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Abstract

Objective—We present a theory and computational methods to incorporate transverse 

polarization of neuronal membranes into the cable equation to account for the secondary electric 

field generated by the membrane in response to transverse electric fields. The effect of transverse 

polarization on nonlinear neuronal activation thresholds is quantified and discussed in the context 

of previous studies using linear membrane models.

Approach—The response of neuronal membranes to applied electric fields is derived under two 

time scales and a unified solution of transverse polarization is given for spherical and cylindrical 

cell geometries. The solution is incorporated into the cable equation re-derived using an 

asymptotic model that separates the longitudinal and transverse dimensions. Two numerical 

methods are proposed to implement the modified cable equation. Several common neural 

stimulation scenarios are tested using two nonlinear membrane models to compare thresholds of 

the conventional and modified cable equations.

Main results—The implementations of the modified cable equation incorporating transverse 

polarization are validated against previous results in the literature. The test cases show that 

transverse polarization has limited effect on activation thresholds. The transverse field only affects 

thresholds of unmyelinated axons for short pulses and in low-gradient field distributions, whereas 

myelinated axons are mostly unaffected.

Significance—The modified cable equation captures the membrane’s behavior on different time 

scales and models more accurately the coupling between electric fields and neurons. It addresses 

the limitations of the conventional cable equation and allows sound theoretical interpretations. The 

implementation provides simple methods that are compatible with current simulation approaches 
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to study the effect of transverse polarization on nonlinear membranes. The minimal influence by 

transverse polarization on axonal activation thresholds for the nonlinear membrane models 

indicates that predictions of stronger effects in linear membrane models with a fixed activation 

threshold are inaccurate. Thus, the conventional cable equation works well for most 

neuroengineering applications, and the presented modeling approach is well suited to address the 

exceptions.

Keywords

electromagnetic–neuronal coupling; cable equation; transverse electric field; transverse 

polarization; activation threshold

1. Introduction

Accurate modeling of neuronal activation by an exogenous electric field (E-field) enables 

understanding of neural stimulation mechanisms as well as optimization of stimulus 

parameters. The cable equation (CE) is commonly used to couple extracellular fields to 

neuronal models [1–7], and has been explored for many conditions, including unmyelinated 

versus myelinated axons [2,8], unlimited versus limited extracellular space [4], frequency 

dependence [9], and inductive magnetic stimulation [6]. Three major mechanisms of 

membrane polarization can be derived from the CE: the activating function, i.e., the spatial 

gradient of the applied E-field in the axial direction, polarization at axonal and dendritic 

terminals proportional to the axial E-field [10], and polarization at discontinuities of tissue 

electrical properties [11]. To represent extracellular stimulation, the CE is coupled with the 

extracellular E-field, which is typically calculated from simple analytical expressions or 

complex macroscopic finite element models (FEM). This two-stage approach [12] has been 

used in a wide range of applications, e.g., epidural cortical stimulation [13], spinal cord 

stimulation [14], retinal prosthesis [15], cochlear implants [16], and magnetic stimulation 

[17,18].

The conventional CE, however, is an approximation used to describe the changes in 

transmembrane potential generated by exogenous E-fields. The axon is represented as a one-

dimensional (1-D) line, and the applied E-field is coupled unidirectionally to the axon. This 

simplifies the model and allows easy computational implementation. However, the mutual 

interactions between the applied field and neural membrane are absent and some aspects of 

membrane polarization are not captured. Krassowska and Neu [19] provided a theoretical 

foundation to include the interaction of the neuronal membrane with the applied field and 

showed that the cell membrane responds to an imposed extracellular E-field over two 

distinct time scales. The fast response is transverse polarization (TP) that rapidly and 

differentially polarizes the membrane from its mean potential. TP is also termed initial 

polarization [19] when the whole neuron is considered as a single compartment with simple 

compact morphology. In neuronal cables or morphologically realistic neurons, TP is only 

present locally across the cable due to the small size and low intracellular impedance in the 

transverse dimension. The slower response is the change in the mean membrane potential, 

which reflects the state of the neuron via subthreshold behaviors and suprathreshold action 

potentials [19], and can be modeled by the CE [20].
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Since TP could potentially affect the threshold for neural activation, many modeling studies 

argued for the necessity to include TP for accurate simulations and developed sophisticated 

mathematical and computational tools toward this goal [4,12,19–40]. These approaches can 

be generally divided into two categories, each having certain limitations. The first method 

solves analytically for membrane behavior in simple geometries. Explicit solutions of TP in 

uniform E-fields are available for cylindrical cells (in 2-D cross section) [19,21,22] and 

spherical cells (3-D) [4,22]. For more complex situations, the numerical approximation of 

the analytical solutions can be calculated, e.g., for spheroidal cells in uniform field [23,24], 

spherical cells in non-uniform fields [25], infinite axon with point source [26–29] or 

arbitrary field distribution [30,31], spherical and cylindrical cells in an E-field induced by 

off-axis harmonic magnetic field [32,33], and clustering of cell bodies and axons [34–36]. 

