Phys. 56 (1976), 1140. 

F. Sakata, S. Iwasaki, T. Marumori and K. Takada, Z. Phys. A286 (1978), 195. 

K. Takada and S. Tazaki, Frog. Theor. Phys. 61 (1979), 1666. 

6) K. Dietrich, H. J. Mang and J. H. Prada!, Phys. Rev. 135 (1964), B22. 

7) P. L. Ottaviani and M. Savoia, Phys. Rev. 178 (1969), 1594; 187 (1969), 1306; Nuovo Cim. 

47A (1970), 630. 

8) Y. K. Gambhir, A. Rimini and T. Weber, Phys. Rev. 188 (1969), 1573; Phys. Rev. C3 

(1971), 1965. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/6

3
/2

/4
6
9
/1

8
8
7
5
8
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



.~1odification of Quasi-Particle Theory zn Spherical Nuclei. I 485 

9) B. Lorazo, Nucl. Phys. A153 (1970), 255. 

10) K. AHart and E. Boeker, Nucl. Phys. A168 (1971), 630; A198 (1972), 33. 

K. AHart and W. F. van Gunsteren, Nucl. Phys. A234 (1974), 53. 

11) T. Suzuki and K. Matsuyanagi, Prog. Theor. Phys. 56 (1976), 1156. 

12) T. Suzuki, Prog. Theor. Phys. 60 (1978), 1366. 

13) M. Hasegawa and N. Kanesaki, Prog. Theor. Phys. 58 (1977), 1405. 

14) E. Salusti, Nuovo Cim. 37 (1965), 199. 

A. Covello and E. Salusti, Phys. Rev. 162 (1967), 859. 

15) M. Jean, Nuovo Cim. 40 (1965), 1224. 

16) G. Do Dang and A. Klein, Phys. Rev. 143 (1966), 143; 147 (1966), 689. 

17) J. Mauger and J. A. Evans, Nucl. Phys. A167 (1971), 16. 

18) Y. Miyanishi, Prog. Theor. Phys. 48 (1972), 459. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/6

3
/2

/4
6
9
/1

8
8
7
5
8
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2


