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With the increasing availability and rapidly improving the spatial resolution of
synthetic aperture radar (SAR) images from the latest and future satellites like
TerraSAR-X and TanDEM-X, their applicability in remote sensing applications
is set to be paramount. Considering challenges in the field of point feature-based
multisensor/multimodal SAR image matching/registration and advancements in
the field of computer vision, we extend the applicability of the scale invariant
feature transform (SIFT) operator for SAR images. In this article, we have
analysed the feature detection, identification and matching steps of the original
SIFT processing chain. We implement steps to counter the speckle influence,
which deteriorates the SIFT operator performance for SAR images. In feature
identification, we evaluate different local gradient estimating techniques and
highlight the fact that giving up the SIFT’s rotation invariance characteristic
increases the potential number of matches when the multiple SAR images from
different sensors have been acquired with the same geometrical acquisition
parameters. In the feature matching stage, we propose to assist the standard SIFT
matching scheme to utilise the SIFT operator capability for effective results in
challenging SAR image matching scenarios. The results obtained for SAR images
acquired by different sensors using different incidence angles and orbiting
directions over both rural and semi urban land cover, highlight the SIFT
operator’s capability for point feature matching in SAR imagery.

Keywords: SIFT; multimodal; SAR; image matching/registration; edge detection

1. Introduction

With the increasing availability and rapidly improving the spatial resolution of remote
sensing synthetic aperture radar (SAR) images from latest and future satellites like
TerraSAR-X (Eineder et al. 2005) and TanDEM-X (Krieger et al. 2007), the applicability
of SAR images in various applications is bound to experience a tremendous boost.
In particular, the SAR sensor’s active nature in the microwave range of the electromag-
netic spectrum gives them the capability to see through clouds and to acquire images at
night, which might be the only viable alternative during a catastrophic event. Already
with the present state of technology, SAR imagery is useful for diverse applications
(Eineder et al. 2005). However, SAR image matching (especially high resolution) still does
not have a perfect solution. Leaving aside area based techniques (Suri et al. 2009), feature-
based SAR image registration/matching is difficult due to various reasons with the
presence of multiplicative speckle influence being one of them. Reviewing research in SAR
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image matching, an active contour-based model was utilised in Li et al. (1995) to detect
and match contours in SAR and optical imagery. A method utilising SAR road extraction
algorithms to make crossroad and road junctions in dense urban areas serving as
registration control points was presented by Dell’Acqua et al. (2004). A point feature-
based approach was used successfully for matching SAR images in Bentoutou et al. (2005).
Here, the authors utilised the Harris operator for the detection of strong corner points.
Subsequently, a template matching algorithm using similarity measure based on invariants
was used. The mentioned techniques have their own pros and cons, like extraction of linear
features and their intersections in SAR images, which is not very straight forward and
extraction of interest points using Harris operator, which does not yield ideal points as
many points are generally a result of salt and pepper noise in SAR images. In this article,
we evaluate the application of the scale invariant feature transform (SIFT) (Lowe 2004)
operator for remote sensing SAR image matching applications. SIFT is a computer vision
algorithm and the method developed for optical camera images provides a robust
technique to extract and match distinctive features within different images.

2. Scale invariant feature transform

To begin with, we briefly review the SIFT operator processing chain, for details please
refer to the work in Lowe (2004).

2.1 Feature detection

The process starts with feature detection, for this purpose, a difference of Gaussians
(DoG) pyramid is constructed by subtracting Gauss-filtered images where the standard
deviation � differs by a factor k. Next, extrema are detected in the DoG images by
comparing every pixel to its neighbourhood in the scale space. If a pixel value is larger or
smaller than all of its neighbours, it is accepted as a preliminary feature candidate. Finally,
every feature candidate is interpolated for localisation and is filtered using additional
stability checks.

2.2 Orientation assignment

To achieve rotation invariant features, one or more multiple orientation of a feature
are determined. First, the gradient magnitude and orientation is computed for all scales
of the Gauss pyramid. To find the dominant orientations, a 36 bin histogram is created.
The gradient orientations surrounding the feature, weighted by their gradient magnitude
and a Gaussian window, centred at the feature location, are used to fill the histogram.
Once the histogram is created, the highest peaks are selected as dominant orientations.
The gradient magnitudes and coordinates are rotated according to the assigned orientation
to achieve rotation invariance (RI).