One limitation of this approach is the restriction to only single compartments or to axons 

under subthreshold conditions. For the former, both linear and nonlinear behaviors were 

included; however, single compartments cannot represent activation of complex neuronal 

structures by transverse fields. On the other hand, the distributed models used changes in 

linear membrane polarization to predict the effect of TP on suprathreshold behavior 

assuming a fixed activation threshold (see sections 3.2 and 4.3). As we will demonstrate 

herein, such predictions showing a strong influence of TP appear to be inaccurate. Another 

limitation of this approach is that an unmyelinated axon is necessary to derive differential 

equations and continuous analytical solutions, whereas many applications involve 

myelinated axons. The second approach employs FEM of neuronal structures and can 

include nonlinear membranes and complex geometries [12,21,37–39]. These simulations 

confirmed the TP theory and enabled modeling of complex behaviors, including ephaptic 

coupling [38,39]. However, the complex geometries require large and dense meshes, which 

are further complicated by the broad range of spatial scales, resulting in high computational 

costs. Additionally, to resolve the large capacitive membrane current during TP, very short 

time steps (10–50 ns) are required. By contrast, the typical time step for CE solvers like 

NEURON [41] is typically on the order of tens of microseconds [42]. Therefore, this method 

only explored simple geometries (often with a linear membrane) and did not systematically 

study the effect of TP on activation thresholds.

To address the limitations of prior models, we propose a modified CE that includes the 

effects of TP based on an asymptotic model [20] that decomposes the 3-D geometry of a 

nerve fiber into a 1-D longitudinal equation and a 2-D transverse equation. The longitudinal 

problem is the conventional CE and the transverse problem includes TP. The asymptotic 

model avoids some of the limitations of the aforementioned analytical approach. However, 

the 2-D transverse problem is a set of partial differential equations that is dependent on the 

longitudinal CE and still requires sub-microsecond time steps for solution. Adopting 

dimensional decomposition and assuming a uniform field for the transverse problem, the 

proposed modified CE directly incorporates the transverse solution into the longitudinal CE, 

thus overcoming the limitations of the 1-D CE while preserving compatibility with current 

CE solvers. There are no additional computational costs in the time domain and the increase 

in the spatial domain is negligible compared to complex FEM simulations.

We first summarize the analytical results of TP from the literature and then re-derive the CE 

to include TP. We describe two numerical techniques for practical implementation of the 
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modified CE with nonlinear membrane properties. The linearized version is validated 

against analytical results and demonstrates that the assumption of uniform transverse field is 

valid for a wide range of applications. To determine whether TP affects neuronal activation 

as predicted by previous linear solutions, nonlinear models are included in several test cases, 

including axon terminals and bends as well as several electrical stimulation configurations. 

The Hodgkin-Huxley (HH) model [43] and the Richardson-McIntyre-Grill (RMG) model 

[44] are used to represent unmyelinated and myelinated axons, respectively. The results 

reveal that TP is relevant for stimulation paradigms that have short pulse durations and/or 

low spatial gradients of the applied E-field. TP can be neglected for most applications of 

electrical stimulation, especially when activating myelinated axons. The modified CE 

provides a simple solution to study the effect of TP on nonlinear membranes, whereas linear 

models appear insufficient to determine neuronal activation thresholds.

2. Theoretical framework

2.1. Transverse polarization of cylindrical and spherical cell elements

In response to an applied E-field, neurons first undergo transverse polarization (TP), during 

which the membrane rapidly redistributes charge within the intra- and extra-cellular spaces 

to establish a secondary field without changing its mean membrane potential. The 

mathematical analysis and interpretation of TP was thoroughly described by Krassowska 

and Neu [19] for arbitrarily shaped cells and explicit solutions were given for some regular 

cell shapes [4,19,21]. Because TP is fundamental for modifying the CE to include this rapid 

response of neural membranes, this section first presents a unified analysis and relevant 

results for cylindrical (2-D) and spherical (3-D) cells based on the literature. For simplicity, 

but without loss of generality, in the following text these two geometries are sometimes 

referred to as axon or axonal segments and cell body or soma, respectively.

