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Abstract
Modification of the adsorbent surfaces has been considered a fascinating strategy that enhances biomass-based adsorption 
properties for efficient removal of organic pollutants. This is based on the attempt to replace the cost-ineffectiveness of the 
commercial activated carbon. The present study discusses different modification strategies and a review on modified biomass 
materials for the sorption of organic contaminants. Unlike previous literatures in the field, wider range of these pollutants 
are discussed in this study under different categories including pesticides (such as insecticides, herbicides, fungicides), 
pharmaceutical (e.g. analgesic and antipyretic drugs, antibiotic drugs, non-steroidal anti-inflammatory drugs and antimalaria 
drugs), and dyes (e.g. azo, xanthene, miscellaneous diagnostic, tri-aryl methane, and phenol-derived polymeric dyes). It 
was observed that the acid-activated Posidonia oceanica and  HNO3-modified rice husk displayed the highest and lowest 
adsorption capacities of 2681.9 and 0.35 mg/g for removing Rhodamine B dye and methyl parathion pesticide, respectively. 
The mechanistic aspects of organic pollutants adsorption, their corresponding regeneration studies, and environmental 
challenges with chemical modifications are also discussed. The use of computational (optimization) models for modified 
biomass-based adsorbents to remove organic pollutants is devoid in previous reviews but discussed in the present study. To 
foster more advancement in this field, the concluding part presents various challenges and knowledge gaps for furthering 
research towards more realistic industrial implementations.

Keywords Biomass-based adsorbents · Modification strategies · Organic pollutants · Adsorption · Computational models · 
Regeneration studies
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PVA  Polyvinyl alcohol
I.C  Initial conditions
NA  Not applicable
Ps1  Pseudo-first order
Ps2  Pseudo-second order
RSM  Response surface methodology
CCD  Central composite design
BBD  Box–Behnken design
MB  Methylene blue
PFPAC  Pomegranate fruit peel activated carbon
MG  Malachite green
AI  Artificial intelligence
ANN  Artificial neural network
NPs  Nanoparticles

Introduction

The advances in the industrial revolution and urbanization 
have resulted in day-to-day increase in manufacturing of 
chemical substances like pesticides, herbicides, pharmaceu-
tical and personal care products, dyes, etc. with their respec-
tive ever rising and continuous demands for different appli-
cations (Philippot et al. 2015; Ahmad et al. 2019; Ibrahim 
et al. 2021; Adegoke et al. 2022c, a). Discharge of effluents 
from these manufacturing and applications industries has 
led to the discharge of hazardous compounds into the eco-
systems (De Gisi et al. 2016; Bulgariu et al. 2019; Agboola 
and Bello 2020; Kassegne et al. 2020; Li et al. 2020; Ahmad 

et al. 2021c; Bello et al. 2021). The accumulation and move-
ment of same into water bodies via erosion, drought, etc. 
have become a global threat into both human and aquatic 
habitat (Fig. 1) (Adegoke and Bello 2015; Ahmad et al. 
2016; De Gisi et al. 2016; Singh et al. 2017; Thambiraj 
et al. 2018; Bulgariu et al. 2019; Adebusuyi et al. 2022). 
Pollutants pose adverse effects on the ecosystem, thereby 
making the sustainable environment sustenance/mainte-
nance practically impossible (Bello et al. 2015b; Bellec 
et al. 2015; Wang et al. 2016; Bello et al. 2017a; Adegoke 
et al. 2017, 2019; Jain and Gogate 2017b; Yaseen and Scholz 
2018). Water is important to life and it is a major compo-
nent of humanity, and other aquatic systems; therefore, water 
pollution resulting from climate change, industrialization, 
urbanization, and population is projected to result in possible 
potable water scarcity in the nearest future (Afolabi et al. 
2020a; Ahmad et al. 2021c, b).

However, the rise in applications and conversion of 
biomass-based wastes into products with added value such 
as adsorbents and catalysts for different applications has 
been witnessed in recent years. Based on this, numerous 
adsorbents have been produced from biomass-based origin 
as alternative for the cost-ineffective commercial activated 
carbon which are not sustainable (Bello et  al. 2015a, 
2019a; Pathania et al. 2017). Also, this approach remains a 
fascinating research hotspot since it possesses the benefit of 
enhancing environmental management system by preventing 
biomass wastes’ accumulation in the environment. This is 
because the accumulation of these wastes causes serious 

Fig. 1  Accumulation and movement of organic pollutants and their corresponding possible health implications
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air, water, and soil pollutions. They become worse in 
rainy season, generate terrible odour and stink at the fall 
of rain. They are difficult to manage by environmentalists 
and usually end-up in streams, rivers and oceans thereby 
endangering the aquatic habitat. Burning these wastes even 
during dry season causes air pollution and the death of 
important microbes/biological systems (Bello et al. 2017d, 
2020c, 2021; Ojedokun and Bello 2017a; Bello et al. 2019a, 
b, c; Yu et al. 2019; Afolabi et al. 2020b; Ahmad et al. 
2021b, 2022). These abnormalities have inspired researchers 
worldwide to convert the biomass wastes into important 
products for water/wastewater treatment.

It has however been observed that raw adsorbents derived 
from biomass sources have poor adsorption capacity; 
therefore, various enhancing strategies have been employed 
to facilitate the sorption ability adsorbents for effective 
removal of contaminants (Khodaie et al. 2013; Fernandez 
et al. 2014; Utomo et al. 2015; Singh et al. 2017). One major 
fascinating strategy is surface modification of the adsorbent 
thereby resulting in both physical and chemical changes 
with structural enhancement needed for effective adsorption 
properties such as higher active sites, higher surface areas, 
enhanced particle and pores sizes, improved porosities, and 
pore volumes (Üner et al. 2017; Khasri et al. 2018; Sham 
and Notley 2018; Bello et al. 2019b, 2020a; Ahmad et al. 
2020). For example, some recent studies conducted using 
modified biomass-based materials such as Dragon peel 
(Ahmad et al. 2021b), pod of Mangifera indica (Bello et al. 
2021), lemon grass (Ahmad et al. 2019, 2021a, 2022; Putri 
et al. 2020), pomegranate fruit peel (Ahmad et al. 2020); 
leaves of Gmelina aborea (Bello et al. 2020a), husks of 
coconut (Bello et al. 2019a), Parkia biglobosa (Bello et al. 
2019b), bean husk (Bello et al. 2017d), Moringa oleifera 
leaf (Bello et  al. 2017b, c), guava leaf (Ojedokun and 
Bello 2017b), berry leaves (Ahmaruzzaman et al. 2015), 
Glossogyne tenuifolia leaves (Yang and Hong 2018), Ficus 
racemosa (Jain and Gogate 2017c, a), coconut leaves 
(Cazetta et  al. 2011; Rashid et  al. 2018), C. camphora 
leaves (Tang et al. 2017), leaves of plane trees (Gong et al. 
2013), senescent plant leaves (Gunasekar and Ponnusami 
2013), durian leaves (Hussin et  al. 2015), and bamboo 
(Ghosh and Bandyopadhyay 2017), Prunus dulcis (Jain and 
Gogate 2017b) have been reported. They have reported how 
effective the strategy was for enhancing sorption properties 
of adsorbents for different organic pollutants removal. Thus, 
fabricating novel functionalized adsorbents for effective 
removal of different organic pollutants remain a global 
research hotspot.

Conversely, it should be noted that some studies have 
reported the utilization of numerous sorbents derived from 
clay, sand, nanoparticles, and other synthetic adsorbents. 
However, no study has presented the comprehensive 

information on the modified biomass-based adsorbent for 
organic pollutant removal focusing entirely on pesticides, 
e.g. organophosphate, oximino carbamate, atrazine 
and thioatrazine, etc.; insecticides, e.g. neoncotinoids, 
n-phenylurea, sulphometuron-methyl, etc.; fungicides, e.g. 
azoxystrobin; pharmaceutical pollutants, e.g. paracetamol 
(acetaminophen), ciprofloxacin, doxycycline, ibuprofen, 
lumefantrine, dicloxacillin, phenacetin, levofloxacin, 
hydrochlorothiazide, etc.; and dyes, e.g. Congo red, 
tartrazine, rhodamine B, methylene, phenol-derived 
polymeric dyes, indigo carmine, methyl red, acid green 3, 
azo dye, reactofix red 3BFN, direct blue 53, reactive red 4 
dye, etc. discussed in this review. In addition, the mechanistic 
aspects of organic pollutants’ adsorption and corresponding 
regeneration studies are also discussed. Unlike existing 
reviews in the field, the present study presents the review 
of various computational (optimization) models for the 
adsorption of organic pollutants using modified biomass-
based adsorbents, covering response surface methodology 
and artificial intelligence. The concluding part of the 
work presents various challenges, and knowledge gaps 
for furthering research in the field towards more realistic 
industrial implementations.

Routes of exposure to organic pollutants 
and their ecotoxicological effects

Toxicity means ability of a substance to cause harmful 
effects in living organisms depending on its dose, route of 
entry, frequency and duration of exposure, environmental 
factors, chemical combinations, and inter- and intraspecies 
variations. There are three major routes by which organic 
pollutants can enter into the body system of living 
organisms: inhalation, absorption (skin or eye), and ingestion 
(Vafeiadi et al. 2014). Inhalation is the most common route 
of entry of organic pollutants into living organisms. The 
inhaled and deposited organic pollutants are bioaccumulated 
in fatty tissues of living organisms and may cause various 
health effects. Absorption of organic pollutants through the 
skin (dermal) is also a route of entry into the body of living 
organisms. Once organic pollutants are absorbed in large 
quantities by the skin, they may produce systemic damage to 
internal organs. The eyes can also absorb organic pollutants 
and transport them to other parts of the body thereby causing 
harm to the organism. Ingestion of organic pollutants is also 
very common through the consumption of foods that are 
contaminated with organic pollutants (Kassegne et al. 2020). 
These organic pollutants are absorbed by the lining of the 
gastrointestinal tract and then transported to internal organs 
where they cause harmful effects. Several organic pollutants 
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have endocrine disrupting properties (Schug et al. 2011), and 
many are considered to be carcinogenic in living organisms. 
Organic pollutants usually have different potencies, and this 
is further complicated by the fact that no environmental 
exposure to organic pollutants is by a single chemical but 
by a mixture of organic pollutants. Several environmental 
conditions can affect the toxicity of organic pollutants such 
as climatic condition, temperature, salinity, nutritional 
status, adaptation to climatic change, and pH.

Organic pollutants are chemical substances which possess 
enormous ability to adversely affect the endocrine system of 
living organisms, can be either synthetic or natural (Arthur 
et al. 2019). They are usually leached from agricultural lands 
and dump sites into water bodies via erosion (Kabir et al. 
2015). These pollutants are also transported to soils around 
during infiltration and water percolation, which then seep 
into groundwater via water movement in due course. This 
means that environmental pollutants can enter into human 
body system via contaminated food, air, and water.

They tend to alter normal endocrine and coordination 
functions through their action on hormonal glands (Falconer 
et al. 2006; Jung et al. 2015; Wee and Aris 2017). The level 
of coordination of hormonal system is very high with a very 
high specificity such that slight alteration in their concentration 
and timing result in massive distortions in their physiological 
properties leading to adverse health effects (Bai et al. 2016; 
Tapia-Orozco et al. 2016; Tursi et al. 2018). This therefore has 
enormous adverse human health effects because they cause the 
impairment of soil and water bodies. This suggests that their 
effects are troublesome since the alteration in genetic program-
ming during their development in the early stages pose serious 
and significant effects which may result in transgenerational 
inheritance diseases (Schug et al. 2011; Skinner 2011; Raja 
et al. 2022). Previous study has demonstrated an illustrative 
model suggesting that all endocrine systems are targeted by 
these organic pollutants and these organs including the hypo-
thalamic pituitary adrenal axis, pancreas, thyroid gland, and 
reproductive organs are vulnerable to attack by these organic 
pollutants since they are known to influence brain functions 
and hormone-dependent metabolic systems (Raja et al. 2022). 
Based on these exposure routes to organic pollutants and the 
corresponding ecological effects in the ecosystem, there is a 
serious need to develop efficient methods and readily available 
materials for decontaminating these noxious pollutants and 
ensuring sustainable and safer environment.

