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Abstract: Lattice algorithms for estimating the parameters of a multivariate autore-

gression are generalized to deal with subset models in which some of the coefficient
matrices are constrained to be zero. We first establish a recursive prediction-error

version of the empirical Yule-Walker equations. The estimated coefficient matrices

obtained from these recursions are the coefficients of the best linear one-step pre-
dictors of the process under the assumption that the autocovariance function is the

same as the sample autocovariance function. By modifying the recursions to allow

for certain inherent shortcomings, we then derive new estimators which general-
ize the Vieira-Morf, Nutall-Strand and Burg estimators to the multivariate subset

case. We show that the new estimators minimize weighted sums of squares of the

forward and backward prediction errors in recursive schemes which closely resemble
the original scheme of Burg. The performances of the estimators are compared in

a simulation study.
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1. Introduction

The d-dimensional vector process {Xt, t = 0,±1, . . .}, is said to be a vector
autoregression of order p (denoted VAR(p)) if it is a (weakly) stationary solution
of the equations,

Xt = Φ(1)Xt−1 + · · · + Φ(p)Xt−p + Zt, {Zt} ∼ WN(0,Σ),

where Φ(1), . . . ,Φ(p) are d × d matrices and the white noise process {Zt}, is a
sequence of zero-mean uncorrelated random vectors, each with covariance matrix
Σ. VAR models are frequently used in practice in preference to the more general
vector ARMA (VARMA) models, because of their relative simplicity with respect
to identification, estimation, interpretation, and forecasting.

If in the definition of the VAR(p) process we replace the set of time lags
{1, . . . , p} by a proper subset, K = {k1, . . . , km} ⊆ {1, . . . , p}, with 1 ≤ k1 <
· · · < km = p, and if Φ(p) 6= 0, then the process is called a subset vector autore-
gression (SVAR) of order p. The defining equations can be written as

Xt = ΦK(k1)Xt−k1
+ · · · + ΦK(km)Xt−km

+ Zt, {Zt} ∼ WN(0,Σ). (1)
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For some applications, the constraints on the coefficient matrices imposed by

(1) may be overly restrictive. It may be more appropriate to constrain only some

components of some of the matrices to be zero. Here we follow the terminology

of Penm and Terrell (1982, 1984a, 1984b), who refer to models of the form (1) as

subset VAR (SVAR) models, and to models of the latter type as SVAR models

with zero constraints. They introduce techniques for estimating models of both

types, but in searching for SVAR models with zero constraints, their first step is

to identify the best fitting SVAR model. Our goal here is to develop improved

estimation methods for SVAR models.

Estimation algorithms should be fast and efficient. Direct numerical max-

imization of the (Gaussian) likelihood is efficient but slow, and is complicated

by the large number of parameters to be optimized and the complexity of the

likelihood surface. One important function of the recursive methods developed

below is to provide “preliminary” models which can be used to initialize a nu-

merical search for the maximum likelihood model. For this purpose the Gaussian

likelihood of the preliminary model should be large. We therefore compare the

performance of the estimation methods on the basis of the Gaussian likelihoods

of the corresponding fitted models.

For an arbitrary zero-mean stationary process with autocovariance function

Γ(h) ≡ IE(Xt+hX
′
t), we can determine the best linear predictor of Xt in terms of

the lagged variables {Xj , j ∈ K}, i.e.,

X̂t = Φ(k1)Xt−k1
+ · · · + Φ(km)Xt−km

,

by solving the subset Yule-Walker equations (Section 2), a system of md2 lin-

ear equations for the components of the coefficient matrices. In the full-subset

case when ki = i, i = 1, . . . ,m, their solution is greatly simplified by the use

of Whittle’s (1963) generalization of the Levinson-Durbin recursions, which re-

quire the inversion of d × d matrices only. The Yule-Walker estimators of the

coefficient matrices in the SVAR model (1) satisfy the same equations with the

sample autocovariance function of the data replacing the autocovariance function

of the model. These equations are referred to as the empirical subset Yule-Walker

equations.

A generalized version of Whittle’s algorithm for solving the subset Yule-

Walker equations was developed by Penm and Terrell (1982). This is reviewed

in Section 2, where we also derive some useful properties of the forward and

backward prediction errors. In Section 3 we derive analogous properties of the

empirical prediction errors, and use them to develop new recursive algorithms for

the estimation of SVAR models, extending Burg’s and related algorithms for VAR

estimation. (Univariate versions of the new subset algorithms were obtained by
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Brockwell and Dahlhaus (2003).) We conclude in Section 4 with a Monte Carlo
study assessing the performance of the proposed estimators.

2. The Subset Yule-Walker Equations

If X and Y are random column vectors, all of whose components have
finite second moments, we define the matrix of inner products, <X,Y> ≡
IE(XY′), and say that X and Y are orthogonal if <X,Y> = 0 or equivalently
if <Y,X> = 0.

