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Several studies of the surface effect on bending properties of a nanowire (NW) have been

conducted. However, these analyses are mainly based on theoretical predictions, and there is

seldom integration study in combination between theoretical predictions and simulation results.

Thus, based on the molecular dynamics (MD) simulation and different modified beam theories, a

comprehensive theoretical and numerical study for bending properties of nanowires considering

surface/intrinsic stress effects and axial extension effect is conducted in this work. The discussion

begins from the Euler-Bernoulli beam theory and Timoshenko beam theory augmented with

surface effect. It is found that when the NW possesses a relatively small cross-sectional size, these

two theories cannot accurately interpret the true surface effect. The incorporation of axial extension

effect into Euler-Bernoulli beam theory provides a nonlinear solution that agrees with the

nonlinear-elastic experimental and MD results. However, it is still found inaccurate when the NW

cross-sectional size is relatively small. Such inaccuracy is also observed for the Euler-Bernoulli

beam theory augmented with both contributions from surface effect and axial extension effect.

A comprehensive model for completely considering influences from surface stress, intrinsic stress,

and axial extension is then proposed, which leads to good agreement with MD simulation results. It

is thus concluded that, for NWs with a relatively small cross-sectional size, a simple consideration

of surface stress effect is inappropriate, and a comprehensive consideration of the intrinsic stress

effect is required.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3703673]

I. INTRODUCTION

Nanowires (NWs) are receiving increasing applications

in diverse areas, such as the nanocomposites strengtheners,1

the active components of nanoelectromechanical systems

including high frequency resonator,2,3 force and pressure sens-

ing,4 ultrahigh-resolution mass sensing,5 and other devices.6,7

These nanowire-based devices are envisioned to quickly find

their way into high-performance electronics and commercial

products.8 Therefore, it is of great importance from both sci-

entific and technological viewpoints to investigate the me-

chanical properties of NWs. In the past decade, various

experimental studies of NWs have been carried out. For

instance, a number of atomic force microscope (AFM)-based

compression, bending, and nanoindentation studies of NWs

have been conducted.9–12 Through in situ tensile experiments,

Yue et al.13 found Cu NWs could sustain ultrahigh elastic

strains. The defect-free Au NWs are reported showing super-

plasticity on tensile deformation.14 The size effects on elastic-

ity, yielding, and fracture of five-fold twinned Ag NWs have

been studied via in situ tensile experiments.15 Meanwhile, the

numerical approaches are also being frequently applied to

investigate the NW’s properties, such as ab initio calculation,

multi-scale simulation, and molecular dynamic (MD) simula-

tion. For example, the investigation of NWs mechanical prop-

erties under tensile deformation, including influences from

factors of strain rate, temperature, surface defects, and

others.16–19 Other NW deformation situations such as com-

pression and torsion are also being investigated.20–22 A num-

ber of atomistic studies of NW bending behaviors have been

reported, e.g., Zheng et al. reported the formation of two con-

joint fivefold deformation twins in Cu NWs under bending.23

McDowell et al. estimated the Young’s modulus of Ag NWs

during bending.24 Wu investigated the bending response of a

Cu cantilever NW by applying a lateral force at one end of

the NW.25

It is generally accepted that the surface stress and surface

elasticity play an important role in the mechanical properties

of NWs. Researchers have reported a plethora of novel me-

chanical behaviors of NWs that arisen from the surface effect,

such as the phase transformations phenomenon,26 pseudoelas-

tic behavior,27 and shape memory effect.28,29 By assuming

that the overall elastic behavior of NW is a superposition of

surface areas and bulk volume where the bulk volume exhibits

the identical elastic properties as the corresponding macro-

scopic bulk material, researchers have proposed several theo-

retical analyses to characterize the surface effect under

different deformation situations. For example, according to

the classical Euler-Bernoulli beam theory and Timoshenko

beam theory, Wang and Feng carried out a serial analysis of

the surface stresses influence on the vibration and buckling

behaviors of NWs.30–33 A general discussion of the surface

effect during the bending deformation are also well docu-

mented by previous researchers, e.g., the modified Euler-

Bernoulli beam theory by He and Lilley,34,35 and the modified

a)Author to whom correspondence should be addressed. Electronic mail:
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Timoshenko beam theory by Jiang and Yan.36 A complete

review of the surface stress effect in mechanics of nanostruc-

ture elements, including nanoparticles, NWs, moonbeams, and

nanofilms can be found in the recent work by Wang et al.37

Besides the theoretical study of the surface stress effects, the

multi-scale simulations have also been conducted to investi-

gate the bending behaviors and properties of Au NWs, which

are achieved by utilizing the surface Cauchy-Born model.38,39

Although several discussions of the surface effect have

been carried out, we note that these discussions are mainly

based on the comparisons among different theoretical predic-

tions, and rare open discussions between these different theo-

retical approaches and the MD simulation results are found.