Fabrication processes of activated carbon 
for removal of organic pollutants

The quest for the use of activated carbon for adsorption of 
pollutants have been attributed to their desirable properties 
such as having microporous and homogenous structure 

in addition to their relatively high surface area as well as 
abrasion and very low cost of production in comparison to 
commercial activated carbon. However, characteristics of 
an activated carbon are reliant on chemical nature of the 
precursor and the fabrication process, which comprises two 
stages of carbonization and activation. The carbonization 
stage is a pyrolysis process that leads to thermal 
decomposition of the biomass-based material at temperature 
below 800 °C in the presence of minimal or no oxygen. This 
leads to the breaking down of lignocellulose structure of 
the biomass-based material and production of charcoal 
(Adegoke et al. 2022b).

The activation stage is required subsequent to the 
carbonization stage in order to copiously develop the pore 
structure that enhances activated carbon’s surface area, 
which expedite the capture and retention of substances. 
The activation stage is performed using either chemical or 
physical treatment method which leads to the generation 
of activated carbon (Adegoke et al. 2022b). These various 
treatment methods during their preparation are responsible 
for the alteration of shape and size of leaves used as 
adsorbent (Adegoke and Bello 2015; Yahya et al. 2015). 
Treatment process by physical means takes place mainly 
through activation and carbonization. The precursors must 
first be carbonized before activation using carbon (IV) oxide 
 (CO2) or steam. Whereas, in chemical treatments; precursor 
materials are first of all impregnated by  “activating agent” 
prior to heating in an inert atmosphere (Yahya et al. 2015). 
Dissolution of cellulosic constituents present in leaves 
are achieved by activating agents thereby enhancing the 
formation of crosslinks (Adegoke and Bello 2015; Yahya 
et  al. 2015). In comparison, advantages of chemical 
activation over physical activation process are numerous 
and these include high production yield, ability to generate 
well formed microporous sites, high surface area, low 
temperatures, involvement of only one step (González-
García et al. 2013; Adegoke and Bello 2015; Yahya et al. 
2015), and mineral matter contents reduction that is higher 
(Bello et al. 2017b). Nevertheless, some shortcomings of 
chemical method of activation such as necessities to wash 
the activated/carbonized adsorbents to get rid of impurities 
that are associated with activation agents and corrosive 
nature of activating reagents still exist (Adegoke and Bello 
2015; Yahya et al. 2015).

Preparation techniques for adsorbents 
through functionalization/modification

Among the several modification agents available,  H3PO4 
and  ZnCl2 are most widely utilized for activation of 
lignocellulosic adsorbents (González-García 2018). By 
comparison, many authors have shown  H2SO3,  H3PO4, citric 
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acid, and NaOH (Hussin et al. 2015; Makeswari et al. 2016; 
Ghosh and Bandyopadhyay 2017; Jain and Gogate 2017a, 
2017c; Tang et al. 2017; Khan et al. 2018) preference to 
 ZnCl2 for modification of leaf because they are eco-friendly 
in nature. They have the ability to produce mesopores with 
high volume and diameter, and high surface areas (Adegoke 
and Bello 2015; Bello et al. 2017b; Ojedokun and Bello 
2017b). Also, activated carbon produced are usually suitable 
for used in food and pharmaceutical companies (Yahya et al. 
2015). Therefore, the use of  H3PO4 as modification agent 
offers advantages such as (i) easy recovery of carbon product 
during processing, (ii) high amount of activated carbon is 
produced, and (iii) does not pose any toxic effect (Adegoke 
and Bello 2015; Yahya et  al. 2015; Bello et  al. 2017b; 
Ojedokun and Bello 2017b).

The mechanism of reaction for each activating reagent 
is different, for example,  ZnCl2 enhances extraction of  H2O 
molecules from lignocellulosic materials’ structures while 
 H3PO4 chemically associates within lignocellulosic materials 
(Yahya et  al. 2015). Surface chemistry modification of 
leaves is an emerging, efficient, and promising method 
for applications of carbon in many fields. Modification 
of leaves involves oxidation and subsequent grafting onto 
leaf surfaces new molecule(s) such as cyclodextrin and 
functional group(s) such as –NH2 and -COOH. Various 
modification methods of achieving oxidation are by acid, 
alkaline, ozone, microwave, and plasma. Commonly used 
modification methods are briefly discussed as follows:

Functionalization/modification by acidic methods

Acidic modification methods are majorly employed for 
oxidizing the porous carbon surfaces in order to increase 
the acidic properties thereby removing the excess mineral 
substances and also enhance the hydrophilic ability of the 
adsorbent surfaces (Table 1) (Shen et al. 2010). In recent 
years, nitric and sulphuric acids have been the most used 
acids though many others were used for modifying leaf 
adsorbents (Jawad et al. 2016; Jain and Gogate 2017b; Khan 
et al. 2018). These authors have established that utilization 
of acid functional group(s) existed on the surface of carbon 
upon modification for efficient dye removal from wastewater 
and aqueous solutions due to their oxygen-functional group 
containing-proton-donors.

The effect of acidic modification of bamboo leaves using 
citric acid was investigated for methylene blue adsorption in 
aqueous solution (Ghosh and Bandyopadhyay 2017). They 
tested seven isotherm models and Temkin isotherm gave the 
best description for the adsorption process while pseudo-sec-
ond-order kinetic model best described the adsorption. High-
est percentage removal achieved was 99.97%, with adsorption 
capacity of 725 mg/g. Bello et al. reported  H3PO4-modified 
Moringa oleifera leaf for adsorptive removal of reactive blue 
(RB) dye (Bello et al. 2017c). They observed that the adsorp-
tion process of RB red dye was best described by Langmuir 
and pseudo-second-order models with intraparticle diffusion 
observed as adsorption process. They also observed that the 

Table 1  Effects of acid-treated adsorbents for removing organic pollutants

Adsorbent used Acid Used Organic pollutant adsorbed Adsorption capacity observed References

Cocos nucifera shell H2SO4 Methylene blue Maximum adsorption capacity was 
observed at 50.6 mg/g

Jawad et al. (2020)

Moringa oleifera seeds H3PO4 Diclofenac Oxygenated functionality was 
observed, and 82.8% removal rate 
was reported at 95.85 mg/g due to 
the treatment

Bagheri et al. (2020)

Ashe juniper H2SO4 Methylene blue Maximum adsorption capacity 
increases from 0.30 to 0.97 mg/
m2, and oxygenated functionality 
such as carbonyl and sulphonated 
functional groups were observed as 
the result of the treatment

Choi et al. (2019)

Sawdust material H2SO4 (1% and 40%) NA Specific surface area increases 
from 1.360  m2/g to 44.4  m2/g (1% 
 H2SO4) and 135  m2/g (40%  H2SO4)

Benyoucef et al. (2020)

Weeds HNO3 Methylene blue Maximum adsorption capacity 
increase from 161.29 to 39.68 mg/g

Güzel et al. (2017)

Peanut hull H2SO4 Methylene blue 161.3 mg/g maximum adsorption 
was reported due to the treatment

Özer et al. (2007)

Peanut shell H2SO4 Methylene blue and tetracycline Maximum adsorption at 1250 mg/g 
(methylene blue) and 303 mg/g 
(tetracycline) were observed

Islam et al. (2019)
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adsorption means energy evaluated from Dubinin–Radush-
kevich isotherms confirmed the involvements of physical 
adsorption having a capacity of 934.4 mg/g. Many other 
authors also reported remarkable adsorption capacities with 
acid treatment (Oyelude 2015; Ghosh and Bandyopadhyay 
2017; Ojedokun and Bello 2017b; Yang and Hong 2018; 
Mahmoudi et al. 2020). They discussed the different dye-
uptake capacities attained from modified leaf samples in rela-
tion to surface chemical property of each adsorbent. They 
observed that anionic dyes on the prepared adsorbent samples 
by thermal treatment under hydrogen flow at elevated tem-
peratures were favoured on considering their dispersive and/
or electrostatic interaction.

Critical observation from literature established that acidic 
modification of leaf activated carbons (ACs) enhanced the 
adsorption of dyes onto the leaves-modified counterpart 
owing to a significant surface chemistry change. This is 
because acidic modifications have affinity to remove OH 
group(s), thereby producing the  O2-containing functional 
group(s), as the amounts of these functional groups have a 
close relationship with the ability of leaf ACs to remove dye 
compounds. Yang et al. (2016) used acid-treated vermicom-
post-derived adsorbent for the removal of congo red and 
methylene blue dyes from aqueous solution and observed 
similar findings. Xing et al. (2007) prepared active solid 
from carbon materials via sulphonation and they reported an 
enhanced material due to high steam-to-carbon ratio attrib-
uted to the acid treatment. This was further confirmed with 
FTIR results that indicated sulphonated groups at 1032  cm−1 
(Xing et al. 2007) and ether groups at 1151  cm−1 (Lai et al. 
2010) in similar experiments.  N2 isotherm curves indicated 
microporosity due to acid treatment (Güzel et al. 2017).

Functionalization/modification by alkaline (basic) 
methods

Alkaline (basic) modifications of leaf ACs produce positive-
charge surfaces that help adsorb the significant amounts of 
negatively charged species. The porous carbons having the 
basic surface characters/properties can be achieved by treating 
the leaf materials in inert hydrogen or ammonia atmosphere at 
higher temperature such as 400–900 °C (treatment of leaves 
with  NH3) or at 400–600 °C (treatment with amide, aromatic 
amines or protonated amides) leading to the creation of basic 
formations with sufficient nitrogen functionalities (Faria et al. 
2004). It is noteworthy here that adsorbents with nitrogen-
containing functional groups are endowed with basic proper-
ties having the ability to trigger the enhancement of porous 
carbons and acid molecular interaction, e.g. hydrogen bond-
ing, dipole–dipole interaction and/or covalent bonding. Inter-
estingly, it is highly expected that the hydroxyl ions  (OH−) 
have a strong affinity to react with leaf ACs surface functional 
groups under a basic condition thus making this modification 

treatments advantageous to enhance the adsorption of dyes. 
Basic modifications on leaves can be achieved through nitric 
acid treatment, partial gasification of oxygen, urea impregna-
tions followed by pyrolysis. Generally, one can easily con-
clude that  OH− ions are expected to react with the leaf surface 
functional group under alkaline modification thereby leading 
to the abundance creation of positive charges on leaf surfaces 
of AC which is favourable to enhance the negative-charged 
species from  H2O.

Zheng et al. (2013) modified activated carbon using NaOH 
and reported that there was increase in pore volume concen-
tration and surface area of the adsorbent and thus improved 
adsorption of organic pollutants. However, using similar 
chemical, Sadaf and Bhatti (2016) reported that organic pol-
lutants, such as anionic dyes, might not be effectively removed 
by alkaline-modified adsorbent because of the perceived sur-
face deprotonation functionality due to –OH and –COOH that 
could cause an electrostatic repulsion of these dyes.

