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ABSTRACT This article presents a two-layer optimization scheme for simultaneous optimal allocation
of wind turbines (WTs) and battery energy storage systems (BESSs) in power distribution networks. The
prime objective of this formulation is to maximize the renewable hosting capacity of the system. For outer-
layer, a new objective function is developed by combining multiple objectives such as annual energy loss
in feeders, back-feed power, BESSs conversion losses, node voltage deviation, and demand fluctuations
caused by renewables subject to various system security and reliability constraints. Furthermore, a modified
variant of African buffalo optimization (ABO) introduced to overcome some of the limitations observed in
its standard variant. The proposed modifications are first validated and then introduced for simultaneous
optimal integration of multiple distributed energy resources in distribution systems. The proposed modified
ABO is employed to determine the optimization variables of outer-layer. Whereas, a heuristic is proposed to
solve the inner-layer optimization problem aiming to determine the optimal dispatch of BESSs suggested by
outer-layer optimization. By considering the high investment and operating cost of BESSs, minimum energy
storage capacity has been ensured during the planning stage. To present the efficacy of developed model,
it is implemented on a 33-bus, benchmark test distribution system for various test cases. The comparative
simulation results show that the proposed optimization model and modified ABO is very promising to
improve the performance of active distribution systems.

INDEX TERMS African buffalo optimization, battery energy storage system, distribution systems, dis-
tributed generation, optimization, renewables.

NOMENCLATURE

Bmax Maximum BESS capacity allowed to inte-
grate at any node (kWh)

Brj Rated capacity of BESS to integrate at node j
(kWh)

bmin, bmax Minimum and maximum permissible loca-
tion limits of buffaloes in ABO

hbest Best fitness values of buffalo herd
Imax
jk Maximum current limit of the line connecting

nodes j and k (A)

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabio Massaro .

Ijk Current of branch connecting nodes j and k (A)
Iss Back feed current (A)
LD Maximum allowed load deviation
lp1, lp1 Learning factors of ABO
mi, wi Exploitation & exploration moves of ABO
N Total number of nodes in the system.
np Population size in ABO
Pj Real power injection at bus j (kW)
Pgrid Amount of power purchase from the grid (kW)
PTG Total power generation of the system (kW)
PTD Total real power demand of the system (kW)
Pgrid Mean of grid power purchase over time period

T (kW)

P
peak
D Annual peak demand of the system (kW)
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Pmax
dis Maximum discharging power of BESS at any

time (kW)
Pmax
char Maximum charging power of BESS at any

time (kW)
PbessC/Dj

Real power dispatch of BESS at node j (kW)

Pwtj Wind power generation at node j (kW)

PDj Load demand at node j (kW)
Prwtj Rated capacity ofWT installed at node j (kW)

Pmax
wt Maximum capacity of WT allowed to inte-

grate at any node (kW)
Qj Reactive power injection at bus j (kVAr)
rjk Resistance of the line connecting nodes i and

j (per-unit)
r Randomly selected buffalo from upper half

population
r1, r2 Random numbers between 0 & 1
sbest,i Individual best fitness of buffalo i
SOCj State of charge of BESS at node j
SOCmax Maximum SOC limit of the BESS
SOCmin Minimum SOC limit of the BESS
T Number of load levels considered in a day
t Time
Vss Grid substation bus voltage (per-unit)
Vj Voltage magnitude at node j (per-unit)
Vmin Minimum specified node voltage limit (per-

unit)
Vmax Maximum specified node voltage limit (per-

unit)
vj Wind velocity at node j (m/s)
vcut-out Cut-out velocity of WT (m/s)
vcut-in Cut-in velocity of WT (m/s)
vr Rated velocity of WT (m/s)
Yjk Elements of Ybus matrix (mho)
η Round trip efficiency of BESS conversion

system
ℜ Real part of the expression
8 Daily to annual conversion factor
δj Voltage angle at node j (rad.)
σj Binary decision variable of WT integration at

node j
ρj Binary decision variable of BESS integration

at node j
αj Binary decision variable for BESS charging

at node j
θjk Impedance angle of line between nodes j

and k

I. INTRODUCTION

In last few decades, the rapid advancements in distributed
energy resource (DER) technologies have made modern dis-
tribution systems more upgraded in terms of reliability, secu-
rity and robustness [1]–[5]. The inclusion of DER, along
with modern information and communication technologies,
has been changed the traditional consumer only image of
distribution networks while improving the efficiency of

power delivery in more controlled way. The globally dete-
riorating environmental condition and limiting conventional
energy resources along with the availability of different
DERs have promoted the large-scale integration of renew-
able energy resources (RER) in distribution networks [6]–[9].
The optimally or strategically deployed RER based DERs
can generate numerous amount of technical, environmental
and economical benefits for distribution network operator
(DNO), consumer andDER owner. Some of these can include
power/energy loss reduction [4], power quality improvement,
reduced greenhouse gas emission, voltage profile [10], sta-
bility [4], [11] and reliability improvement, and investment
postponement. However, the non-optimal allocation of DERs
can produce counter-productive results.

On the other hand, the high penetration of renewables
can jeopardize the system stability and security as tradi-
tional distribution systems were not designed to host the high
renewable penetration. The high penetration of renewables
increases the fault level and a surplus generation during light
load hours can blind the conventional unidirectional protec-
tion schemes. The power generation from solar photovoltaic
(PV) and wind turbine (WT) is limited by high intermit-
tency associated to solar irradiation and wind speed respec-
tively. The fluctuating power generation from such DERs
can cause erroneousness in power scheduling of DNO at
grid supply point, sometimes attract unscheduled interchange
(UI) charges. Moreover, the quick growth of solar PVs also
reduces the system inertia which may affect the grid stability
if adequate technologies have not been adopted.