2.3 Descriptor formation

Scale invariance is assured by using the image gradients (estimated through adjacent pixel
differencing) calculated at the scale the feature belongs to. The gradient magnitudes
surrounding the feature are weighted by a Gaussian window to weaken the influence of
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gradients far away from the feature. The descriptor window is divided up into 4� 4
sub-windows to calculate 16 gradient histograms, each consisting of eight bins. The final
descriptor is a vector holding 128 elements (16 histograms composed of eight bins).

2.4 Feature matching

Euclidean distance between feature descriptors is the similarity measure used to match two
features. The two closest features in the input image are determined for every reference
image feature. If the Euclidean distance of the second-closest match is smaller than the
threshold (0.6) times the distance of the closest match, the input feature is accepted as
a match. Since comparing the distance of all features with each other would be too
expensive, the approximate nearest neighbour best-bin-first (BBF) algorithm is used
(Beis and Lowe 1997).

3. SIFT in context of SAR imagery

In our previous work (Schwind et al. 2010), we focussed mostly on improvements of the
feature detection phase of the SIFT operator, while in this article changes to the feature
identification and matching phases are discussed. In the following, we introduce and
analyse previous as well as newly introduced changes in the SIFT chain (component wise)
to be used for SAR images.

3.1 Feature detection

Initiating the analysis, here we show the SIFT features detected on an E-SAR (developed
by DLR) (Schreiber et al. 1999) image of size 300� 300 pixels (Figure 1). The application
of the original SIFT operator on the image depicted in Figure 1 results in 1520 SIFT

Figure 1. E-SAR imagery of size 300� 300 pixels, SIFT operator produces 1520 features with
around 74% features being detected at the first octave. The figure depicts 1119 octave 0, 315 octave
1, 63 octave 2 and 23 octave 3 SIFT features marked by white, green, yellow and red crosses,
respectively.
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features being detected. On analysing the SIFT feature distribution in different octaves,
it becomes evident that maximum features have been found in first octave (set of highest
scales in the scale space pyramid created for feature detection) and on their visual analysis
it is inferred that most of them are a result of the multiplicative speckle influence. Based
on this initial observation, in our previous work (Schwind et al. 2010), we studied the
SIFT detection phase to propose the following:

(1) Skipping the features detected at the highest octave in the scale space pyramid:
The idea here was to show that stable features in SAR imagery are detected lower
down the scale space pyramid. We termed this detection as SIFT-OCT to represent
exclusion of all the SIFT features detected at the first octave.

(2) Image smoothing by filtering the SAR images using the infinite size symmetrical
exponential filters (ISEF) filter (Shen and Caston 1992): In the cited reference, the
authors highlighted that an increase in Gaussian filter size is useful to reduce noise
influence but the increase size has an adverse effect on edge localisation precision.
To overcome this problem, the ISEF filter with an infinite window size and desired
sharpness at the window centre was proposed. We utilised the ISEF filter for image
smoothing and also skipped the first octave features and referred this detection
scheme as SIFTþ ISEF-OCT.

The original SIFT operator detection scheme along with two described minor variants
(SIFT-OCT, SIFTþ ISEF-OCT) were compared on the basis of feature detector’s
repeatability (Mikolajczyk and Schmid 2005), found number of correct matches, match
consistency and registration turn around time for multimodal SAR images. In this study,
by multimodal SAR images we refer to multimodal analysis of SAR images acquired by
different sensors using different acquisition parameters at different points of time
(Zitová and Flusser 2003). Specifically, we found that the capability of the SIFT operator
to detect and match features in multimodal SAR images improved significantly by utilising
the above-mentioned schemes. Further, changes in the detection, led to a 10 times speedup
(approx) for 1000� 1000 pixel images. Here, we utilise the SIFT-OCT detection
scheme although we expect similar results after image smoothing using ISEF or any
other filter as well.

3.2 Feature identification

In this phase, the main step of estimating the local gradients through simple image
differencing (SD) of neighbouring pixels assigns strong gradient magnitudes to speckle
pixels and this might disrupt proper feature descriptor formation. Therefore, we attempt
to use the following gradient estimation techniques.

3.2.1 Operator based upon image recursive differencing

Proposed for detecting step edges in noisy SAR images (Paillau 1997), the utilised
operator is derived from Deriche filter and is implemented recursively. The operator
specifically designed for SAR images according to the edge detection criteria’s proposed
in Canny (1983):

(1) Insensibility to noise.
(2) Good edge localisation.
(3) Unique response to one edge,
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was shown to be more effective than classical differential operators like Shen–Castan

operator (Shen and Castan 1986), first derivative of a Gaussian and the original Deriche

operator (Deriche 1987).

