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Abstract: Heart disease is one of the lethal diseases causing millions of fatalities every year. The
Internet of Medical Things (IoMT) based healthcare effectively enables a reduction in death rate
by early diagnosis and detection of disease. The biomedical data collected using IoMT contains
personalized information about the patient and this data has serious privacy concerns. To overcome
data privacy issues, several data protection laws are proposed internationally. These privacy laws
created a huge problem for techniques used in traditional machine learning. We propose a framework
based on federated matched averaging with a modified Artificial Bee Colony (M-ABC) optimization
algorithm to overcome privacy issues and to improve the diagnosis method for the prediction of
heart disease in this paper. The proposed technique improves the prediction accuracy, classification
error, and communication efficiency as compared to the state-of-the-art federated learning algorithms
on the real-world heart disease dataset.

Keywords: privacy aware; federated learning; healthcare; heart disease prediction; feature selection

1. Introduction

Advancement in technologies like the Internet of Things (IoT) and wearable sensing
devices enables the storage of records related to the health parameters of patients or
people. The IoT in the healthcare environment has led to a new research domain of the
Internet of Medical Things (IoMT). The IoMT-based solutions integrated with the healthcare
system can enhance care services, and quality of life, and enable cost-effective solutions [1].
Biomedical data related to people like medical records, images, physiological signals, and
many other forms are gathered using these technologies. The volume of this biomedical
data is huge as it can easily be gathered from a huge number of people using modern
technologies [2]. Wearable sensing devices, like smartwatches, wristbands, and many
others, enable early detection and warnings of several diseases. The increasing trend
in wearable devices helps in efficient data collection and the early detection of diseases.
Healthcare is a system that is formed with the intention to prevent, diagnose, and treat
various health-related problems in humans. As the advancement and development of
healthcare-related technologies take place, data in huge amounts is available from various
sources. The development of an efficient healthcare infrastructure system is one of the
challenging goals of current modern society.

One of the primary health concerns faced worldwide is cardiovascular disease. Ac-
cording to the World Health Organization (WHO), approximately 18 million deaths occur
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yearly worldwide due to heart or cardiovascular disease [3]. Heart disease or cardiovascu-
lar disease (CVD) is based on various conditions that impact the human heart. Many factors
cause heart disease including personal and functional behavior and genetic predisposition.
Numerous risk factors include smoking, excessive consumption of caffeine, and alcohol,
inactivity, stress, and physical fitness, as high blood pressure, obesity, pre-existing heart dis-
ease, and high cholesterol can also be a reason for heart disease. CVD is a serious condition
that affects the function of the heart and causes problems such as strokes and reduced blood
vessel function. Patients with heart disease do not reach the advanced stages of the disease
and it is too late for the damage to be repaired. Early and accurate treatment of heart
disease plays a significant role in avoiding death. Machine learning (ML)-based techniques
provide a way forward for effective diagnosis of heart disease. A lot of research has been
performed and various machine learning models have been used to make classifications
and predictions for diagnosing heart disease. A hybrid technique based on random forest
and a linear model is suggested in [4] to improve the prediction accuracy of heart disease.
For the identification of heart disease in the E-healthcare system and to resolve the problem
of feature selection, a system is proposed in [5] based on classification algorithms.

Machine learning (ML) models are frequently trained on sufficient user data in health-
care to track a patient’s health status. Regrettably, today’s healthcare faces two critical
challenges. For starters, real data is frequently found as isolated islands. Even though there
is a large amount of data in various organizations, sharing this data is impossible due to
concerns about privacy and security. As a result, training powerful models with valuable
data is difficult. In addition, the European Union through General Data Protection Regula-
tion (GDPR) [6], China by China through China Cyber Security Law [7], and the United
States with the California Consumer Privacy Act (CCPA) of 2018 [8], have recently enforced
the protection of user data privacy through these regulatory procedures. Therefore, it is
not possible to get huge amounts of user data in real-time healthcare applications. To over-
come these challenges, federated learning is proposed recently by Google [9,10]. Recently,
some new meta-heuristics techniques are proposed such as monarch butterfly optimization
(MBO) [11], slime mold algorithm (SMA) [12], moth search algorithm (MSA) [13], hunger
games search (HGS) [14], Runge Kutta method (RUN) [15], and Harris hawks optimization
(HHO) [16], to further minimize the fitness function by keeping the size of the population
unchanged, to improve the weight adaption rate, to enhance the local searching method, to
optimize the dynamic fitness function computation, to avoid the local optimal solutions
and increase convergence speed, and to cooperatively search for the optimal local solution,
respectively. Several security and privacy challenges in an IoT environment with their use
cases are outlined in [17,18].

The aim of federated learning is a privacy-aware collaborative learning mechanism of a
shared model by keeping the data on the device. Hence, the users of federated learning will
experience personalized machine learning and overcome privacy issues as well. Motivated
by these highlighted issues of privacy in healthcare, in this paper, we propose a federated
matched averaging with a Modified Artificial Bee Colony (M-ABC) optimization-based
framework to overcome privacy issues and to improve the diagnosis method for the
prediction of heart disease. The objective of our proposed framework is to develop an
overall privacy-aware decentralized learning method for heart disease diagnosis which
improves the feature optimization at the client end and the communication efficient global
cloud model. We chose M-ABC optimizer because it is highly flexible and user-friendly,
uses fewer control parameters than other algorithms such as genetic algorithm (GA) and
particle swarm optimization (PSO), is easily hybrid with other optimization algorithms,
and possesses strong robustness and a fast convergence rate. In addition, the M-ABC
method can also accommodate a random cost objective function. This paper’s contributions
are as follows:

• We design and propose a privacy-aware framework for the prediction of heart disease
in healthcare using an improved federated learning algorithm for cloud and user sites.



Appl. Sci. 2022, 12, 12080 3 of 16

• M-ABC optimizer is proposed at the client end for the optimal feature selection of
heart disease data. This optimizer enables improved accuracy of prediction and fewer
classification errors.

• Federated matched averaging (FedMA)-based algorithm is explored for constructing
a privacy-aware framework for a global cloud model.

