

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Modified Berlekamp-Massey Algorithm for
Approximating the k-error Linear Complexity of

Binary Sequences

Alexandra Alecu and Ana Sălăgean

Department of Computer Science,
Loughborough University,

Loughborough, UK,
{A.Alecu, A.M.Salagean}@lboro.ac.uk,

http://www.lboro.ac.uk

Abstract. Some cryptographical applications use pseudorandom sequences
and require that the sequences are secure in the sense that they cannot be re-
covered by only knowing a small amount of consecutive terms. Such sequences
should therefore have a large linear complexity and also a large k-error linear
complexity. Efficient algorithms for computing the k-error linear complexity of
a sequence only exist for sequences of period equal to a power of the character-
istic of the field. It is therefore useful to find a general and efficient algorithm to
compute a good approximation of the k-error linear complexity. We show that
the Berlekamp-Massey Algorithm, which computes the linear complexity of a
sequence, can be adapted to approximate the k-error linear complexity profile
for a general sequence over a finite field. While the complexity of this algo-
rithm is still exponential, it is considerably more efficient than the exhaustive
search.

Keywords: pseudorandom sequences, stream ciphers, linear complexity, k-
error linear complexity

1 Introduction

The k-error linear complexity of a sequence is a generalisation of the notion of linear
complexity. While the linear complexity of a sequence is defined as the length of the
smallest linear recurrence relation which generates that sequence, the k-error linear
complexity is the length of the smallest linear recurrence relation which generates a
sequence which differs from the original sequence in at most k positions.

When designing a stream cipher, the keystream sequence has to have a large lin-
ear complexity. Using the Berlekamp-Massey Algorithm, a sequence can be efficiently
recovered by knowing a number of consecutive terms equal to twice its linear com-
plexity. Sequences with low linear complexity would therefore be vulnerable to known
plaintext attacks. Similarly, sequences with low k-error linear complexity for small
values of k could also be vulnerable if the corresponding linear recurrence relation
was found.

An exact algorithm to compute the k-error linear complexity only exists for pe-
riodic sequences over a finite field GF (pm) and with period a power of p, p being

prime and m ≥ 1 (see Stamp and Martin [10], Lauder and Paterson [5] for p = 2 and
Kaida, Uehara and Imamura [4] for an arbitrary p). These algorithms are based on the
algorithms of Games and Chan [3] and Ding, Xiao, Shan [2] for computing the linear
complexity of such sequences, and they work only when a full period of the sequence
is known, i.e. the whole sequence is known, which is not the case in cryptanalysis
applications.

We propose adapting the Berlekamp-Massey Algorithm (Berlekamp [1], Massey
[7]) which computes the linear complexity, in order to approximate the k-error linear
complexity profile for a general sequence over a finite field. The main idea is to devise
a heuristic algorithm which explores only some of all the possible error patterns. The
choice of the positions of the errors is guided by the steps of the Berlekamp-Massey
Algorithm in which the complexity is increased.

While the proposed algorithm has an exponential complexity, the base of the
exponential function is smaller than for an exhaustive search; moreover, the base for
the proposed algorithm is independent of the size of the field, while for an exhaustive
search it increases with the size of the field.

In this paper we consider mainly binary sequences but the proposed algorithm can
be extended to arbitrary finite fields.

2 Background

Definition 1. Given an infinite sequence s = s0, s1, . . . (or a finite sequence s =
s0, s1, . . . , st−1) with elements in a field K, we say that s is a linear recurrent
sequence if it satisfies a relation of the form sj + cL−1sj−1 + . . . + c1sj−L+1 +
c0sj−L = 0 for all j = L,L + 1, . . . (or for all j = L,L + 1, . . . t − 1, respectively),
where c0, c1, . . . , cL−1 ∈ K are constants. The associated characteristic polynomial is
C(X) = XL + cL−1X

L−1 + . . .+ c1X + c0. If L is minimal for the given sequence, we
call L the linear complexity of s, denoted L(s).

The notion of linear complexity has been generalised to k-error linear complexity
by Stamp and Martin [10] (see also Ding, Xiao, Shan [2]). In the following wH(s)
denotes the Hamming weight i.e. the number of non-zero terms of s.