For instance, the work reported by He and Lilley is mainly

based on Young’s modulus obtained from the classical

Euler-Bernoulli beam theory and modified Euler-Bernoulli

beam theory.34 Therefore, it is of great interest to investigate

the applicability of different theoretical approaches during

bending deformation. It is worthy to point out that, for the

resonant frequencies, a comprehensive discussions between

the theoretical predictions and MD results have already been

reported by Olsson et al.40 They found that Timoshenko

beam theory performs better for small aspect ratio Au NWs

due to shear and rotary inertial effects.

According to the AFM-bending approach proposed by

Wu et al.,41,42 a complete investigation of a three-point bend-

ing model by MD simulation for double clamped Cu NWs is

conducted by our recent work.43 It is found that such bending

model could provide full spectrum of NW mechanical proper-

ties, ranging from elasticity, plasticity, and failure. Thus,

based on this bending model and different modified beam the-

ories, we provide a comprehensive theoretical and numerical

study for bending properties of double clamped Ag NWs con-

sidering surface/intrinsic stress effects and axial extension

effect. The discussion will begin from the Euler-Bernoulli

beam theory and Timoshenko beam theory augmented with

surface effect that proposed previously. Further investigations

of the factors, including intrinsic stress and axial extension,

that lead to the divergence between theoretical predictions and

MD simulation results are then carried out.

II. NUMERICAL IMPLEMENTATION

MD three-point bending simulations are carried out on

double clamped Ag NWs, which are performed by the large-

scale Atomic/Molecular Massively Parallel Simulator.44

Square cross-section Ag NW with the initial atomic configura-

tion positioned at perfect FCC lattice site is considered, and

the x, y, and z coordinate axes represent the lattice directions

of ½100�, ½010�, and ½001�, respectively. As shown in Fig. 1(a),

the NW is divided into two regions, including boundary

region and mobile region. To mimic the clamped boundary

condition, boundary regions in two ends are fixed in all three

dimensions (x, y, and z). No periodic boundary condition is

adopted. A rigid diamond cylinder tip is employed to impose

the bending load. For convenience, the size of the NW is

denoted as h� h� L, where h denotes the cross-section size

and L denotes the length. Three groups of Ag NWs have been

considered, as listed in Table I. According to the discussion

by Liu and Rajapakse,45 NWs in Group 1 with the slenderness

ratio L/h between 12.5� 50 are taken as thin NWs, as well as

NWs in Group 3 with a constant slenderness ratio of 15. NWs

in Group 2 with the slenderness ratio ranging from 2.5� 10

are taken as thick NWs.

The embedded-atom-method potential developed by

Voter46 is used to describe the Ag-Ag atomic interactions in

these simulations, which was fitted to a group of parameters,

including cohesive energy, equilibrium lattice constant, bulk

modulus, and others.29 For the Ag-C atomic interaction, a

Morse potential is applied.47 The Ag lattice constant a is

chosen as 0.409 nm.46 The equations of motion are inte-

grated with time using a velocity Verlet algorithm.48 During

each simulation, NWs are first relaxed to a minimum energy

state using the conjugate gradient energy minimization and

then the Nose-Hoover thermostat49,50 is employed to equili-

brate the NWs at 0.01 K. After that, a constant velocity is

imposed to the rigid tip. More details of this simulation

model could be found in our recent work.43

III. RESULTS AND DISCUSSIONS

Following the convention of the work by He and

Lilley,34 Young’s modulus extracted from the classical

Euler-Bernoulli beam theory (EBT-Classical), the classical

Timoshenko beam theory (TBT-Classical), and experimental

measurements is taken as overall Young’s modulus Eov and

Young’s modulus determined by other modified beam theo-

ries is taken as bulk Young’s modulus Eb. In this work, Ag

NW’s experimental Young’s modulus is chosen as 76 GPa,51

which has been frequently cited. To note that, during the

comparison of theoretical predictions and MD simulation

results, the same fitting procedure adopted by previous

FIG. 1. (a) MD three-point bending simulation model of Ag NW. The NW

is divided into two regions, including boundary region A and mobile region

B. The rigid diamond cylinder tip is located right at the middle of NW; (b)

axial virial stress calculation schematic. The virial stress is averaged over

each column of atoms along the longitudinal direction (around the center

region) with the distance of Dx.

TABLE I. Simulation models summary. Three groups of NWs have been

considered, including Group 1 with ten cases, and the NW length as 122.7

nm; Group 2 with ten cases, and the NW length as 24.54 nm; and Group 3

with eight cases, and the NWs have a uniform slenderness ratio L/h as 15.

The Ag lattice constant a is chosen as 0.409 nm.

Group Cross-sectional size h (nm)

1 6a 8a 10a 12a 14a 16a 18a 20a 22a 24a

2 6a 8a 10a 12a 14a 16a 18a 20a 22a 24a

3 6a 8a 10a 12a 14a 16a 18a 20a

084305-2 H. F. Zhan and Y. T. Gu J. Appl. Phys. 111, 084305 (2012)



researchers are employed,43,52 i.e., using the data at small

displacement to fit, and extend to include increasingly larger

displacement. This procedure is employed as it could not

only estimate the value of Young’s modulus, but also reveal

the accuracy of the theoretical prediction.