3.2.2 Operator based upon image ratio

Considering the fact that due to the multiplicative nature of speckle, difference-based edge

detectors detect more false edges in areas of high reflectivity (this might lead to wrong

feature descriptor formation), we also test an edge detector with a constant false alarm

ratio (CFAR) (Touzi et al. 1988). For this comparison, we evaluate ratio of exponential

weighted averages (ROEWA) operator proposed in Fjørtoft et al. (1995). This operator

was found to be much more efficient for SAR image edge detection in comparison to the

ratio of averages (Touzi et al. 1988), ratio of order statistics (Bovik et al. 1988) and ratio-

based version of Deriche’s optimal edge detector. The SIFT descriptor formation or

feature identification is a function of a region of pixels (edge magnitude and orientation)

selected for feature identification. This article is intended to extend the application of the

SIFT operator for SAR images and so we have compared techniques to estimate dx and dy

(suited to SAR imagery) for feature identification.

3.2.3 Simple differencing (used in the original SIFT implementation)

The original SIFT implementation supports the simple first order derivatives calculated

using the following equations:

dxði, j Þ ¼ Iðiþ 1, j Þ � Iði� 1, j Þ ð1Þ

dyði, j Þ ¼ Iði, jþ 1Þ � Iði, j� 1ÞÞ ð2Þ
where I is the image involved and i, j represent the location of a pixel in image I.

3.2.4 Recursive differencing

This linear edge detector based on the Deriche filter uses the following recursive equations

to obtain derivatives in x and y direction.

dxði, j Þ ¼ Ixpði, j Þ þ Ixmði, j Þ ð3Þ

Ixpði, j Þ ¼ a0pIx0ði, j Þ þ a1pIxoði� 1, j Þ � b1Ixpði� 1, j Þ � b2Ixpði� 2, j Þ ð4Þ

Ixmði, j Þ ¼ a1mIx0ðiþ 1, j Þ þ2m Ix0ðiþ 2, j Þ � b1Ixmðiþ 1, j Þ � b2Ixmðiþ 2, j Þ ð5Þ

Ix0ði, j Þ ¼ a1ðXpði, j Þ � Xmði, j ÞÞ ð6Þ

Xpði, j Þ ¼ Iði, j� 1Þ � b1Xpði, j� 1Þ � b2Xpði, j� 2Þ ð7Þ

Xmði, j Þ ¼ Iði, jþ 1Þ � b1Xmði, jþ 1Þ � b2Xmði, jþ 2Þ ð8Þ
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In Equations (3)–(8), i ¼ 1, . . . ,Sx, j ¼ 1, . . . ,Sy, a0p, a1p, a1m, a2m, b2, b1 are operator
parameters and Sx and Sy represent the image size. A similar recursive formulation
is also utilised to obtain the gradient in y direction dy.

3.2.5 Ratio of exponential weighted averages (ROEWA) operator

Placing a step edge between two homogeneous regions degraded by speckle, this operator,
intends to give an unbiased estimate of the ratio of the mean values of the two regions.
Based on the ISEF filter which is realised as a cascade of two recursive filters, h1(x)
(causal) and h2(x) (anticausal)

hðxÞ ¼ c � b xj j � h1ðxÞ � h2ðxÞ ð9Þ
where

h1ðxÞ ¼ a � bxuðxÞ h2ðxÞ ¼ a � b�xuð�xÞ ð10Þ
where, c ¼ a=ð2� aÞ, b ¼ 1� a, 05 a5 1 and u(x) is the Heaviside function and * denotes
the convolution operator. The first derivative of the smoothing filter h(x) is given by

f ðxÞ ¼ d

dx
hðxÞ: ð11Þ

For ratio-based implementation proposed in Fjørtoft et al. (1995)

f ðxÞ ¼ k
h1ðxÞ
h2ðxÞ

� �
k ¼ lnð1� aÞ

2� a
: ð12Þ

For this case, horizontal and vertical components of the gradient of an image are given
by

Dx½ðhðxÞhð yÞÞ � Iði, j Þ� ¼ f ðxÞ � ½hð yÞ 	 Iði, j Þ� ð13Þ

Dy½ðhðxÞhð yÞÞ � Iði, j Þ� ¼ f ð yÞ � ½hðxÞ 	 Iði, j Þ� ð14Þ
where � denotes bidimensional convolution, * denotes convolution in the horizontal
direction and 	 represents convolution in the vertical direction. The discrete realisations
of h1 and h2 are obtained using the z-transform of the discrete versions of Equation (9)