To overcome some of the limitations of variable solar
and wind power generations, various planning and opera-
tional management models, and strategies have been stud-
ied in existing literature [12]–[15]. In [6], [9], optimization
frameworks have been devised to integrate high renewable
penetration in distribution systems. Some optimal switching
arrangements are proposed for solar photovoltaic and wind
power generations to utilize these resources as dispatchable
energy resources. Furthermore, the continuous advancements
in battery energy storage technology have led to the large-
scale integration of battery energy storage system (BESS) in
distribution systems. The optimal deployment of BESS can
provide various techno-economic benefits as good as other
DERs. The energy storage units not only supply/consume
power in critical hours but also provide virtual inertia and
improve the operational flexibility of the system by effective
charging and discharging algorithms. Nowadays, the BESS is
also supporting some of the grid ancillary services known as
‘distributed ancillary services’ [16]. Additionally, the effec-
tive management of BESS generates profit from energy
arbitrage, peak-load shaving, load-shifting, demand response
programs, and improved operational flexibility of the system.

The optimal and effective integration of BESS is a chal-
lenging task and not simple as distributed generations (DGs).
Unlike DG, the optimal integration of BESS is limited
by timely availability of state-of-charge (SOC), its asso-
ciated constraints, charging-discharging decisions, number
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of life cycles, and dispatch control. In literature, various
planning and operation strategies have been suggested for
optimal integrate the BESS in distribution systems. Some
optimization problems are developed in [15], [17], [18] for
optimal BESS allocation in active distribution system with
wind power generation. The Monte-Carlo simulation, and a
chance-constrained optimization model is developed in [15]
to determine optimal site and size of BESS ensuring max-
imum utilization of energy resources in small distribution
system. A negative sensitivity index based approach is pro-
posed in [17] to optimally deploy BESS in distribution net-
works, aiming to minimize power loss and voltage deviation.
Sedghi et al. [18] presented an optimization problem for
optimal integration of BESS to improve the system perfor-
mance and reliability by considering the uncertainty of wind
power generation. A two-stage optimization problem is pre-
sented in [19] for optimal planning of distributed generation
and energy storage in distribution networks. By considering
nodes, sizes, and timely estimation of SOC, the optimal BESS
allocation turns out be a complex mixed-integer, non-linear
and no-convex two-layer optimization problem.
In literature, various analytical and artificial intelligence

(AI) based optimization techniques have been suggested
to solve the optimal allocation of different DERs simul-
taneously. The analytical methods are based on some
simplified assumptions therefore sometimes fails to solve
the complex real-life engineering optimization problems.
On the other hand, the AI-based techniques can solve such
complex engineering optimization problems efficiently but
require high computations. Some of the popularly known
AI-techniques adopted for DER integration can include
genetic algorithm (GA) [4], [6], [9], [12], particle swarm
optimization (PSO) [4], teaching-learning-base optimization
(TLBO) [11], [20], moth search optimization (MSO) [21],
etc.
However, some problem specific limitations have been
observed in many standard optimization techniques. To over-
come some of the limitations observed in standard variants
of AI techniques, many improved and hybrid methods are
also suggested such as dynamic node priority based GA [10],
quasi-oppositional TLBO [11], hybrid Tabu search/particle
swarm optimization algorithm [18], ant lion optimiza-
tion [19], hybrid grey wolf optimization [22], nondominated
sorting genetic algorithm (NSGA-II) [23], gradient particle
swarm optimization (GPSO) and bacteria foraging (BFA)
hybrid algorithm [24], etc.
As discussed, the most of existing studies are focused

either on single or limited aspects of BESS deployment in
distribution networks. These can be optimization framework,
problem formulation, optimization method, objective func-
tion, deployment strategies, and operation/dispatch schemes.
In order to explore the maximum benefit of BESS integration,
the planning and some of the crucial operational strategies
which maximize daily profit should be investigated simulta-
neously. On the other hand, the recently developed optimiza-
tion techniques should also be explored to overcome some of

the limitations of existing methods and to maximize benefits
of DER integration.

The contribution of this article is two-fold. A two-layer
optimization problem has been devised to determine optimal
sites and capacities of multiple WTs and BESSs simulta-
neously. The goal of outer or upper layer is to determine
optimal sites and sizes of WTs and BESSs, aiming to min-
imize multiple objectives such as annual conversion loss,
feeder loss, back-feed power into main grid transformer,
and node voltage deviation and standard deviation of sys-
tem demand while ensuring effective utilization of BESS.
In inner or internal layer, an optimal hourly power dispatch
problem is formulated to maximize energy arbitrage benefits
of deployed BESSs. The proposed optimization model is
implemented on a benchmark 33-bus distribution system.
Secondly, a recently developed African buffalo optimization
(ABO) is introduced to solve the optimal DER integration
problem of distribution systems. Twomodifications have also
been suggested to overcome some of the limitations observed
in its standard variant. The suggested modifications are vali-
dated by comparing the performance of proposed ABO with
its standard variant. After validation of suggested improve-
ments, the modified ABO (MABO) is introduced to solve the
proposed outer-layer optimization problem ofWTs andBESS
integration. Furthermore, a heuristic is proposed to solve the
inner-layer optimization problem of BESS power dispatch,
for the BESSs suggested in each iteration ofMABO. The sim-
ulation results obtained for different test cases are revealed
that the suggested modifications have been improved the
solution searching abilities of standard ABO, in terms of
mean fitness, best fitness, worst fitness, and standard devi-
ation. Moreover, the proposed two-layer optimization model
effectively enhanced the wind power hosting capacity of the
system by 23.55%.