If {Xt, t = 0,±1,±2, . . .} is a zero-mean weakly stationary d-variate time
series with autocovariance function, Γ(h) ≡ IE[Xt+hX

′
t], h = 0,±1, . . ., then the

best linear predictor of Xt in terms of {Xt−k, k ∈ K}, with K = {k1, . . . , km}
and 1 ≤ k1 < k2 < · · · < km, can be expressed as

X̂t(K) =
∑

i∈K

ΦK(i)Xt−i, (2)

and is determined by the orthogonality conditions, <Xt−X̂t(K),Xt−k >= 0, k ∈

K, or equivalently by the (forward) Yule-Walker (YW) equations,

∑

i∈K

ΦK(i)Γ(k − i) = Γ(k), k ∈ K. (3)

The covariance matrix of the error vector Xt − X̂t(K) is

UK = Γ(0) −
∑

i∈K

ΦK(i)Γ(i)′. (4)

Analogously, the best backward linear predictor of Xt based on the set of
lags K∗ = {km − km−1, . . . , km − k1, km} can be expressed as

X̂
(b)
t (K∗) =

∑

j∈K∗

ΨK∗(j)Xt+j , (5)

where the coefficients ΨK∗(j) satisfy the backward Yule-Walker equations,

∑

j∈K∗

ΨK∗(j)Γ(k − j)′ = Γ(k)′, k ∈ K∗. (6)

The covariance matrix of the backward error vector Xt − X̂
(b)
t (K∗) is

VK∗ = Γ(0) −
∑

j∈K∗

ΨK∗(j)Γ(j). (7)

The Whittle algorithm is a recursive algorithm for solving equations (3)

and (4) when K = {1, . . . ,m} (which simultaneously solves the less interesting
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equations (6) and (7)). Algorithm 1 below is a subset version of the algorithm,
due to Penm and Terrell (1982).

Algorithm 1 (Subset Whittle). The following recursions express the solution
of equations (3), (4), (6) and (7) in terms of the solution when K and K ∗ are
replaced by the subsets J and J ∗, obtained by omitting km from K and K∗

respectively. U−1
J and V −1

J∗ are generalized inverses and the initial conditions for
the recursions are U∅ = Γ(0) = V∅.

ΦK(km) =

(

Γ(km) −
∑

i∈J

ΦJ(i)Γ(km − i)

)

V −1
J∗

ΦK(i) = ΦJ(i) − ΦK(km)ΨJ∗(km − i), i ∈ J

ΨK∗(km) =



Γ(km)′ −
∑

j∈J∗

ΨJ∗(j)Γ(km − j)′



U−1
J

ΨK∗(j) = ΨJ∗(j) − ΨK∗(km)ΦJ(km − j), j ∈ J∗

UK = UJ − ΦK(km)VJ∗ΦK(km)′

VK∗ = VJ∗ − ΨK∗(km)UJΨK∗(km)′.

Algorithms with this kind of recursive structure require careful computer
implementation (Trindade (2003)).

We now derive some properties of the forward and backward prediction errors
εK(t) and ηK∗(t), defined respectively as εK(t) = Xt − X̂t(K) and ηK∗(t) =

Xt−X̂
(b)
t (K∗). The covariance matrices of these prediction errors are respectively

the matrices UK and VK∗ defined by (4) and (7).

Proposition 1. Let K, K∗, J and J∗ be defined as in Algorithm 1, and define
the matrix of inner products for any two random vectors X and Y with finite
second moments as < X,Y >= E(XY′). Then
(i) < εJ(t), εJ(t) >= UJ ,
(ii) < ηJ∗(t),ηJ∗(t) >= VJ∗ ,
(iii) < εJ(t),ηJ∗(t − km) >= UJΨK∗(km)′ = ΦK(km)VJ∗ ,
(iv) εK(t) = εJ(t) − ΦK(km)ηJ∗(t − km),
(v) ηK∗(t) = ηJ∗(t) − ΨK∗(km)εJ(t + km).

Proof. (i) and (ii) are just the definitions of the error covariance matrices. (iii)
follows from Theorem A.1 and Corollary A.1 (Appendix A.1) with X = Xt,
Y = (X′

t−k1
, . . . ,X′

t−km−1
)′, Z = Xt−km

, B = (ΦJ(k1), . . . ,ΦJ(km−1)), C =
(ΨJ∗(km−k1), . . . ,ΨJ∗(km −km−1)), A2 = ΦK(km), D2 = ΨK∗(km), vX|Y = UJ ,
and vZ|Y = VJ∗ . (iv) is obtained by observing that

εJ(t) − ΦK(km)ηJ∗(t − km) = Xt −
∑

j∈J

ΦJ(j)Xt−j
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−ΦK(km)

(

Xt−km
−
∑

j∈J

ΨJ∗(km − j)Xt−j

)

, (8)

and noting from Algorithm 1 that ΦJ(j) −ΦK(km)ΨJ∗(km − j) = ΦK(j), j ∈ J .
(v) is proved in exactly the same way.