2.1.1. Cellular parameters and coordinate system—The radius of an axon or soma 

is defined as R. The membrane has specific capacitance cm and specific resistance rm and its 

thickness is neglected. Homogeneous and isotropic conductivities σi,e are assumed in the 

intra- and extra-cellular space, corresponding to subscripts i and e, respectively. The 

coordinate system is shown in Figure 1. For axons, a cylindrical coordinate system is used 

with the z-axis along the center of the axon and the reference direction (x-axis) defined by 

the transverse projection of the E-field. The radial coordinate is ρ and the azimuthal angle is 

θ, in accordance with 2-D polar coordinates. For somas, a spherical coordinate system is 

used with the polar axis aligned in the direction of the E-field and set as the x-axis for 

consistency with axons. The radial coordinate is also ρ and the polar angle is θ. Due to the 

rotational symmetry of the soma with respect to the field orientation, the y and z-axes and 

azimuth ϕ do not appear in the analysis.

2.1.2. System of equations for electric field and potentials—An E-field of strength 

 is applied at t= 0+

(1)
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with x̂ being the unit vector in the x-direction, u(t) being the unit step function, and the 

prime indicating primary field (the terms primary, exogenous, and applied are used 

interchangeably). Here, the E-field is assumed to be spatially uniform, as non-uniformities 

appear on spatial scales larger than the local cellular structure in the transverse dimensions 

(further discussed in section 2.1.4). The intra- and extra-cellular potentials are defined as 

φi,e, and include the contributions of the source (primary) and the response from the 

membrane (secondary), i.e., . Laplace’s equation applies as there are no free-

charge sources

(2)

The transmembrane potential φm is given as

(3)

because the primary potential field is continuous on the boundary and yields no membrane 

polarization. On the time scale of interest, the intra- and extra-cellular current densities are 

continuous at the membrane and equal to the membrane current density im

(4)

with ρ ̂being the unit vector in the radial direction. The membrane current includes 

capacitive and ionic components

(5)

where the summation is over all ion channels, each having reversal potential ℰ(j) and 

transmembrane-potential-dependent conductance , respectively, with j indexing 

different types of channels. For the rest of section 2.1, φi and φm are taken as reduced 

potentials, i.e., small-signal perturbations from the resting potential Vr, and only 

subthreshold behaviors with linear leakage (L) channels are considered, i.e., ℰL = Vr and 

. Hence

(6)

2.1.3. Unified solution for axon and soma—To arrive at a unique solution, the 

potentials must be referenced to an arbitrary value. This process, also termed normalization 

[19], can be conveniently accomplished by specifying the mean extracellular potential
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(7)

where dS and S are the surface unit for integration and the total surface area of the 

membrane, respectively. As there are no sources of charge, the cell behaves as a dipole 

(multipole for irregular shapes) during TP, and the integration is the same if calculated only 

for the primary source field without accounting for the presence of the cell. The 

normalization is set to zero for simplicity in the initial analysis, i.e., .

The TP problem was described several times in the literature and a derivation is given in 

Appendix I. The potentials and current density in the system follow a first-order solution 

with a time constant τTP (defined by (27) and (28)), and the steady state solution is 

approximately

(8)

Here, the parameter nD is related to the dimension of the neuronal structure and is 1 for 

cylindrical cells and 2 for spherical cells. The steady state is reached in approximately 5 to 6 

time constants, which is less than 1 µs for typical cellular parameters yielding τTP ≈ 10–100 

ns. The dynamics of TP are much shorter than the resting membrane time constant (1 ms) 

and the typical time step (10 µs) used in CE solvers. It is also shorter than the time scale on 

which the E-field changes in typical neurostimulation applications, and the discontinuities at 

pulse onset and offset are already accounted for by the step function in (1).

Two important conclusions follow from the steady state solution of TP. First, although φi is 

spatially uniform and equal to the mean extracellular potential outside the compartment, (8) 

shows that φm is amplified compared to the value calculated by considering only the 

extracellular potential from the applied E-field, i.e., . This increase, by a factor of 

1/nD, is due to the secondary field  of the cell membrane. Accordingly, the cylindrical and 

spherical geometries increase φm by 100% and 50%, respectively (effect of cell clustering is 

discussed in section 5.2). Second, on time scales longer than TP but shorter than 

physiological activity, the membrane insulates the intracellular space from the exogenous 

field, and current flow generated by external stimuli is confined to the extracellular space. 