• We validated and tested the proposed framework with a real-world heart disease
dataset. Evaluation of the performance of the proposed framework in terms of pre-
diction accuracy, classification error, and communication efficiency is performed with
state-of-the-art federated learning algorithms.

The rest of the paper is organized as follows. Section 2 presents the review of related
work. Section 3 explains the materials and the proposed framework. Section 4 is related to
the evaluation of performance and results. The last section, Section 5, provides a conclusion
and future work of the paper.

2. Literature Review

Privacy and security of data, and data in an isolated form are the two big challenges
faced by the current machine learning research domain. Techniques based on machine
learning require centralized training data for the model to be trained. Regulations are
put into practice for data privacy throughout the world [6–8]. Hence data privacy is a
big challenge for traditional machine learning techniques. Federated learning initially
proposed by Google, federated stochastic gradient (FedSGD), and averaging (FedAvg)
based algorithm brought a ray of hope to overcome these challenges [9]. A technique
constructed on federated learning is proposed in [10] to overcome the issue of data isolation
and privacy. They proposed a comprehensive framework based on federated learning to
tackle the issues related to data security in the traditional artificial intelligence domain.
Their proposed solution is categorized into two approaches i.e., horizontal, and vertical
federated learning.

Technical aspects such as hardware, platforms, software, protocol, enabling technolo-
gies, and other features of the data privacy of federated learning are discussed by the
authors in [19]. The authors discussed some of the optimization techniques for federated
learning in their article by highlighting their features and performance. They also outlined
some of the market implications of federated learning in order to anticipate them. Ad-
ditionally, some of the advantages, issues, and challenges which refer to the design and
deployment of federated learning are presented by the authors. In [20], the authors provide
insight into the various machine learning deployment architectures such as centralized,
distributed, and federated learning. They have outlined the evolution of machine learning
architectures with comprehensive deliberation. Moreover, application areas for federated
learning such as the IoT systems, healthcare, Gboard App, edge computing, cybersecurity,
and many others were suggested by them.

In the paper [21], the authors developed a model based on federated learning for
the prediction of hospitalization of health-related disease patients. They used electronic
health records (EHR) data distributed amongst numerous sources or agents. The authors
proposed the cluster Primal Dual Splitting (cPDS) algorithm to overcome the problem of
large-scale sparse Support Vector Machine (sSVM) using a federated learning technique.
Their proposed technique achieves analogous prediction accuracy of the classifier. Authors
in [22], tested and evaluated the three federated learning-based algorithms on the MNIST
dataset and used a Bayesian correlated t-test. According to their evaluation, FedAvg
outperforms CO-OP and FSVRG algorithms when the uploads by clients are limited to
10,000. They have used balanced data distribution in which the clients have the same
amount of data. An optimized version of FedAvg is proposed by authors in [23], in which
they intend to enhance the accuracy and convergence rate of the state-of-the-art federated
learning algorithm. They proposed the Federated Match Averaging (FedMA) algorithm
based on the layer-wise federated learning algorithm to adopt Bayesian nonparameterized
methods for heterogeneous data. Their proposed FedMA performs better than FedAvg in



Appl. Sci. 2022, 12, 12080 4 of 16

terms of convergence, and accuracy, and reduces the communication size. To optimize the
convergence speed of federated learning, the authors in [24] proposed a fast-convergent
algorithm that achieves intelligent selection of each device at every round of the training
model. Their algorithm utilizes precise and effective approximation for communication of
a near-optimal distribution of device selection to improve the convergence rate.

Authors in [25] have proposed an algorithm that assigns the weights according to the
contribution of each class to the local models. The machine learning based algorithms can
play their part in the detection of COVID-19 using a dataset of chest X-rays of the patients. A
Federated learning-based technique is proposed by the authors in [26] to detect COVID-19
cases with improved model prediction accuracy and loss as compared with the traditional
machine learning algorithms. For their work, the authors utilized two datasets which
are descriptive datasets with COVID-19-infected cases from Wuhan and patients’ chest
x-ray radiography images with COVID-19, Pneumonia, and normal images. To resolve
the issue of data privacy for the IoMT-based healthcare system, authors in [27] proposed a
blockchain-based solution using federated learning. Their proposed algorithm is a hybrid
approach based on federated learning and maximation of the Gaussian Mixture Model
(FL-EM-GMM) and uses blockchain for model verification, and homomorphic encryption
to overcome user data privacy issues. Their proposed method shows that the IoMT data
training can be completed using privacy locally to prevent data leakage.

Traditionally, the cloud/server collects sensed data from IoMT devices and then per-
forms the prediction of that sensed data. To develop a privacy-aware heart rate prediction
technique, authors in [28] proposed a Bayesian inference federated learning with autoregres-
sion with exogenous variable (ARX) model. This FedARX method accomplishes accurate
and robust heart rate prediction as compared with the traditional machine learning models.
To effectively manage and optimize the computation offloading for IoT-based applica-
tions, authors in [29] proposed a meta-heuristic Artificial Bee Colony (ABC) optimization.
Their technique intelligently manages the computation workload for resource-constrained
IoT applications. Authors in [30] proposed the ABC algorithm for the optimization of
numerical problems in a computing environment. For lightweight prediction of computa-
tional workload in an IoT-assisted Edge environment, authors in [31] proposed an artificial
neural network-based framework. Their proposed multi-objective framework enhances
workload management for computationally intensive applications. A long short-term
memory (LSTM) based prediction of computational workload technique for offloading in
IoT-assisted Mobile Edge Computing is proposed in [32]. A detailed survey of intelligent
offloading of computational workload is prepared by authors in [33]. An extensive survey
of open-source datasets for the COVID-19 disease is performed by authors in [34]. They
categorized the datasets into four classes as the identification of COVID-19 from X-ray
images, CT scans, and cough sounds, as well as transmission estimation, case reporting,
and diagnosis from demographic, epidemiological, and mobility data.