Definition 2. For a given infinite sequence s = s0, s1, . . . of period N , with elements
in a field K and for a fixed integer k, 0 ≤ k ≤ wH((s0, . . . , sN−1)), the k-error linear
complexity of the sequence s is defined as

Lk(s) = min{L(s+e)| e is a sequence of period N over K,wH((e0, e1, . . . , eN−1)) ≤ k}

For a given finite sequence s = s0, s1, . . . , st−1 with elements in a field K and for a
fixed integer k, 0 ≤ k ≤ wH(s), the k-error linear complexity of the sequence s is
defined as Lk(s) = min{L(s+e)|e ∈ Kt, wH(e) ≤ k}. The sequences e are called error
sequences or error patterns. The k-error linear complexity profile of the sequence is
defined as being the set of pairs (k, Lk(s)), for all k with 0 ≤ k ≤ wH(s).

Property 1. Given a (finite or infinite) sequence s with elements in a finite field GF (q),
we have Li(s) ≥ Lj(s), for all i < j.

2

The Berlekamp-Massey Algorithm ([1],[7]) computes the characteristic polynomial
and the linear complexity of a sequence over any field. It is iteratively processing each
term of a finite sequence s0, s1, . . . , st−1, adjusting the characteristic polynomial when
necessary. At each step n the current minimal characteristic polynomial C(n)(X)
generates the n sequence terms s0, s1, . . . , sn−1 processed so far. In addition, the
last characteristic polynomial C(m)(X) of degree strictly smaller than the degree of
C(n)(X) is also stored. We denote L(i) = deg(C(i)). The discrepancy d(n)

d(n) = sn +
L(n)−1∑
i=0

c
(n)
i si+n−L(n) (1)

is the difference between the term which is expected using the current characteristic
polynomial and the actual term sn which is currently processed. Three possible cases
are identified:

1. If d(n) 6= 0 then sn cannot be generated using C(n)(X) :
a) If 2L(n) > n then the new characteristic polynomial is computed as

C(n+1)(X) ← C(n)(X) − d(n)

d(m) ·X(m−L(m))−(n−L(n)) · C(m)(X) and it has the
same degree as the previous one;

b) If 2L(n) ≤ n then the new characteristic polynomial is computed as
C(n+1)(X) ← X(n−L(n))−(m−L(m)) · C(n)(X) − d(n)

d(m) · C(m)(X) and it has a
higher degree than the previous one, namely L(n+1) = n + 1 − L(n); m is
updated to n.

2. If d(n) = 0 then sn can be generated using C(n)(X), so the characteristic polyno-
mial stays unchanged C(n+1)(X) = C(n)(X).

We initialise C(i)(X)← 1 for i = 0, . . . , j, C(j+1)(X)← Xj+1 and m← j, where
sj is the first non-zero term of the sequence. At the end of the algorithm, L(t) is the
linear complexity of the sequence and C(t)(X) is a minimal characteristic polynomial
(which is unique if 2L(t) ≤ t, otherwise it may not be unique).

3 The Modified Berlekamp-Massey Algorithm

Determining the k-error linear complexity of a finite binary sequence of length t by
an exhaustive search approach would mean investigating all the

∑k
i=0

(
t
i

)
patterns of

up to k errors and computing the linear complexity of each of the sequences obtained
by adding these error patterns to the original sequence. Some computational savings
can be made by taking advantage of the incremental nature of the Berlekamp-Massey
Algorithm; for error patterns which coincide on the first say i positions, reuse the
computations made on the first i terms of the sequence. We implemented this more
efficient version of an exhaustive search for the binary case and used it as a reference
(we denote this algorithm the Efficient Exhaustive Search Algorithm).

A heuristic approach would only explore some of all the possible error patterns.
Our proposed heuristic will use the Berlekamp-Massey Algorithm to choose these
patterns. Namely, during the algorithm, only the case when the discrepancy d(n) 6= 0
and 2L(n) ≤ n (case (1b) in Section 2) yields an increase in the current complexity
of the sequence. It seems therefore natural to concentrate on what would happen if

3

the current term of the sequence, which creates this increase in complexity, would
be changed in such a way as to make the discrepancy zero, and therefore make an
increase in complexity unnecessary. If we made these changes to the sequence early
in the algorithm, we would soon run out of the k allowed errors, and we would not
be able to explore the effect of errors on later terms of the sequence. Whenever case
(1b) occurs in the algorithm we do therefore consider both possibilities: changing the
current term of the sequence, or not changing it, and we continue exploring both
branches. A tree of recursive calls is thus obtained.