The membrane charge redistribution by TP does not affect the neutrality of the neuronal 

compartment (see Appendix I), and the dipole-like influence of its secondary field in the 

extracellular space is insignificant beyond a few radii. The compartments contribute no net 

current to the extracellular space during TP and become sources or sinks only on 

physiological time scales due to axial current between adjacent compartments and activation 

of nonlinear ion channels.
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2.1.4. Generalization of transverse polarization solution for axons—The solution 

and implications of TP are now generalized beyond some of the assumptions used during the 

derivation for single compartments. First, the uniformity of the exogenous field is relaxed 

using the asymptotic model [20] to decouple the 3-D system of equations into a 1-D 

longitudinal equation and a 2-D transverse equation. As exogenous fields have negligible 

spatial variations on microscopic scales, the transverse problem can be approximated by the 

cosine-dependent TP solution for uniform fields [20,25,26,29]. A more rigorous analysis is 

given in Appendix I, and numerical validation is shown in section 3.2. Axons can extend 

over long distances and the spatial variation of the exogenous field in the longitudinal 

direction affects the local transverse solution, which is taken into consideration by setting 

the normalization for each axonal segment as

(9)

in which the z-direction is the local axial direction and  is the axial component of the 

extracellular E-field averaged around the membrane circumference at a given axial location 

(calculated similarly to (7)).

Second, for time variation of the applied E-field on scales larger than τTP, the normalization 

condition (9) contains a time dependence and therefore the extracellular potential for axons 

is given as

(10)

The intracellular potential is spatially uniform after the brief TP and evolves on slower 

temporal scales with electrophysiological activity [19]. Although the local membrane time 

constant may decrease into the range of 10 µs during action potentials, TP is still two orders 

of magnitude faster. Therefore, the spatial uniformity of φi is valid when a nonlinear 

membrane is considered and the intra- and extracellular potentials are uncoupled, i.e., 

. The transmembrane potential is given as

(11)

in which  is the average membrane potential for a given axial location.

2.2. Modified cable equation with transverse polarization

In this section, the time scale is longer than τTP, which is true for typical applications of 

neural stimulation. In the following derivation, φi and φm are absolute, not reduced, 

potentials, so that φm = φi − φe can be used directly to calculate channel conductance as in 

(5). All considerations in section 2.1.4 are applicable, so that the spatial and temporal 

variation of the applied field and the change in the physiological state are included.
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The first step in deriving the CE is to consider the axial current driven by the intracellular 

field

(12)

The axial field strength is spatially uniform, given uniform φi at any transverse plane after 

TP. Hence

(13)

where Ri = (σiπR2)−1 is the axial resistance per unit length.

The spatial derivative of Ii in the axial direction under zero source (2) and current continuity 

(4) conditions yields

(14)

In this derivation, the radial and azimuthal components of the intracellular E-field are 

involved and are non-zero, especially for Eρ,i to yield a non-zero membrane current density. 

Although appearing contradictory to the condition of zero intracellular transverse field at 

steady state of TP, the strength of this field is negligible as the primary field is almost 

cancelled out by the membrane’s secondary field (see (29) and Figure 10 in Appendix I). 

Compared to the primary and secondary fields, the total field in (14) is a small residual that 

is sufficient to drive the current densities involved in neural activity. This has been 

demonstrated by FEM [38] in which the simulated membrane current density declined by at 

least two orders of magnitude throughout the TP process.

Unlike the conventional CE, the membrane current varies around the circumference of the 

axon segment. Due to the cosine dependence of φm on θ as given in (11), the ionic current is 

symmetric for the [0, π] and [π, 2π] intervals of θ and the capacitive current can be 

simplified with . Therefore, (14) becomes

(15)

Substituting the axial current with (13) and , the modified CE is obtained
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(16)

The equation reduces to the conventional CE when only considering a linear membrane with 

conductance independent of φm. Taking φm̄ again as the reduced potential together with ℰL = 

Vr and , (16) can be rearranged into the conventional form

(17)

with time constant τm = rmcm, length constant λ2 = Rm/Ri, and membrane resistance per 

unit length Rm = rm/(2πR). The activating function f should be interpreted in terms of the 

normalization condition (9), as the average of the (primary) extracellular potential around 

the neural compartment. Hence, the CE is accurate in terms of describing the average 

membrane potential at any axial position for small disturbances [20].