In Section 3.1 we give an empirical version of Proposition 1 which leads to
an alternative set of recursions for solving the empirical Yule-Walker equations
and which motivates the definition of a variety of recursive prediction-error based
algorithms.

3. Parameter Estimation

Given observations x1, . . . ,xn of a zero-mean stationary time series {Xt},
we wish to estimate the parameters Σ and the coefficient matrices ΦK(ki), i =
1, . . . ,m, in the subset model (1) for the data. The Yule-Walker estimators are
the matrices for which the model autocovariances at lags 0, k1, . . . , km, coincide
with the sample autocovariances,

Γ̂(h) =















1

n

n−h
∑

t=1

xt+hx
′
t , if h ≥ 0,

Γ̂(−h)′ , if h < 0.

In principle the estimates of ΦK(ki) and Σ can be found directly from (3) and
(4) by substituting Γ̂(·) for Γ(·), solving (3) to obtain the estimates Φ̂K(ki),
i = 1, . . . ,m, and using ÛK , found from (4), as the estimate of Σ.

Algorithm 1, however, provides a much more convenient recursive method
of arriving at the same estimates, since it reduces the problem to one involving
manipulations of d × d rather than md2 × md2 matrices. (At the same time it
produces estimates of the coefficients ΨK∗(i), i ∈ K∗.)

Remark. (Causality). It is possible that the subset model obtained by this pro-
cedure will be non-causal, i.e., that the matrix Id− Φ̂K(k1)z

k1 −· · ·− Φ̂K(km)zkm

(Id is the d × d identity matrix) will have an eigenvalue with absolute value
greater than or equal to 1. This is an indication that the subset model with lags
in K is inappropriate for the data. Even in this case however, it remains true
that the expression (2) with each ΦK(i) replaced by Φ̂K(i) gives the best linear
predictor of Xt in terms of Xt−ki

, i = 1, . . . ,m, under the assumption that the
sample autocovariances are the true autocovariances.

3.1. Estimation based on empirical prediction errors

To develop estimation procedures based on observed prediction errors, we
derive an empirical version of Proposition 1 which is expressed entirely in terms
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of the data and the Yule-Walker estimators {Φ̂K(i), i ∈ K}, {Ψ̂K∗(i), i ∈ K∗},

ÛK , and V̂K∗. In order to state the proposition, we need some additional notation.

For t ≤ 0 and for t > n define xt = 0 and let x
∼

be the d ×∞ array whose

jth column is xj, j = 0,±1, . . .. Now let x
∼ t be the array obtained by shifting

the columns of x
∼

by t places to the left, i.e., x
∼ t = {xt+j , j = 0,±1, . . .}, and

think of x
∼ t as a column vector of d elements, each element being an infinite-

dimensional row vector with finitely many non-zero elements. The set of all such

row vectors constitutes an inner-product space if we define the inner-product of

any two elements u = {uj} and v = {vj} as

< u,v >=
1

n

∞
∑

j=−∞

ujvj. (9)

The d-component column vectors x
∼ t are then quite analogous to the random

vectors Xt as elements of an inner-product space, except that the inner products

between components are defined as in (9) instead of as expected products. The

factor 1/n is included in (9) since the matrix of inner-products < x
∼ t+h,x

∼ t >,

i.e., the matrix whose (i, j)-element is the inner product of the ith row of x
∼ t+h

with the jth row of x
∼ t, is then the sample covariance matrix Γ̂(h) of the data set

x1, . . . ,xn.

The empirical counterpart of equation (3) can now immediately be recognized

as the equation for the coefficients Φ̂K(j), j ∈ K, in the expression x̂
∼ t(K) =

∑

j∈K Φ̂K(j)x
∼ t−j for the projection of x

∼ t onto the span of the rows of x
∼ t−j , j ∈ K.

This is because (3) simply expresses the orthogonality conditions < x̂
∼ t(K) −

x
∼ t,x∼ t−j >= 0, j ∈ K. Moreover, the empirical counterpart of (4) identifies the

Yule-Walker white noise covariance estimate ÛK as the error product matrix,

ÛK =< x
∼ t − x̂

∼ t(K),x
∼ t − x̂

∼ t(K) >.

Analogously to x
∼
, we define the d ×∞ arrays of forward and backward em-

pirical prediction errors as ε̂
∼K(t) = x

∼ t − x̂
∼ t(K) = xt −

∑

j∈K Φ̂K(j)x
∼ t−j and

η̂
∼K∗(t) = x

∼ t − x̂
∼

(b)
t (K∗) = xt −

∑

j∈K∗ Ψ̂K∗(j)x
∼ t+j , respectively. The corre-

sponding empirical forward and backward product error matrices are ÛK =<

ε̂
∼K(t), ε̂

∼K(t) > and V̂K∗ =< η̂
∼K∗(t), η̂

∼K∗(t) >. We can now state the required

empirical analogue of Proposition 1.