Other methods were also introduced in the literature for heart disease prediction,
such as a hybrid approach of linear discriminant analysis with the modified ant lion op-
timization for classification [35], a combination of Fuzzy logic algorithm and gradient
boosting decision tree (GBDT) [36], a technique based on modified salp swarm optimiza-
tion (MSSO) and an adaptive neuro-fuzzy inference system (ANFIS) [37], and multi-cost
objective function [38]. Heart disease monitoring and prediction based on a hybrid classifier
and deep learning centered modified neural network for IoT-assisted healthcare is pro-
posed in [39–42]. Moreover, various methods are proposed for improving the classification
error and accuracy, such as the higher-order Boltzmann-based model [43], performance
evaluation of classifiers and optimizers for heart disease prediction [44], localization using
two-stage classifiers [45], a hybrid classifier based on random forest and naïve bayes [46],
hybrid recommender system [47], based on genetic algorithm and hybrid classifiers using
the ensembled model with a majority voting technique [48], and Artificial intelligence (AI)
based heart disease detection using electrocardiogram (ECG) signals [49].
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3. Materials and Methods

A healthcare system built on the Internet of Medical Things (IoMT) makes it possible
to collect patient data in real-time for the purposes of early disease diagnosis and treatment.
Patients who are diagnosed and treated early have a lower risk of developing heart disease.
With the emerging international privacy laws like GDPR [6], China Cyber Security Law [7],
and CCPA [8], the traditional machine learning based techniques are unable to overcome
the privacy issues as they require user data to be processed for model generation and
diagnosis of disease. The IoMT-based sensing devices gather heart disease information
from the patients before and after the initiation of heart disease. When it comes to the
healthcare system, user data is impossible to share due to privacy and security issues.
A federated learning framework for heart disease prediction in the healthcare system is
proposed in this paper, which overcomes privacy issues and provides effective heart disease
prediction in a privacy-aware healthcare system. The symbols used throughout the study
are described in Table 1 below.

Table 1. Description of used symbols.

Used Symbol Description

Xni Initialization vector for client sites

Cnie Candidate solution by employed bee

Xpi Random local solution

Fn Fitness function

Cnio Onlooker bee’s candidate solution

Cnis Candidate solution of scout bee

wjl lth neuron studied on the dataset j

θi Mean Gaussian

c (wjl, θi) Similarity function

K Number of client sites listed as k

B Size of local minibatch

η Learning rate

E Number of local epochs

ωo Initial global cloud model

ωk Model of kth client

3.1. Dataset Description

We train and test our proposed framework on the heart disease dataset of UCI Cleve-
land. This dataset contains 303 records and 76 attributes. A detailed description of the
dataset is illustrated in Table 2 below. This table shows the numerous risks of heart disease,
their description, and the encoded values of these risks. The encoded values are utilized as
the input to our proposed framework.

Table 2. Detailed Description of Dataset.

S# Risk Name Description Encoded Values

1 Age Age in years >79 = 2, 61–79 = 1, 51–60 = 0, 35–50 = −1, <35 = −2

2 Sex Female and Male Female = 0, Male = 1

3 Blood pressure In mmHg
Above 139 mmHg = High = 1
120–139 mmHg = Normal = 0
Below 120 mmHg = Low = −1
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Table 2. Cont.

S# Risk Name Description Encoded Values

4 Serum cholesterol In mg/dL
>240 mg/dL = High = 1

200–239 mg/dL = Normal = 0
<200 mg/dL = Low = −1

5 Hereditary Family members diagnosed
with heart disease

Yes = 1
No = 0

6 Alcohol Yes or No Yes = 1
No = 0

7 Diabetes Yes or No Yes = 1
No = 0

8 Resting electrocardiographic Normal, ST T, or Hypertrophy
Hypertrophy = 2

ST T = 1
Normal = 0

9 Angina induced by exercise Yes or No Yes = 1
No = 0

10 Fasting blood sugar >120 mg/dL True = 1
False = 0

11 Status of heart (thallium
scan)

Reversible defect, Normal,
fixed defect Reversible defect = 7, Normal = 3, fixed defect = 6

12 Smoke Yes or No Yes = 1
No = 0

13 Diet Good, Normal, Poor Good = 1, Normal = 0, Poor = −1

14 Heart Disease Yes or No Yes = 1,
No = 0

3.2. Optimal Solution Selection Using M-ABC Algorithm for IoMT Clients

An algorithm based on swarm intelligence, known as the Modified Artificial Bee
Colony (M-ABC), has been developed and proposed in [50]. The scout bee, onlooker bee,
and employed bee all appear in the M-ABC algorithm. Scout bees are responsible for
exploring new food sources, while the onlooker bee chooses a food source based on the
dance of an employed bee. As a result, the bees employed are protected from exploitation
because they are linked to their food source. Neither the scout bees nor the onlooker bees
are associated with any particular food source. They are referred to as “unemployed bees”
as a result. The main aim of the fitness function is the optimal selection of classification
error and communication efficiency of the received models from the IoMT client sites. The
objective of the fitness function is to minimize the classification error and number of rounds
consumed to achieve higher accuracy. Algorithm 1 below presents the generalized working
of the M-ABC optimizer.

Algorithm 1: Working of Optimizer M-ABC Algorithm

1: IoMT sites initialization phase using Equation (1)
2: Do Repeat
3: Employed bees for new solution using Equation (2)
4: Onlooker bees candidate solution using Equations (3) and (4)
5: Phase of Scout bees’ candidate solution using Equation (5)
6: Memorize the best solution you came up with
7: until maximum number of cycles reached
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3.2.1. Initialization Phase

All the population of healthcare sites is initiated with vector Xni. The initialization of
IoMT client sites is done using the below Equation (1) with i ranges from 1 to NP:

Xni = li + [(rand (−1,1) + 2i − 1) * x (ui - li)]/2NP (1)

The ui and li represent the upper and lower bounds of the parameters, respectively.

3.2.2. Solution Search by Employed Bee

The employed bee scours the neighborhood for new solutions. Using this Equation (2),
a new answer can be found. The function τni produces a random number in the range of
−1 and 1, and Xpi is a local random solution. The fitness of the new candidate solution
by employed bee Cnie is calculated and in case the fitness is high then the solution is
memorized. The candidate solution using the below equation of employed bee helps in
obtaining an improved feature selection for IoMT client sites.