When nonlinear ion channels are considered, although the driving term is symmetric with 

regard to φ̄m − ℰ(j), the membrane conductance around the circumference can be highly 

asymmetric due to the nonlinear voltage dependence of channel conductance. In general, for 

an axonal compartment of length L

(18)

Therefore, even if the average membrane potential φ̄m is close to rest, the imbalance of 

current densities on opposite sides of the membrane may depolarize the axon segment 

sufficiently to produce transverse activation.

For the soma, the ionic current of the compartment can be determined similarly by setting 

the dimension parameter nD to 2 in (8) and integrating over the surface

(19)

TP will influence the soma less than the axon for a given radius, as the ionic current is less 

affected due to the smaller amplification of the membrane potential and the inclusion of the 

sin θ term in the integration. On the other hand, somas have larger radii than axons and the 

influence of TP for a given E-field strength might be more pronounced. Therefore, the 

Wang et al. Page 9

J Neural Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



susceptibility to transverse stimulation cannot be directly compared between axons and 

somas without discussion of specific cases.

2.3. Numerical implementation

2.3.1. Coupling of extracellular electric field—The modified CE couples applied 

extracellular fields similarly to the conventional CE. The potentials, for example φFEM as 

obtained from an FEM simulation of the volume conductor, are applied by setting 

and interpreted as the normalization condition for each compartment. The transverse field 

component is included as  for soma and  for axons, in which αE,z 

is the angle between the E-field and the axon’s local orientation. The transverse field is 

applied to axons and spherical structures such as the soma and synaptic boutons, and may be 

excluded for dendrites due to their small radii and lower density of nonlinear ion channels.

The modified CE derived herein was based on unmyelinated axons and its application to 

myelinated axons should consider the discontinuities of the membrane and extracellular 

spatial properties between the myelin and the nodes of Ranvier. To account for the 

longitudinal modulation in the transmembrane potential akin to TP, the continuous partial 

differential equation form of the modified CE can be obtained by performing an additional 

asymptotic two-scale expansion in the spatial domain [8]. However, the continuous CE 

needs to be discretized for simulation and it is fairly common to use multiple compartments 

to simulate the internode [45], especially if the properties have more variation than just those 

between nodes and internodes [46]. Also, such asymptotic expansion results in a CE on the 

larger scale of internodal distance, i.e., on the order of hundreds of micrometers to a few 

millimeters. While appropriate for long and straight peripheral fibers, such spatial resolution 

is insufficient and not generalizable for realistic axon morphology. Therefore, the modified 

CE can be applied to myelinated axons numerically by using (18) on nodal compartments, 

whereas the myelin largely shields the internodal axon from the transverse field due its own 

TP.

2.3.2. Discretization of membrane—The ionic current term in the modified CE is an 

integral and has to be discretized for numerical implementation. Following regular 

segmentation techniques in the axial direction, such as the d_lambda (dλ) rule used in 

NEURON [47], each compartment’s membrane is discretized into N patches by dividing the 

azimuthal/polar angle equally between 0 and π. An odd N = 2M + 1 is preferred to have one 

patch hold explicitly the mean membrane potential. The integral becomes a sum over the 

values taken at the mid points of each membrane patch with

(20)

The discretization of the membrane should balance between computational cost and 

accuracy and may vary depending on the specific application and axial location. In general, 

a discretization into 10–20 patches (intervals Δθ in the range of 9°–18°) provides sufficient 

accuracy. Instead of directly summing the ionic currents [22], we propose two equivalent 

methods that are compatible with conventional CE solvers.
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2.3.3. Approach using equivalent ion channels—The first approach calculates the 

equivalent membrane conductance and reversal potential for the original compartment. For 

axonal compartments, each ion channel j has

(21)

Similarly, the equivalent ion channel parameters for a spherical cell are calculated with the 

corresponding dimensional parameter and summation weights

(22)

From here, conventional methods to solve the CE can be used. In this approach, no 

additional membrane potential needs to be stored for each patch as they can be calculated 

from the average potential by adding the cos θ-dependent transverse field. Additional 

computational cost mostly comes from the state-variables of the nonlinear ion channels, 

which must be stored for each of the N membrane patches and updated at every time step.