6,2

12,5 8,2

L_0=8 13,5 15,7 9,2

L_1=9 14,5

L_2=10 L_3=5

L_1=9 L_2=7 L_2=8 14,2

L_3=13 15,2

L_4=14 L_5=2

Fig. 1. Example of the Modified
Berlekamp-Massey Algorithm tree of
error and no-error recursive calls for
the sequence s = 0110111101110101

Our approach is not guaranteed to give
the exact result for the k-error linear com-
plexity, as the error pattern that decreases
the complexity the most may well not have
the errors in those positions suggested by the
Berlekamp-Massey Algorithm. Since we in-
vestigate only some of all the possible error
patterns, our results will always be larger
or equal to the optimum ones. We investi-
gate experimentally in Section 4 how close
the approximation is to the actual k-error
complexity. Unfortunately we were unable to
prove a theoretical bound on the approxima-
tion quality.

We firstly illustrate our algorithm with
an example:

Example 1. Applying the Berlekamp-Massey
Algorithm to s = 0110111101110101 (length
16), the degree of the intermediate character-
istic polynomials changes at positions 6 and
12 (ignoring the initial change from degree 0). The linear complexity is 8 and the
characteristic polynomial C(X) = X8 +X6 +X5 +X4 +X + 1.

Figure 1 shows the tree of recursive calls for the MBM Algorithm. The internal
nodes show the index of the element of the sequence currently processed and the
current linear complexity. The left child of each internal node corresponds to not
forcing an error and the right child corresponds to introducing the error. The leaves
in the tree show the final result on each path in the tree: the number of errors which
were introduced and the corresponding k-error linear complexity. In our example the
first change of complexity happens when s6 is processed. The error sequence can be
built using a bottom-up technique. For example, for the 3-error linear complexity, the
errors will be at indices 14,13 and 12, so the error sequence is 0000000000001110.

By taking the minimum value of the linear complexity for each number of er-
rors, the results in the tree in Figure 1 give an incomplete approximate k-error linear
complexity profile as being {(0, 8), (1, 9), (2, 7), (3, 5), (5, 2)}. Applying Property 1 in
Section 2 and using the fact that LwH(s)(s) = 0 the full approximate k-error linear
complexity profile is found:
{(0, 8), (1, 8), (2, 7), (3, 5), (4, 5), (5, 2), (6, 2), (7, 2), (8, 2), (9, 2), (10, 2), (11, 0)}. The ex-
act k-error linear complexity profile obtained by an exhaustive search algorithm is:
{(0, 8), (1, 7), (2, 6), (3, 4), (4, 2), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 0)}.

4

Algorithm 1 Recursive Modified Berlekamp-Massey Algorithm
1: Input: A finite non-zero sequence s = s0, s1, . . . , st−1; kMax; LMax

2: Output: The approximate k-error linear complexity profile, sol
3: v ← max(kMax, wH(s)− 1)
4: for i = 0, 1, . . . , v do
5: soli ← {t, Xt, (0, 0, . . . , 0︸ ︷︷ ︸

t times

)}

6: end for
7: k ← 0
8: e = (0, 0, . . . , 0︸ ︷︷ ︸

t times

)

9: n← 0
10: while sn = 0 and n < t− 1 do . go over the initial zeros
11: n← n + 1
12: end while . Initialize the details corresponding to ’last degree change’ position m
13: m← n
14: Cm(X)← 1
15: dm ← sn

16: n← n + 1
17: Cn(X)← Xn . Initialize the details corresponding to current position n
18: call mbmR(sol, m, Cm(X), dm, Cn(X), n, k, e)
19: return sol

We suppose that the input sequence has at least one non-zero element otherwise
calculating the k-error linear complexity would be immediate since Lk(0) = 0, for all
k ≥ 0, where 0 is an all-zero sequence of any length.

In practice we might be interested in the k-error complexities only for small values
of k, say a certain percentage of the length of the sequence, so we introduce an
extra parameter, kMax (default value wH(s)) in the algorithm and we compute the
truncated k-error linear complexity profile {(i, Li(s))|0 ≤ i ≤ kMax}.

One might also be interested in the minimum number of errors needed to achieve a
linear complexity below a certain set value LMax (see Sălăgean [9]). This again would
make some of the recursive calls unnecessary, when the current complexity is already
equal to or below LMax. The default value for LMax is t. In this case the algorithm
will return the profile {(i,max {Li(s), LMax})|0 ≤ i ≤ kMax}.