Cnie =

{
τni + rand

(
Xni,−Xpi

)
; if i = i’,

Xpi, if i 6= i’.
(2)

3.2.3. Candidate Solution by Onlooker Bee

Employed bees share their candidate solution with onlooker bee and after that,
the onlooker bees probabilistically choose their candidate solution Cnio using the below
Equation (3). To further improve the quality of the candidate solution, the Cnio by onlooker
bee is utilized as represented by the below equation.

Cnio =
Fni (X n)

∑m
i=1(Fm)(Xn)

(3)

The fitness function Fn is computed using the below equation.

Fn =

{
1

1+Fobj
, if Fobj ≥ 0,

1 + abs(F obj), if Fobj<0.
(4)

3.2.4. Scout Bee Phase

The scout bee in M-ABC ensures that the new solution is explored, and it chooses
a candidate solution Cnis using the firefly algorithm as depicted in below Equation (5),
where Cnis0 is the initial solution. If an employed bee fails to improve its solution within a
predetermined time frame, it becomes a scout bee.

Cnis = Cnis + e−ri
2
(Cnis0 − Cnis) + (rand (0, 1) – 0.5) (5)

3.2.5. Data Collection Using IoMT Clients

The IoMT devices are initially used to collect patient health information, and the
connected devices communicate with one another when sending patient data. IoMT devices
capture medical information from the patient’s body after they are implanted, including
the heart rate, blood pressure, glucose level, cholesterol, and pulse rate. Using the proposed
M-ABC technique, these details are locally optimized within an IoMT local healthcare
site, after which the local model from each IoMT local healthcare site is transferred to the
global cloud. Patient data from the UCI repository is also used to assess the efficacy of the
proposed technique.

3.3. Design of Proposed Framework

We briefly describe our proposed system model and technique in this section. Addi-
tionally, in this section, we provide a comprehensive overview of the federated matched
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averaging (FedMA) algorithm and M-ABC-based optimization for optimal feature selection
and classification. The proposed system model is illustrated in Figure 1 below. We assume
that there are five healthcare client sites and one cloud server, this setting can be scaled up
for generalization. Our proposed framework consists of heart disease data collection de-
vices that are located inside a healthcare site. Initially, a global model is disseminated by the
global cloud towards the healthcare sites, after receiving the model from the cloud, the sites
perform feature selection and classification using an M-ABC optimizer, after that perform
training on the local data using the received model and then the healthcare sites upload
their local model updates to the cloud. On receiving multiple updates of local models, a
new global model is computed using FedMA, and this new model is then disseminated
among the healthcare sites. In this way, all the training data remains on the device and the
privacy concerns are overcome with increased prediction accuracy and less classification
errors. The working of the proposed framework is illustrated in Algorithm 2.
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FedMA calculates the Maximum Aposteriori Estimate (MAE) of a Bayesian nonpara-
metric model using the Beta Bernoulli process (BBP) using equation 6 below. The wjl be
lth neuron studied on the dataset j and c(..) be an appropriate function of similarity. In
case the client data sizes are imbalanced, then weighted averaging can be used instead
of uniform. The similarity function c (wjl, θi) is the subsequent posterior probability of jth

client neuron l generated from a Gaussian with mean θi. Due to the nonparametric aspect,
their BBP-MAP inference approach allows a number of neurons in the federated model to
mildly grow in comparison to the client model sizes. This matched averaging-based global
cloud model helps in reducing the communication size to reach the target accuracy and the
overall convergence rate of the model is also improved.

min
{π j

li } ∑
L
i=1 ∑j,l minθi π

j
li.c(w jl)s.t. ∑i π

j
li= 1∀j, l; ∑l π

j
li= 1∀ i, j (6)



Appl. Sci. 2022, 12, 12080 9 of 16

Algorithm 2: Learning method of proposed framework for healthcare. The K number of users is
listed as k, local minibatch size is shown by β, learning rate is represented by η, and local epochs
are represented using E.

Input: Data from various healthcare users {U1, U2, - - -, UN}
Output: Privacy-aware personalized model for each IoMT user ωk
// Processing at the global cloud end:
1: Initialize a global cloud model ωo
2: for every round r = 1, 2, . . . do
(i) r← 2190 maximum of (K, 1)
(ii) St ← (r is random number of clients)
3: for every client k ε Sr do in parallel
(i)
{

∏ k
r

}
← BBP-MAP ({k, Cn, ωr})//call BBP-MAE to solve Equation (6)

(ii) ωk ← 1
K

K
∑

k=1
ωk

r ∏k
r

(iii) ωr+1 ← ∏ k
r ωk//permutate the next weights

4: Distribute ωk among all users
5: Repeat above steps with every evolving user data
// Working at Client End (k, ω):
1: for each client in k
(i) β← (fragment each Pk to groups of β size)
(ii) Compute candidate solution Cn using M-ABC Optimizer using Equations (2), (3), and (5)
2: for every local round i = 1 . . . E do
(i) for group b ε β do
(a) ω←ω– η∇l (ω; b)
3: return ω to the cloud

The proposed framework is devised for both client and cloud ends. This proposed
framework is implemented into three stages as described below:

1. Initial Phase: Initially, all the connected IoMT healthcare sites obtain an initial global
model ωo from the cloud and are initiated with vector Xni.

2. Working at Cloud End: To retrieve the weights ωk of the federated model, the cloud
first collects only the weights from the clients and performs matched averaging. The
clients then train their local model using their local data while the matching federated
is kept frozen once the cloud broadcasts these weights to them. Then, we repeat this
process up until the final round of communication.

3. Working at IoMT Client Sites: After data collection using IoMT devices, the collected
data is fragmented into local minibatch of size β. The candidate optimal solution
Cn for each β is computed using the M-ABC optimizer and the weights of the local
computed solution from every IoMT client site are returned to the global cloud.

4. Experimental Evaluation and Results

In this section, we will discuss the simulation process of the proposed framework,
simulation environment, and experimental settings for analyzing the efficiency of the
proposed framework as a whole and contrast its performance with that of the standard
federated learning models.

4.1. Experimental Setup

To evaluate the performance of the proposed framework, we conducted the simula-
tion compromising of 4000 rounds of communication using a python environment using
PyTorch machine learning libraries on Intel ® Core ™ i7-8550 @ 4GHz system and all the
experimentation is performed in this simulated environment. Table 3 below describes the
simulation parameters and settings utilized for the experiments.
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Table 3. Simulation parameters and settings.