II. PROPOSED TWO-LAYER OPTIMIZATION PROBLEM

The traditional distribution networks were designed by
assuming unidirectional power flows. Similarly, the exist-
ing protection and operation schemes are also following
the same network topology therefore the renewable hosting
capacity of these systems are limited. Nowadays, the inclu-
sion of DERs is changing the nature of these distribution
networks from passive to active. Following the above dis-
cussed facts, sites and sizes of different DERs should be
determined optimally, aiming to minimize some of the risks
associate to high renewable penetration. The optimal inte-
gration of different DERs has always been a challenging
task for DNOs. By considering sites, sizes and types of
DERs, this problem turns out to be a complex mixed-integer,
non-linear, and non-convex optimization problem. The inte-
gration of BESS further increases the complexity of this
problem.

In order to reduce the problem complexity up to some
extent, a two-layer optimization framework has been devised
in this section, aiming to determine optimal sites and sizes of
WTs and BESSs simultaneously. The objective functions and
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constraints, devised in each layer, are discussed in following
sections.

A. OUTER-LAYER OPTIMIZATION FRAMEWORK

This layer can be named as a ‘DER integration-
layer’ or ‘outer-layer’. It aims to provide the final solution
of the problem which includes optimal sites and sizes of
different DERs, i.e., WTs and BESSs. In this layer formu-
lation, various DER planning objectives have been consid-
ered. It includes minimization of annual energy loss (f1);
node voltage deviation (f2); demand deviation index (f3);
and daily charging-discharging energy mismatch index of
BESS (f4). Due to the different scale and nature of these
objective functions, a multiplicative penalty function based
approach is used to transform this multiobjective problem
to single objective optimization problem [25]. However,
a multiobjective optimization based on Pareto front can also
be introduced for more realistic problem formulation. The
combined objective function of this layer is expressed in (1)
and individual objectives have been discussed in following
sections.

min F1 = (8f1) ∗ (1 + f2) ∗ (1 + f3) ∗ (1 + f4) (1)

subject to:

0 ≤ Prwtj ≤ Pmax
wt ∀ j (2)

0 ≤ Brj ≤ Bmax ∀ j (3)

N
∑

j=1

σjP
r
wtj

≤ P
peak
D (4)

Equations (2) to (4) are representing the maximum WT and
BESS capacities deployment constraint at any node, and total
WT hosting capacity of the system respectively.

1) MINIMIZATION OF ANNUAL ENERGY LOSS

It is well-known that the maximum annual energy loss occurs
in distribution networks which results into revenue loss for
an utility. In modern distribution systems, various energy
conversion equipment are being deployed which also con-
tribute to the power delivery losses, e.g., AC-DC and DC-DC
converters associated with different DERs. The high pene-
tration of renewables back-feeds the transmission substations
therefore, the back-feed power into the main grid is also
minimized in proposed work. The purpose of this objective
is to determine the adequate capacities of WT and BESS
simultaneously. For example, if high renewable penetration
is suggested with lesser BESS capacity then this objective
will help the optimization algorithm to reject this solution and
vice versa. The objective function of daily energy loss in the
system, f1, is expressed as

min f1 =
T

∑

t=1

PLine(t) + PConv(t) + PBack (t) (5)

where,

PLine(t) =
N

∑

j=1

N
∑

k=1

rjk cos
(

δj(t) − δk (t)
)

Vj(t)Vk (t)

[

Pj(t)Pk (t)

+Qj(t)Qk (t)
]

+
rjk sin(δj(t) − δk (t)

Vj(t)Vk (t)

[

Qj(t)Pk (t)

−Pj(t)Qk (t)
]

(6)

PConv(t) = PbessC/Dj
(t)(1 −

√
η) ∀ j (7)

PBack (t) =

{

∣

∣ℜ[Vss(t)Iss(t)∗]
∣

∣, if Iss(t) < 0

0, else
(8)

Equations (6), (7), and (8) are representing the total power
loss in branches, energy loss of BESS conversion systems,
and back-feed power to main grid respectively, all at time t .

2) MINIMIZATION OF NODE VOLTAGE DEVIATION

The voltage regulation has always been an important con-
cern for utilities to ensure quality power supply to con-
sumers. Usually, it has been suggested that node voltage
deviation should be minimized while determining optimal
power dispatch of various DERs and performing any tap
changing operation of voltage regulators. The high pene-
tration of renewables results into node over voltages in the
system. In the proposed study, the minimization of node
voltage deviation is also considered as an objective function,
f2, expressed as

f2 = max
〈

1Vj(t)
〉

∀ j, t (9)

where,

1Vj(t) =

{

0, if Vmin ≤ Vj(t) ≤ Vmax
∣

∣1 − Vj(t)
∣

∣, else
(10)

3) MINIMIZATION OF DEMAND DEVIATION INDEX

Nowadays, the growing penetration of intermittent power
generation is increasing the risk of overdraw/under-drawwith
respect to scheduled power. Sometimes, excessive overdraw
of power can put the upstream transmission networks at risk.
Generally, a warning is issued by load dispatch centers to a
system operator that overdraws during a period when supply
frequency dips below its nominal range and vice versa [26],
[27]. Moreover, UI charges are also applied on energy pur-
chase if any constraint has been violated. In the proposed
model, it is difficult to investigate the dynamic behavior of
the system therefore a close approximation has been used.
To maintain the supply frequency with the specified limits,
a demand deviation index (DDI) is proposed comprising
of the standard deviation of power drawing from the main
grid or scheduled power over a time period T . The DDI is
minimized and expressed as

min f3 =

√

√

√

√

1

T − 1

T
∑

t=1

(

Pgrid (t)

P
peak
D

−
Pgrid

P
peak
D

)2

(11)
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where,

Pgrid (t) =
N

∑

j=1

PDj (t) + PLine(t)

−
N

∑

j=1

σjP
wt
j (t) −

N
∑

j=1

ρjP
bess
C/Dj

(t) (12)

Equation (12) expresses the amount of power purchase by
DNO from main grid, at time t , i.e., Pgrid (t).