We implemented the algorithm in Algorithms 1 and 2 based on a recursive version
of the Berlekamp-Massey Algorithm. Two new variables are needed to accommodate
the current number of errors, k and the current error pattern, e. We denote the k-error
linear complexity profile as sol and we define each element as a collection of three com-
ponents solk = {sol Lk, sol Ck(X), sol errk}, for k = 0, 1, . . . ,max {kMax, wH(s)− 1},
where sol Lk is the k-error linear complexity, sol Ck(X) is the characteristic polyno-
mial and sol errk is the error sequence corresponding to the k-error linear complexity.

There are some immediate improvements that can be performed on the Modified
Berlekamp-Massey Algorithm. First of all the stop condition can be adjusted. Some of
the paths taken by the recursion calls might get to a k-error linear complexity which
is bigger or equal to the currently stored solution (sol Lk) so they can be abandoned.
Secondly, the currently stored k-error linear complexity profile can be maintained

5

Algorithm 2 The mbmR procedure
1: procedure mbmR(sol, m, Cm(X), dm, Cn(X), n, k, e)
2: if (n = t) or (k > kMax) or (deg(Cn(X)) ≤ LMax) then
3: if ((n = t) and (sol Lk > deg(Cn(X))) and k ≤ kMax then
4: solk ← {deg(Cn(X)), Cn(X), e}
5: end if
6: else
7: dn ← (s + e)n +

∑deg(Cn(X))−1
i=0 cn · (s + e)i+n−deg(Cn(X))

8: if dn 6= 0 then
9: if 2 · deg(Cn(X)) > n then . (1a) the complexity does not change

10: Cn(X)← Cn(X)− dn
dm
·X(m−deg(Cm(X)))−(n−deg(Cn(X))) · Cm(X)

11: mbmR(sol, m, Cm(X), dm, Cn(X), n + 1, k, e)
12: else . (1b) the complexity does change
13: T (X)← Cn(X)
14: Cn(X)← X(n−deg(Cn(X)))−(m−deg(Cm(X))) · Cn(X)− dn

dm
· Cm(X)

15: mbmR(sol, n, T (X), dn, Cn(X), n + 1, k, e)
16: if en = 0 then
17: mbmR(sol, m, Cm(X), dm, Cn(X),n+1, k + 1, (e− dnIn))
18: end if
19: end if
20: else . (2) the current characteristic polynomial does not change
21: mbmR(sol, m, Cm(X), dm, Cn(X), n + 1, k, e)
22: end if
23: end if
24: end procedure

whenever a new solution is found, using Property 1 in Section 2. Finally, we can
combine iteration and recursion in order to minimize the stack size.

3.1 Algorithm Analysis

The correctness of the linear complexity and characteristic polynomial for each num-
ber of errors k and the corresponding error sequence stored in the solution array at
the end of the algorithm, results from the way the algorithm was built and from the
correctness of the Berlekamp-Massey Algorithm (Massey [7]).

For analysing the complexity of the algorithms we will use the trees described in
Section 3 and estimate their number of nodes using the following Lemma:

Lemma 1. A binary tree of depth n and with at most k right branches on any path
from the root to a leaf has a maximum of

∑k
i=0

(
n+1
i+1

)
vertices.

Proof. We associate to each node a description of the path from the root to that node,
i.e. a sequence over the alphabet {L,R}, where L signifies a left branch and R a right
branch. The number of nodes will therefore be equal to the number of sequences of
lengths between 0 and n, each sequence containing at most k occurrences of R. For
any fixed number i of R’s we have

n∑
m=i

(
m

i

)
=
(
n+ 1
i+ 1

)

6

such sequences, so the total for all i from 0 to k will be

k∑
i=0

(
n+ 1
i+ 1

)
.

There is no closed form for sums of the form
∑k
i=0

(
n
i

)
, so we will use bounds:

Lemma 2. The following bound stands

k∑
i=0

(
n

i

)
≤
{

2
(
n
k

)
, if k ≤

⌊
n+1

3

⌋
,(

k −
⌊
n+1

3

⌋
+ 2
) (

n
k

)
, if

⌊
n+1

3

⌋
< k ≤

⌊
n−1

2

⌋
Proof. The first case follows by induction on k, using the fact that

(
n
k

)
=
(
n
k−1

)
· n−k+1

k

for all n and k. Also n−k+1
k ≥ 2 if k ≤ b(n+ 1)/3c. The remaining inequalities follow

from the first using elementary properties of the binomial coefficients.