A. Thin nanowires

For the classical Euler-Bernoulli beam theory, the gov-

erning equation of the double clamped thin beam under pure

bending is given as53 (referred as EBT-Classical)

ðEIÞwiv ¼ 0; (1)

where E is bulk Young’s modulus, w is the beam deflection,

I is the moment of inertia. For the square cross-section NW

considered here, I equals h4=12. The following notations are

applied as w0 ¼ dw=dx, w00 ¼ d2w=dx2, w000 ¼ d3w=dx3, and
wiv ¼ d4w=dx4.

As aforementioned, the surface stress has a significant

influence on the mechanical properties of NWs. Wang and

Feng32 suggested that the surface effect can be expressed by

surface elasticity and residual surface stress. According to

the composite beam theory,54 surface elasticity can be ration-

alized by replacing the classical flexural rigidity EI with the

effective flexural rigidity (EI)*. For the square cross-section

beam, (EI)* is given as ðEIÞ� ¼ Eh4=12þ 2Esh=3, where Es

is the surface elastic modulus.33,34 For the NW under bend-

ing, a distributed transverse force caused by the surface re-

sidual stress is described by the generalized Young-Laplace

equation.33,55 This force is along the NW longitudinal direc-

tion, and expressed by pðxÞ ¼ Hw00, where H is a constant

parameter determined by the surface stress along the NW

longitudinal direction and the NW cross-sectional shape. By

neglecting the longitudinal extension of NWs, and assuming

small deflection and deformation, He and Lilley34 proposed

the Euler-Bernoulli beam theory augmented with surface

effect as (referred as EBT-Surface)

ðEIÞ�wiv � Hw00 ¼ 0: (2)

Considering the small deformation approximation, H is sim-

plified as H ¼ H0 ¼ 2s0h, where s0 is the residual surface

stress along NW longitudinal direction.

Equations (1) and (2) are solved subject to the usual

clamped boundary conditions at both ends, with a constant

load F applied at the midpoint x ¼ L=2 of the NW, i.e., the

transverse displacement and slope are zeros at x ¼ 0, and the

slope at x ¼ L=2 is also zero because of symmetry. The force

equilibriums at x ¼ 0 are �ðEIÞw000 ¼ F=2 and �ðEIÞw000

¼ F=2þ
Ð L=2
0

H0w00dx ¼ F=2 for Eqs. (1) and (2), respec-

tively. The relationship between the applied load F and the

resulting displacement d can be deduced as given by Eqs.

(3a) and (3b), respectively,

F ¼ 192EI

L3
d; (3a)

F ¼ 2H0 L

2
� L

ffiffiffiffi

ks
p tanhð

ffiffiffiffi

ks
p

=4Þ
� ��1

d; (3b)

where ks is a nondimensional surface effect factor, and

expressed as ks ¼ H0L2=ðEIÞ�. Based on these two equa-

tions, He and Lilley34 calculated the overall Young’s modu-

lus of Ag NWs and Pb NWs and compared with

experimental results. Some encouraging findings have been

obtained, e.g., generally, the overall Young’s modulus of Ag

NWs is increasing along with decrease of diameter when the

NW length is constant for both the EBT-Surface and experi-

mental results from Jing et al.51 As we note that comparisons

made by He and Lilley34 are mainly based on the Young’s

modulus obtained from Eqs. (3a) and (3b), which have pre-

determined the surface effect. In other words, the surface

effect on NW bending properties is actually discussed among

theoretical predictions, and no studies of the F-d curves that

provided by the modified beam theories and simulation

results have been conducted.

To investigate into our concerns about the surface effect,

we begin the discussions from the comparisons between the

theoretical predictions by Eqs. (3a) and (3b) and MD simula-

tion results. These two equations are employed to fit with the

MD simulation results from Group 1, with NWs possessing

the same length but different cross-sectional sizes ranging

from 2.454 nm to 9.816 nm (see Table I). The classical flex-

ural rigidity EI in Eq. (3a) is replaced by the effective flex-

ural rigidity (EI)* in the following context. The residual

surface stress and the surface elasticity values for (100) Ag

from atomistic calculations by Sheony56 are adopted, i.e.,

s0 ¼ 0:89N=m, Es ¼ 1:22N=m. Since both Eqs. (3a) and

(3b) have predicted a linear relationship between F and d,

only MD simulation results that fall in the displacement

between 0 and 0.5h are adopted to determine the Young’s

modulus.43,52

It is evident from Fig. 2 that overall Young’s modulus

Eov determined from EBT-Classical appears a decreasing

trend as the cross-sectional size h increases. Basically, it is

expected that the surface effect reduces as the cross-

sectional size increases, and when h is sufficiently large, Eov

would equal to Eb. This expectation is confirmed by the

results in Fig. 2. Furthermore, the obvious decreasing pattern

FIG. 2. Comparison of Young’s modulus between experimental measure-

ments and theoretical calculations from MD simulation results in Group 1

by EBT-Classical and EBT-Surface. A smaller residual surface stress tensor

as 0.3 N/m is considered as well.
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of Eov suggests that surface effect has strengthened the NW.