4) MINIMIZATION OF DAILY CHARGING-DISCHARGING

ENERGY MISMATCH INDEX

The number of charging-discharging cycles is limited for the
BESS therefore it is important to minimize the number of
cycles to maximize its life-time. However, it is a challenging
task to determine and minimize the number of cycles at
planning stage therefore one charging and discharging cycle
is assumed over a time interval of T . However, these cycles
may be varied in daily system operations based on techno-
economic benefits. Moreover, it is also important to ensure
adequate BESS capacity deployment. To fulfill these require-
ments, the mismatch between charging and discharging ener-
gies of deployed BESS, over T hours or levels, is minimized
and expressed as

f4 = max
〈

1Bj

〉

∀ j (13)

where,

1Bj = ρj

∣

∣

∣

∑T
t=1 P

bess
Cj

(t) −
∑T

t=1 P
bess
Dj

(t)
∣

∣

∣

Brj
(14)

This objective function also ensures that the battery SOC
should reach to its initial value at the end of everyday to
perform next day operations.

B. INNER-LAYER OPTIMIZATION FRAMEWORK

In previous section, the outer-layer optimization framework
has been designed and presented to determine the opti-
mal sites and sizes of different DERs. In each iteration,
the promising sites and sizes of DERs are suggested which
need to be justified. In order to determine the fitness value of
function F1 expressed in (1), the value of objective functions
f1 to f4 has to be determined first. These functions involve
time depended variables which need to be optimized or cal-
culated for each t ∈ T . The optimization variables include
optimal dispatch of suggested BESSs, i.e. PbessC/Dj

, whereas
other time dependent variables can be updated and calculated
by using power-flow calculations. To ensure the optimality
of these variables at each time t , an inner-layer optimization
framework is developed. The objective function of this inner-
layer or operational-layer optimization is comprised of the
power loss, back-feed power and load deviation. The same
penalty function based approach is adopted to combine all
the objectives. A combined objective function is expressed in

(15) for inner-layer optimization.

min F2(t) =
(

PLine(t) + PBack (t)
)

∗
(

1 + fd (t)
)

∀ t (15)

subject to:

SOCmin ≤ SOCj(t) ≤ SOCmax ∀ j, t (16)

PLimcharj (t) ≤ PbessC/Dj
(t) ≤ PLimdisj (t) ∀ j, t (17)

SOCj(t) = SOCj(t − 1) + αj
√

ηPCj (t)

+(1 − αj)
PDj (t)√

η
∀ j, t (18)

Ijk (t) ≤ Imax
jk ∀ j, k, t (19)

Pj(t) = Vj(t)
N

∑

k=1

Vk (t)Yjkcos
(

θjk + δk (t) − δj(t)
)

∀ j, t

Qj(t) = −Vj(t)
N

∑

k=1

Vk (t)Yjksin
(

θjk+δk (t)−δj(t)
)

∀ j, t

(20)

where, fd (t) represents the relative fraction demand deviation
with respect to previous time t − 1 and expressed as

fd (t) =
∣

∣

∣

∣

Pgrid (t) − Pgrid (t − 1)

Pgrid (t − 1)

∣

∣

∣

∣

(21)

Equations (16) to (20) are expressing the constraints of SOC
limits, charging/discharging power limits, SOC balancing,
feeders thermal limits, real and reactive nodal power balance
respectively. For each time t , the maximum allowed discharg-
ing, i.e. PLimdisj (t), and charging, i.e. PLimcharj (t), limits of BESSs
used in (17) are determined by using (24) and (25) as shown
at the bottom of the next page, respectively. The charging and
discharging efficiencies are calculated as square root of round
trip efficiency.

C. WIND POWER GENERATION

The wind velocity is highly unpredictable that results into
fluctuating power generation from WTs. In planning stage,
it is difficult to consider all the states of wind power gen-
eration in optimization therefore hourly power generation
is generally considered. The wind power production from
WTs is the function of wind speed along with some WT
parameters [9]. If technical specifications of a WT such as
swapping area, pitch angle, etc. remain constant with the
time then wind power production would be proportional to
the cubic function of wind velocity. As suggested in [16],
the mathematical expression of wind power generation at
node j and time t is modeled as

Pwtj (t) ∝ v(t)3 (22)

By using (22), the kW power production from WT can be
determined as

Pwtj (t) =



























0, if vj(t) < vcut-in or

vj(t) > vcut-out
(vj(t)

vr

)3
Prwtj , if vcut-in < vj(t) < vr

Prwtj , if vr ≤ vj(t) < vcut-out

(23)
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D. PROPOSED BESS DEPLOYMENT AND

MANAGEMENT STRATEGIES

In this section, following rules and strategies are pro-
posed or adopted for optimal deployment and dispatch man-
agement of BESS.

• It has been ensured that a minimum possible number of
BESSs should be deployed to reduce the associated high
investment and maintenance costs.

• Due to the limited number of charging-discharging
cycles, only one complete charging-discharging cycle is
assumed in a day. It helps to enhance the battery life and
reduces the conversion losses to some extend.

• Further to keep the number of cycles at minimum,
no BESS is allowed to discharge once it starts charging
and reaches tomaximumSOC level (except emergency),
i.e., SOCmin and vice versa.

• No BESS is discharged beyond its minimum SOC level,
i.e. SOCmin.

• Strategically, only two BESSs are assumed to be
deployed in the system known as central and distributed
energy storages. The central BESS is deployed at grid
substation and its size is determined by optimization.
Both site and size of distributed BESS have to be
determined.