Hayati and Mahmoodi (2012) examined utilization of 
NaOH in surface modification of activated carbon and sub-
sequent use of the prepared modified activated carbon in 
the removal of dyes. Their results showed that NaOH was 
effective for the surface modification. Compared to ordinary 
activated carbon surface, their results indicated higher maxi-
mum adsorption capacity of 9.17 and 11.77 mg/g onto the 
surface-modified activated carbon for Acid Red 14 (AR14) 
and Acid Blue-92 (AB92), respectively.

Functionalization/modification by impregnation 
methods

The phenomenon called impregnation is defined as fine, 
even or uniform distribution of chemical reagents and 
particles in the pores of leaf ACs. ACs from leaves can be 
impregnated with metal compounds from silver, copper, 
aluminium, iron, etc. due to their adsorption capacities 
that is significantly high. It should be noted that effect of 
impregnation ratio must be considered. This is the weight 
ratio of the activation agents to that of the precursor. This 
ratio is the most important factor in the activation process by 
chemical method because, with the increasing ratio, the leaf 
adsorbent surface area is expected to increase. Bello et al. 
impregnated Moringa oleifera leaf with NaOH and  H2SO4 
and used different characterization techniques to establish 
the effects of modification by impregnation. The study 
concluded that impregnated Moringa oleifera leaf could be 
employed for dyes recovery in lieu of commercial activated 
carbon (Bello et al. 2017b).

Magnetic modification

Aryee et al. (2020) prepared magnetic-modified biomass for 
dye removal using co-precipitation and yielded a crystalline 
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mesoporous material that possess superparamagnetic 
characteristics. The results obtained show improved sorption 
capacity of 32.5 mg/g by the modified biomass towards 
methylene blue. Safarik and Safarikova (2010) observed a 
monolayer adsorption in decontamination of different dye 
types using a magnetic-modified adsorbent via Langmuir 
model. Chen et al. (2011) carried out biomass pyrolysis with 
 FeCl3 and  FeCl2 to derive a magnetic material that could 
be applied in the separation of solid–liquid mixtures. They 
prepared the magnetic biochar via chemical co-precipitation 
of iron hydroxides on orange peel powder and subsequent 
pyrolysis. Orange peel was used as material and magnetite 
as magnetic medium. They observed that the novel magnetic 
biochar derived through their modification exhibited an 
enhanced adsorption capacity (several times) for phosphate 
and organic contaminants than untreated biomass. Hence, 
they indicated that magnetic-modified adsorbents could be 
an extraordinary sorbent for contaminants removal. The 
synthesis of magnetic-modified biomass has been carried out 
by scientists using different kinds of methods with various 
biomass and magnetic medium.

Functionalization/modification by microwave 
methods

Modification of leaf ACs via microwave radiation has 
been given wide popularity nowadays owing to its heating 
capacity at molecular levels which results in quick thermal 

and homogenous reactions (Khan et  al. 2018). Unlike 
conventional heating methods, microwave heating/
irradiations offer significant advantages: (i) microwave 
energy neatly heats the leaf materials from inside out, (ii) 
provision of rapid heating by microwave energy, (iii) no 
need of heating convection through fluids, (iv) process 
of heating can be controlled easily, (v) direct contacts 
between the microwave heating sources and the heated 
leaf materials cannot occur, (vi) capable of been operated 
at higher temperatures, (vii) it saves energy and time, (viii) 
increasing chemical reactivities, (ix) cost-effective (x) 
systems processing are also moderately portable, compact 
and easy to maintain (Khan et al. 2018). For instance Khan 
et al. (2018) used spent black tea leaves prepared using 
microwave-assisted method as effective low-costs and 
green adsorbent for adsorption of dye (Khan et al. 2018). 
Their results revealed that Langmuir model best described 
the adsorption with adsorption capacity of 242.72 mg/g 
at 25 °C.

Performance of different modified biomass‑derived 
adsorbents for removing organic pollutants

There has been series of scientific reports on application of 
modified biomass-derived adsorbent for removing organic 
and emerging contaminants such as dyes, pesticides, and 

Fig. 2  Illustration of the overall adsorption process of organic pollutants onto modified biomass materials
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pharmaceuticals from water/wastewater as discussed 
below. The corresponding adsorptive removal process 
(Fig. 2) and performances at different operating condi-
tions, kinetics, isotherms and their mechanisms are sum-
marized in Table 2.

Modified biomass‑derived adsorbents for pesticides 
removal

Insecticides

The biomass-derived adsorbent from spent tea leaves 
has been reportedly used in removing organophosphate 
pesticides such as dimethoate and chlorpyrifos in a 
concentration array of 20 to 100 mg/L. The spent leaves 
derived biomass adsorbent displayed a mean percentage 
removal of 42.11 and 72.98% for dimethoate and chlorpyrifos 
pesticides, respectively (Beheary et al. 2018). Furthermore, 
some studies about the feasibility of modified rice bran, 
rice husk, Moringa oleifera pod, and sugar can bagasse for 
removing organophosphate pesticides from aqueous solution 
at varied operating adsorptive conditions have been reported. 
This involves modification of these biomasses with  HNO3 
and the utilization of the resulting adsorbents for removing 
methyl parathion. These adsorbents demonstrated adsorption 
capacity of 28  m2/g (rice bran), 17  m2/g (rice husk), 27  m2/g 
(Moringa oleifera pod) and 25  m2/g (sugar cane bagasse) 
for methyl parathion removal (Akhtar et al. 2007; Ahmad 
et al. 2010). The recounted adsorption percentage removal 
and optimum adsorption capacity at optimum experimental 
conditions for removing methyl parathion were 96.31% 
and 0.196 mg/g, respectively. Langmuir model gave the 
best description of the adsorption isotherm with respective 
maximum adsorption capacities of 0.39 mg/g (rice bran), 
0.35 mg/g (rice husk), 0.39 mg/g (Moringa oleifera pod) 
and 0.36 mg/g (sugar cane bagasse) (Akhtar et al. 2007; 
Ahmad et al. 2010). Application of the same adsorbents for 
the adsorption of methyl parathion from wastewater samples 
gave percentage removal of 99, 97, 98 and 99% for rice bran, 
rice husk, Moringa oleifera pod and sugar cane bagasse, 
respectively. The studies on thermodynamics displayed an 
exothermic, spontaneous, and reaction that was feasible with 
a low entropy. On the other hand, the adsorption energy 
deduced from Dubinin–Radushkevich model ranging from 
10.1 to 11.6 kJ/mol, which indicates a chemical adsorption 
mechanism (Akhtar et al. 2007).

More recently, adsorption of chloropyrifos, dimethoate, 
and malathion were studied by Jocić and co-workers 
on viscose fibre-derived activated carbon. In the study, 
dimethoate gave the least adsorption efficiency followed 
by malathion, while chlorpyrifos gave the most efficient 
adsorption. The material properties were observed to 
correlate with the uptake of these organophosphorus 

pesticides. It was concluded that activated carbon fibre 
was optimally efficient for the adsorptive removal of 
chlorpyrifos, with 240 mg/g as experimentally observed 
adsorption capacitances (Jocić et al. 2022).

The modification of Ricinodendron heudelotii shells 
(akpi shells) with ortho-phosphoric acid to prepare 
microporous activated carbon with enormous surface 
area of 11,179  m2/g has been reported. The use of ortho-
phosphoric acid to modify the akpi shell denotes a positive 
influence in adsorption properties for effective adsorptive 
removal of neoncotinoids such as imidacloprid from 
an aqueous solution (Urbain et  al. 2017). A maximum 
imidacloprid adsorption removal was reported to be 90% 
while the adsorption capacity of 43.48 mg/g was observed. 
Langmuir isotherm model fitted well with R2 value of 0.990 
and pseudo-second-order model with R2 of 0.998 with a 
chemisorption mechanism approach (Urbain et al. 2017).

The biomass-derived from spent tea leaves has been 
reportedly used in removing imidacloprid in a concentration 
array of 20 to 100 mg/L, demonstrating a mean percentage 
removal of 93.01% (Beheary et al. 2018). More recently, 
corn stalk and ZIF-67 were used to prepare a novel magnetic 
porous carbon which was prepared via an in-suit process 
followed by pyrolysis at high-temperature and acid picking, 
and used for adsorptive removal of thiamethoxam and 
imidacloprid in aqueous solution (Yang et al. 2022). The 
prepared ZIF-67/CS@C exhibited efficient absorption 
capacities for thiamethoxam and imidacloprid in water 
with maximum adsorption capacities of 133 and 189 mg/g, 
respectively. The efficiencies of removal for thiamethoxam 
and imidacloprid reached peak values of 99.13 and 
99.65%, respectively. Further probe into the mechanism 
of adsorption revealed that pore filling, H-bond, and π-π 
electron donor–acceptor interaction might be main driving 
forces for the adsorption by ZIF-67/CS@C, and the 
reasonable pore size distribution and high external surface 
area was attributed to why the ZIF-67/CS@C showed better 
adsorption performance.

The experimental study on the utilization of  H3PO4 to 
modify silkworm faeces in preparing environmentally 
friendly activated carbon has reportedly yielded an 
adsorbent with desirable properties. These properties 
include respective mean pore diameter and specific surface 
area of 0.2035 and 75.219  cm2/g for the adsorption removal 
of oxamyl, which is regarded as an oximino carbamate 
pesticide (Mohammad and Ahmed 2017). Furthermore, it 
was suggested that the equilibrium removal of oxamyl on 
modified silkworm faeces in the adsorption process was 
attained at contact time of 120 min. Freundlich model with 
R2 of 0.9975 gives the best interpretation for the adsorption 
isotherm when compared with Langmuir and Temkin 
models with respective R2 of 0.9217 and 0.9163.
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Salman and Hameed prepared banana stalk activated 
carbon for sorption of carbofuran insecticide from aqueous 
media at varied contact time, temperature, initial concentra-
tion, and pH. From the adsorption study, equilibrium sorp-
tion of carbofuran was observed to decrease slightly from 
65.33 to 63.54 mg/g when the initial pH of the aqueous 
media was varied from 2 to 12. This was attributed to pres-
ence of excess  H+ ions which was considered to accelerate 
the adsorption of carbofuran with the anion  OH− in the aque-
ous solution (Salman and Hameed 2010). El-Geundi and 
co-workers observed that activated carbon prepared from 
cotton stalks was an efficient adsorbent for the adsorption 
of methomyl which is an insecticide from aqueous media. In 
the study, phosphoric acid-activation surface area of the acti-
vated carbon was relatively high (1600  m2/g), equilibrium 
adsorption was achieved in 2.5 h and the sorption capacity 
of the activated carbon increased with increasing methomyl 
concentration and contact time; however, it decreased with 
increasing temperature as well as activation energy of sorp-
tion was reported as − 2.35 kJ/mol suggesting that the sorp-
tion process was an exothermic reaction (El-Geundi et al. 
2013).

Herbicides

Mandala and co-workers prepared biochars using eucalyptus 
bark, bamboo chips, corn cob, rice husk and rice straw for 
adsorption of atrazine from aqueous solution. They went 
further to prepare acid-treated rice straw and among these 
unreacted biochars, it was rice straw that showed the 
maximum adsorption for atrazine (70.7%) (Mandal et al. 
2017). It was also noted that phosphoric acid treatment of 
rice straw improved its sorption. Besides, adsorption of 
atrazine on rice straw was best explained using the pseudo-
second-order model. It was noted that the sorption decreases 
with increasing concentration of the atrazine in solution.