Parameter Value

Simulation environment Python

Dataset utilized UCI Cleveland

Number of communication rounds 4000

Local epochs {10, 20, 40, 80, 100, 120, 140, 160}

Volume of communication (in GBs) {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6}

Number of client nodes 5

4.2. Results and Discussion

The performance of the proposed framework for heart disease in terms of prediction
accuracy, time to reach the accuracy, communication efficiency, and effect of local epoch
on accuracy are measured and compared with state-of-the-art FedSGD, FedAvg, FedMA,
and PSO optimizer with FedMA techniques. Figure 2 below shows the comparison of
convergence rate with prediction accuracy on the heart disease dataset. The proposed
framework achieves 92.89% accuracy on 3000 rounds of communication which is higher
than the state-of-the-art FL and FedMA with PSO algorithms. Because our proposed
framework utilizes the M-ABC optimizer for healthcare user sites and FedMA for the cloud
model, this enables the model to achieve better accuracy faster than existing federated
learning algorithms. In FedSGD, FedAvg, and FedMA, the cloud model tends to perform
the simple gradient, averaging, and matched averaging, respectively, but their client
model does not have any algorithm for feature selection and classification which results
in higher convergence time for the cloud model. In PSO with FedMA, the learning rate is
improved but the classification and feature selection consume higher convergence, whereas
in our proposed framework the learning rate tends to increase faster after every round as
compared with FedAvg and FedMA. Therefore, our proposed framework achieves higher
accuracy in a lesser number of rounds.
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We have conducted experiments on the effect of local epochs on the accuracy as
compared to state-of-the-art FedAvg and FedMA algorithms on the heart disease dataset.
We considered the local epochs E to be as {10, 20, 40, 80, 100, 120, 140, 160}. For every E, we
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evaluated the accuracy test of the proposed framework, FedAvg, and FedMA. The result
is illustrated in Figure 3 below. We observed that training our proposed framework for a
longer time favors the convergence rate because our proposed framework returns a better
global model on the local model with higher model quality as our proposed technique
utilizes a modified-ABC optimizer. For FedSGD, FedAvg and FedMA, both did not employ
any optimizer, so their accuracy tends to deteriorate as they train for a longer period but in
the case of PSO with FedMA, the accuracy remains constant after 80 local epochs which is
due to the slow convergence rate of PSO algorithm. This result depicts that user sites can
use our proposed framework to continue training their model’s local users for as long as
they wish.
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We have evaluated and compared the performance of standard FL, PSO with FedMA
and our proposed technique for the effect of prediction accuracy on the volume of commu-
nication. For this evaluation, we varied the volume of communication (in Gigabytes) as
{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6} and recorded the prediction accuracy of each technique
as shown in Figure 4 above. It is observed from the results that the proposed technique
achieves better accuracy at both low and high volumes of communication as compared
to standard FL and PSO with FedMA. Moreover, in Figure 5 below a comparison of the
size of communication used to reach 90% prediction accuracy is illustrated. The proposed
technique uses 20% less communication size (in GB) as compared to existing federated
learning algorithms.
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The performance metrics such as accuracy, precision, classification error, f-measure,
specificity, sensitivity, and the number of rounds consumed to reach the highest accuracy
are considered for the performance efficiency comparison of the proposed framework with
FedAvg, FedMA, and PSO with FedMA. Accuracy in the context of machine learning means
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the percentage of all available instances that make the right predictions. Precision is defined
as the percentage of correct predictions in the positive instance category. Classification
errors are defined as the inaccuracies or percentages of errors available in the case. Three
performance measurements are used to identify key features of heart disease. This helps to
understand the behavior of different groups for a better selection of features. The results of
these parameters are depicted in Tables 4 and 5. Our proposed framework achieves higher
target accuracy in a lesser number of rounds as compared to vanilla FL, and PSO with
FedMA for the heart disease dataset. As depicted in Table 4, our proposed method delivers
a 22% reduction in the number of rounds as compared to FedSGD, FedAvg, and FedMA
because the learning rate of our proposed model increases rapidly after every round which
results in a 22% less number of rounds. As in Table 5, the proposed framework achieves
better scores of prediction accuracy (92.89%), precision (94.2%), sensitivity (96.6), and
specificity (81.8) as compared to existing FL algorithms on the heart disease dataset because
the learning rate of our proposed model improves after every round of communication
with less minibatch size. Hence our proposed framework is best suited for providing
better heart disease prediction accuracy with privacy awareness as compared to existing
FL algorithms. Moreover, the classification error of our proposed method is 11.8 which
is less compared to FedAvg and FedMA due to the M-ABC optimization technique for
feature selection and classification used in our proposed framework which results in less
classification errors. The optimized features used for the M-ABC optimizer are shown in
Table 6 with the details of achieved prediction accuracy. The M-ABC optimizer had 89%
accuracy with five functions in the first experiment. Using the same dataset, the M-ABC
optimizer with six features yielded 90% accuracy, and eight features achieved 92% accuracy.

Table 4. Time to reach the accuracy of model.

Technique Accuracy after 4000 Rounds # of Rounds to Reach 90% Difference in # of Rounds

FedSGD 90 3988 –

FedAVG 90.07 3871 2.9%

FedMA 90.22 3495 12.4%

FedMA with PSO 90.38 3406 14.6%

FedMA with M-ABC (Proposed) 92.89 3018 24.3%

Table 5. Performance on full features set.

Technique Accuracy Precision Classification
Error F-Measure Specificity Sensitivity

FedSGD 90 89.4 22.5 85.1 28.2 83.2

FedAVG 90.07 92.3 20.4 85.8 29.5 85.3

FedMA 90.22 90.1 18.6 86.6 52.5 89.5

FedMA with PSO 90.38 92.5 15.4 86.9 63.8 89.9

FedMA with M-ABC (Proposed) 92.89 94.2 11.8 90.1 81.8 96.6

Table 6. Optimized features with M-ABC optimizer.