• For inner-level optimization, the upper, i.e. PLimdisj (t),

and lower, i.e. PLimcharj (t) limits of BESS power dispatch
at any time t are determined by using (24) and (25)
respectively.

III. PROPOSED AFRICAN BUFFALO OPTIMIZATION

The African buffalo optimization method is a swarm-based,
meta-heuristic, and nature-inspired optimization technique,
developed by Odili et al. [28], in 2015. It is inspired from the
social and herding behavior of African buffaloes. In ABO,
three major characteristics of these animals are basically
modeled into some set of mathematical equations which help
to ensure safety, find shelters andmeadows for their herd [29].
They have inherent broad memory that helps them to guide
and tracking the path in vast land space of Africa. Further-
more, these buffaloes are very social and cooperative animal,

prefer to live in herds. TheAfrican buffaloes have very special
inbuilt characteristics to help and shield their herd members
if anyone is in danger.

Second attribute of this mammal is its harmony towards
fellow members of the herd. This beast communicates with
other members of the group by means of two vocal sounds
‘waa’ and ‘maa’. The waa sound is an alarming call in the
herd which means to explore new places or sometime to
help the needy member. This sound is an indication for the
herd members to keep walking as current region is unfavor-
able or dangerous. Sometimes, this sound is also produced
by a buffalo who is in danger and needs help from its fellow
beings. On the other hand, maa sound is a pleasant sound
which indicates that current location is delightful and safe for
the herd. By this sound, fellowmembers are ensured that they
can stay to exploit the location. Third and the last attribute
is representing the parliamentary characteristics of the herd.
If there are different opinions in the herd then they take the
decision by help of election and majority takes the next line
of action. In this paper, the basic ABO is presented and then
some improvements are suggested in following sections.

A. Standard Variant of African Buffalo Optimization

In this section, a standard variant of ABO algorithm is pre-
sented. In 2015, J.B. Odilid et al. have developed this simple
and effective optimization technique by considering above
discussed characteristics of African buffaloes [28]. This algo-
rithm comprises unique capabilities of this animal for effec-
tive exploration and exploitation in the given search space.
It tries to solve pre-mature convergence problems by making
sure that each buffalo is updating its location with respect
to the previous experience. Another unique characteristics of
ABO is its adequate exploitation by reinitializing the entire
herd when leader (the best buffalo) is not improving with
iterations.

The basic steps of ABO algorithm is given below.

1. Initialize the objective functions F(x), x ∈ S, population
size np, and algorithm parameters such as lp1 & lp2, etc.

2. Randomly produce the feasible population of buffaloes
and set on random nodes within the search space.

PLimdisj (t) =































0, if SOCj(t) ≤ SOCmin or Igs(t) ≤ 0

√
ηPmax

dis , if SOCj(t) −
Pmax
dis

Brj
≥ SOCmin and Igs(t) > 0

√
ηBrj (SOCj(t) − SOCmin), if SOCj(t) −

Pmax
dis

Brj
< SOCmin and Igs(t) > 0

∀ j (24)

PLimcharj (t) =































0, if SOCj(t) = SOCmax

−
(Pmax

char√
η

)

, if SOCj(t) +
Pmax
char

Brj
≤ SOCmax

−
(Brj (SOC

max − SOCj(t))
√

η

)

, if SOCj(t) +
Pmax
char

Brj
> SOCmax

∀ j (25)
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3. Now update the fitness value of ith buffalo by using (26).

mi+1 = mi + lp1(hbest − wi) + lp2(sbest,i − wi) (26)

where, mi and wi are representing the exploitation and
exploration moves of ith buffalo (i = 1, 2, 3, . . . , np),
respectively. lp1 and lp2 are the learning factors varying
from 0.1 to 0.6. Furthermore, hbest and sbest.i are the best
fitness value of herd and individual best fitness of buffalo
i respectively.

4. Update the position of ith buffalo and [hbest , sbest,i],
as follows

wi+1 =
wi + mi

±0.5
(27)

5. Is hbest improving? If yes, move to next step, otherwise
return to step 2.

6. Repeat steps 3 to 5 until stopping criteria is not achieved
otherwise move to next step.

7. Print the optimal solution.

B. MODIFIED AFRICAN BUFFALO OPTIMIZATION

Although, the ABO algorithm outperformed on benchmark
functions in [28] but shows some limitations when applied
to real-life engineering optimization problems. It has been
observed that standard variant of ABO is unable to find the
global optimal solution, already determined by some of the
existing optimization methods. In order to overcome some
of the limitations observed in standard variant of ABO, two
modifications are suggested without altering the basic mech-
anism of standard ABO. These shortcomings and correspond-
ing corrections are discussed below.
Limitation-1 (Parliamentary Characteristic of The Herd):

As discussed, the herd of African buffaloes shows parliamen-
tary characteristic when they have different opinions in the
herd. The majority population takes next line of action by
using election. However, it is observed that the parliamentary
characteristics of the herd has not been modeled in standard
variant of ABO.
Suggested modification-1 (Inclusion of parliamentary cha-

racteristic): In order to introduce the democratic behavior
of the herd, buffalo population is sorted according their fit-
ness values and then divided into two groups. The upper
half population will be considered as leader group of the
herd. These leaders will follow the main leader of the herd,
i.e., hbest , known as ‘pathfinder’. Similarly, a buffalo from
the lower half population will follow its adjacent or local
leader. The community legislator will be chosen randomly
from the parliamentary group of upper half population. These
modifications are presented in the modified ABO (MABO)
algorithm steps 4 to 6b.
Limitation-2 (Reinitialization of complete population):

The standard variant of ABO has shown strong exploration
and exploitation capabilities while solving benchmark func-
tions. However, the frequent and random reinitialization of
complete population limits the directional search of the herd
when applied to solve the complex engineering optimization

problems with large solution space. It is basically generating
completely new population when best solution is not improv-
ing with iterations. Therefore, a modification is required to
provide the guidance to buffalo population towards global
region.
Suggested Modification-2 (Guided Reinitialization of Par-

tial Population): To provide the target search direction to
weak population of the herd, partial number of buffaloes is
only reinitialized under parliamentary characteristic, unlike
standard variant of ABO. The proposed corrections will pro-
vide the guidance to poor buffaloes to move towards their
strong or leading fellows. The proposed correction is pre-
sented in step 6c.