H1ðzÞ ¼ a

1� bz�1
, H2ðzÞ ¼ a

1� bz
: ð15Þ

For discrete recursive implementation (one-dimensional), in terms of a spatial index n,
this corresponds to the following simple recursions:

s1ðnÞ ¼ aðe1ðnÞ � s1ðn� 1ÞÞ þ s1ðn� 1Þ n ¼ 1, . . . ,N ð16Þ

s2ðnÞ ¼ aðe2ðnÞ � s2ðnþ 1ÞÞ þ s2ðnþ 1Þ n ¼ N, . . . , 1 ð17Þ
where e1(n) and e2(n) are the inputs, and s1(n) and s2(n) are the outputs of h1 and h2
respectively. Adapting the edge detector to radar images, ratio r(n) can be defined as

rðnÞ ¼ min
s1ðnÞ
s2ðnÞ ,

�
s2ðnÞ
s1ðnÞ

�
: ð18Þ
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It is important to note that according to formulation represented in Equation (18), a

stronger edge response would have value near to zero. Further, the Equations (16) and (17)

are realised both for x and y directions to obtain the gradients dx and dy.

3.3 Feature matching

Matching of the feature descriptors based on the ratio of the descriptor distance between

the two best matches of a reference feature seems to be a reasonable choice for both SAR

and optical images. The matching threshold is calculated as the ratio between Euclidean

descriptor distance between the second-closest and the closest match of a feature.

Recommended matching ratio (MR) is 0.6 but here we test the performance at MR 1.0.

For this we utilise the rough registration parameters to compute an approximate match

region for every match and filter out those matches where the corresponding feature does

not lie within a user defined window size. The idea behind this scheme is to increase the

number of feature matches as due to the MR threshold there would always be some correct

matches left out in the process of keeping out most of the wrong matches. Rough

registration parameters (rotation and translation) between multimodal images can be

quickly estimated automatically using mutual information on downsampled images

(Suri et al. 2009). As the BBF matching scheme utilised by the SIFT processing chain is not

completely error free, we tend to get a significant number of bad matches. Therefore, we

utilise RANSAC algorithm to filter all the obtained matches to obtain a subset of matches

referred to as correct matches in further text.
In accordance to the discussion to this point, the main objectives of this article might

be enumerated as:

(1) To compare SD, image recursive differencing (RD) and operator based on image

ratio (RA) as local gradient estimation schemes to generate rotation and scale

invariant feature descriptors for SAR image matching applications.
(2) Considering that normally remote sensing images might not necessarily have a big

rotation difference, we also present a version of the SIFT operator which does not

have the RI property. As aforementioned in Section 2.2, the SIFT operator

estimates one or multiple dominant orientations around a keypoint according

to which the descriptors are modified (basically estimated descriptors are rotated

by the found dominant orientation(s) to make rotation invariant descriptors).

However, with experimentation on a lot of datasets we have found that in

multisensor/multitemporal images the orientations of the same features might be

estimated to different values further resulting into different descriptors. Finally,

these flawed descriptors lead to these correctly detected features not being matched

in the matching phase. Practically in various applications, the remote sensing SAR

images would generally have similar orientations so for these cases we do not

require rotation invariant descriptors and there the presented approach becomes

useful as we can increase the number of correct matches. The advantage of this

version of the SIFT operator is realised by the significant increase in the number of

matches (with similar accuracy) obtained within SAR images having complex

acquisition differences (different sensor, incidence angle, speckle characterisitcs,

orbit directions and various land covers).
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4. Experimental datasets

For the described analysis, we have selected the following SAR image pairs (all
1000� 1000 pixel amplitude images).

4.1 Dataset 1

Two E-SAR (Experimental SAR: an airborne SAR-sensor developed and used by DLR
(Schreiber et al. 1999)) scenes acquired over Oberpfaffenhofen, Germany (Figure 2a).

4.2 Dataset 2

Multi-sensor registration, two scenes acquired using different sensors (Radarsat-1 and
ERS-2, the European remote-sensing satellite) at a time difference of 15 days, featuring
a rural land cover class with well-defined features. Here, both scenes were acquired at
different orbiting directions (Figure 2b).