Optimized Feature Accuracy Achieved (in %)

Age, BP, Serum Chol., Rest ECG, Thallium Scan 89.82

Age, BP, Serum Chol., Hereditary, Rest ECG, Thallium Scan 90.72

Age, BP, Serum Chol., Hereditary, Rest ECG, Thallium Scan, Smoke, Diet 92.89
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5. Conclusions

We proposed a privacy-aware decentralized federated learning framework for effec-
tive heart disease prediction in healthcare in this paper. The proposed framework is a
hybrid method of FedMA and M-ABC optimization techniques to improve heart disease
prediction while addressing privacy concerns in a healthcare system. The primary goal
of this paper is to improve heart disease prediction accuracy as well as training time and
communication efficiency. To ensure that our proposed framework is correct and valid,
we evaluated and compared the performance in terms of various model prediction-based
parameters and communication efficiency with the baseline federated learning FedAvg,
FedMA, and with FedMA using PSO optimizer algorithms. The proposed framework indi-
cated improved performance in terms of accuracy, classification error, precision, sensitivity,
and communication efficiency. It is observed that the proposed framework provides 2.6%
higher accuracy, 7% less classification error, 1.8% more precision, 7.1% higher sensitivity,
and 12% fewer rounds are required to achieve the highest level of accuracy.

Our proposed model has some limitations, including the possibility of extending it for
scalability in terms of the number of IoMT client sites with the effect of the learning rate on
the overall model. In the future, we aim to further improve the privacy-aware healthcare
predictive system by using other feature selection algorithms and optimization methods.
The diagnosis, treatment, and control of health-related diseases is a major issue due to
privacy concerns, hence, in the future, we will work on recovery and treatment of many
other critical diseases such as breast cancer, diabetes, skin cancer, and Parkinson’s Disease.

Author Contributions: Conceptualization, M.M.Y., M.N. and A.Y.; methodology, M.M.Y., A.D.A. and
H.E.; software, M.M.Y. and A.A.S.; validation, M.M.Y., M.N., A.A.S. and M.A.K.; formal analysis,
M.M.Y., M.N. and M.A.K.; investigation, M.M.Y.; resources, M.M.Y. and A.D.A.; data curation, M.M.Y.
and A.Y.; writing—original draft preparation, M.M.Y., M.N. and A.A.S.; writing—review and editing,
M.M.Y., M.N., A.Y., A.D.A. and M.A.K.; visualization, M.M.Y. and M.A.K. supervision, M.N. and
A.Y.; project administration, M.N., H.E. and A.D.A. and M.A.K.; funding acquisition, A.D.A. and H.E.
All authors have read and agreed to the published version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2022R51), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Data Availability Statement: We ran simulations to see how well the proposed approach performed.
Any questions concerning the study in this publication are welcome and can be directed to the lead
author (Muhammad Mateen Yaqoob).

Acknowledgments: The authors sincerely appreciate the support from Princess Nourah bint Abdul-
rahman University Researchers Supporting Project number (PNURSP2022R51), Princess Nourah bint
Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al-Turjman, F.; Nawaz, M.H.; Ulusar, U.D. Intelligence in the Internet of Medical Things era: A systematic review of current and

future trends. Comput. Commun. 2020, 150, 644–660. [CrossRef]
2. Dash, S.; Shakyawar, S.K.; Sharma, M.; Kaushik, S. Big data in healthcare: Management, analysis and future prospects. J. Big Data

2019, 6, 54. [CrossRef]
3. Watkins, D.A.; Beaton, A.Z.; Carapetis, J.R.; Karthikeyan, G.; Mayosi, B.M.; Wyber, R.; Yacoub, M.H.; Zühlke, L.J. Rheumatic heart

disease worldwide: JACC scientific expert panel. J. Am. Coll. Cardiol. 2018, 72, 1397–1416. [CrossRef]
4. Mohan, S.; Thirumalai, C.; Srivastava, G. Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques. IEEE

Access 2019, 7, 81542–81554. [CrossRef]
5. Li, J.P.; Haq, A.U.; Din, S.U.; Khan, J.; Khan, A.; Saboor, A. Heart Disease Identification Method Using Machine Learning

Classification in E-Healthcare. IEEE Access 2020, 8, 107562–107582. [CrossRef]
6. Voigt, P.; Von dem Bussche, A. Scope of application of the GDPR. In The EU General Data Protection Regulation; Springer: Cham,

Switzerland, 2017; pp. 9–30.
7. Wagner, J. China’s Cybersecurity Law: What you need to know. The Diplomat, 1 June 2017. Available online: https://thediplomat.

com/2017/06/chinas-cybersecurity-law-what-you-need-to-know/ (accessed on 20 July 2022).

http://doi.org/10.1016/j.comcom.2019.12.030
http://doi.org/10.1186/s40537-019-0217-0
http://doi.org/10.1016/j.jacc.2018.06.063
http://doi.org/10.1109/ACCESS.2019.2923707
http://doi.org/10.1109/ACCESS.2020.3001149
https://thediplomat.com/2017/06/chinas-cybersecurity-law-what-you-need-to-know/
https://thediplomat.com/2017/06/chinas-cybersecurity-law-what-you-need-to-know/


Appl. Sci. 2022, 12, 12080 15 of 16

8. De la Torre, L. A Guide to the California Consumer Privacy Act of 2018. SSRN. 2018. Available online: https://papers.ssrn.com/
sol3/papers.cfm?abstract_id=3275571 (accessed on 21 July 2022).

9. McMahan, B.; Ramage, D. Federated Learning: Collaborative Machine Learning without Centralized Training Data. Google AI Blog.
2017. Available online: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html (accessed on 2 August 2022).

10. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Aguera y Arcas, B. Communication-Efficient Learning of Deep Networks
from Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Lauderdale,
FL, USA, 20–22 April 2017; pp. 1273–1282.