The suggested modifications will improve the potential of
ABO to seek the global optima. Steps of proposed MABO is
presented below.

1. Set the algorithm control parameters and objective func-
tion(s).

2. Generate random but feasible population of buffaloes and
place these to random locations within the search space.

3. Calculate fitness value for all buffaloes.
Proposed modifications start here. . .

4. Sort the buffalo population according to their fitness val-
ues.

5. Update the fitness and location of buffalo i; where,
i∈{sorted upper half buffalo population, i = 1, 2, 3, . . . ,
np
2 }, by using (26) and (27) respectively.

6. Now, update the fitness and location of buffalo j; where,
j∈{lower half of the sorted population j = (

np
2 +

1), . . . , np} as follows.
Generate a random number, r1 ∈ [0, 1],

a) If r1 ≥ 0.5 then update the fitness of buffalo j, from
lower half population, as suggested below

mj+1 = mj + lp1(hbest − wr ) + lp2(sbest,j − wr ) (28)

where, r is the randomly selected buffalo from the
upper half population r∈{i = 1, 2, 3, . . . ,

np
2 }, called

as local legislator. The suggested modification in (28)
will help the upper half group of buffaloes to guide
their fellows in the lower half population. The modi-
fication will also support the help seekers buffaloes of
the herd.

b) Update the location of jth buffalo by using (27), as fol-
lows

wj+1 =
wj + mj

±0.5
∀ j = (

np

2
+ 1), . . . , np (29)

c) If r1 < 0.5 then randomly update the location of
buffalo j within the search space, as suggested in (30).

wj+1 = bmin + (bmax − bmin)r2 (30)

where, bmin, bmax, and r2 ∈ [0, 1] are theminimum and
maximum permissible location limits of buffaloes, and
random number respectively.

. . .proposed modifications end here

7. Repeat the step 3 to 6 until stopping criteria is achieved.
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FIGURE 1. Flowchart of proposed MABO.

IV. PROPOSED MODIFIED AFRICAN BUFFALO

OPTIMIZATION FOR WT AND

BESS INTEGRATION

In this section, the proposed MABO is applied to solve the
real-life DER integration problem of distribution systems,
presented in Section II. The optimization problem is formu-
lated in two levels, i.e., outer and inner layer frameworks,
therefore two optimization techniques will be needed. The
decision variables of outer-layer optimization include optimal
sites and sizes of WTs, site and size of distributed BESS.
As discussed in Section II-D, the central BESS is strategi-
cally integrated at grid substation thus its node/site will be
known. However, its capacity should be included in optimiza-
tion variables. Suppose, DER investor wants to deploy nw
number of WTs, and 2 BESS (1 central and 1 distributed)
then the total number of optimization variables would be
(2nw + 3). By considering the sites and sizes of these DERs
and system complexity, this problem turns-out to be mixed-
integer, non-linear, and non-convex optimization problem.
The proposed MABO employs to solve this outer-layer opti-
mization problem aiming to determine sites and sizes of these
DERs. The structure of buffalo individual used in MABO
is presented in Fig. 2. Further, the flow chart of proposed

Algorithm 1 Pseudo-Code of Proposed BESS Management

1: Receive the DER sites and sizes fromMABO and deploy
in the system; set objective F2(t);

2: set t = 0;
3: for each time t do
4: t = t + 1;
5: forecast/determine the total power generation from

all WTs by using (23)
(

i.e. PTG(t) =
∑N

j=1 σjP
wt
j

)

and

total system demand (i.e. PTD(t)) at time t;
6: determine the upper and lower BESS dispatch limits

[PLimdisj (t),P
Lim
charj

(t)] ∀ j by using (24) and (25) respectively;
7: if PTG(t) > PTD(t) then
8: determine the optimal dispatch of distributed

BESS, PbessC (t) for minimum value of F2(t). It is deter-
mined by varying the power dispatch of the BESS from
PLimcharj (t) to 0 kW, in step size of 10 kW; ⊲ First priority
will be given to distributed BESS because it contributes
in power loss minimization.

9: if PTG(t) >
(

PTD(t) + PbessC (t)
)

then

10: determine the optimal dispatch of central
BESS if any, PbessC (t) by minimizing PBack (t) only;

11: else

12: determine the optimal dispatch of central
BESS, PbessC (t) by minimizing fd (t) only;

13: end if

14: else

15: determine the optimal dispatch of distributed
BESS PbessD (t) for minimum value of F2(t), by varying
the BESS power dispatch from 0 to PLimdisj (t) in step size
of 10 kW;

16: if fd > LD then ⊲ LD denotes the maximum
allowed load deviation by load dispatch center.

17: then determine the optimal dispatch of central
BESS PbessD (t) for minimum value of fd (t);

18: end if

19: end if

20: perform the power flow calculations and determine
the objective functions of outer-layer optimization for at
time t , by using these BESS dispatch;

21: end for

22: return objective function F1 to outer-layer optimization
as a fitness value.

MABO method used for DER integration is presented
in Fig. 1.