2.3.4. Approach using existing cable equation solvers—Using existing CE solvers, 

representation of TP for each neuronal compartment can be achieved by designing a 

multicompartment structure. The connections within the structure have negligible 

intracellular resistivity, thus approximating the condition of uniform intracellular potential 

within the original compartment. By specifying the extracellular potentials of the structure 

according to the cosine-dependent modulation, the solver’s solution becomes equivalent to 

that of the modified CE. Such an approach was used previously to study the effect of 

transverse polarization of the soma on activation threshold of retinal ganglion cells [40]. In 

contrast to this approach, which replaces existing compartments and may require rebuilding 

parts of the neuron model, we propose a simpler implementation in NEURON that is 

applicable to both the soma and axon segments.

Each compartment subject to transverse field has additional compartments attached to form 

a spoke-hub structure (Figure 2), with the parameters of the new compartments (spokes) and 

modification to the original compartment (hub) specified in Table I. The hub holds the mean 
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membrane potential and retains the topological connections to other neuronal segments. Its 

axial resistance is specified as the original value for axonal compartments and set to a 

negligible value for soma. The spoke compartments represent the aforementioned membrane 

discretization with their extracellular potentials modulated from the mean value at the hub. 

With the odd discretization given by (20), the θb values of the 2M spoke compartments are 

symmetrically distributed with respect to the hub. The hub and spokes retain the original 

membrane properties (i.e., membrane capacitance, ion channels) and have surface areas set 

to a fraction of the original value, each scaled by weights given in (21) or (22).

The computational cost in the spatial domain increases by a factor of 2M for all 

compartments subject to TP. Given the aforementioned discretization, the modified structure 

is at most one order of magnitude more complex than the original model and is significantly 

less complex than the dense meshing of a FEM. The temporal resolution and tree-like 

topology of the neuron model are both preserved, allowing efficient solution [48] with run-

time complexity scaling linearly with the number of additional compartments.

3. Implementation and validation of the modified cable equation

3.1. Single compartment

We evaluated both implementations of the modified CE described in section 2.3 by studying 

the strength–duration curve of transverse stimulation of single compartment models. The 

classic Hodgkin-Huxley (HH) model [43], adjusted to room temperature (23.5°C) with Q10 

= 3, was used, and cylindrical and spherical geometries were compared. The membrane 

capacitance was 1 µF/cm2 and membrane specific resistance at rest was 1.48 kΩ·cm2. Ion 

channel parameters are given in Appendix II. Various radii were examined in the range of 

0.25–16 µm. Since the E-field threshold was inversely proportional to the radius for single 

compartments, the results were normalized and reported in terms of the product of the field 

strength and radius. A custom backward Euler solver was built in MATLAB (R2015a, The 

Mathworks, Inc., Natick, MA, USA) for the equivalent channel implementation, and 

NEURON was used to demonstrate the approach using an existing CE solver. The 

discretization of the membrane was set to N=15 (Δθ =12°), and the simulation time step was 

set to 2 µs or adjusted for pulse durations shorter than or not a multiple of 2 µs. A binary 

search algorithm was used to find the action potential threshold with relative accuracy of 

0.1%.

The strength–duration curves of single compartments are shown in Figure 3. As predicted in 

the analysis, normalized thresholds were higher for the spherical geometry. For short pulse 

durations, the curves deviate from the classical formula [49]

(23)

where Θ and Θrh are the threshold stimulus amplitude and rheobase, respectively, and τm is 

the membrane time constant. Unlike the log–log slope of −1 in Lapicque’s integrate-and-fire 

model, the slope of −0.79 agrees with a previous report of sodium-dominated activation by 
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transverse field [22]. The thresholds for different radii are identical within cell type and 

simulation method, and the results agree between the two implementation methods, with the 

CE solver yielding slightly lower thresholds. The discrepancy is smallest for long pulses 

(1%–5%) and is larger for shorter pulses (~ 10% for pulses of less than 5 µs duration). This 

is most likely because the CE solver method only approximates the condition of uniform 

intracellular potential and therefore is limited in accuracy for computation and 

representation of the modified CE.

3.2. Distributed cable

The modified CE was derived on the assumption that the TP under a uniform field 

approximates the effects of an arbitrary field distribution on any compartment in a 

distributed neural cable. Although the asymptotic model [20] demonstrated the theoretical 

validity of decoupling the longitudinal and transverse components, we tested this assumption 

numerically against analytical solutions over a wide range of parameters after extending the 

single compartment implementation to a distributed cable [48]. Specifically, the axon and 

point source model [26,28] was used, in which a point source cathode depolarizes the 

membrane of a nearby unmyelinated axon with rectangular pulses of varying duration.