We will approximate binomial coefficients using the following (see [6, Lemma 7,
Chapter 10]) (

n

k

)
≈ c 1√

nα(1− α)

(
1

αα(1− α)1−α

)n
(2)

where 0 < k < n, α = k/n and c is a constant, 1/
√

8 ≤ c ≤ 1/
√

2π.
When assessing exponential time complexities of algorithms we will also use the

fact that for any a > 1 and i > 0 we have nian ∈ O((a+ε)n) with ε > 0 an arbitrarily
small constant.

We are now ready to estimate the complexity of the algorithms presented.

Theorem 1. The worst case time complexity of the Efficient Exhaustive Search Al-
gorithm for sequences of length t and number of errors at most kMax = vt with
0 < v < 1/3 is O(

√
tλt) where λ = 1

vv(1−v)1−v . This can also be expressed as
O((λ + ε)t) with ε > 0 an arbitrarily small constant. For a typical value of v = 0.1
(i.e. errors in at most 10% of the positions) the time complexity is O(

√
t1.384145t).

Proof. The Efficient Exhaustive Search Algorithm will construct a tree of depth t and
at most kMax right branches on any path from the root to a leaf. By Lemma 1, this
tree will have at most

∑kMax

i=0

(
t+1
i+1

)
nodes. So the number of nodes is bounded by

2
(

t+1
kMax+1

)
, by Lemma 2. In any node we compute a discrepancy and possibly adjust

the characteristic polynomial, so there are O(t) computational steps. Therefore the
complexity is O(t

(
t+1

kMax+1

)
).

Using (2) we obtain the following approximation:

2t
(

t+ 1
kMax + 1

)
= 2

t(t+ 1)
kMax + 1

(
t

kMax

)
=

= 2
t(t+ 1)
vt+ 1

(
t

vt

)
≈ 2c

t(t+ 1)
vt+ 1

1√
tv(1− v)

(
1

vv(1− v)1−v

)t
≈ 2c
v
√
v(1− v)

√
t

(
1

vv(1− v)1−v

)t

7

which is O(
√
tλt) where λ = 1

vv(1−v)1−v .

For the Modified Berlekamp Massey Algorithm it is harder to estimate the depth
of the tree, as the number of terms processed in between two decision points will
vary depending on the particular sequence. We will assume that an average of u
terms are processed between two decision points, i.e. between two points where the
Berlekamp-Massey algorithm would prescribe an increase in the current complexity
of the sequence. In [8, Chapter 4] it is shown that for random binary sequences the
average number of bits that have to be processed between two changes in complexity
is 4 and the change in complexity has an average of 2. While the sequences used in
the cryptographic applications are not truly random, using a value of u = 4 for the
average number of terms between two changes of complexity seems reasonable.

Theorem 2. The worst case time complexity of the Modified Berlekamp Massey Al-
gorithm for sequences of length t, an average of u terms of the sequence processed
between two changes in complexity, and a number of errors at most kMax = vt with
0 < v < 1

u is
O(
√
tλt1) if v < 1

3u where λ1 = 1

uvv(1−uv)
1
u
−v
,

O(t
√
tλt1) if 1

3u ≤ v <
1
2u where λ1 = 1

uvv(1−uv)
1
u
−v
,

O(tλt2) if 1
2u ≤ v ≤

1
u where λ2 = u

√
2.

In all cases the complexity can also be written as O((λi + ε)t) where ε > 0 is an
arbitrarily small constant. For a typical value of v = 0.1 (i.e. errors in at most 10%
of positions) and u = 4 the complexity is O(t

√
t1.189208t).

Proof. Since u is the number of terms between two decision points and t is the total
number of terms, the depth of the tree will be t/u. We bound the number of vertices
in the tree by

∑kMax

i=0

(t
u +1
i+1

)
, using Lemma 1. When the number of right branches on

any path, kMax, is at most half the depth of the tree, by applying the first or the
second bound in Lemma 2 (depending on whether kMax is smaller or greater than a
third of t/u), followed by the estimation (2), we obtain the first two computational
complexities O of the Theorem in a similar way as in the proof of Theorem 1.