4.3 Dataset 3

One of the E-SAR images of dataset-1 is matched with a TerraSAR-X image. The chief
characteristics of this selected dataset can be summarised as (Figure 2c):

(1) Different sensor nature (airborne and spaceborne).
(2) Time difference of 4 years.
(3) Different incidence angle.
(4) High-resolution imagery acquired over semi urban land cover.

5. Experimental results

For a comparative evaluation, we show the gradient images and pixel orientation
histogram (Figure 3) obtained by the three gradient estimation schemes for the E-SAR
image shown in Figure 2(a).

The magnitude images representing edge strengths are linearly mapped from their
respective value range to the range [0,255] (for display purposes). The edge orientations are
linearly mapped from the initial range ��, þ �½ � to 0, 255½ � to plot a histogram of edge
orientations of all the image pixels. The key observation is that for difference-based
gradient estimation schemes, the feature descriptors have orientations assigned in the
complete viable range of ��, þ �½ �, but that is not the case for the ROEWA operator
where all the image pixels obtain orientations from the range 0,�=2½ �. This behaviour
is attributed to the fact that none of the x and y gradient has any sign associated which
decides an edge pixels orientation. This narrow range can influence the detector’s
performance for images having a rotation difference.

5.1 Dataset-1

To continue with the analysis we run the same SIFT-OCT detection and feature
matching scheme and utilise the three different gradient estimators for matching images
in Figure 2(a). For one matching scenario, we also rotate the reference image by 90
 to
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analyse the gradient estimation schemes. Due to the same detection scheme, the number of
detected features (approximately 3500 features) andmatching accuracy levels (sub pixel) are
similar in all the SIFT versions evaluated here. However, we compare the three techniques
on the basis of their correct matches (percentage and number). The observations with three

Figure 2. (a) E-SAR images acquired at 1 h interval and 90
 rotation difference (match results:
RA descriptors, MR 0.4). (b) Radarsat (left) and ERS (right) images. (c) E-SAR image (left) and
TerraSAR-X image (right).
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different MR values (0.4, 0.6 and 0.8) are depicted in Table 1. Overall, it is seen that the
simple differencing performs almost at par with the two more conceptually sophisticated
techniques. Results indicate that the ROEWA-based descriptor formation (RA) scheme
looses the maximum number of correct matches on rotating the reference image by 90
 and
this is due to the narrow range of feature orientations (Figure 3). This is not encountered
in the gradient estimation schemes based on image differencing (SD and RD).

Figure 3. Edge Magnitude image with the corresponding edge orientation histogram (a) SD,
(b) RD (c) RA.
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D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
c
h
w
i
n
d
,
 
P
e
t
e
r
]
 
A
t
:
 
2
1
:
4
9
 
2
9
 
J
u
l
y
 
2
0
1
0



5.2 Dataset-2

Results for this dataset are presented in Table 2. Further, we test the SIFT variant without

RI property. This is achieved by simply skipping the orientation assignment step in the

SIFT processing chain. Here, we detect approximately 2600 and 2000 features in ERS-2

and Radarsat images, respectively. At MR 1.0, the maximum number of detections and

accuracy is expected as we utilise rough registration parameters to compute an

approximate match region for every feature and filter out those matches where

corresponding feature is not within a predefined window size (5 pixels). Images in

dataset-2 offer a much more complicated matching scenario as compared to dataset-1.

This is reflected in the reduced number of matches obtained for all the six operator

variants. In general, it is observed that gradients estimated through SD perform at par

(or marginally better) with the more sophisticated local gradient estimation techniques

(RD and RA). Here, the SIFT version without the RI characteristic outperforms the

SIFT version with the RI competence (only in terms of the number of matches not in

Table 1. SIFT performance in terms of number of correct matches (NOM) and percentage (%)
for dataset-1.

Number of rotation Reference image rotated by 90


Gradient type

RI Yes No

MR 0.4 0.6 0.8 0.4 0.6 0.8

SD NOM (%) 89 289 539 67 263 512
97 91 77 93 88 77

RD NOM (%) 102 328 569 84 290 540
95 91 66 93 89 70

RA NOM (%) 64 247 506 12 115 364
100 90 81 100 95 79

Notes: Rotation Invariance (RI), Matching Ratio (MR), local feature gradients estimated through
Simple Differencing (SD), Recursive Differencing (RD) and image ratio (RA).

Table 2. Matching results in terms of number of correct matches (NOM) and percentage (%)
for dataset-2 using different gradient estimation techniques.