On the other hand, the decision variables of inner-layer
optimization include optimal dispatch of BESSs suggested
by out-layer optimization method, as a solution of optimal
planning. This is a two-variable problem with reduced com-
plexity therefore meta-heuristic approach is ignored, instead
a heuristic is used. The pseudo-code of proposed strategies
for optimal hourly dispatch control of deployed BESSs is
presented in Algorithm 1.
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FIGURE 2. Structure of an individual used in MABO (decision variables of outer-layer optimization problem.)

V. CASE STUDY

In this section, the MABO method is applied to solve the
proposed complex two-layer optimization problem of WT
and BESS integration in benchmark test distribution system
of 33 buses [30]. It is a 12.66 kV distribution systemwith total
real and reactive power demand of 3715 kW and 2300 kVAr
respectively. Total real power loss of the system at nominal
loading is 202.67 kW [10]. As discussed, the contribution
of this paper is two-fold, proposed modifications in ABO
and optimization framework for WT and BESS integration.
Therefore, the MABO is validated first and then used to solve
the proposed DER integration problem in following sections.

A. VALIDATION OF PROPOSED MODIFICATIONS

IN ABO METHOD

To validate the proposed modifications in ABO, the perfor-
mance of MABO is compared with its standard variant. For
this validation, a single objective dispatchable DG integration
problem is formulated for active power loss minimization
in 33-bus distribution system. The problem is solved by using
both standard [28] and modified variants of ABO. The meta-
heuristic methods have certain randomness in final solu-
tions therefore 50 independent trials are performed. Table 1
presents a comparison of some performance parameters of
these algorithms, obtained in 50 independent trials of ABO
and MABO. The maximum number of iterations and popu-
lation size considered for both the approaches are 100 and
50 respectively. This table summarizes the value of best
fitness, mean fitness, worst fitness, standard deviation, and
CPU time for ABO and MABO. The comparison reveals that
the suggested modifications have enhanced the best solution
searching ability and overall performance of standard ABO.
However, the simulation time is slightly increased because of
extra steps introduced in the basic algorithm.
Furthermore, the convergence characteristics of these

methods are also compared for the best and mean solutions,
and presented in Fig. 3, for a single run. It can be seen from
these figures that the proposed MABO has better solution
searching abilities. In order to investigate the scalability of
the proposed MABO, the simulation time has been observed
with increased size of this problem. Fig. 4 shows that the sim-
ulation time is slightly accelerative with increasing number
of variables. Now this method is used to solve the proposed
two-layer optimization problem in following section.

B. SIMULATION RESULTS OF WT AND BESS INTEGRATION

After validation of MABO, it is now implemented for pro-
posed simultaneously optimal accommodation of WTs and
BESSs in the same 33-bus test distribution system. The

TABLE 1. Performance comparison of ABO and MABO for 50 independent
trails.

FIGURE 3. Best and mean convergence characteristics of ABO and MABO
for power loss minimization in 33-bus distribution system.

FIGURE 4. The effect of problem-size on modified African buffalo
optimization.

optimization framework developed in Section II is solved
by using the proposed optimization methods in Section IV.
The values of parameters used in this study are summarized
in Table 2. The hourly wind power, and load multiplying
factors (LMF), used in the study, are referred from [16] and
shown in Fig. 5. The load data has mixed power demand
of residential, commercial and industrial loads. In order to
determine the hourly load profile in kW, the LMF is multi-
plied with the peak load of the system. Peak load is assumed
as 1.6 times of nominal load [10]. Similarly, hourly kW
power generation of a WT is calculated by multiplying the
hourly wind power multiplying factor with rated capacity of
corresponding WT. The distribution system is assumed to be
dispersed in a small geographical area therefore all nodes can
have same wind profile. In practice, WTs are only available
in specific sizes therefore discrete sizes of WTs have been
considered in this study. The considered WT sizes are as
follows: 250 kW, 850 kW, 1250 kW, 1500 kW, 1800 kW, and
2000 kW [31].

VOLUME 8, 2020 14297



P. Singh et al.: MABO for Strategic Integration of Battery Energy Storage in Distribution Networks

TABLE 2. Simulation parameters used in the study.

FIGURE 5. Hourly multiplying factors for load demand and wind power
generation.

To investigate the effect of battery energy storage integra-
tion with different strategies, following cases are framed and
solved.

• Case–I: Base case, no DER
• Case–II: optimal integration of WTs only
• Case–III: simultaneous optimal integration of WTs and
one distributed BESS

• Case–IV: simultaneous optimal integration ofWTs, one
distributed and one central BESSs.

The simulation results of these cases are presented in Table 3.
It includes the optimal sites and sizes of different DERs,
renewable penetration, standard deviation of the demand,
total energy loss in feeders and BESS conversion system,
maximum voltage, and percentage annual energy loss reduc-
tion. In case-I, the load profile shown in Fig. 5 is simulated
for this system, without considering any DER. As observed
from Table 3, the mean voltage profile of the system is very
poor in base case condition.

In case-II, threeWTs are assumed to deploy, as this number
is found to be compromising for this system [10]. The outer-
layer optimization only (i.e., MABO) is used to solve this
case since there no dispatchable source presents to optimize
in inner-layer. The optimal integration of WTs only has sig-
nificantly reduced the annual energy loss of the system as
compared to base case, i.e., case-I. The maximum potential
of wind power generation has been found during light load
hours in night, as can be observed from Fig. 5. Therefore,

themaximumWTpenetration is limited by theminimum load
demand of the system appeared in 4:00–5:00 hours. However,
the inclusion of WTs has increased the fluctuations in power
drawing from the main grid, as observed from the value of
standard deviation which is very high as compared to case-I.
It can be possible since no dispatchable/controllable energy
source presents to minimize the fluctuations caused by wind
power generation in this case.