Recently, Phan et al. (2022) prepared various hydrochar 
using microwave-assisted hydrothermal carbonization under 
various conditions such as temperature ranging from 150 to 
200 °C, residence time (20–60 min), and liquid to solid ratio 
from 5:1 to 15:1 mL/g as alternative adsorbent for atrazine 
removal. They activated the surface of hydrochar using 
different concentrations of  H2O2 and KOH. Their results 
showed that as-prepared hydrochar at higher temperatures, 
longer residence times, and lower liquid to solid ratios 
showed significantly higher adsorption capacities for 
atrazine. From the results, KOH-activated hydrochar was 
reported to have highest adsorption capacity (4.06 mg/g) and 
even higher than biochar with higher surface areas. Other 
similar studies include hydrochar prepared by hydrothermal 
treatment of Prunus serrulata bark which is a novel and 
effective absorbent to adsorb atrazine in river waters with 
the maximum sorption capacity of 63.35 mg/g (Netto et al. 

2022), while that of atrazine by HCl-modified corncob 
bio-waste sorbents at different pyrolysis temperatures and 
residence times revealed maximum adsorption in the range 
of 11.31–19.58 mg/g (Binh et al. 2022).

Recently, adsorption mechanism of rice straw biochar 
(RSB) to phenylurea herbicides (Monuron, Diuron, and 
Linuron) was studied via batch sorption experiments with 
three factors influencing the mechanism which are as 
follows: RSB dosage, ionic strength (IS), and pH, using 
orthogonal test (Dan et al. 2021). At pH value at 3, RSB 
dosage of 60 mg, and IS of 0.1 M, which was the optimal 
conditions for sorption, the maximum rate of removal 
attained for Diuron, Monuron, and Linuron were 25%, 
41.9%, and 56.8%, respectively. Cara and co-workers 
investigated adsorption of sulphonylurea (chlorsulphuron) 
from an aqueous solutions using alkaline-treated wheat 
and corn (straw) mixed with soil and reported 337 mg/g 
maximum adsorption capacity for treated wheat and 
318 mg/g for treated corn (Cara et al. 2017). Also, results 
obtained showed that maximum adsorption capacity in 
alkaline-treated straw was higher than in the soil (166 mg/g). 
Factors like the quality of raw material, hydrogen bonding 
interaction between chlorsulphuron and polar groups on 
the surface of the straw, π-π interactions between electron 
donor and acceptor, and hydrophobic moieties from the 
straw surface affect the adsorption capacity. Therefore, they 
concluded that the alkaline-treated straw has biosorption 
properties suitable for sulphonylurea removal. In another 
recent study, sulphuric acid was used to treat wheat husks 
(Fagopyrum esculentum) for its modification and applied 
as adsorbent for the removal of 2,4-dichlorophenoxyacetic 
acid (2,4-D) pesticide from aqueous solutions (Franco et al. 
2021). Their findings showed that the maximum adsorption 
capacity attained was 161.1 mg/g at 298 K and electrostatic 
interactions was involved in adsorption mechanism.

Another novel study on the use of oxygen-defective 
graphdiyne as an material for removing the pesticides from 
water under various conditions showed remarkable sorption 
properties for seven sulphonylureas (Zhu et al. 2022). The 
maximum sorption capacity of oxygen-defective graphdiyne 
was 795.51 mg/g for iodosulphuron-methyl sodium, which 
was 130 folds higher than that of modified- graphene 
oxides and biochar with 6 and 1.5 mg/g respectively. The 
Langmuir isotherm model and pseudo-second-order kinetic 
model showed more suitability in describing this adsorption 
process, revealing that sulphonylureas onto oxygen-defective 
graphdiyne was monolayer coverage.

Fungicides

Adsorbent gotten from cow bone exhibited characteristic 
surface pore volume of 0.225  cm3/g as well as surface area 
of 200  m2/g. They have been apparently utilized as adsorbent 
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at various doses from 0.01 to 1 g in removing azoxystrobin 
fungicide that belongs to the class of β-methoxyacrylates 
pesticidal compounds (Mendes et al. 2017). It was stated 
that 0.01 g dose of cow bone char displayed azoxystrobin 
fungicide adsorptive removal from contaminated water. 
However, an increase in adsorptive azoxystrobin fungicide 
removal was proposed to increase with a consistent increase 
in the adsorbent doses of the cow bone char from 0.01 to 1 g. 
Furthermore, the mechanism of adsorption was proposed 
to occur by chemical interaction among functional groups 
on pesticides and the cow bone char which resulted in π–π 
interaction from the heterocyclic ring π electron donor 
(Mendes et al. 2017).

Modified biomass‑derived adsorbents 
for pharmaceutical pollutants removal

Analgesic and antipyretic drugs

The utilization of NaOH has been presented to 
modify rice husk for removing paracetamol at varied 
operating parameters of pH (2.0–3.5), dose of adsorbent 
(0.025–0.45 g), initial concentration (50–110 mg/L) and 
contact time (0–150  min) in aqueous solution (George 
Nche et  al. 2017). NaOH-modified rice husk exhibited 
20.964 mg/g adsorption capacity for paracetamol as deduced 
from Langmuir isotherm with R2 of 0.951. The kinetics of 
adsorption was best fitted into pseudo-second-order and 
intraparticle diffusion model with both having R2 of 0.976, 
and the adsorption process was suggested to proceed in 
a competitive mechanism between physisorption and 
chemisorption (George Nche et al. 2017).

Chemically modified Moringa oleifera seed pods have 
been used in sorption of paracetamol from aqueous solu-
tion and the effects of operating experimental factors includ-
ing initial concentration of paracetamol (10–50 mg/L), 
dose of adsorbent (0.1 g), contact time (0–300 min), pH 
(2–11) along with temperature (303–323 K) were consid-
ered (Ogunmodede et al. 2021). They observed that chemi-
cally modified Moringa oleifera showed a sorption capac-
ity of 20.284 mg/g and Langmuir isotherm gave the best 
description of the sorption with R2 = 0.9947 (Ogunmod-
ede et al. 2021). The sorption kinetics was best fitted with 
the pseudo-second order with R2 = 0.9998, while sorption 
removal of paracetamol was observed to proceed through 
the chemisorption process. Furthermore, thermodynamic 
study revealed that the removal of paracetamol using modi-
fied Moringa oleifera resulted in spontaneous, feasible, and 
endothermic chemical process. The cost analysis revealed 
that the chemically modified Moringa oleifera was about 
10 times less expensive when compared to the commercial 
activated carbon premised on their respective cost price of 

40.17 USD per kg and 398.79 USD per kg (Ogunmodede 
et al. 2021).

Modification of sugarcane bagasse using  H2SO4, NaOH 
and urea as economical adsorbent for removing paracetamol 
from aqueous solution at various adsorption experimental 
operating conditions of initial drug concentration 
(2–10  mg/L), adsorbent dose (0.02–0.1  g) and contact 
time (15–120 min) has been studied (Khan et al. 2012). It 
was reported that the adsorptive removal of paracetamol 
increased proportionally with increasing initial paracetamol 
drug concentration from 2 to 8 mg/L, beyond which there 
was no noticeable significant increase in the adsorptive 
removal of paracetamol. Likewise, at optimal concentration 
of 8 ppm and varied adsorbent dose, a linear response in the 
relationship amid quantity of paracetamol drug adsorbed and 
dose of the modified sugarcane bagasse was observed. This 
connotes that adsorption capacity of the adsorbent increased 
with increase in the adsorbent dose (Khan et al. 2012). In 
addition, Langmuir model best described adsorption of 
paracetamol drug on modified sugarcane bagasse with 
adsorption capacities ranging from 1.604 to 3.096 mg/g 
(Khan et al. 2012).

NH4Cl-modified activated carbon derived from 
pomegranate fruit peels has been reportedly used to remove 
paracetamol from contaminated water at varied experimental 
parameters of pH (2–9), temperature (10–40 °C), and initial 
concentration (100–500  mg/L) (Mashayekh-Salehi and 
Moussavi 2016). Langmuir isotherm with R2 = 0.999 gave 
the best description with a sorption capacity of 233 mg/g 
and removal percentage of 99.4%. The adsorption kinetics 
was well interpreted using pseudo-second-order kinetic 
model with a R2 of 0.9981. Thermodynamic study showed 
that the adsorption process was feasible, exothermic, and 
spontaneous with a low degree of entropy (Mashayekh-
Salehi and Moussavi 2016).

Activated carbon produced from thermally treated and 
microwave-activated tea waste has been utilized in remov-
ing paracetamol at varied operating conditions such as 
temperature (283–323  K), contact time (0–120  min), 
dose of adsorbent (1–2 g), initial paracetamol concentra-
tion (20–100 mg/L) and pH (3–8) (Dutta et al. 2015). At 
optimum conditions of pH (3), initial adsorbent concentra-
tion (100 mg/L), dose of adsorbent (1 g) and temperature 
(303 K), the maximum adsorption capacity of 195.95 mg/g 
and percentage removal of 99.42% were obtained (Dutta 
et al. 2015). Furthermore, adsorption isotherm and kinetics 
for removing paracetamol were excellently described with 
by Langmuir and pseudo-second-order kinetic models with 
respective R2 of 0.993 and 0.999. Thermodynamic study 
showed that at a temperature range of 283 to 323 K, the 
adsorptive removal of paracetamol was endothermic and 
non-spontaneous with a high degree of entropy. In addition, 
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the desorption studies revealed a 97.97% recovery of adsor-
bent in a basic medium (Dutta et al. 2015).

H3PO4 has been used to modify Ayous sawdust and 
Cucurbitaceae peelings for removing phenacetin from 
simulated pharmaceutical wastewater at operating 
experimental parameters of 0.5  g of adsorbent and pH 
2 (Ngakou et  al. 2019). The obtained results showed 
the Langmuir maximum adsorption capacities of 15.43 
and 5.33  mg/g for the Cucurbitaceae peelings and 
Ayous sawdust, respectively, with R2 of 0.931 and 0.990 
receptively. The adsorption isotherm was best described by 
Langmuir isotherm for the modified Cucurbitaceae peelings 
while Freundlich model best described the experimental 
data when ayous sawdust was used (Ngakou et al. 2019). In 
addition, both adsorbents were best described by pseudo-
second-order kinetic model with respective R2 of 0.852 
and 0.943. Adsorption mechanism showed displayed a π–π 
interactions of the phenacetin on modified ayous sawdust 
and Cucurbitaceae peelings (Ngakou et al. 2019).

Antibiotic drugs

Biomass-derived adsorbent prepared from rice straw has 
been used to remove ciprofloxacin and doxycycline at 
different operating conditions. The maximum adsorption 
capacity of 432.90 and 131.58 mg/g for doxycycline and 
ciprofloxacin, respectively, was obtained. Freundlich 
isotherm gave the best description of the adsorption with R2 
of 0.994 and 0.984, respectively. In addition, the adsorption 
kinetics was best fitted into the pseudo-second-order model 
with R2 of 0.997 and 0.998, respectively, for doxycycline and 
ciprofloxacin, while the adsorption process was suggested 
to proceed through hydrogen bonding and π–π interaction 
mechanism (Zeng et al. 2018).

Similarly, aqueous solution of KOH-modified 
pomegranate fruit peel has employed in removing 
ciprofloxacin at various adsorption conditions that include 
pH (2–12), contact time (15–150 min), dose of adsorbent 
(0.025–0.2 g) and initial concentration (50–300 mg/L). The 
experimental findings showed 86.4% removal efficiency and 
maximum sorption capacity of 2.353 mg/g. The Freundlich 
isotherm adsorption model gave the best description for the 
removal ciprofloxacin using KOH-modified pomegranate 
fruit peels with R2 of 0.991 (Elhag Elhussien 2017).