Proposition 2. In the notation of Proposition 1, and with the inner product

and d ×∞ arrays ε̂
∼K(t), η̂

∼K∗(t) defined as above, the assertions of Proposition

1 hold with Φ, Ψ, U , V , ε and η replaced by Φ̂, Ψ̂, Û , V̂ , ε̂
∼

and η̂
∼
, respectively.

Proof. By virtue of Theorem A.2 of Appendix A.1, the proof is identical to the

proof of Proposition 1 with X = x
∼ t, Y = (x

∼

′
t−k1

, . . . ,x
∼

′
t−km−1

)′, Z = x
∼ t−km

and

{Φ,Ψ, U, V, ε,η} replaced by {Φ̂, Ψ̂, Û , V̂ , ε̂
∼
, η̂

∼
}, respectively.
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From Proposition 2 and Algorithm 1, we immediately obtain the following
algorithm which generates, from the empirical prediction errors, a solution of the
empirical subset Yule-Walker equations.

Algorithm 2 (Solution of the empirical subset Yule-Walker equations).
With initial conditions, ε̂∅(t) = xt = η̂∅(t), and Û∅ = Γ̂(0) = V̂∅, we have

Φ̂K(km) =





1

n

n+km
∑

t=1

ε̂J(t)η̂J∗(t − km)′



 V̂ −1
J∗ , (10)

Φ̂K(i) = Φ̂J(i) − Φ̂K(km)Ψ̂J∗(km − i), i ∈ J,

Ψ̂K∗(km) = V̂J∗Φ̂K(km)′Û−1
J , (11)

Ψ̂K∗(j) = Ψ̂J∗(j) − Ψ̂K∗(km)Φ̂J(km − j), j ∈ J∗, (12)

ÛK = ÛJ − Φ̂K(km)V̂J∗Φ̂K(km)′,

V̂K∗ = V̂J∗ − Ψ̂K∗(km)ÛJ Ψ̂K∗(km)′, (13)

ε̂K(t) = ε̂J(t) − Φ̂K(km)η̂J∗(t − km), (14)

η̂K∗(t) = η̂J∗(t) − Ψ̂K∗(km)ε̂J(t + km). (15)

Remark. (Lattice algorithms). Algorithm 2 provides us with yet another recur-
sive algorithm for computing Yule-Walker estimates. In the engineering literature
(14) and (15) are referred to as lattice equations and the coefficients Φ̂K(km) and
Ψ̂K∗(km) as (estimated) reflection coefficients. There is a large body of literature
on such algorithms, e.g., Itakura and Saito (1971), Makhoul (1977), Morf, Vieira,
Lee and Kailath (1978) and Haykin (1996). In order to improve the estimated re-
flection coefficients, a variety of different estimators have been constructed in the
full-subset case by modifying (10) and (11); see Jones (1978) for a compendium.
Subset analogs of several of these are discussed below in Section 3.2.

3.2. Subset versions of three lattice algorithms

Since xt was defined to be zero outside the time interval [1, n], the empirical
prediction errors ε̂J(t) and η̂J∗(t−km), are not particularly meaningful for t close
to 1 and n+km, respectively. This suggests replacing the lower and upper limits
of summation in (10) by km + 1 and n, respectively. We adopt this truncated
summation in all the lattice algorithms proposed in this section, the introduction
of which first necessitates the definition of the following matrices:

Ω̂εε =
1

n − km

n
∑

t=km+1

ε̂J(t)ε̂J(t)′, Ω̂εη =
1

n − km

n
∑

t=km+1

ε̂J(t)η̂J∗(t − km)′,

Ω̂ηη =
1

n − km

n
∑

t=km+1

η̂J∗(t − km)η̂J∗(t − km)′.
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Note that Ω̂εε and ÛJ are two different estimates of UJ , while Ω̂ηη and V̂J∗

are estimates of VJ∗ . Roughly speaking, it is the combination of these differ-
ent estimates together with the truncation of the sum that leads to the three
modifications of the algorithm proposed below. In Appendix A.2 we show that
the resulting algorithms can be obtained as the minimizers of certain prediction
errors. The first modification of Algorithm 2 reduces, in the full-subset case, to
the widely used algorithm of Morf et al. (1978).

Algorithm 3 (Subset Vieira-Morf). Replace (10) in Algorithm 2 by

Φ̂K(km) = Û
1/2
J R̂V̂

−1/2
J∗ , (16)

R̂ = Ω̂−1/2
εε Ω̂εηΩ̂

−1/2
ηη . (17)

A similar modification was given by Strand (1977) (and independently by
Nuttall (1976) and others). The following algorithm reduces to the Nuttall-
Strand algorithm in the case K = {1, . . . ,m}.