The decreasing trend of Eov becomes much steadier with the

increasing h, indicating the surface effect reduces. In the

meanwhile, Fig. 2 suggests that Eov would eventually fluctu-

ate around a certain value.

On the contrary, bulk Young’s modulus Eb obtained

from EBT-Surface exhibits an initial increase trend. Specifi-

cally, Eb increases with the increase of h, which converges to

a certain value (around 65 GPa) when h is fairly large. For

relatively small h (h< 4 nm), Eq. (3b) even predicts a nega-

tive value of Eb as illustrated in Fig. 2, which is unreasonable

from the viewpoint of continuum mechanics, as Eb is the

materials intrinsic property and should be size-independent

or insensitive to size. These observations imply that EBT-

Surface does not accurately describe the surface effect when

the NW possesses a small cross-sectional size. For compari-

son, another fitting of Eq. (3b) by considering a smaller re-

sidual surface stress as s0 ¼ 0:3N=m is also conducted. As

shown in Fig. 2, the values of Eb are found uniformly larger

than previous one (s0 ¼ 0:89N=m), with the converged

value almost the same. This finding suggests that the EBT-

Surface has overestimated the surface stress effect, espe-

cially for the NW with small cross-sectional size.

B. Thick nanowires

Researchers have also considered thick NWs under

bending deformation. According to the classical Timoshenko

beam theory, the governing equation is given as (referred as

TBT-Classical),

ðEIÞ�w00 � asAGwþ asAGw
0 ¼ 0

asAGw
00 � asAGw

0 ¼ 0

�

(4)

where w is the angular displacement, and w0 ¼ dw=dx,
w00 ¼ d2w=dx2. G is the bulk shear modulus and as is the

shear coefficient depending on the cross-sectional shape. The

shear coefficient is given as as ¼ 5ð1þ dÞð6þ 5dÞ�1
for a

square cross-section beam.30,57 For double clamped beam

subjected to a force F at the midpoint x ¼ L=2. The slope at

the midpoint is zero because of symmetry, i.e., wðL=2Þ ¼ 0.

The slope and transverse displacement at x ¼ 0 is also zero.

The force equilibrium at x ¼ 0 is asAGðw0 � wÞ ¼ F=2.
Solving Eq. (4) using these boundary conditions, the follow-

ing relationships between the load F and the maximum dis-

placement d is obtained:

F ¼ � L3

96ðEIÞ� þ
L3

64ðEIÞ� þ
L

4asAG

� ��1

d: (5)

Recently, surface effect has also being incorporated into

TBT-Classical for thick NWs by several researchers.30,36,45

The governing equation of the classical Timoshenko beam

theory augmented with surface effect is given by (shorted as

TBT-Surface)

ðEIÞ�w00 � asAGwþ asAGw
0 ¼ 0

asAGw
00 � asAGw

0 ¼ �Hw00

�

: (6)

The parameter H is replaced by H0 in considering small defor-

mation approximation. The boundary conditions are similar as

TBT-Classical, except the force equilibrium at x ¼ 0, which

turns out to be asAGðw0 � wÞ ¼ F=2þ
Ð L=2
0

Hw00dx. Hence,
the modified relationships between the load F and the maxi-

mum displacement d is obtained

F ¼ 4kH0

L
1þ 4

ffiffiffiffiffi

kts
p ðktsH� 1Þ tanh

ffiffiffiffiffi

kts
p

4

� �� ��1

d; (7)

where k ¼ asAG=ðasAGþ HÞ, H ¼ ðEIÞ�=ðasAGL2Þ, and

kts ¼ kH0L2=ðEIÞ�. kts is refereed as the nondimensional sur-

face effect factor under Timoshenko beam theory. Equations

(5) and (7) are then compared with MD simulation results of

thick Ag NWs in Group 2 with the same length as 24.54 nm

and different cross-sectional sizes ranging from 2.454 nm to

9.816 nm (see Table I). The bulk shear modulus G of 30 GPa

is adopted.58

Figure 3 shows the comparison of estimated Young’s

modulus by Eqs. (5) and (7). The results obtained from EBT-

Classical are also presented. It is found that Eov determined by

EBT-Classical decreases continuously with the increase of h.

Such unreasonable changing trend has demonstrated the influ-

ence of shear deformations in thick NWs and thus indicates

the EBT-Classical is no longer applicable for NWs in Group

2. For TBT-Classical, Eov decreases at the beginning, and then

appears steady when h passes a threshold value, after that it

decreases sharply. Since the length of the NW is constant,

thus the increase of h has gradually turned the NW into block

materials. When h is too large, e.g., such as 9.816 nm, which

makes the slenderness ratio as low as 2.5. Upon such a small

slenderness ratio, the bending is more close to an indentation

process, leaving the deformation beyond the description by

the beam theory. Therefore, only the first two changing peri-

ods (p1 and p2) in Fig. 3 have represented the effective pre-

diction by TBT-Classical. Interestingly, these two periods

suggest a consistent changing trend of Eov that extracted from

EBT-Classical for thin NWs in Fig. 2, i.e., Eov decreases with

FIG. 3. Comparison of Young’s modulus between experimental measure-

ments and theoretical calculations from MD simulation results in Group 2

by EBT-Classical, TBT-Classical, and TBT-Surface. A smaller residual sur-

face stress tensor as 0.3 N/m is considered as well. The whole changing

trends of the curves are divided into three parts as p1, p2, and p3. Specifi-

cally, p1 refers to the initial changing trend when h is relatively small, p2

refers to the steady changing trend, and p3 refers to the changing trend when

h is relatively large.
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the increase of cross-sectional size, and converges to a value

about 65 GPa when h is fairly large. Therefore, these observa-

tions lead to a consistent conclusion that surface effect has

strengthened the NW, and the influence is reduced as the NW

cross-sectional size increases.