Furthermore, biomass-derived char prepared from tea 
leaves at a temperature of 450  °C has been reportedly 
utilized to remove ciprofloxacin from aqueous solution 
at varied adsorption conditions of initial concentration 
(150–500 mg/L), pH (4–10), temperature (30–60 °C) at 
different time interval for 24 h (Li et al. 2018b). The sorp-
tion model that gave the best fit was Langmuir isotherm 
model and it showed a maximum adsorption capacity of 
238.10 mg/g at optimum adsorption conditions, while the 

sorption kinetics was fitted into the pseudo-second-order 
kinetic model. The adsorption process was feasible and con-
trolled by hydrogen bonding, π–π and electrostatic interac-
tion mechanisms (Li et al. 2018b).

Thermal activation of Chinese herbal medicine 
(Astragalus mongholicus) waste at a temperature of 800 °C 
to prepare biomass-derived adsorbent for remediation 
of ciprofloxacin contaminated water has been reported 
(Shang et al. 2016). Under the optimum condition of pH 
at 7.0, the sorption capacity of 43.668 mg/g was obtained 
from the Langmuir model with R2 of 0.999. Furthermore, 
pseudo-second-order model with R2 of 0.999 gave the best 
interpretation of the adsorption kinetics. The mechanistic 
studies on the adsorption removal of ciprofloxacin onto the 
thermally activated Astragalus mongholicus residue was 
observed to be controlled by hydrogen bond, hydrophobic, 
electrostatic and π–π interactions (Shang et al. 2016).

Batch adsorption studies at various operating conditions 
that comprises of initial concentration (0.5–70  mg/L), 
adsorption contact time (5–60  min), pH (2.5–9.5) and 
0.1 g adsorbent dose has been investigated on removing 
ciprofloxacin from aqueous solution by using bamboo 
charcoal prepared by burning bamboo wood at a temperature 
of 800 °C in a kiln (Wang et al. 2017). At optimum pH of 5.5, 
bamboo charcoal exhibited maximum adsorption capacity 
of 36.02 mg/g for removing ciprofloxacin from an aqueous 
solution. Langmuir isotherm best described the adsorption 
with R2 of 0.97. The adsorption kinetics for removing 
ciprofloxacin using bamboo charcoal was best interpreted 
using pseudo-second-order kinetic model. Furthermore, 
adsorption mechanism involving the ion exchange and 
hydrogen bonding was controlled the adsorptive removal of 
ciprofloxacin on bamboo charcoal. In addition, the presence 
of metal ion was also observed to influence the adsorptive 
removal of ciprofloxacin from aqueous solution (Wang et al. 
2017).

The modification of Indian almond leaf has been 
reported for removing dicloxacillin from pharmaceutical 
aqueous solution. It was suggested that Langmuir isotherm 
model provided the best description of the adsorption of 
dicloxacillin on the modified Indian almond leaf with 
a high R2 of 0.9650. A maximum adsorption capacity of 
71.04  mg/g with a percentage removal of 86.93% was 
attained at optimum experimental adsorption parameters 
of pH (6.0), adsorbent dose (0.1 g), initial concentration 
of dicloxacillin (20 mg/L), temperature (283.15 K) and 
contact time (24 h) (Sunsandee et al. 2020). Additionally, 
the adsorption kinetics was suggested to be favoured by 
pseudo-second-order kinetic model with a R2 of 0.9983 
when compared to the pseudo-first-order kinetic model. 
Thermodynamic studies revealed that the adsorption process 
was feasible, spontaneous and exothermic with a poor degree 
of entropy proceeding with a mechanism of intermolecular 
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attraction force such as van der Waal force and hydrogen 
bonding (Sunsandee et al. 2020).

The modification of sugarcane bagasse with  H2SO4, 
NaOH and urea has been reported as an economical 
adsorbent for removing levofloxacin from aqueous solution 
at various adsorptive experimental operating conditions 
(Khan et al. 2012). They reported that adsorptive removal 
of the drugs increased proportionally as the initial drug 
concentration increased from 2 to 8 ppm, beyond which there 
was no positive change in the adsorption rate of levofloxacin. 
Similarly, when 8 mg/L was used as the optimum drug 
concentration at varied adsorbent dose, a linear response 
relationship between the quantity of levofloxacin adsorbed 
and the dose of the modified sugarcane bagasse was noticed. 
This suggests that the adsorption capacity of the adsorption 
process increases with an increase in the adsorbent dose 
(Khan et al. 2012). The adsorption of the levofloxacin from 
aqueous solution attained equilibrium time within 180 min. 
It was opined that increase in levofloxacin adsorption with 
contact time was as a consequence of the availability of 
active site on the adsorbents. While a decrease in the amount 
of levofloxacin removed beyond the optimal contact time 
resulted from the rate of exhaustion of the active sites on 
the activated carbon. The Langmuir model was described 
to deliver the best fit for understanding the adsorption of 
the levofloxacin on the modified sugarcane bagasse with 
adsorption capacities in the range of 0.847–2.0465 mg/g for 
levofloxacin antibiotic drug (Khan et al. 2012).

Non‑steroidal anti‑inflammatory drugs

Bean (Phaselous vulgaris) husks which are usually disposed 
as debris that forms heaps are of environmental concern has 
been regarded to be edible to livestock especially in its fresh 
form but not edible to humans. These wastes are commonly 
available and are said to be economically viable materials 
for preparing the adsorbents. In recent times, there has been 
a quest for the production of activated carbon from biomass 
and this was the basis for preparing activated carbon from 
bean husk as an alternative for expensive commercial acti-
vated carbon (Bello et al. 2019c). The application of bean 
husk modified with ortho-phosphoric acid has been docu-
mented as an auspicious adsorbent for removing ibuprofen 
from water has been reported. It was estimated that at a pH of 
4.75 and temperature of 50 °C, a maximum adsorption capac-
ity of 50.0 mg/g was recorded using functionalized bean husk 
for removing ibuprofen from aqueous system. Langmuir 
adsorption isotherm gave best interpretation, while pseudo-
second-order explained the adsorption kinetics model, while 
thermodynamic studies showed that the process proceeded 
through an endothermic and spontaneous route. Moreover, a 
desorption study using HCl,  H2O and NaOH revealed that the 
ortho-phosphoric acid functionalized bean husk exhibited a 

higher degree of regeneration and re-usability for removing 
ibuprofen from wastewater (Bello et al. 2019c).

The employment of ortho-phosphoric acid to modify 
orange peels and application in removing ibuprofen under 
different adsorption parameters showed a Langmuir maxi-
mum adsorption capacity of 49.30 mg/g at a temperature 
of 50 °C. Also, thermodynamics confirmed that adsorption 
process was feasible, spontaneous, and exothermic in chemi-
cal nature. Furthermore, kinetic studies revealed that adsorp-
tion process occurred via pseudo-second order with R2 of 
0.999. The process was suggested to occur by physisorption 
mechanism (Bello et al. 2020b).

Antimalaria drugs

Banana has been considered as the second largest quantity of 
produced fruits from the total world’s production of fruits. 
Banana peels have been recognized to be a food waste that 
was classified as non-recyclable with a 1:2 ratio of banana 
product to waste. However, there is much more to do with the 
non-recyclable banana peels, and this includes composting, 
extraction of valuable organic compounds from banana peel 
in addition to preparation of activated carbons for several 
applications such as in wastewater treatment. For instance, 
the utilization of ortho-phosphoric acid-modified banana 
stalk for the removal of pharmaceutical contaminants such as 
lumefantrine drug from aqueous solution at varied operating 
parameters that include pH (3–11), contact time (0–200 min), 
initial lumefantrine concentration (20–100 mg/L), tempera-
ture (303–323 K) and 0.1 g adsorbent dose has been inves-
tigated (Agboola et  al. 2021). The experimental results 
revealed that at optimum pH of 6, contact time of 120 min 
and temperature of 303 K, the maximum Langmuir adsorp-
tion capacity of 102.1 mg/g with R2 of 0.9998 was achieved. 
Furthermore, pseudo-second-order kinetic model with R2 
ranging from 0.9845 to 0.9997 provided the best interpreta-
tion for the adsorptive removal of lumefantrine on chemi-
cally modified banana stalk. Additionally, thermodynamic 
studies showed that the process was spontaneous, feasible, 
and endothermic proceeding through intraparticle diffusion 
and boundary layer effect mechanisms (Agboola et al. 2021).

Modified biomass‑derived adsorbents for dyes 
removal

Azo dyes

The quest for a cheap source of activated carbon as 
substitute to expensive commercial activated carbon in 
the treatment and remediation of aquatic ecosystem from 
environmental pollution with dyes has resulted in the 
employment of plant biomass as starting material for the 
synthesis of economically friendly activated carbon. For 
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example, modified coconut mesocarp has been utilized 
for removing organic pollutants such as azo-anionic dyes 
of Congo red and tartrazine from simulated wastewater. 
Effects of various experimental factors including initial 
concentration (40–100 mg/L), adsorbent dose (5–12 mg/L), 
etc. were investigated (Cocos 2021). It has been reported that 
modified cationic cellulose derived from coconut mesocarp 
yielded adsorption capacities of 19.61 mg/g and 19.99 mg/g 
for removing tartrazine and Congo red from simulated 
wastewater. Freundlich and Dubinin–Radushkevich 
models were, respectively, employed to identify adsorption 
isotherm process of tartrazine and Congo red. In addition, 
pseudo-second-order model gave a worthy depiction for the 
adsorption kinetics in tartrazin and Congo red with R2 of 
0.999 for the adsorptive removal from wastewater (Cocos 
2021).

The modification of lemon grass to produce viable 
adsorbent for removing methyl red has been investigated. 
The experimental outcome revealed that modification of 
lemon grass with ortho-phosphoric acid yielded activated 
carbon with desirable properties such as 836.4  m2/g 
surface area, 598.06  m2/g mesopore surface area, with a 
total pore volume and average pore diameter of 0.472  cm3 
and 3.62 nm, respectively (Ahmad et al. 2019). Effects of 
various operating parameters such as 25–500 mg/L initial 
concentration, 0–24 h contact time, 30–60 °C temperature 
and 2–12 solution pH revealed that the removal of methyl 
red using lemon grass was spontaneous and endothermic. It 
proceeded via physisorption process with 63.87% percentage 
adsorptive removal and 76.923 mg/g maximum monolayer 
adsorption capacity as described using Langmuir isotherm 
with R2 of 0.983, while kinetic studies confirmed the 
favourability of pseudo-first-order kinetic model (Ahmad 
et al. 2019).

Removal of methylene blue has been successfully experi-
mented using  H2SO4-modified coconut shell. It was esti-
mated that optimum adsorption capacity of 50.6 mg/g was 
achieved when  H2SO4-modified coconut shell was utilized 
as tremendous adsorbent for removing methylene blue from 
wastewater. The adsorption kinetics and isotherm were 
best described using pseudo-second-order and Freundlich 
models, respectively. The mechanism of adsorption process 
occurred via hydrogen bonding, π–π, and electrostatic inter-
actions (Jawad et al. 2020).

Acid-activated Posidonia oceanica has been reportedly 
utilized for the remediation of methylene blue from 
spiked brackish wastewater from a lake in Egypt called 
Manzala (Elmorsi et al. 2019). From the batch adsorption 
findings, it was suggested that at optimum experimental 
operating conditions, there was an adsorption percentage 
removal in the range of 91.5–99.9%. Furthermore, when 
compared with the Freundlich and Langmuir isotherm 
models, the experimental findings suggested that the 

Dubinin–Radushkevich model gave the best description for 
the adsorption isotherm with a R2 of 0.992 (Elmorsi et al. 
2019).