The parameters from the single compartment model were used, with additional parameters 

for the axon and point source model given in Table II. The passive electrical parameters 

were adopted from a series of models [3,26,28,43] and the radius was set according to the 

two studies using linear models [26,28], corresponding to a τTP = 40.6 ns. The large 

parameter space of axon–electrode distances H and pulse widths PW [28] was sampled 

logarithmically with 6 values per decade. The shortest pulse duration of 0.1 µs is 2.5·τTP, 

allowing TP to reach at least 90% of its steady state value. We extended our custom CE 

solver from a single compartment to cables with linear topology. The E-field was calculated 

for a point source [1] and coupled to the axon as described in section 2.3 (Figure 5, bottom 

left). The axon length in either direction was set to the larger of either 5·λDC (the cable’s dc 

length constant) or 10·H. The length of axon compartments was set to 82.1 µm using the dλ 
rule [47] with dλ = 0.1, or shortened to one tenth of H for very close electrode placements. 

The simulation time step was set to the pulse duration for pulses shorter than 1 µs and to 1 µs 

for longer pulses.

To quantify the effect of TP, the maximum transmembrane potential was compared between 

the conventional and modified CE, with the percentage change,

(24)

shown in Figure 4. This metric reflects the behavior of the central compartment closest to 

the electrode (z = 0) as the maximum depolarization always occurs there and is on the 

cathodal side (θ = 0) when TP is included. The conventional CE consistently underestimated 

the maximum membrane depolarization. The influence of TP ranged from minimal, for long 

pulse durations and intermediate axon–electrode distances, to substantial, for short pulse 
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durations and very close or distant electrode placements. The results agree with analytical 

solutions [28] and a close comparison reveals errors only for axon–electrode distances less 

than 30 µm (left shaded regions, Figure 4) and greater than 10 mm. Although the decoupling 

of the longitudinal and transverse components is still valid, the assumption of a uniform 

transverse field breaks down for short distances. This breakdown occurs within a distance 

about one order of magnitude larger than the axon radius, which agrees with previous TP 

results for spherical cells showing a distance–radius ratio of 13 or more for a point source to 

have less than 10% error compared to a uniform field [25]. For most applications of neural 

stimulation (center shade region, Figure 4), the distance between electrodes and their neural 

targets is larger than this critical value, either due to the choice of electrode placement or 

tissue encapsulation [50–52]. On the other hand, the assumption behind the derivation of the 

modified CE is indeed valid for larger distances, and the source of error include the limited 

numerical accuracy of the analytical solution due to the truncation of spatial frequencies 

[28], as our results matched the steady state solution obtained with higher numerical 

accuracy [26] (details not shown). Although the relative change of the maximum membrane 

potential is greater at larger axon–electrode distances when TP is considered, the absolute 

magnitudes of depolarization are very small and neural activation at such distances is 

unlikely (see section 4.3). Therefore, neither of the two regions of error are of practical 

concern, and the assumptions of the modified CE are valid for most applications.

4. Effect of transverse polarization on neural activation threshold

For both analytical solutions and FEM-based methods, the effect of TP has been studied 

using linear membrane models. The maximum membrane polarization can be greatly 

affected if TP is considered and such changes are expected to affect stimulation threshold 

[26,28,38]. However, whether linear results translate to nonlinear membrane models has not 

been directly studied. We therefore apply our modified CE to several common scenarios in 

neural stimulation (Figure 5) and determined the effect of TP on activation threshold for two 

nonlinear membrane models.

4.1. Membrane models and simulation setup

The HH model was used for unmyelinated axons (see sections 3.1 and 3.2 and Appendix II 

for parameters). Although the channel properties correspond to much larger invertebrate 

axons (> 100 µm radius), we used a radius of 3 µm to compare changes in threshold to 

changes in polarization in the linear model. For unmyelinated axons, the coupling strength 

of the axial field depends on λ2 and scales with the radius. Axial discretization for the HH 

model followed the dλ rule unless otherwise specified.

The single-cable Richardson-McIntyre-Grill (RMG) model [44], based on human peripheral 

nerve fibers [53] at body temperature (37°C), was chosen to represent myelinated axons. 