Similar as the result from EBT-Surface for thin NWs

(Fig. 2), TBT-Surface also reveals an initial increase and then

a steady changing pattern of the overall Young’s modulus as

depicted in Fig. 3. Thus, we could conclude that the considera-

tion of surface effect in TBT-Surface is also inappropriate

when a small cross-sectional size is considered. Another fitting

of Eq. (7) with the residual surface stress as s0 ¼ 0:3N=m is

presented in Fig. 3 as well. The comparison between s0 of

0.89 N/m and 0.3 N/m suggests the same conclusion that the

TBT-Surface has overestimated the surface stress effect, espe-

cially for a relatively small cross-sectional size.

C. Comparison and discussion

It is obvious from the above discussions that current con-

sideration of the surface effect is suffering some inaccuracy

for both thin and thick NWs considered in this work, espe-

cially when the NW cross-sectional size is within a relatively

small value. Therefore, reconsideration of the surface effect is

needed. In this section, we will investigate the possible factors

that might lead to the inaccuracy when considering the surface

effect. Discussion emphasis is put on thin NWs.

1. Approximation of the axial extension

As aforementioned, all above methods have ignored the

axial extension effect during bending deformation. It is ac-

ceptable to disregard the axial extension in continuum

mechanics, as it has no noticeable effect on the behavior of

the beam.59 However, when the beam size is down to nano-

scale, the axial extension is expected to exert obvious

influence to the beam behaviors. Through the incremental

deformation theory, Song et al.60 developed a new formula-

tion for the Euler-Bernoulli beam, which incorporated effects

of the surface stress, surface-induced initial stress and sur-

face elasticity. Basing on the resonant frequency, they found

that the surface-induced initial stresses can significantly

influence the overall mechanical properties of NWs. Results

from both experimental measurements and other MD simula-

tions suggest that when the displacement is larger than one

cross-sectional size, the corresponding load-displacement

curve during bending will turn out to be nonlinear.43,52 How-

ever, it is apparent that Eqs. (3a) and (3b) only provide a lin-

ear solution. In view of this point, we adopt the modified

Euler-Bernoulli beam theory augmented with axial extension

effect proposed by Heidelberg et al.,52 the governing equa-

tion is given as (referred as EBT-Axial)

ðEIÞ�wiv � Tw00 ¼ 0; (8)

where T is the axial extension due to bending deformation, it

is given by53

T ¼ ðEAÞ�ex ¼
ðEAÞ�
L

ðL=2

0

dw

dx

� �2

dx: (9)

The effective flexural rigidity is utilized in Eq. (8) to account

for the surface elasticity. (EA)* is the effective extensional

rigidity,61 which is written as ðEAÞ� ¼ EAþ 4Esh. Solving

Eq. (8) with the same boundary conditions applied in Eq. (1),

with the force equilibrium at x ¼ 0 as�ðEIÞw000¼�Tw0þF=2.
The following solution is obtained

F ¼ 192ðEIÞ�
L3

f ðkaÞd; f ðkaÞ ¼
ka

48� 192 tanhð
ffiffiffiffiffi

ka
p �

4Þ=
ffiffiffiffiffi

ka
p ;

(10)

where ka is directly connected to the axial tension as

ka ¼ TL2=ðEIÞ�. Similarly, we refer ka as axial extension

effect factor. According to Eq. (9), the axial extension effect

factor is related to the maximum displacement d by the fol-

lowing transcendental equation:

ka cosh
2ð

ffiffiffiffiffi

ka
p �

4Þ
2þ coshð

ffiffiffiffiffi

ka
p �

2Þ � 6 sinhð
ffiffiffiffiffi

ka
p �

2Þ=
ffiffiffiffiffi

ka
p

� 1� 4
tanhð

ffiffiffiffiffi

ka
p �

4Þ
ffiffiffiffiffi

ka
p

� �2

¼ d2
ðEAÞ�
ðEIÞ� : (11)

Obviously, the above equation is complex in nature and

a numerical solution is required. Following asymptotic solu-

tion is constructed:

ka ¼
6sð140þ sÞ
350þ 3s

; s ¼ d2
ðEAÞ�
ðEIÞ� : (12)

The calculated Eb by Eq. (10) from MD simulation results

in Group 1 is presented in Fig. 4(a). As we note that

f ðkaÞ � 1, means the inclusion of the axial extension increase

the effective rigidity of the beam. Thus, Eov determined from

the same F-d curve by Eq. (3a) should be essentially larger

than Eb by Eq. (10). This trend is approved in Fig. 4(a). In

general, Eb determined by EBT-Axial exhibits a general

decrease trend with the increase of h, and converges to a cer-

tain value when h is fairly large. This changing trend is very

close to the Eov determined by EBT-Classical. As shown in

Fig. 4(a), Eb obtained from EBT-Axial is around 140 GPa for

h equals 2.454 nm, while for the largest h (9.816 nm), Eb is

only about 60 GPa. Such big deviation suggests that EBT-

Axial also encounters certain inaccuracy in the determination

of Young’s modulus when h is relatively small.