Gradient type

RI Yes No

MR 0.6 0.8 1.0 0.6 0.8 1.0

SD NOM (%) 10 34 56 30 76 85
83 33 100 83 57 100

RD NOM (%) 13 33 47 29 67 77
62 18 100 78 34 100

RA NOM (%) 7 23 47 26 63 74
88 30 100 70 38 100

Notes: Rotation Invariance (RI), Matching Ratio (MR), local feature gradients estimated through
Simple Differencing (SD), Recursive Differencing (RD) and image ratio (RA).
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terms of percentage accuracy). The main idea of removing the RI characteristic is the
fact that we already know the images have similar orientations.

Further, it looks likely, that determining orientations of certain conjugate features
might not yield similar results as the process is heavily dependent on feature
neighbourhood, which might be very different in multimodal SAR images. For all
different match results, we obtain a match consistency of 1–2 pixels in both x and y
direction for 12.5-m pixel spacing images.

5.3 Dataset-3

Here, we have 2800 and 3500 features detected in TerraSAR-X and ESAR images,
respectively. The number of correct matches for all the variants has gone down drastically
(Table 3), further asserting the adverse influence of present complex image acquisition
differences. Again, the SIFT version without the RI characteristic has done much better
(both in terms of absolute number and percentage of correct matches) compared to its
other counterpart. For MR 1.0, we initially utilised a 16 pixel window and then used
RANSAC to filter the matches using a threshold of 5 pixels; therefore some of the matches
are rejected as bad matches. Using approximate registration parameters significantly
improves the number of correct matches for these very different SAR images. This
highlights the fact that the SIFT operator has excellent same feature detection capability
in multimodal SAR imagery, but very few of those are generally reported as successful
matches. The average match consistency after building a first-order polynomial (only
taking the on ground matches) is in the range 1–3 pixels for both x and y direction at 1-m
pixel spacing.

6. Conclusions

In this article, we have presented and analysed certain modifications in the SIFT operator
processing chain for effective SAR image matching. On basis of our previous works and in
accordance to the laid down objectives, the following can be concluded:

(1) For SIFT feature detection, skipping the features detected at the first octave
improves the operator performance both in terms of accuracy and processing time.

Table 3. Matching results in terms of number of correct matches (NOM) and percentage (%)
for dataset-3 using different gradient estimation techniques.

Gradient type

RI Yes No

MR 0.6 0.8 1.0 0.6 0.8 1.0

SD NOM (%) 0 3 39 6 9 49
– 3 78 60 9 60

RD NOM (%) 1 3 63 4 15 64
25 1 63 25 6 64

RA NOM (%) 0 4 22 0 14 49
– 5 59 – 9 60

Notes: Rotation Invariance (RI), Matching Ratio (MR), local feature gradients estimated through
Simple Differencing (SD), Recursive Differencing (RD) and image ratio (RA).
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(2) For SIFT feature identification, the gradients estimated using SD seems to be
almost as good as the two analysed more sophisticated techniques. There is no
significant difference within the three compared techniques on basis of correct
matches (percentage and absolute number).

(3) The number or matches can be increased by using the SIFT processing chain
without the RI characteristic. As remote sensing SAR images utilised in certain
applications like change detection can be expected to have similar orientation, we
expect the SIFT operator without RI to increase the potential number of matches
in most SAR image matching applications.

(4) The original SIFT processing chain does not make full use of its potential in
matching similar features in SAR images, meaning that similar features are
detected in both scenes but not matched by using BBF matching alone. This
assertion is confirmed in all the three tested datasets but most profoundly for
dataset-3, which presents a challenging SAR image matching scenario. As
presented in this article, the SIFT capability to match conjugate point features
in multimodal/multisensor SAR images can be enhanced by making use of
approximate registration parameters.

The obtained results indicate that by incorporating the above suggestions, the
originally proposed SIFT processing chain can be effectively refined for fast and robust
multimodal SAR image matching applications. Concluding in terms of general applica-
bility of the presented approach for multimodal SAR imagery, it has been found that SIFT
operator performs optimally for same sensor images and its performance is influenced with
increasing image differences such as incidence angle, orbit directions, time difference
within images, etc. It needs a mention that in plain areas good operator performance has
also been reported for images acquired by different sensors using different orbit directions
and incidence angles. However, registration in mountainous areas with different orbit
directions and also in urban cities with different flight paths still remains a challenge for
such a point feature-based registration strategy.
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