Acid/thermal-modified rice husk has also been used 
for removing methylene blue with a percentage removal 
of 96.7% and maximum Langmuir adsorption capacity of 
103.11 mg/g with R2 of 0.9962 (Moeinian and Mehdinia 
2019). Similarly, the use of modified lemon grass has 
been employed in removing methylene blue from aqueous 
environment (Ahmad et al. 2021a). It was reported that 
maximum percentage removal of 64.34% methylene blue 
was recorded at optimum pH 12 and maximum sorption 
capacity of 342.9 mg/g. Koble-Corrigan model isotherm best 
described the adsorption with a R2 of 0.999. The adsorption 
process was endothermic and its adsorption kinetics was best 
described by pseudo-first-order kinetic model proceeding via 
physisorption mechanism (Ahmad et al. 2021a).

KOH-modified pomegranate fruit peels have been used 
in removing methylene blue dye from simulated wastewater 
under the influence of operational conditions, including 
temperature (303–313  K), initial methylene blue dye 
concentration (25–300 mg/L) and contact time (0–24 h) 
(Ahmad et al. 2021c). The percentage removal of 83.4% 
removal and a maximum Langmuir sorption capacity of 
235.58 mg/g with a R2 of 0.977 were obtained. Freundlich 
isotherm model gave the best interpretation of the isotherm 
adsorption model with a R2 of 0.998 (Ahmad et al. 2021c). 
Compared to pseudo-second order, the sorption kinetics was 
well interpreted using the pseudo-first order at a temperature 
range of 303–312 K. The sorption process was observed 
to be feasible, exothermic, and spontaneous proceeding 
through a physisorption mechanism of adsorption (Ahmad 
et al. 2021c).

The utilization of polyvinyl alcohol (PVA) coated acti-
vated carbon derived from the stems of Crotolaria burhia 
and Opuntia dellinii as adsorbents have been reported in 
removing azo dyes that include methylene red and methylene 
blue from aqueous solution (Gehlot et al. 2009, 2011). It was 
noted that the PVA coated activated carbon displayed 89.1% 
removal efficiency and a maximum Langmuir adsorption 
capacity of 19.23 mg/g with a R2 of 0.9975. The adsorptive 
removal of azo dyes using PVA coated activated carbons 
derived from the stems of Crotolaria burhia and Opuntia 
dellinii was excellently described by Freundlich isotherm 
model with a R2 of 0.994 (Gehlot et al. 2009, 2011).

The modification of wheat husk with 30% hydrogen 
peroxide for 24  h, which was preceded by washing 
with distilled water then oven drying at 60 °C, has been 
investigated in removing Reactofix Red 3BFN from aqueous 
solution. The investigated batch adsorption conditions 
are adsorbent dose (4.0–24.0 g), pH (2–10), initial dye 
concentration (1.0 ×  10−5–6.0 ×  10−5 mg/L) and temperature 
(30–50 °C) (Jain et al. 2006a). The results obtained from the 
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experimental findings showed that at optimum pH of 2.0, the 
modified wheat husk displayed 90% removal of Reactofix 
Red 3BFN. At an optimum temperature of 30 °C, there 
was a maximum adsorption capacity of 80.37 mg/g with a 
R2 of 0.962. Furthermore, thermodynamic studies showed 
that at temperature range of 30–50 °C, the batch adsorptive 
removal of Reactofix Red 3BFN from an aqueous solution 
using  H2O2-modified wheat husk followed a spontaneous, 
feasible, and endothermic chemical path (Jain et al. 2006a).

Xanthene dyes

The utilization of ortho-phosphoric acid functionalized 
coconut husk in sequestering Rhodamine B dye has been 
demonstrated to achieve a maximum Langmuir adsorption 
capacity of 1666.67 mg/g with R2 of 0.99. Furthermore, 
premised on the thermodynamic and kinetic studies, the 
adsorption process was said to be chemically endothermic 
and spontaneous proceeding via a pseudo-second-order 
adsorption kinetic model (Bello et al. 2019a).

Similarly, the adsorptive removal of Rhodamine B dye 
using functionalized locust bean pod has been investigated at 
varied experimental conditions of Rhodamine B dye concen-
trations (200–1000 mg/L), dose (0.1 g), temperature (303, 
313, 323 K), and agitation speed of 120 rpm. The adsorption 
mechanism of using ortho-phosphoric acid-modified locust 
ban pod for removing Rhodamine B dye proceeded via phy-
sisorption mechanism with endothermic, spontaneous, and 
feasible reaction path. This yielded maximum monolayer 
adsorptive removal capacity of 1111.1 mg/g as deduced 
from Langmuir isotherm that best interpreted the adsorption. 
The adsorption kinetics was best described with pseudo-
second-order kinetic model (Bello et al. 2019b).

In addition, the use of functionalized Gmelina aborea leaf 
for removing Rhodamine B dye from water at experimental 
conditions of pH, temperature, adsorbent dose, initial 
dye concentration and contact time has been reported to 
yield maximum adsorption capacity of 1000 mg/g (Bello 
et al. 2020a). Additionally, adsorption kinetics was best 
described with pseudo-second-order kinetic model and 
thermodynamics study revealed that sequestering of 
Rhodamine B dye using modified Gmelina aborea leaf 
was characterized by an endothermic, spontaneous, and 
feasible chemical process that proceed via a physisorption 
mechanism. Moreover, from the recycling and regeneration 
studies using HCl,  H2O and NaOH revealed that 0.5 M HCl 
for desorbing Rhodamine B dye from modified Gmelina 
aborea leaf yielded a regeneration efficacy that increased 
from 8.26 to 92.74% (Bello et al. 2020a).

The employment of modified mango pod has been 
investigated in removing Rhodamine B dye from aqueous 
media at varied operating conditions which include pH 
(2–9), adsorption contact time (0–120  min), dose of 

adsorbent (0.1 g), temperature (303–323 K) and initial 
Rhodamine B dye concentration (200–1000 mg/L) (Bello 
et al. 2021). Adsorption kinetics and isotherm were best 
described via pseudo-second-order kinetic model and 
Freundlich isotherm model, with R2 of 0.99 (Bello et al. 
2021). Maximum adsorptive removal capacity of 500 mg/g 
was obtained and thermodynamic studies showed that the 
adsorptive removal process was feasible, endothermic, 
and spontaneous proceeding under the influence of both 
intraparticle diffusion and boundary layer mechanisms. 
In addition, the cost analysis revealed that the utilization 
of modified mango pod to prepared adsorbent with a cost 
price of 34.20 USD/kg in removing Rhodamine B dye from 
aqueous media was less expensive compared to commercial 
activated carbon with a cost price of 259.5 USD/kg, thereby 
translating to about 8 times less expensive compared than 
the commercial activated carbon (Bello et al. 2021).

Miscellaneous diagnostic dyes

The modification of rice husk by treatment with hydrogen 
peroxide preceding the acetic acid treatment to prepare a 
vital adsorbent has been investigated in removing indigo 
carmine dye from aqueous solution at various condi-
tions of pH (2–12), initial dye concentration (1.0 ×  10−4 
–9.0 ×  10−4 mg/L), temperature (40–60 °C), dose of adsor-
bent (0.5–3.5 g) and contact time (10–70 min) (Jain et al. 
2006b). Adsorptive removal of indigo carmine dye increased 
with increase in adsorbent dosage in addition to contact time, 
nonetheless, decreases with increasing initial dye concentra-
tion, solution pH and temperature. At an optimum tempera-
ture of 40 °C, a maximum adsorption capacity of 9.275 mg/g 
was recorded as obtained from Langmuir model. Pseudo-
first-order model gave the best description for the adsorption 
kinetics at room temperature, fixed pH and adsorbent dose, 
while the thermodynamic studies showed that adsorptive 
removal of indigo carmine dye onto the modified rice husk 
was exothermic and spontaneous (Jain et al. 2006b).

Tri‑aryl methane dyes

The modification of Azolla filiculoides with 0.1 M HCl 
has been studied as a feasible adsorbent for removing Acid 
Green 3 dye. The experimental findings demonstrated that 
the optimum conditions were contact time (90 min), pH (3), 
dose of adsorbent (4 g/L) and initial concentration (10 mg/L) 
(Balarak et al. 2016). The utilization of HCl-modified Azolla 
filiculoides exhibited 99.1% removal for Acid green 3 dye 
at optimum adsorption parameters. Moreover, the Langmuir 
adsorption isotherm model gave the best description of the 
adsorption process with maximum adsorption capacity of 
37.5 mg/g and R2 of 0.999. Adsorption kinetic proceeded 
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via pseudo-second-order kinetic model which displayed a 
R2 of 0.999 (Balarak et al. 2016).

Phenol‑derived polymeric dyes

The employment of thermally and chemically modified 
rice husk for the removal of phenol (a precursor for phenol-
derived polymeric dyes) has been reported. The thermally 
treated rice husk exhibited higher surface of 24–201  m2/g 
over the calcium hydroxide-treated rice husk with surface 
area of 3.19  m2/g, and also displayed a higher adsorptive 
removal capacity of 36–64%, compared to 28% displayed 
by the calcium hydroxide-treated rice husk (Daffalla et al. 
2020). The emergence of research on the use of modified 
biomass wastes has led to numerous studies in the recent 
years for their employment in wastewater remediation 
containing different organic pollutants as presented in 
Table 2.

Mechanistic aspects of organic pollutants 
adsorption

During adsorption process, the interactions between the 
surfaces of organic pollutants (adsorbates) and adsorbent 
proceeds until dynamic equilibrium is attained. There are 
three major processes that occur during the adsorption of an 
adsorbent by an adsorbate and they are as follows: physical 
adsorption, precipitation and complexation, and pore filling 
(Fagbohungbe et al. 2017). Physical adsorption is the stage 
at which adsorbates settle on the surface of adsorbent but any 
adsorption does not take place; hence, it is called the clear 
zone. On the other hand, the precipitation and complexation 
stage is caused by the deposition of the adsorbates on the 
surface coverage area of the adsorbent. This stage involves 
the mass transfer of adsorbates into the adsorbent with the 
adsorption progressing by chemical bonding. Therefore, 
it is called as the mass transfer zone. Pore filling stage is 
premised on the condensation and retention of adsorbate 
into pores of the adsorbent until equilibrium is attained, 
therefore it is referred the exhausted zone (Fagbohungbe 
et al. 2017; Ambaye et al. 2021). From these three stages 
can be observed the three critical zones which are as follows: 
clear zone, mass transfer zone, and the final stage which is 
referred to as exhausted/saturated zone, where equilibrium 
is attained (Ambaye et al. 2021). Inverse proportionality 
is observed between saturated zone and clear zone. Mean-
while, mass transfer zone remains unaltered, apart from the 
increase in adsorbate’s concentration. This process contin-
ues until the adsorbent is saturated, and this point is called 
breakthrough point (Moreno-Castilla 2004). A removal 
mechanism for adsorption of organic pollutants onto bio-
mass is presented in Fig. 3. Hydroxyl, carboxyl, carbonyl, 

and amine, which are organic functional groups, favour the 
adsorption of organic molecules on the surface of the bio-
mass. This is an example of a donor/acceptor electron type 
of adsorption mechanism based on the unbalanced electron 
distribution between the functional groups of the biomass 
and the organic compound. Notably is the highly reduced 
bonding between the adsorbent and organic compounds with 
active chloro- and nitro- substituent groups. Therefore, the 
binding energy between the biomass and the organic com-
pound is increased (Mu’azu et al. 2017; Ambaye et al. 2021) 
due to the substituent group being a strong electron acceptor 
(Atkinson et al. 2010).