Figures 4(b) and 4(c) present the fitting and prediction

results of F-d curve by Eq. (10). It is clearly seen from

Fig. 4(b) that for the smallest h (2.454 nm) considered in this

work, the prediction by Eq. (10) shows poor accuracy. On

the contrary, for a larger h (6.544 nm) the predictions are

much closer to the MD simulation results. These observa-

tions indicate that the simple consideration of axial extension

is not appropriate for NWs with a relatively small cross-

sectional size. In all, as shown in Fig. 4(c), the real impor-

tance of EBT-Axial is that it provides a nonlinear solution

that accounts for the axial extension induced nonlinear F-d

curve, and agrees well with both experimental measurements

and MD simulation results.43,52 According to Fig. 4(b), it is

sure that we could improve the EBT-Axial prediction quality
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by enlarging the fitting zone. Through such procedure, bulk

Young’s modulus Eb could also be reduced greatly to the

value around 70 GPa. Although such results yield good

agreement with our expectation (bulk Young’s modulus is

size-independent or insensitive to size), which actually indi-

cates the shortage of EBT-Axial when NW cross-sectional

size is relatively small.

2. Approximation of surface effect

Discussions in previous section have suggested that, the

residual surface stress exerts noticeable effect to NW me-

chanical properties. According to Wang and Feng,33 the pa-

rameter H (see Eq. (2)) for square cross-sectional beam is

given as H ¼ 2sh, and s is the surface stress given by

s ¼ s0 þ Esex. Suppose that the axial strain �x could not be

ignored during bending, then H ¼ H0 þ 2hEsex. Hence,

another modified Euler-Bernoulli beam theory could be

developed which includes both contributions from the axial

effect and surface effect. The governing equation reads

(referred as EBT-AS)

ðEIÞ�wiv � ðH þ TÞw00 ¼ 0: (13)

Solving Eq. (13), the following solution is obtained:

F ¼ 192ðEIÞ�
L3

f ðkasÞd;

f ðkasÞ ¼
kas

48� 192 tanhð
ffiffiffiffiffiffi

kas
p

=4Þ=
ffiffiffiffiffiffi

kas
p ; (14)

where kas is referred as the axial-surface effect factor, and

directly connected to the axial extension and the surface

effect as kas ¼ ðH þ TÞL2=ðEIÞ�. According to Eq. (14), the

axial-surface effect factor is related to the maximum dis-

placement d by the following transcendental equation:

kas �
H0L2

ðEIÞ�
� �

cosh2ð
ffiffiffiffiffiffi

kas
p

=4Þ
2þ coshð

ffiffiffiffiffiffi

kas
p

=2Þ � 6 sinhð
ffiffiffiffiffiffi

kas
p

=2Þ=
ffiffiffiffiffiffi

kas
p

� 1� 4
tanhð

ffiffiffiffiffiffi

kas
p

=4Þ
ffiffiffiffiffiffi

kas
p

� �2

¼ d2
ðEAÞ� þ 2Esh

ðEIÞ� : (15)

Furthermore, Eq. (15) can be simplified through Taylor

expansion as

(kas - b)f ðkasÞ¼ s1;

f ðkasÞðn¼2mþ5;m2NÞ ¼

1

12
þ kas

960
þ :::þ 3nðn�3Þ

2n�6ðnþ1Þ!k
n�5
2

as

1

5
þ kas

420
þ :::þ3ðn�3Þ

2n�7n!
k
n�5
2

as

; (16)

where b ¼ H0L2=ðEIÞ�, s1 ¼ d2½ðEAÞ� þ 2Esh�=ðEIÞ�. Evi-
dently, Eq. (16) is a transcendental equation of kas regarding

parameters b and s1. In the meanwhile, f(kas) is a monotonic

increasing function for kas > 0, and 5=12 < f ðkasÞ < 1=2.
As is seen, it is still very difficult to obtain an asymptotic so-

lution for Eq. (16). Therefore, to construct a general asymp-

totic solution we follow the same method employed by

Heidelberg et al.52 It is easy to find kas ¼ 2s1 þ b from Eq.