When the number of right branches allowed in the tree approaches the depth of
the tree, i.e. kMax approaches t/u, we will bound the number of nodes by 2

t
u +1 − 1

(the number of nodes in a complete binary tree of depth t/u). Combining this with
O(t) operations in each node gives the third O of the theorem.

The proposed algorithm has the advantage that even when the field has more
than two elements, there are still only two choices that are investigated: introducing
no error, or introducing an error of magnitude −d(n), where d(n) is the discrepancy; an
exhaustive search approach would have to investigate all the possible error magnitudes
for each error position, i.e.

∑k
i=0

(
t
i

)
(w−1)i possibilities for a field of w elements. Both

the complexities in Theorems 1 and 2 will increase by a factor of (logw)2 to account
for the more costly operations in a field of w elements. However, the exponential part
in the O estimate will remain unchanged in Theorem 2 (Modified Berlakamp-Massey
Algorithm), whereas in Theorem 1 (Efficient Exhaustive Search), λt will be replaced
by (λ(w − 1)v)t.

8

For a typical value of v = 0.1 (i.e. errors in at most 10% of the positions) and an
alphabet of w = 16 elements the worst case time complexity isO(

√
t1.826t) for exhaus-

tive search as compared to O(t
√
t1.189208t) for the proposed modified Berlekamp-

Massey algorithm.

4 Tests and Results

In order to estimate the efficiency and the accuracy of the algorithm, a comparison
has been done between the optimised Modified Berlekamp-Massey (MBM) Algorithm
and the Efficient Exhaustive Search (EES) Algorithm.

We define the accuracy, ACCk(s), as the ratio between LMBM,k(s), the approxi-
mate value of the k-error linear complexity obtained using the Modified Berlekamp-
Massey Algorithm and LEES,k(s), the exact value obtained using the Efficient Ex-
haustive Search Algorithm, LMBM,k(s)/LEES,k(s).

The running time improvement was computed as the ratio between the time taken
by the Efficient Exhaustive Search Algorithm and the time taken by the Modified
Berlekamp-Massey Algorithm on the same processor, timeEES/timeMBM .

The first test has involved running both algorithms on a number of 70 randomly
chosen sequences of length 64 (each bit is generated with the C rand() linear con-
gruential generator function).

Figure 2 presents the average, best and worst value of ACCk over the 70 sequences
tested. These results are detailed in Table 1 for 1 ≤ k ≤ 9. For small values of k
we notice that on average the k-error linear complexity obtained by the Modified
Berlekamp-Massey Algorithm is pretty close to the actual value, being higher by only
3.37% for 1 error, increasing to 16.45% for 6 errors (i.e. errors in about 10% of the
terms) and by 25.92% for 9 errors (i.e. about 15% of the terms). As k increases,
the quality of the results obtained by the Modified Berlekamp-Massey Algorithm
deteriorates. Note however that the small values of k are the ones of practical interest.

Table 1. The average accuracy of the results of the MBM Algorithm.

Number of errors k 1 2 3 4 5 6 7 8 9

Average ACCk 1.03 1.06 1.09 1.11 1.14 1.16 1.19 1.22 1.25
Best ACCk 1 1 1 1 1 1 1 1 1

Worst ACCk 1.14 1.2 1.21 1.31 1.5 1.35 1.37 1.5 1.66

The average running time improvement was 12691, i.e. the MBM Algorithm was
nearly 13000 times faster than the EES Algorithm. Even better time improvements
are obtained when imposing limits for the number of errors and/or the maximum
linear complexity. For example for kMax equal to 15% of the length of the sequence
and LMax approx. 1/3 of the length, the time improvement is 24017.

A second experiment involved running the Modified Berlekamp-Massey Algorithm
for sequences of different lengths. We used 20 random sequences for each even length
between 8 and 64. The time improvement shows an exponential increase with the

9

The accuracy of the results found by the Modified Berlekamp-Massey Algorithm

on a sample of 70 random sequences of length 64

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Number of errors

M
B

M
 C

o
m

p
le

x
it

y
 /

 E
E

S
 C

o
m

p
le

x
it

y

Avg

Best

Worst

Fig. 2. The accuracy of the MBM Algorithm on a sample of 70 random sequences of length
64.

length of the sequence (no limitations were imposed on the parameters kMax and
LMax). See figure 3 for the results.