Algorithm 4 (Subset Nuttall-Strand). Replace (10) in Algorithm 2 by

Φ̂K(km) = Û
1/2
J R̂V̂

−1/2
J∗ , (18)

vecR̂=2
[

Id⊗Û
−1/2
J Ω̂εεÛ

−1/2
J +V̂

−1/2
J∗ Ω̂ηη V̂

−1/2
J∗ ⊗ Id

]−1
vec

[

Û
−1/2
J Ω̂εηV̂

−1/2
J∗

]

. (19)

A computationally more convenient form of the same algorithm is given by

Φ̂K(km) = ∆̂V̂ −1
J∗ , (20)

vec ∆̂ = 2
[

Id ⊗ Ω̂εεÛ
−1
J + Ω̂ηηV̂

−1
J∗ ⊗ Id

]−1
vec Ω̂εη. (21)

(The equality of both solutions is proved in Appendix A.2.) Since the term in
the square brackets of (21) is close to 2Id⊗Id, the right hand side of (20) is close,
apart from the range of summation, to that of (10). An advantage of the Nutall-
Strand algorithm however, is that it leads to a causal solution in the full-subset
case.

In Burg’s (1968) method for fitting full-subset autoregressions, the reflection
coefficients were chosen so as to minimize the sums of squares of the forward and
backward prediction errors. A natural multivariate subset generalization is to
select Φ̂K(km) so as to minimize

SK(Φ̂K(km)) =
n
∑

t=km+1

[

ε̂K(t)′ε̂K(t) + η̂K∗(t − km)′η̂K∗(t − km)
]

(22)

with respect to Φ̂K(km), where ε̂K(t) and η̂K∗(t − km) are given by (14) and
(15), respectively. With the aid of (11), SK(Φ̂K(km)) can then be expressed as
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a function of Φ̂K(km) and estimates computed at earlier stages of the recursive
modeling procedure. This allows the minimizing value of Φ̂K(km) to be obtained
explicitly (see Appendix A.2), leading to our last multivariate subset algorithm.

Algorithm 5 (Subset Burg). Replace (10) in Algorithm 2 by

vec Φ̂K(km) =
[

Ω̂ηη ⊗ Id + V̂ 2
J∗ ⊗ Û−1

J Ω̂εεÛ
−1
J

]−1
vec

[

Ω̂εη + Û−1
J Ω̂εηV̂J∗

]

. (23)

Remark. Although minimization of the sum of squares of the forward and
backward prediction errors (Burg’s algorithm) leads in the univariate full-subset
case to models with generally higher Gaussian likelihood than the empirical Yule-
Walker equations, the asymmetry of multivariate subset modeling suggests that
a weighted average of the forward and backward prediction errors might be more
appropriate. In Appendix A.2, we prove that the subset Nuttall-Strand algorithm
is obtained by minimizing the weighted sums of squares of prediction errors

n
∑

t=km+1

[

ε̂K(t)′Û−1
J ε̂K(t) + η̂K∗(t − km)′V̂ −1

J∗ η̂K∗(t − km)
]

with respect to Φ̂K(km), where ε̂K(t) and η̂K∗(t−km) are given by (14) and (15),
respectively. We also prove that the subset Vieira-Morf algorithm can be viewed
as the solution of a minimization problem in which, with a natural but slightly
different standardization of the error vectors, we obtain parameter estimates
which simultaneously minimize both forward and backward error criteria (and
their sum). This provides strong theoretical support for the use of the subset
Vieira-Morf estimators.

4. Monte Carlo Comparison of the Algorithms

Since the primary aim of Algorithms 1, 3, 4 and 5 is to provide fast and

simple methods for the fitting of SVAR models with high likelihoods, it is of

considerable interest to compare the actual likelihoods achieved by each. In this
section we present such a comparison, by simulating realizations from a variety

of univariate and bivariate SVAR models with independent Gaussian noise.

4.1. Preliminaries

Let {x1, . . . ,xn} be a realization of the causal SVAR process {Xt} defined

by

Xt = ΦK(k1)Xt−k1
+ · · · + ΦK(km)Xt−km

+ Zt, {Zt} ∼ IID N(0,Σ). (24)

The likelihood, L(Θ), where Θ = {ΦK(k1), . . . ,ΦK(km),Σ}, is a function of

md2 + (d2 + d)/2 scalar parameters. For each realization simulated from a par-

ticular model, we obtain the Yule-Walker, Vieira-Morf, Nuttall-Strand and Burg
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estimators, and compute the respective values of −2 logL(Θ̂AL) (subscript AL

signifying that the estimators are obtained via one of these four algorithms).