(16) by assuming s1 tends to positive infinite. Therefore, the

approximate solution is given by superimposing the small

and large deflection limits as

F ¼ 192ðEIÞ�
L3

d 1þ H0L2

48ðEIÞ� þ
ðEAÞ� þ 2Esh

24ðEIÞ� d2
� �

: (17)

Equation (17) is then employed to fit with MD simu-

lation results in Group 1. From Fig. 5, values of Eb

obtained from EBT-AS are very close with those from

EBT-Surface, i.e., Eb increases with the increase of cross-

sectional size, and converges to a certain value (around 65

GPa) when h is large enough. Such similarity suggests the

same conclusion that EBT-AS is suffering certain inaccur-

acy in interpreting the surface effect. In particular, we find

predictions from EBT-AS are even ill-conditioned for h

equals 2.454 nm and 3.272 nm. It is thus concluded that

considerations of both axial effect and surface effect are

still encountered with some inaccuracy when h is rela-

tively small.

FIG. 4. (a) Comparison of Young’s modulus between experimental measure-

ments and theoretical calculations from MD simulation results in Group 1 by

EBT-Classical, EBT-Surface, and EBT-Axial; (b) F-d curve comparison

between the fitting and prediction results from Eq. (10) and MD simulation

results when the NW cross-sectional size equals 2.454 nm; (c) F-d curve com-

parison between the fitting and prediction results from Eq. (10) and MD simu-

lation results when the NW cross-sectional size equals 6.544 nm.
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3. Ignoring intrinsic stress

Another usual approximation adopted by previous

researchers is that there is no residual intrinsic stress existed

in NW. Again, such approximation is acceptable in continuum

mechanics. However, this is not the case for NW at nano-

scale. According to Diao et al.,62 for the h100i=f001g NW,

the residual intrinsic stress induced by the residual surface

stress is estimated to be

r ¼ �4sh=A ¼ �4s=h: (18)

The magnitude of r in NW is on the order of MPa to GPa.

Such significant residual intrinsic stress could exert large

influence to NW properties. A recent molecular statics study

by Liang et al. reveals that the nonlinear elasticity of NW

core plays a considerably larger role in determining the elas-

tic modulus of NWs subjected to uniaxial loads.63 Thus, it is

of great interest to investigate the intrinsic stress influence

on NW bending properties.

As is known, in the absence of external force, the virial

stress average over the entire NW is zero after energy mini-

mization or initial relaxation. Following the same procedure

by Diao et al.,18 the axial virial stress distribution of the NW

along the cross section could be estimated. Particularly, the

virial stress in this work is averaged over each column of

atoms along the longitudinal direction (around the center

region) with the distance of Dx ¼ 4:09 nm (see Fig. 1(b)).

Figure 6 shows the cross-sectional stress distribution of NWs

with three different cross-sectional sizes. Just as expected,

the residual intrinsic compressive stress increases as the

cross-sectional size decreases.18 Meanwhile, the residual

intrinsic stress is observed on the order of GPa. For instance,

when h¼ 2.46 nm, the residual surface tensile stress is esti-

mated around 3.5 GPa and the residual intrinsic compressive

stress is around 1.5 GPa. Such large compressive stress is

supposed to play a crucial role in NW bending behaviors.

However, implementing the residual intrinsic compres-

sive stress effect into the beam theory still encounters with

huge complexity, and there is rare explicit discussion sug-

gesting the appropriate estimation of such residual intrinsic

stress influence. According to Wang and Feng,33 the com-

plete surface stress effect is expressed as H ¼ 2hðs0 þ EsexÞ.
Based on the relationship between the surface stress and the

intrinsic stress in Eq. (18), we assume the combination effect

of the surface stress and the intrinsic stress can be written by

lH. Comparing with the surface effect parameter H, this

assumption indicates an opposite influence induced by the

intrinsic stress as ðl� 1ÞH. Therefore, a new modified

Euler-Bernoulli beam model is proposed, which includes a

comprehensive consideration of influences from surface

stress, intrinsic stress and axial extension effect. The F-d

relationship is thus refined as (referred as EBT-ASI)

F ¼ 192ðEIÞ�
L3

d 1þ lH0L2

48ðEIÞ� þ
ðEAÞ� þ 2lEsh

24ðEIÞ� d2
� �

: (19)

For Ag NWs applied in this work, we find when l is

around 0.25 the prediction of F-d curve by Eq. (19) agrees

well with MD simulation results. As illustrated in Fig. 7(b),

the prediction accuracy of F-d curve is found improved signif-

icantly by EBT-ASI for the cross-sectional size of 2.454 nm.

Such good predictions results are also found for the NW with

larger cross-sectional size (e.g., when h equals 5.726 nm as

shown in Fig. 7(c)). These findings are encouraging, which

not only suggest the influence of intrinsic stress and also the

FIG. 5. Comparison of Young’s modulus between experimental measure-

ments and theoretical calculations from MD simulation results in Group 1

by EBT-Classical, EBT-Surface, EBT-Axial, and EBT-AS.

FIG. 6. Axial virial stress distribution along the NW cross section. All three NWs have the same length as 12.27 nm. The virial stress is averaged over each

column of atoms along the longitudinal direction (around the center region) with the distance of Dx¼ 4.09 nm. (a) NW cross-sectional size equals 2.46 nm; (b)

NW cross-sectional size equals 6.54 nm; (c) NW cross-sectional size equals 9.81 nm.
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necessity of considering intrinsic stress effect. The estimated

Eb of Group 1 from EBT-ASI and other modified theories are

compared in Fig. 7(a). The values of Eb are found to fluctuate

around 65 GPa, which is satisfied with our expectation, i.e.,

the bulk Young’s modulus is size-independent.