The mechanisms of adsorption of organic pollutants 
have been classified as hydrophobic interaction, pore 
filling, electrostatic interaction, partitioning, and electron 
donor–acceptor (EDA) interaction. The partitioning 
mechanism involves the diffusion of the adsorbates into the 
pores of the non-carbonized portion of the adsorbent due 
to their easy interaction between the organic adsorbates. 
Therefore, the adsorptive removal of the organic pollutants 
is reliant on the properties of the non-carbonized portion 
of the adsorbent, and the partitioning mechanism is highly 
effective when the adsorbent possesses high content of 
volatile matter in the presence of high concentration of 
organic pollutants (Ambaye et al. 2021). The electrostatic 
interaction mechanism is the most significant mechanism 
that takes place in the adsorption of ionizable organic 
compounds to adsorbents that exhibit positively charged 
surfaces through electrostatic interaction. However, the 
ionic strength as well as the solution’s pH determines the 

Fig. 3  Different adsorption mechanisms for organic contaminants. 
Partition/adsorption are indicated with circles on adsorbent’s parti-
cles. I—electrostatic interaction between the modified biomass adsor-
bent and organic contaminant, II—electrostatic attraction between the 
modified biomass adsorbent and organic contaminant that are polar, 
and III—electrostatic attraction between the modified biomass adsor-
bent and non-polar organic contaminant (Ahmad et al. 2014a)
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efficiency of the electrostatic interaction mechanism in 
attracting and repelling organic pollutants. This is attributed 
to the increase in repulsive electrostatic interaction between 
adsorbate and adsorbent when they both possess same 
charges (Ambaye et al. 2021).

The pore filling mechanism occurs by the passage of the 
organic pollutants through the micropores and mesopores of 
the adsorbent but the mechanism is dependent on the polar-
ity of the organic pollutants as well as the nature and type 
of the adsorbent. However, the efficiency of the pore fill-
ing mechanism depends on the occurrence of petty content 
of volatile matter in the presence of low concentration of 
organic pollutants. The electron donor and acceptor inter-
action mechanism frequently occurs in the adsorptive inter-
action of aromatic compounds on adsorbents that exhibit 
a graphene-like structure, which is only attained at a tem-
perature above 1100 °C (Ambaye et al. 2021). Nevertheless, 
the pyrolysis temperature employed in the fabrication of the 
adsorbent determines the development of enriched or defi-
cient π–electron adsorbent. That is, system of adsorbent’s 
π aromatic compound acts as electron acceptor and donor 
when the adsorbents are obtained at temperature above and 
below 500 °C. The hydrophobic interaction is habitually 
employed in adsorptive removal of neutral and hydropho-
bic organic compounds through the portioning as well as 
hydrophobic interaction processes, but requires less amount 
of energy in comparison with the partitioning mechanistic 
process. This is subsequent to the decline in the quantity of 
polar functional groups on the surface of the adsorbent as 
an outcome of pyrolysis temperature (Ambaye et al. 2021).

Regeneration studies and environmental 
challenges with chemical modifications

The regeneration of adsorbent used is dependent on 
the source of the adsorbent, regeneration method, and 
adsorbent dosage. During a regeneration study, the recovery 
of the adsorbates can be achieved through the principles 
of desorption and decomposition (Jia et al. 2013; Wang 
et al. 2015; Ambaye et al. 2021; Bello et al. 2021). The 
regeneration studies on the use of eucalyptus leaves to 
prepare magnetic biomass for decontamination of organic 
pollutants revealed that the FTIR spectra band shift did 
not change until six continuous cycles (Wang et al. 2015). 
They attributed this observation to the increment in the 
ash content of the prepared biomass as well as the effect 
of surface functional groups of the biomass that did not 
change significantly. The pore sizes and surface area of the 
prepared and regenerated magnetic biomass are noticed to 
be similar, thus allowing high separation and adsorptive 
rates. The process of adsorption is made more economical 
by the regeneration method. It was further observed that the 

regeneration study using a basic chemical such as NaOH 
is more efficient. Another method of chemical regeneration 
is altering the pH of adsorbents to desorb substances that 
are non-reactive, like dyes and aniline (Fagbohungbe 
et al. 2017). However, major challenges associated with 
regeneration studies using chemical methods are the high 
cost of some required reagents and the potential to aggravate 
environmental pollution. Based on this, the disposal of 
digestate is therefore very important in the management of 
biomass.

Recently, thermal regeneration method has been 
recognized as the best technique for the recovery of biomass 
since it permits the development of tiny pore sizes contrasted 
with the first pores of the initial biomass, mainly when it 
is completed at high temperatures. The researchers noticed 
that temperature increase improved regeneration efficiency. 
For instance, in a study on removal of organic compounds 
such as pyrene and benzopyrene using biomass adsorbent 
derived from Enteromorpha prolifera and the regeneration 
studies carried out at varied temperatures of 80 °C, 150 
°C, and 200 °C, an increased in temperature improved the 
regeneration efficiency (Qiao et al. 2018). The adsorption 
efficiency of pyrene was observed to increase by 35.0%, 
45.0%, and 48.0%, while that of benzopyrene increased by 
31.0%, 41.0%, and 40.0%, respectively (Qiao et al. 2018). 
Furthermore, it was also observed that dissolved organic 
carbon could be reduced by biomass regeneration using the 
thermal method.

Regeneration of biomass had also been carried out 
using irradiation by microwave method. Results obtained 
show that the biomass regeneration was very rapid. 
Additionally, it allowed easy control of the operating 
temperature. Inducement of polar molecules in the biomass 
was observed when it was irradiated by microwave, thus 
leading to the formation of dipole/polarization. However, 
this method is still at the experimental stage and laboratory 
scale because its application on an industrial/large scale 
is currently absent (Jia et al. 2013; Ahmad et al. 2014b, 
2021b; Khasri et al. 2018; Li et al. 2018a; Ambaye et al. 
2021; Yusop et al. 2022). Recently, the operating pressure 
was adjusted using supercritical fluid in order to investigate 
biomass regeneration (Hu 2018; Dai et al. 2019). It was 
observed by the authors that no change occurred in the 
physicochemical properties of the biomass when used to 
adsorb high molecular weight volatile organic compounds. 
This method shows advantages such as minimal loss 
of biomass, a short operating cycle, and low operating 
temperatures. However, because of the complexity of the 
method, the costly materials, equipment, and high-pressure 
resistance, the method is still at the experimental stage and 
needs to be scaled up. In addition, of all the methods used 
for the regeneration and management of biomass in the 
previous studies, the thermal regeneration process seems to 
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be most efficient due to minimal operation cost and maximal 
economic applicability. However, carbon loss is very high 
when compared with other methods. Further research 
is required which should focus on the economic value of 
biomass used for adsorption.

Realizing that the use of chemical modification has 
become very popular for improving the adsorption uptake of 
organic pollutants, several studies conducted for adsorption 
of various organic pollutants confirmed that this approach is 
feasible for translating the applicability of modified biomass 
adsorbents into industrial application. This is based on the 
efficient adsorbent properties such as availability of the 
biomass material at low/zero cost, enhanced porosities, and 
larger surface area. However, evaluating the effects that these 
modified adsorbents pose to ensure the global environmental 
safety is highly important. After a successful adsorption 
process, the life cycle experiment through desorption 
studies is necessary to ensure the number of cycles that 
these adsorbents are able to complete before ripping off of 
their maximum adsorption capacities. For waste disposal, 
different strategies such as catalytic technology, biological 
treatment, ion exchange and advanced bio-physical methods 
have been developed to eradicate the different imbalances 
that the spent (used) adsorbent pose to the immediate 
environment (Xu et al. 2017; Ogunlalu et al. 2021). The 
adsorbents that are not capable of been reused should be 
burnt off at a very higher temperatures such as 1100 °C to 
1200 °C and the resultant gases should be collected using 
a specialized equipment (Zhou et al. 2008; Ogunlalu et al. 
2021).

Computational (optimization) models 
for modified biomass adsorbents 
for removal of organic pollutants

Response surface methodology

The response surface methodology (RSM) has two most 
commonly used designs which are central composite design 
(CCD) and Box–Behnken design (BBD). The systematic 
utilization of RSM for the adsorptive removal of malachite 
green, methylene blue, azo and anthraquinone dyes from 
effluents has been reported (Song et al. 2018; Chowdhury 
et al. 2019; Ahmad et al. 2020). In addition, adsorptive 
removal of acid dye using derived activated carbon 
for antibiotic (ciprofloxacin) removal from wastewater 
using rice husk as well as other research findings on the 
employment of RSM for the adsorptive removal of organic 
contaminants from aqueous system has established the 
effective application of RSM as an efficient computational 
model in wastewater treatment (Amini et al. 2008; Niad et al. 
2014; Samuel et al. 2015; Zhou et al. 2019).

RSM has been confirmed to be suitable in studying 
the removal of methyl orange using modified sugar beet 
bagasse and results obtained show concordance between 
experimental and predicted values. The optimum adsorption 
process conditions generated using RSM for the aqueous 
removal of methyl orange were 2.51, 100 mg/L, and 0.37 g/L 
for pH, initial methyl orange concentration, and adsorbent 
dose, respectively, with predicted adsorption capacity and 
adsorptive removal efficiency of 221.5 mg/g and 51.8%, 
respectively (Ghorbani and Kamari 2017). RSM using two-
factor interaction models and quadratic models have been 
applied in optimizing the preparation of functionalized 
pomegranate fruit peels. Its application in removing 
Remazol brilliant blue R dye resulted in a 31.2% yield of 
activated carbon derived from functionalized pomegranate 
fruit peels and 81.35% removal of Remazol brilliant blue 
R dye. The model suitability was performed by means of 
analysis of variance. It was suggested from the percentage 
error between the actual and predicted result calculated 
to be 1.92% that there was a good correlation between 
experimental and predicted results (Ahmad et al. 2020).

In a similar study, RSM was used to model the adsorption 
of methylene blue (MB) from aqueous system using 
pomegranate fruit peel activated carbon (PFPAC) which 
was prepared by KOH impregnation and  CO2 gasification 
methods. Results obtained reveal that the optimum 
sorption conditions for the removal of MB dye are 375 W, 
4.5 min, and 0.9, for radiation power, activation time, and 
impregnation ratio, respectively. These optimum adsorption 
conditions resulted in 83.4% removal of MB dye and PFPAC 
yield of 30.8%, respectively (Ahmad et al. 2021c). Similarly, 
use of eggshell in the adsorptive removal of Malachite green 
(MG) dye was studied using CCD to investigate effects of 
operating conditions on the adsorptive removal of the dye. 
There was significant agreement between predicted values 
obtained with experimental results at R2 value of 0.9388. 
The optimum adsorptive removal was 90.66% at operating 
parameters of 1.25 g adsorbent dosage, pH 6, and contact 
time of 40 min. Results from this study further revealed that 
the eggshell could be a good adsorbent for MG removal 
from aqueous solution (Hoo et al. 2022). The second-order 
polynomial equation of CCD has been reportedly utilized in 
the optimization of adsorption parameters for the adsorptive 
removal of methylene blue, brilliant green and Congo red 
with their variable levels. The predicted optimum adsorption 
condition was 30 °C, 9.8, 2.5 g/L and 99% for temperature, 
pH, adsorbent dose, and percentage adsorptive removal 
of dye using CCD. The qualitative fit of the model was 
defensible by the R2 of 0.9966, which exceeded the R2 of 
0.88 suggested as best correlation from previous studies 
(Fegousse et al. 2019). Grape leaves prepared activated 
carbon was used for the removal of MB from aqueous 
solution. Data modelling and design of the experiment were 
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carried out using RSM. The results obtained show that the 
optimum percentage removal of MB was 97.4% at adsorption 
conditions of adsorbent dose 12.5 g/L, MB concentration of 
100 mg/L, pH 11, and contact time of 90 min. Furthermore, 
obtained results indicate that adsorbent dosage and initial 
dye concentration play major role in increasing the efficiency 
of MB adsorption (Alireza et al. 2022).