The quality of the approximation was measured for each sequence at different levels
of error: 5%, 10% and 15% of the length of the sequence. The results are summarised
in figure 4. We note that the approximate value of the k-error complexity found by
the modified Berlekamp-Massey Algorithm is consistently good on all lengths tested
and it deteriorates only slightly as k increases as a percentage of the length of the
sequence. For 5% errors (i.e. k is 5% of the length), the k-error linear complexity found
by the MBM algorithm is on average not more than 10% higher than the actual value,
for 10% errors it is at most 20% higher and for 15% it is at most 30% higher.

Fig. 3. The relation between the natural logarithm of the average running time improvement
and the length of the sequences.

10

Fig. 4. The average accuracy of the k-error linear complexity found by the MBM Algorithm
for different values of k and for different lengths.

For evaluating the accuracy of the MBM algorithm for sequences of higher length
the actual k-error linear complexity could no longer be computed using exhaustive
search due to hardware limitations. Instead, we carried out a controlled experiment
where we took 50 sequences s of length 100, generated by a randomly chosen recur-
rence of size 33 (1/3 of the length). We computed the linear complexity L(s) of each
sequence s (this can be lower than 33). We artificially applied an error sequence e of
weight k, such that the linear complexity of s′ = s+ e is higher than L(s). Obviously,
Lk(s′) ≤ L(s), so even though we do not know the exact k-error complexity of s′,
we do have a good upper bound. We then applied the MBM Algorithm to s′ and
computed the ratio LMBM,k(s′)/L(s). This time the ratio can be less than 1 because
L(s) is an upper bound rather than the exact value of Lk(s′). Figure 5 presents the
distribution of the values of this ratio in each interval of length 0.1. Four cases were
considered, depending on the choice of k: random values up to 15% of the length of
the sequence, or fixed values of 5%, 10% and 15%, respectively. We notice that a high
proportion of the ratios are below 1.1, i.e. the value found by the MBM algorithm is
close, or even lower than the original complexity, L(s). The results improve when k
represents a higher proportion of the length of the sequence.

5 Conclusion

We propose a heuristic algorithm for approximating the k-error linear complexity,
based on the Berlekamp-Massey Algorithm. We implemented and tested this algo-
rithm and the results are encouraging. The k-error linear complexity is approximated
pretty close: on average it is only 16% higher than the exact value, for up to 6 errors
on our test set of 70 random sequences of length 64. While the time complexity of the
proposed algorithm is still exponential, it is considerably faster than an exhaustive
search (on average about 13000 times faster for the sequences above). Even higher
efficiency gains are expected in the non-binary case. Future work will investigate the
possibility of further reducing the search space with minimal accuracy loss.

11

Fig. 5. The accuracy of the results found by MBM Algorithm on 50 sequences of length 100,
when the sequences were artificially modified with errors sequences of weight : (a) random;
(b) k = 5% of the length; (c) k = 10% of the length; (d) k = 15% of the length;

References

1. E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, 1968.
2. C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream Ciphers. Springer-Verlag,

Heidelberg, 1992.
3. R. A. Games and A. H. Chan. A Fast Algorithm for Determining the Complexity of a

Binary Sequence with Period 2n. IEEE Trans. Information Theory, 29(1):144–146, 1983.
4. T. Kaida, S. Uehara, and K. Imamura. An Algorithm for the k-error linear complexity

of Sequences over GF (pm) with Period pn, p a Prime, volume 151 of Information and
Computation, pages 134–147. Academic Press, 1999.

5. A. G. B. Lauder and K. G. Paterson. Computing the Error Linear Complexity Spectrum
of a Binary Sequence of Period 2n. IEEE Trans. Information Theory, 49(1):273–2803,
2003.

6. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-correcting Codes. North
Holland, Amsterdam, 1977.

7. J. L. Massey. Shift-Register Synthesis and BCH Decoding. IEEE Trans. Information
Theory, 15(1):122–127, 1969.

8. R. A. Rueppel. Analysis and Design of Stream Ciphers. Springer-Verlag, New York, 1986.
9. A. Salagean. On the computation of the linear complexity and the k-error linear com-

plexity of binary sequences with period a power of two. IEEE Trans. Information Theory,
51(3):1145–1150, 2005.

10. M. Stamp and C. F. Martin. An Algorithm for the k-Error Linear Complexity of Binary
Sequences with Period 2n. IEEE Trans. Information Theory, 39(4):1398–1401, 1993.

12