To further examine Eq. (19), we consider another group

of simulations, which includes eight NWs with the same slen-

derness ratio L/h of 15, and the cross-sectional size h varies

from 2.454 nm to 8.18 nm (see Table I). As shown in Fig. 8,

the estimated Eb from EBT-ASI in this group also appears a

fluctuating trend around 65 GPa, which further confirms the

intrinsic stress influence. Other two estimations of bulk

Young’s modulus by EBT-Surface and EBT-AS still show an

initial increase and then steady changing trend. These results

not only suggest the necessity of the consideration of intrinsic

compressive stress but also indicate the overestimation of the

surface effect by EBT-Surface and EBT-AS.

In the end, it should be noted that, according to Fig. 8,

estimations of Young’s modulus by EBT-Axial also appear a

fluctuating trend around 65 GPa, which almost coincide with

the estimations by EBT-ASI. This observation can be

explained as follows. Besides of the consideration of axial

extension (that caused by later bending) and surface elastic-

ity in EBT-Axial, the residual surface stress and intrinsic

stress are also embedded in EBT-ASI. Suppose that the axial

extension effect is a superposition of surface stress effect

and intrinsic stress effect, and then EBT-ASI could be taken

as a more comprehensive consideration of axial extension

effect, which accounts for the residual surface stress and

intrinsic stress influence. In the meanwhile, for NWs with a

relatively large slenderness ratio, the influence of axial

extension becomes more predominant than the influence

from the residual surface stress and intrinsic stress. There-

fore, estimations of Young’s modulus by EBT-Axial and

EBT-ASI appear very close to each other in Group 3. In all,

since the residual intrinsic stress is inherently existed in

NWs, therefore, simply considering surface stress effect is

inappropriate, especially for NWs with a relatively small

cross-sectional size. Moreover, for double clamped NW

under large displacement bending, the axial extension exerts

larger influence to NW bending behaviors than the residual

surface stress.

IV. CONCLUSIONS

Based on the MD simulation, a comprehensive theoreti-

cal and numerical study for bending properties of nanowires

considering surface/intrinsic stress effects and axial exten-

sion effect is carried out. The surface effect is observed to

strengthen the NW, and the influence reduces as the NW

cross-sectional size increases. The initially discussed theo-

ries include the Euler-Bernoulli beam theory and Timo-

shenko beam theory augmented with surface effect. It is

found that when the NW possesses a relatively small cross-

sectional size, these two theories cannot accurately interpret

the true surface effect. The incorporation of the axial exten-

sion effect into the Euler-Bernoulli beam theory has pro-

vided a nonlinear solution that agrees with the nonlinear-

FIG. 7. (a) Comparison of Young’s modulus between experimental meas-

urements and theoretical calculations from MD simulation results in Group

1 by EBT-Classical, EBT-Surface, EBT-Axial, EBT-AS, and EBT-ASI; (b)

F-d curve comparison between the fitting and prediction results from Eqs.

(10) and (19), and MD simulation results when the NW cross-sectional size

equals 2.454 nm; (c) F-d curve comparison between the fitting and predic-

tion results from Eqs. (10) and (19), and MD simulation results when the

NW cross-sectional size equals 5.726 nm.

FIG. 8. Comparison of Young’s modulus between experimental measure-

ments and theoretical calculations from MD simulation results in Group 3

by EBT-Classical, EBT-Surface, EBT-Axial, EBT-AS, and EBT-ASI.
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elastic experimental and simulation results. However, there

is still some inaccuracy when the NW cross-sectional size is

relatively small. Modified Euler-Bernoulli beam theory

includes both contributions from surface effect and axial

extension effect has been developed, which still appears an

inappropriate determination of Young’s modulus.

Basically, residual intrinsic stress is inherently accompa-

nied by residual surface stress for NWs. A relatively large re-

sidual intrinsic stress is observed in NWs, which is supposed

to play a crucial role in NW bending behaviors, especially

when a relatively small cross-sectional size is considered. A

comprehensive model for completely considering influences

from surface stress effect, intrinsic stress effect, and axial

extension effect is proposed, which shows good agreement

with MD simulation results, indicating it is necessary to

account for the intrinsic stress influence on NW bending

behavior. In all, it is summarized that, for NWs with a rela-

tively large cross-sectional size under small bending displace-

ment (e.g., the displacement is smaller than half cross-section

size), both Euler-Bernoulli beam theory and Timoshenko

beam theory augmented with surface effect show good agree-

ment with simulation results. Therefore, both theories are ap-

plicable. However, for thin NWs, the consideration of axial

extension effect is needed when the displacement is relatively

large (e.g., displacement larger than one cross-sectional size).

For NWs with a relatively small cross-sectional size, the sim-

ple consideration of surface stress effect is inappropriate, and

a comprehensive consideration of the intrinsic stress effect is

required.
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