The maximum likelihood estimator (MLE) is also obtained, and the correspond-

ing value of −2 logL(Θ̂ML) (the subscript ML signifying that the estimators

are obtained via maximization of the likelihood) subtracted from those obtained

from each of the four algorithms, to give, for each algorithm, a value of NL ≡

−2 logL(Θ̂AL)+2 log L(Θ̂ML). (See Trindade (2003) for implementation details.)

The characteristic polynomial of the SVAR model (24) is

P (z) = det
[

Id − ΦK(k1)z
k1 − · · · − ΦK(km)zkm

]

.

The model is causal if the zeroes of its characteristic polynomial are all greater

than one in magnitude. It is well-known that in the univariate full-subset case,

the YW estimators can be severely biased if the roots of the AR characteristic

polynomial are close to the unit circle. To allow for the expected dependence of

performance on the location of the zeroes of P (z), we simulate from models with

a variety of configurations of these zeroes.

4.2. Univariate case

For each univariate model we generated 1,000 realizations, each of length

100, with {Zt} ∼ IID N(0, 1).

Example 1. (1 + 0.5B)(1 − (0.1 − 0.3i)B)(1 − (0.1 + 0.3i)B)Xt = Zt. This is

the causal subset model, Xt + 0.30Xt−1 + 0.05Xt−3 = Zt, with K = {1, 3} and

characteristic roots (moduli) −2, 1 ± 3i (3.16).

Example 2. (1 + 0.98B)(1 − 0.98B)(1 + 0.98iB)(1 − 0.98iB)Xt = Zt. This is

the causal subset model, Xt − 0.92Xt−4 = Zt, with K = {4} and characteristic

roots ±1.0204, ±1.0204i.

Example 3. (1 + 0.98B)(1 − 0.95B3)Xt = Zt. This is the causal subset model

Xt +0.98Xt−1 −0.95Xt−3 −0.93Xt−4 = Zt, with K = {1, 3, 4} and characteristic

roots (moduli) −0.5086 ± 0.8809i (1.0172), 1.0172, −1.0204.

Example 4. (1 − 0.95B2)(1 + 0.98B)(1 − 0.98B)Xt = Zt. This is the causal

subset model Xt −1.91Xt−2 +0.91Xt−4 = Zt, with K = {2, 4} and characteristic

roots ±1.0204, ±1.0260.

The means, medians, and standard deviations of the values of NL are shown

in Table 1, along with the percentage of realizations for which each method

scored the lowest value. Figure 1 displays boxplots of the values of NL for the

1,000 realizations of each example. The performance of the subset Yule-Walker

estimators is particularly poor compared with the other three estimators when
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the autoregressive roots are close to the unit circle. Overall, the Burg, Nutall-

Strand and Vieira-Morf estimators give consistently higher likelihoods with less

variability between realizations than the subset Yule-Walker estimators. Note

that although different in general, the Burg and Nuttall-Strand solutions coincide

in Examples 2 and 4. This is due to the particular configuration of the lags in

the sets K.

Table 1. Summary statistics by method for the data of Examples 1-4.

Example Method Mean Median Std. Dev. Frequency of

of NL of NL of NL lowest NL (%)

1 Yule-Walker 0.011 0.002 0.027 34.0

Vieira-Morf 0.003 0.001 0.007 29.1

Nuttall-Strand 0.003 0.001 0.007 12.3

Burg 0.003 0.001 0.007 24.6

2 Yule-Walker 1.629 0.994 1.84 14.3
Vieira-Morf 0.108 0.052 0.16 47.2

Burg and Nuttall-Strand 0.111 0.053 0.17 38.5

3 Yule-Walker 6.019 3.710 6.603 6.1

Vieira-Morf 0.504 0.285 0.770 28.1

Nuttall-Strand 0.507 0.285 0.769 22.2

Burg 0.505 0.284 0.767 43.6

4 Yule-Walker 200.18 200.802 48.83 0.0

Vieira-Morf 0.32 0.133 0.64 50.6
Burg and Nuttall-Strand 0.38 0.139 0.80 49.4

Figure 1. Boxplots of NL’s for the data of Examples 1-4.
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4.3. Bivariate case

Due to the difficulties involved in finding maximum likelihood estimators

in the multivariate setting, we concentrate on bivariate models with subset size

one. 200 realizations are simulated from each model, each of sample size 100,

with Zt ∼ N2(0, I2) and configurations of roots of the characteristic polynomial

that mimic those of the univariate examples.

Example 5. The causal bivariate subset VAR(2) model

Xt −

[

0.547 −0.300

0.700 −0.457

]

Xt−2 = Zt,

with characteristic polynomial, P (z) = (1 − 0.25z2)(1 + 0.16z2), and roots, ±2,

±2.5i.

Example 6. The bivariate causal subset VAR(2) model

Xt −

[

1.0091 −0.3000

0.7000 −1.0670

]

Xt−2 = Zt,

with characteristic polynomial, P (z) = (1 + 0.982z2)(1 − 0.952z2), and roots,

±1.0526, ±1.0204i.