Green pea which is a low-cost adsorbent was investigated 
for the adsorptive removal of Reactive Blue 19 dye using 
Box–Behnken design to deduce the effect of independent 
and interaction influences of process variables such 
as temperature, pH, and adsorbent dosage. The RSM 
experimental results revealed that maximum removal was 
99.42% at optimum conditions of temperature (35 °C), pH 
2, and adsorbent dosage (1.5 g/100 mL). Furthermore, the 
kinetic study showed that Freundlich isotherm fitted best for 
the removal of the dye and it followed pseudo-second-order 
model (Demirhan 2020).

The adsorptive removal of Direct Violet 51 dye 
from aqueous solution by biosorption using sugarcane 
bagasse biomass was conducted by different physical and 
chemical treatments (Sadaf et al. 2015). Box–Behnken 
experimental design was used to ascertain the effect 
of three independent variables (biosorbent dose, pH, 
and initial dye concentration). Optimum removal of 
Direct Violet 51 dye was 63.0 mg/g and was attained 
at 0.05 g biosorbent dose and pH 2. Desorption study 
on the loaded biosorbent using 1  M NaOH solution 
removed 61.58% dye (Sadaf et al. 2015). Additionally, 
the use of plackett–Burman design and RSM has been 
employed in the statistical optimization of Gracilaria 
edulis for adsorption removal of dye from textile effluents 
(Venkataraghavan et al. 2020).

Artificial intelligence

Owing to current technological advancements, there has 
been upsurge in the application of artificial intelligence 
(AI) model for various applications in different fields 
including water purification, catalysis, medical, etc. 
Interconnected assembly of units called artificial neurons 
or nodes is used for the design of AI and this concept is 
premised of biological nervous system. Currently, this 
concept enjoys global attention as a computational-based 
modelling tool which is highly efficient for predicting 
rate of pollutant removal using sets of data. This 
provides avenue for comparative study of the correlation 
coefficient obtained from experimental and expected 
data. This leads to a reduction in the cost and time of 
an experiment. Furthermore, AI has been shown to be 
capable of identifying complex and complicated nonlinear 
relationships among several parameters and variables in 

addition to showing correlations of simulated output and 
the interactive influence among variables (Nasr et al. 
2017; Mazloom et al. 2020; Liao and Yao 2021; Martini 
and Roni 2021).

For example, use of artificial neutral network (ANN) 
has been reported to model pseudo-second-order kinetic 
model for adsorptive removal of paracetamol using 
modified orange peels from aqueous media at different 
adsorption conditions such as initial concentration 
(10–50 mg/L), contact time (0–330 min) and temperature 
(30–50 °C) (Afolabi et al. 2020b). It was revealed that 
the ANN with hyperbolic tangent sigmoid transfer 
function at the input layer and linear transfer function 
at the output layer, eighteen (18) hidden neurons and 
Levenberg–Marquardt as its backpropagation algorithm 
showed the optimal prediction ability. It further 
demonstrates the effective application in modelling 
pseudo-second-order kinetic model using modified 
orange peels in removing paracetamol (Afolabi et  al. 
2020b). Several, other report on the application of AI for 
modelling the efficiency of organic adsorption process 
has been reported in the past few studies. Table 3 presents 
various adsorption performance comparison of different 
adsorbents using Artificial intelligent.

Concluding remarks

The purification of water and wastewater using adsorption 
technique is a globally recognized and reliable scientific 
procedure to overcome the predicament of contaminant 
with most traditional techniques applied in wastewater 
treatment operation. Adsorption has been ascertained 
to be economical, safe, and stress-free to employ. 
These characteristics have abetted it to prevail over 
the impediments that include enormous consumption 
of space, extravagant, commercially unappealing, and 
operational toil, in addition to the disposal glitches 
which is common with conventional techniques. The 
obtainability of enormous quantities of naturally existing 
materials in addition to wastes generated from both 
agricultural activities has gotten numerous considerations 
in contemporary time. The extensive employment of 
these potential adsorbents after subsequent modification 
by means of more than a few techniques that include 
chemical, mechanical, thermal, gasification, or blend of 
techniques.

Efficient biomass-derived adsorbent is expected to be 
well-designed and serves as good candidate for efficient 
removal of organic pollutants from wastewater treatment 
plant. Based on the survey of literature, use of unmodified 
biomass adsorbents for decontamination of organic pollut-
ants from aqueous mixture is not certain and suffers poor 
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surface area, pore volume and sizes while their adsorption 
performance is also low. However, it has been demon-
strated by previous studies that several types of modifica-
tions seemed to enhance the biomass adsorbents for better 
adsorptive performance towards organic pollutants (includ-
ing pesticides, insecticides. pharmaceutical and dyes). Fur-
thermore, literature has shown that many of these studies 
based on the adsorption of organic contaminants using bio-
mass adsorbents were carried out in aqueous systems and 

on a laboratory scale. This did not undermine the potenti-
ality of these studies. However, for commercial and prac-
tical applications, adsorbents from biomass origin should 
be effectively applied directly into effluents of wastewater. 
Therefore, more studies should be carried out to elucidate 
the design and synthesis of biomass-based adsorbents which 
can be used successfully in wastewater treatment systems for 
decontaminating organic pollutants.

Table 3  Comparison of the various adsorbent performances using AI for the adsorptive removal of organic pollutants

MAE Mean average error, MSE Mean square error, AE Average error, RMSE Root mean square error, R2 Correlation coefficient, MRE Mean 
relative estimation error

Adsorbents Pollutants Optimum 
number of 
neurons

Evaluation indices References

R2 MRE AE MSE RMSE SSE

AC from Acacia 
auriculiformis

Direct blue 86 5-8-1 0.982 Dutta et al. (2012)

AC from coconut 
shell

Indigo dye 6-5-5-1 0.07283(train), 
0.10699(test)

Deshmukh (2012)

AC from orange 
wood tree

Sunset yellow 3-13-1
3-15-1

0.997
0.996

0.0001
0.0001

Ghaedi et al. (2015)

Activated carbon Methylene blue – 0.0014 Xu and Hu (2010)
Activated spent tea Methylene blue 5-10-1 0.999 Babaei et al. (2016)
Au NP AC 

Tamarisk
Methyl orange 3-11-1

3-20-1
0.958
0.989

0.00082
0.0006

Ghaedi et al. (2014)

Bamboo biochar Acid black 172 5-5-1 0.996 1.05 ×  10−4 Yang et al. (2014)
Chara contraria Lanaset Red G 4-23-1 0.999 Çelekli et al. (2012)
Eucalyptus 

camaldulensis)
Basic Blue 41 

Reactive Black 5
3-5-1 0.006206

0.001193
Balci et al. (2011)

Iron-coated pumice Ethidium bromide 4-1-2-1 0.999 0.005 Heibati et al. (2016)
Modified rice straw Crystal violet 3-17-1 0.997 Chakraborty et al. 

(2013)
NaOH-modified 

rice husk
Methylene blue 3-13-1 0.995 Chowdhury and 

Saha (2013)
Orange peel Paracetamol 0.99 Afolabi et al. 

(2020a)
Posidonia 

oceanica L
Methylene blue 3-15-1 0.998 Cavas et al. (2011)

Potato peel powder Reactive Red 198 5-7-1 0.98 4.3 Maleki et al. (2013)
Powdered activated 

carbon
Acid orange 7 3-2-1 5.81% Dutta et al. (2012)

Rice husk Safranin onto 3-10-1 0.988 Saha et al. (2012)
Rice husk carbon Bromocresol red 

Alizarin red
Malachite green 

Methylene blue

3-5-5-2 0.025(train)
0.024 (test)

Khonde and 
Pandharipande 
(2012)

Sawdust Dye and metal ion 0.99 Dolatabadi et al. 
(2018)

Soya bean waste Methyl violet 2B 6-4-1 0.995 Kooh et al. (2016)
Walnut husk Lanaset red G 4-20-1 0.995 0.499–5.006 Çelekli et al. (2012)
Walnut husk Basic Red (BR) 46 5-25-1 0.999 0.5848 Çelekli et al. (2016)
Walnut husk Azo dye 0.999 0.2303 Çelekli et al. (2016)
Waste marble dust Malachite green 

Acid blue 161
4-12-1 > 0.89 < 0.01 Çoruh et al. (2014)
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Additionally, focus of future studies should be on 
sustainable measures on how spent biomass adsorbents that 
have lost their performance/ability on organic pollutants 
would be effectively disposed. This is to ensure proper 
understanding of the stability of biomass-based adsorbent 
materials. Also, it is necessary to corroborate the commercial 
values and the practical applications of modified biomass 
materials towards organic pollutants removal in wastewater 
and their vital associated issues in the environment.

Furthermore, in recent years, use of combined processes 
has received increased attention for decontaminating organic 
pollutants from aqueous mixtures. There is, however, 
insufficient knowledge and understanding on combined 
adsorption process and existing treatment technologies like 
reverse osmosis, nanofiltration, ozonation, Fenton-oxidation, 
and photocatalytic degradation. Hence, investigation 
on the efficiency of removing organic pollutants using 
hybridized adsorption process and other treatment methods 
is necessary. Future studies should be centred on designing 
and production costs of modified adsorbents from biomass 
source and the corresponding cost evaluation analysis for 
organic pollutants contaminant treatment from laboratory, 
pilot, and industrial scales. This should help to establish 
viable method(s) that should be implemented for disposing 
the spent adsorbents. Such technique is expected to be 
environmentally sustainable, and hybridized adsorption 
with other treatment processes (methods) to ensure highly 
and better removal performance. The limitations that prevent 
most biomass adsorbents from becoming commercially 
viable can be reduced by investigating these knowledge 
gaps.

In agreement with the green/sustainable chemistry, since 
chemical modification significantly enhances the sorption 
capacity, when compared with the unmodified counterpart, 
therefore use of environmentally friendly reagents should 
be focused on with aim of minimizing the use of these 
chemicals and minimization of the wastes generated and 
released into the environment.

The effects of interfering ions present in the environment 
laden with organic pollutants are not considered in many 
chemically modified biomass materials. Presence of inter-
fering ions such as  NO3

−,  Cl−,  SO4
2−,  H2PO4

−,Ca2+, and 
 Fe2+ have been previously reported to interference with the 
organic contaminants (pesticides including endosulphan, 
2,4-dichlorophenoxyacetic acid, humic acid and atrazine) 
(Das et al. 2009). More investigation on the use of these 
sorbents for systems with the multiple organic pollutants in 
the same environments is required to examine the influence 
of one organic pollutant adsorption over the other. Similarly, 
further studies are needed on the chemical(s) that can intro-
duce certain functional group(s) that are capable of adsorb-
ing different contaminants same way they are present in the 

real wastewater system and the corresponding influence of 
one contaminant on the uptake of the others.

Lastly, the utilization of biological (biomass) materials 
as precursor for the fabrication of nanoparticles (NPs) 
is currently attracting wider popularity as a secondary 
metabolite owing to their inherent properties as reducing 
agents for the NPs and stabilizing/capping agents. 
Interestingly, most of the resultant NPs have reduced particle 
sizes, higher pore volumes and surface areas that were better 
than their precursors (Yu et al. 2016; Iwuozor et al. 2021). 
This suggests that more research in the area is promising to 
optimize the usage of chemical substances on the sorbents 
for sorption process.
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