11. Wang, G.G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2019, 31, 1995–2014. [CrossRef]
12. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future

Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]
13. Elaziz, M.A.; Xiong, S.; Jayasena, K.; Li, L. Task scheduling in cloud computing based on hybrid moth search algorithm and

differential evolution. Knowl.-Based Syst. 2019, 169, 39–52. [CrossRef]
14. Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis,

perspectives, and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [CrossRef]
15. Ahmadianfar, I.; Heidari, A.A.; Gandomi, A.H.; Chu, X.; Chen, H. RUN beyond the metaphor: An efficient optimization algorithm

based on Runge Kutta method. Expert Syst. Appl. 2021, 181, 115079. [CrossRef]
16. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
17. Mousavi, S.K.; Ghaffari, A.; Besharat, S.; Afshari, H. Improving the security of internet of things using cryptographic algorithms:

A case of smart irrigation systems. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 2033–2051. [CrossRef]
18. Mousavi, S.K.; Ghaffari, A.; Besharat, S.; Afshari, H. Security of internet of things based on cryptographic algorithms: A survey.

Wirel. Netw. 2021, 27, 1515–1555. [CrossRef]
19. Aledhari, M.; Razzak, R.; Parizi, R.M.; Saeed, F. Federated Learning: A Survey on Enabling Technologies, Protocols, and

Applications. IEEE Access 2020, 8, 140699–140725. [CrossRef] [PubMed]
20. Rahman, S.A.; Tout, H.; Ould-Slimane, H.; Mourad, A.; Talhi, C.; Guizani, M. A Survey on Federated Learning: The Journey From

Centralized to Distributed On-Site Learning and Beyond. IEEE Internet Things J. 2021, 8, 5476–5497. [CrossRef]
21. Brisimi, T.S.; Chen, R.; Mela, T.; Olshevsky, A.; Paschalidis, I.C.; Shi, W. Federated learning of predictive models from federated

Electronic Health Records. Int. J. Med. Inform. 2018, 112, 59–67. [CrossRef] [PubMed]
22. Nilsson, A.; Smith, S.; Ulm, G.; Gustavsson, E.; Jirstrand, M. A performance evaluation of federated learning algorithms. In

Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning (DIDL), Rennes, France, 10 December
2018; ACM: New York, NY, USA, 2018; pp. 1–8.

23. Wang, H.; Yurochkin, M.; Sun, Y.; Papailiopoulos, D.; Khazaeni, Y. Federated learning with matched averaging. arXiv 2020,
arXiv:2002.06440.

24. Nguyen, H.T.; Sehwag, V.; Hosseinalipour, S.; Brinton, C.G.; Chiang, M.; Poor, H.V. Fast-Convergent Federated Learning. IEEE J.
Sel. Areas Commun. 2021, 39, 201–218. [CrossRef]

25. Ma, Z.; Zhao, M.; Cai, X.; Jia, Z. Fast-convergent federated learning with class-weighted aggregation. J. Syst. Arch. 2021,
117, 102125. [CrossRef]

26. Salam, M.A.; Taha, S.; Ramadan, M. COVID-19 detection using federated machine learning. PLoS ONE 2021, 16, e0252573.
[CrossRef]

27. Cheng, W.; Ou, W.; Yin, X.; Yan, W.; Liu, D.; Liu, C. A Privacy-Protection Model for Patients. Secur. Commun. Netw. 2020,
2020, 6647562. [CrossRef]

28. Fang, L.; Liu, X.; Su, X.; Ye, J.; Dobson, S.; Hui, P.; Tarkoma, S. Bayesian Inference Federated Learning for Heart Rate Prediction.
In Proceedings of the International Conference on Wireless Mobile Communication and Healthcare, Virtual Event, 19 November
2020; Springer: Cham, Switzerland, 2020; pp. 116–130.

29. Babar, M.; Khan, M.S.; Din, A.; Ali, F.; Habib, U.; Kwak, K.S. Intelligent Computation Offloading for IoT Applications in Scalable
Edge Computing Using Artificial Bee Colony Optimization. Complexity 2021, 2021, 5563531. [CrossRef]

30. Karaboga, D. Artificial bee colony algorithm. Scholarpedia 2010, 5, 6915. [CrossRef]
31. Zaman, S.K.U.; Jehangiri, A.I.; Maqsood, T.; Haq, N.U.; Umar, A.I.; Shuja, J.; Ahmad, Z.; Ben Dhaou, I.; Alsharekh, M.F. LiMPO:

Lightweight mobility prediction and offloading framework using machine learning for mobile edge computing. Clust. Comput.
2022, 1–19. [CrossRef]

32. Zaman, S.K.U.; Jehangiri, A.I.; Maqsood, T.; Umar, A.I.; Khan, M.A.; Jhanjhi, N.Z.; Shorfuzzaman, M.; Masud, M. COME-UP:
Computation Offloading in Mobile Edge Computing with LSTM Based User Direction Prediction. Appl. Sci. 2022, 12, 3312.
[CrossRef]

33. Zaman, S.K.U.; Jehangiri, A.I.; Maqsood, T.; Ahmad, Z.; Umar, A.I.; Shuja, J.; Alanazi, E.; Alasmary, W. Mobility-aware
computational offloading in mobile edge networks: A survey. Clust. Comput. 2021, 24, 2735–2756. [CrossRef]

34. Shuja, J.; Alanazi, E.; Alasmary, W.; Alashaikh, A. COVID-19 open source data sets: A comprehensive survey. Appl. Intell. 2021,
51, 1296–1325. [CrossRef]

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3275571
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3275571
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
http://doi.org/10.1007/s00521-015-1923-y
http://doi.org/10.1016/j.future.2020.03.055
http://doi.org/10.1016/j.knosys.2019.01.023
http://doi.org/10.1016/j.eswa.2021.114864
http://doi.org/10.1016/j.eswa.2021.115079
http://doi.org/10.1016/j.future.2019.02.028
http://doi.org/10.1007/s12652-020-02303-5
http://doi.org/10.1007/s11276-020-02535-5
http://doi.org/10.1109/ACCESS.2020.3013541
http://www.ncbi.nlm.nih.gov/pubmed/32999795
http://doi.org/10.1109/jiot.2020.3030072
http://doi.org/10.1016/j.ijmedinf.2018.01.007
http://www.ncbi.nlm.nih.gov/pubmed/29500022
http://doi.org/10.1109/JSAC.2020.3036952
http://doi.org/10.1016/j.sysarc.2021.102125
http://doi.org/10.1371/journal.pone.0252573
http://doi.org/10.1155/2020/6647562
http://doi.org/10.1155/2021/5563531
http://doi.org/10.4249/scholarpedia.6915
http://doi.org/10.1007/s10586-021-03518-7
http://doi.org/10.3390/app12073312
http://doi.org/10.1007/s10586-021-03268-6
http://doi.org/10.1007/s10489-020-01862-6