Example 7. The bivariate causal subset VAR(2) model

Xt −

[

0.4 −1.2

0.9 −0.4

]

Xt−2 = Zt,

with characteristic polynomial, P (z) = (1 + 0.92z4), and roots, ±0.722 ± 0.722i.

Example 8. The bivariate causal subset VAR(2) model

Xt −

[

1.4135 −0.3000

0.7000 0.4969

]

Xt−2 = Zt,

with characteristic polynomial, P (z) = (1 − 0.982z2)(1 − 0.952z2), and roots,

±1.0204, ±1.0260. (239 realizations were simulated here; in 39 of these the Burg

white noise covariance matrix estimate was negative definite, and the likelihood of

the resulting model could not be computed. These 39 realizations were omitted.)

The results are presented graphically in Figure 2, and summarized in Table

2. As in the univariate examples, the performance of the Yule-Walker estimators

is inferior to that of the three new lattice algorithms.
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Table 2. Summary statistics by method for the data of Examples 5-8.

Example Method Mean Median Std. Dev. Frequency of
of NL of NL of NL lowest NL (%)

5 Yule-Walker 0.137 0.076 0.168 12.5

Vieira-Morf 0.028 0.018 0.029 32.0

Nuttall-Strand 0.028 0.020 0.029 30.0

Burg 0.030 0.021 0.027 25.5

6 Yule-Walker 2.07 1.29 2.39 10.0

Vieira-Morf 0.37 0.22 0.45 26.0
Nuttall-Strand 0.40 0.26 0.46 11.0

Burg 0.33 0.20 0.45 53.0

7 Yule-Walker 2.551 1.744 2.527 10.0

Vieira-Morf 0.610 0.393 0.630 20.0

Nuttall-Strand 0.608 0.387 0.635 14.0

Burg 0.538 0.339 0.617 56.0

8 Yule-Walker 97.7 79.5 72.7 15.5

Vieira-Morf 29.8 18.1 32.2 48.0
Nuttall-Strand 46.9 33.1 42.3 2.0

Burg 29.9 17.1 32.5 34.5

Figure 2. Boxplots of NL’s for the data of Examples 5-8.

5. Conclusions

We have introduced subset analogues of the Vieira-Morf, Nuttall-Strand and

Burg estimators of the parameters of a VAR model and compared them with the

subset Yule-Walker estimators obtained from Penm and Terrell’s subset version

of the Whittle algorithm. The estimators are computed recursively via algo-
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rithms which require the manipulation of matrices of dimension d×d only. They

are very fast compared with maximum likelihood estimation and are found, in

a range of simulations of Gaussian subset models, to give consistently higher

likelihoods than the subset Yule-Walker models. The Vieira-Morf algorithm has

the additional attractive property of simultaneously minimizing weighted forward

and backward prediction errors.
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A. Appendix

A.1. Multivariate projections

In this section we state two theorems on multivariate projection which play

a key role in the proofs of Propositions 1 and 2, respectively. These theorems

appear in various forms in the literature. For a proof in the form given here see

Brockwell and Dahlhaus (2003).

Theorem A.1. If X, Y and Z are random vectors whose components all have

finite second moments and if the best linear predictors of X and Z in terms of

Y are X̂(Y) = BY and Ẑ(Y) = CY, with prediction-error second moment

matrices vX|Y and vZ|Y respectively, then the best linear predictor of X in terms

of Y and Z is X̂(Y,Z) = A1Y + A2Z, where A2 =< X − BY,Z > v−1
Z|Y =<

X−X̂(Y),Z− Ẑ(Y) > v−1
Z|Y, A1 = B−A2C, and v−1

Z|Y is any generalized inverse

of vZ|Y. The corresponding second moment matrix of the prediction errors is

vX|Y,Z = vX|Y − A2vZ|YA′
2.

Interchanging the roles of X and Z in Theorem A.1 gives the following Corol-

lary.

Corollary A.1. Under the conditions of Theorem A.1, Ẑ(Y,X) = D1Y+D2X,

where D2 =< Z − CY,X > v−1
X|Y =< Z − Ẑ(Y),X − X̂(Y) > v−1

X|Y, D1 =

C − D2B, vZ|X,Y = vZ|Y − D2vX|YD′
2, and v−1

X|Y is any generalized inverse of

vX|Y.