To improve the techno-economic performance of active
distribution systems, some dispatchable DERs may be
required such as diesel engines, gas micro-turbines, com-
bined heat and power, BESS, etc. Among these, only BESS
provides dual characteristic of both generation and load
whenever required. It is a very promising DER to store
and release the clean energy generated from renewables.
Therefore, the optimal integration of WTs is re-investigated
in case-III by simultaneously deploying one BESS along
with three WTs. Table 3 shows that the presence of this
BESS has not been changed the optimal sites of WTs much,
just shifted two WTs to their adjacent nodes. The WT of
node 14 moves to its adjacent node 15, and WT of node
31 to 30 which are topologically nearest to previous nodes.
The inclusion of this BESS has increased the sizes of two
WTs and also reduced the annual energy loss of feeders as
compared to case-I and II but at the cost of extra energy loss
in BESS conversion system. Though, the total annual energy
loss reduction is less as compared to case-II however the
presence of BESS significantly reduced the effect of wind
power generation fluctuation as can be observed from the
standard deviation. From this case, it has been concluded
that one distributed BESS within the system significantly
contributes in demand deviation reduction caused by WTs,
voltage profile improvement, and feeders annual energy loss
reduction. The proposed optimal BESS management scheme
is outperformed for these objectives.

From case-III, it has been observed that the standard devia-
tion of hourly load demand at grid supply point is still higher
than the base case. The distributed BESS is not sufficient
to minimize the fluctuations in hourly power purchase from
the upstream grid. Therefore, one more BESS is dedicatedly
planned at grid supply point itself to minimize back-feed
power and fluctuation in power supplied to distribution sys-
tem. Secondly, it is also advantageous to deploy and manage
the BESS at grid substation because it will reduce the require-
ments of extra land and substation equipment. Thirdly, it will
be easy to determine/measure back-feed power and demand
deviation from the substation at grid supply point. In this
case, the site of integration is already known for central BESS
therefore nine variables (3 WT sites, 3 WT sites, 1 site and
2 capacities of BESS) have to be determined. The addition of
central BESS significantly reduces the fluctuations in hourly
power purchase from the main grid. It is interesting to notice
that the sites and capacities of WTs are same as obtained in
case-III except the node of one WT that shifts from node 8 to
node 3. The possible reason for this shift is central BESS at
node 1 that mainly charged by the WT at node 3.
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TABLE 3. Simulation results of proposed two-layer optimization problem of WT and BESS integration obtained by MABO.

FIGURE 6. Hourly state-of-charge (%) of (a) central BESS at node 1, and
(b) distributed BESS at node 17 in case-IV.

Technically speaking, the power generation from central
BESS should not contribute in feeder energy loss reduction
instead can increase it when charging from a WT at node 3.
However, the feeder power loss reduction is more in this case
(except conversion losses). It could be possible when distance
and amount of power delivery is minimum between WTs
and BESSs. The hourly optimal power dispatch of BESSs
are presented in Fig. 6. It shows that the power dispatch
profiles of central and distributed BESSs are very similar,
except amount of power dispatch. It is due to the involvement
of common objectives in these hours, i.e., load deviation
and back-feed power. From hours 00:00 to 6:00, both the
BESSs are simultaneously charging to reduce the back-feed
power caused by excess renewable power generation during
this period. The central and distributed BESSs remain in
idle mode (at maximum SOC) from hours 6:00 to 10:00 and
7:00 to 9:00 respectively. In the day time, central BESS
controls the demand deviation whereas distributed BESS
minimizes demand deviation, node voltage deviation, and
annual energy loss in branches simultaneously.
The simultaneous integration of BESSs and WTs is sig-

nificantly reduced the annual energy loss in feeders and
fluctuation in hourly power purchase from the grid. The node
voltage profile and renewable hosting capacity of the system
have also been improved. Although, the total annual energy
loss reduction is more in case-II but at lower WT penetration.

FIGURE 7. Hourly load demand of distribution system for all cases.

FIGURE 8. Mean node voltage profiles of 33-bus distribution system for
different cases.

On the other hand, the most of performance parameters of
system are improved in case III and IV at high WT pene-
tration. The inclusion of central BESS provides additional
flexibility to system bymanaging the scheduled power within
its nominal value. The resultant hourly demands of the system
are shown in Fig. 7. It shows that the distributed BESS alone
is unable to shift the resultant system demand from peak
load hours to light load hours. Whereas, the central BESS
has shifted some of the peak demand to light load hours.
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Similarly, the mean node voltage profile (over 24 hours) of all
these cases are presented in Fig. 8. It shows that the optimal
integration of DERs has significantly improved the node
voltage profile of the system, especially in cases III and IV.

VI. CONCLUSION

In this paper, a two-layer optimization framework has been
developed for simultaneous optimal accommodation and
management of WT and BESS in distribution systems. Some
new objectives and security constraints are introduced to
improve the renewable generation hosting capacity of distri-
bution networks. The objective functions proposed in outer-
layer optimization include minimization of annual power
loss in feeders, back-feed power into grid substation trans-
former, BESS conversion system loss, node voltage devia-
tion, demand deviation index, and daily charging-discharging
energy mismatch index. The operational objectives such as
hourly power loss, back-feed power, and demand deviation
are minimized in inner-layer. The case studies and simulation
results reveal that the proposed model effective managed
to accommodate the maximum wind power generation in
33-bus test distribution system without violating any system
constraints. Similarly, the strategic integration of BESS has
been optimized multiple DNO objectives effectively.
On the other hand, a recently developed ABO algorithm

has been introduced to solve the DER integration problem
of distribution systems while suggesting some modifications.
The suggested corrections are significantly improved the
solution searching ability of ABO in terms of performance
parameters such as best, mean and worst fitnesses, and stan-
dard deviation. In the future work, the proposed MABO can
be applied to solve some more complex real-life engineering
optimization problems.
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