Appl. Sci. 2022, 12, 12080 16 of 16

35. Manimurugan, S.; Almutairi, S.; Aborokbah, M.M.; Narmatha, C.; Ganesan, S.; Chilamkurti, N.; Alzaheb, R.A.; Almoamari, H.
Two-Stage Classification Model for the Prediction of Heart Disease Using IoMT and Artificial Intelligence. Sensors 2022, 22, 476.
[CrossRef]

36. Yuan, X.; Chen, J.; Zhang, K.; Wu, Y.; Yang, T. A Stable AI-Based Binary and Multiple Class Heart Disease Prediction Model for
IoMT. IEEE Trans. Ind. Inform. 2022, 18, 2032–2040. [CrossRef]

37. Khan, M.A.; Algarni, F. A Healthcare Monitoring System for the Diagnosis of Heart Disease in the IoMT Cloud Envi-ronment
Using MSSO-ANFIS. IEEE Access 2020, 8, 122259–122269. [CrossRef]

38. Yaqoob, M.M.; Khurshid, W.; Liu, L.; Arif, S.Z.; Khan, I.A.; Khalid, O.; Nawaz, R. Adaptive Multi-Cost Routing Protocol to
Enhance Lifetime for Wireless Body Area Network. Comput. Mater. Contin. 2022, 72, 1089–1103. [CrossRef]

39. Li, C.; Hu, X.; Zhang, L. The IoT-based heart disease monitoring system for pervasive healthcare service. Procedia Comput. Sci.
2017, 112, 2328–2334. [CrossRef]

40. Khan, M.A. An IoT Framework for Heart Disease Prediction Based on MDCNN Classifier. IEEE Access 2020, 8, 34717–34727.
[CrossRef]

41. Sarmah, S.S. An Efficient IoT-Based Patient Monitoring and Heart Disease Prediction System Using Deep Learning Modified
Neural Network. IEEE Access 2020, 8, 135784–135797. [CrossRef]

42. Makhadmeh, Z.A.; Tolba, A. Utilizing IoT wearable medical device for heart disease prediction using higher order Boltzmann
model: A classification approach. Measurement 2019, 147, 106815. [CrossRef]

43. Ganesan, M.; Sivakumar, N. IoT based heart disease prediction and diagnosis model for healthcare using machine learning
models. In Proceedings of the 2019 IEEE International Conference on System, Computation, Automation and Networking
(ICSCAN), Pondicherry, India, 29–30 March 2019; pp. 1–5. [CrossRef]

44. Albahri, A.S.; Zaidan, A.A.; Zaidan, B.B.; Alamoodi, A.H.; Shareef, A.H.; Alwan, J.K.; Hamid, R.A.; Aljbory, M.T.; Jasim, A.N.;
Baqer, M.J.; et al. Development of IoT-based mhealth framework for various cases of heart disease patients. Health Technol. 2021,
11, 1013–1033. [CrossRef]

45. Gupta, A.; Yadav, S.; Shahid, S.; Venkanna, U. HeartCare: IoT Based Heart Disease Prediction System. In Proceedings of the 2019
International Conference on Information Technology (ICIT), Bhubaneswar, India, 19–21 December 2019; pp. 88–93.

46. Jabeen, F.; Maqsood, M.; Ghazanfar, M.A.; Aadil, F.; Khan, S.; Khan, M.F.; Mehmood, I. An IoT based efficient hybrid recommender
system for cardiovascular disease. Peer-to-Peer Netw. Appl. 2019, 12, 1263–1276. [CrossRef]

47. Ashri, S.E.A.; El-Gayar, M.M.; El-Daydamony, E.M. HDPF: Heart Disease Prediction Framework Based on Hybrid Classifiers and
Genetic Algorithm. IEEE Access 2021, 9, 146797–146809. [CrossRef]

48. Shin, S.; Kang, M.; Zhang, G.; Jung, J.; Kim, Y.T. Lightweight Ensemble Network for Detecting Heart Disease Using ECG Signals.
Appl. Sci. 2022, 12, 3291. [CrossRef]

49. Ashfaq, Z.; Mumtaz, R.; Rafay, A.; Zaidi, S.M.H.; Saleem, H.; Mumtaz, S.; Shahid, A.; De Poorter, E.; Moerman, I. Embedded
AI-Based Digi-Healthcare. Appl. Sci. 2022, 12, 519. [CrossRef]

50. Panniem, A.; Puphasuk, P. A Modified Artificial Bee Colony Algorithm with Firefly Algorithm Strategy for Continuous Optimiza-
tion Problems. J. Appl. Math. 2018, 2018, 1237823. [CrossRef]

http://doi.org/10.3390/s22020476
http://doi.org/10.1109/TII.2021.3098306
http://doi.org/10.1109/ACCESS.2020.3006424
http://doi.org/10.32604/cmc.2022.024798
http://doi.org/10.1016/j.procs.2017.08.265
http://doi.org/10.1109/ACCESS.2020.2974687
http://doi.org/10.1109/ACCESS.2020.3007561
http://doi.org/10.1016/j.measurement.2019.07.043
http://doi.org/10.1109/icscan.2019.8878850
http://doi.org/10.1007/s12553-021-00579-x
http://doi.org/10.1007/s12083-019-00733-3
http://doi.org/10.1109/ACCESS.2021.3122789
http://doi.org/10.3390/app12073291
http://doi.org/10.3390/app12010519
http://doi.org/10.1155/2018/1237823

	Introduction 
	Literature Review 
	Materials and Methods 
	Dataset Description 
	Optimal Solution Selection Using M-ABC Algorithm for IoMT Clients 
	Initialization Phase 
	Solution Search by Employed Bee 
	Candidate Solution by Onlooker Bee 
	Scout Bee Phase 
	Data Collection Using IoMT Clients 

	Design of Proposed Framework 

	Experimental Evaluation and Results 
	Experimental Setup 
	Results and Discussion 

	Conclusions 
	References