The proof of Theorem A.1 and its corollary makes no use of the particular

inner product, E(XiYj), of the components Xi and Yj of X and Y. We can

therefore express the results in the following more general form.
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Theorem A.2. Let X, Y and Z be finite-dimensional column vectors, all of

whose components are elements of the same inner-product space S. For any two

such vectors, X and Y, let < X,Y >= [< Xi, Yj >]i,j , where < Xi, Yj > is the

inner product of the components Xi of X and Yj of Y. The projection X̂(Y,Z) of

X onto the span of Y and Z is defined to be the linear combination (with matrix
coefficients) of Y and Z, whose components each have minimum mean-square

distance from the corresponding component of X. The corresponding squared-

error matrix is vX|Y,Z =< X − X̂(Y,Z),X − X̂(Y,Z) >. If X̂(Y) = BY

and Ẑ(Y) = CY are the projections of X and Z onto the span of Y, with

corresponding squared-error matrices vX|Y and vZ|Y respectively, then X̂(Y,Z)

and vX|Y,Z satisfy the equations of Theorem A.1.

Corollary A.2. The equations of Corollary A.1 remain valid in the context of
Theorem A.2.

A.2. Minmization of sums of weighted forward and backward predic-
tion errors

In this section we show how the three algorithms of Section 3.2 can be ob-

tained as the minimizers of weighted sums of squares of the forward and back-

ward prediction errors. Starting from the standardized residuals ε̃t ≡ Û
−1/2
J ε̂J(t),

η̃t ≡ V̂
−1/2
J∗ η̂J∗(t − km), and defining the matrices, Ã ≡ Û

1/2
J AÛ

1/2
J , and B̃ ≡

V̂
1/2
J∗ BV̂

1/2
J∗ , for some positive definite symmetric matrices A and B (to be spec-

ified later), we consider instead of (22), the more general weighted minimization
problem:

n
∑

t=km+1

[

ε̂K(t)′A ε̂K(t) + η̂K∗(t − km)′B η̂K∗(t − km)
]

, (25)

with ε̂K(t) and η̂K∗(t − km) given by (14) and (15), respectively. Letting R =

Û
−1/2
J Φ̂K(km)V̂

1/2
J∗ , (11) gives ΨK∗(km) = V̂

1/2
J∗ R′Û

−1/2
J . With these definitions,

(25) becomes

n
∑

t=km+1

[

(ε̃t − Rη̃t)
′Ã(ε̃t − Rη̃t) + (η̃t − R′

ε̃t)
′B̃(η̃t − R′

ε̃t)
]

. (26)

Minimization with respect to Φ̂K(km), is now equivalent to minimization with

respect to R. Routine matrix algebra and calculus gives the minimizer

vec R =
[

B̃ ⊗
(

∑

t

ε̃tε̃
′
t

)

+
(

∑

t

η̃tη̃
′
t

)

⊗ Ã
]−1

×vec
[

Ã
(

∑

t

ε̃tη̃
′
t

)

+
(

∑

t

ε̃tη̃
′
t

)

B̃
]

. (27)
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It can be shown that the second derivative of (26) with respect to R is positive

definite almost surely, implying that the above minimizer is unique almost surely.

Different choices of A and B now lead to different algorithms.

Subset Nutall-Strand Algorithm. Setting Ã = B̃ = Id, gives the solu-

tion (19), and as a consequence, (18) for Φ̂K(km). The subset Nutall-Strand

algorithm is thus obtained by minimizing a weighted sum of forward and back-

ward prediction errors, where the weights are chosen to be the inverse of the

covariance matrix of the prediction errors in the previous step. The computa-

tionally more convenient form (20)−(21) of the algorithm, is obtained by setting

Ã = B̃ = Id in (26), and multiplying the equation from the left by Û
1/2
J , and

from the right by V̂
1/2
J∗ . Setting ∆ ≡ Û

1/2
J RV̂

1/2
J∗ and differentiating, leads to

Ω̂εεÛ
−1
J ∆ + ∆V̂ −1

J∗ Ω̂ηη = 2Ω̂εη, which ultimately gives (21).

Subset Burg Algorithm. Setting A = B = Id, gives (ultimately) the solution

(23) of the subset Burg algorithm.

Subset Vieira-Morf Algorithm. The subset Vieira-Morf algorithm is ob-

tained, not as a special case of the above, but as the solution of a similar minimiza-

tion problem. If we standardize the residuals by their empirical standard devia-

tions, i.e., if we set ε̃t = [(n−km)Ω̂εε]
−1/2

ε̂J(t), and η̃t = [(n−km)Ω̂ηη ]
−1/2

η̂J∗(t−

km), we obtain (
∑

t ε̃tε̃
′
t) = Id = (

∑

t η̃tη̃
′
t). If we set Ã = B̃ = Id, minimization

of (26) with respect to R now gives, as a special case of (27), the solution

R =
1

n − km

n
∑

t=km+1

ε̃tη̃
′
t = Ω̂−1/2

εε Ω̂εηΩ̂
−1/2
ηη ,

which is exactly (17). The same solution is obtained in the subset Vieira-Morf

algorithm if we minimize either the forward prediction error, by setting Ã = Id

and B̃ = 0, or the backward prediction error, by setting Ã = 0 and B̃ = Id. This

is a particularly nice property which distinguishes Vieira-Morf from the other

two algorithms.
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