The axon parameters are shown in Table III. The nodal compartments contain fast sodium 

channels (m3h), persistent sodium channels (p3), and slow potassium channels (s). The 

channel conductances are given in Appendix II. Ten compartments were used to model each 

passive internode, which also had 3 µm radius (corresponding to 10 µm fiber diameter 

including the myelin). Myelin membrane properties were calculated for 120 myelin lamella. 
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Myelination increases the effective length constant by one to two orders of magnitude and 

therefore yielded stronger coupling between the axon and the axial field [8]. On the other 

hand, the coupling of the transverse field is significantly reduced as the internodes are 

mostly passive and shielded from the transverse field by the TP of myelin lamella.

The CE solver from section 3.2 was adapted to include the nonlinear ion channels and 

myelination. E-field distributions were obtained analytically and decomposed into axial and 

transverse components to solve the modified CE as described in section 2.3. Monophasic 

rectangular waveforms were applied with pulse durations between 1 µs and 10 ms (6 values 

per decade). Except for studying axon terminal activation, the activating function was 

manually forced to zero at terminals to prevent action potential generation there. Simulation 

time steps ranged between 2 to 5 µs and thresholds were determined within 0.5% accuracy.

To quantify the effect of TP on activation thresholds, the percentage difference of thresholds 

comparing the modified CE to the conventional CE was used

(25)

ΘMCE and ΘCE are respectively the thresholds of the modified and conventional CE, given in 

the appropriate form for the stimulation, e.g., E-field strength or electrode current. For most 

cases, the conventional and modified CE resulted in qualitatively similar threshold 

distributions; therefore, only results for the modified CE and their percentage difference 

compared to the conventional CE are presented. Results of the conventional CE are shown 

only when the distributions differed qualitatively.

4.2. Axon terminals and axon bends in uniform electric field

The activating term at axon terminals is proportional to the axial E-field strength, and 

therefore polarization and threshold are orientation-dependent [11,54,55]. Terminals are also 

more sensitive to the exogenous field, with each mV/mm axial field yielding one to two 

orders of magnitude larger polarization than each mV/mm2 of activating function. We 

examined the effect of TP on the threshold for field orientations α between 0° and 90° 

(Figure 5, top left) with denser sampling for angles close to 90°. The axon lengths were 1 cm 

for the HH model (approximately 12.5·λDC) and 4.6 cm for the RMG model (41 nodes and 

40 internodes). The threshold was determined by an action potential (φ̄m ≥ 0) reaching the 

antidromic end, where the activating term was forced to zero. The RMG model was also 

tested with a synaptic bouton of 4.5 µm radius attached to the terminal node (Figure 5). For 

the spherical compartment, the entire field was considered transverse. Whereas realistic 

synapses have complex morphology and features such as a short section of demyelination in 

the pre-synaptic axon, this simplified geometry was intended to test the modified CE 

implementation with a mixed geometry.

The threshold was inversely proportional to the cosine of the field orientation, and TP had no 

observable effect on the threshold for most parameter combinations (Figure 6). Only when 

the field was nearly transverse (α > 85°) did TP decrease threshold, especially for short 
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pulse durations. As expected, the effect of TP was minimal when myelination was 

considered. The addition of the presynaptic terminal increased threshold by an order of 

magnitude due to the much larger surface area at the terminal; however, the influence of TP 

was stronger over a wider range of field orientations because any orientation was transverse 

to the spherical terminal.

Curvature in either the axon or the field polarizes the membrane based on the activating 

function [11,56,57], and activation is expected for bends of white matter fibers as they leave 

or approach the gray matter. The effect of TP on threshold was examined for field 

orientations α between 0° and 135° (Figure 5, top right). Beyond 135°, the activating 

function was negative everywhere and only hyperpolarization occurred at the bend. The 

radius of the curvature was 0.5 mm for the HH model, and the curved section was about one 

λDC long. The RMG model had a bend radius of 3 mm, and the curved section had length 

spanning 4 internodes. The curve was flanked by straight sections of 20 mm lengths on both 

sides. Threshold was determined at the center of the straight section and was analyzed for 

both orthodromic (shown as arrow in figure) and antidromic propagation.

In the HH model (Figure 7, left column), thresholds were identical (within 1%) for 

orthodromic and antidromic propagation for field orientations pointing into (0°–45°) or 

inward tangent (45°–90°, field is more aligned with the straight segment proximal to the 

bend than distal) to the bend, and TP did not affect threshold (parameter space left to gray 

and white dashed line). As the field orientation turned outward tangent to the bend (> 90°, 

field is more aligned with distal axon), orthodromic activation exhibited lower thresholds for 

long pulse durations (between gray and white dashed lines). With the conventional CE, 

orthodromic activation remained the only mechanism of activation (between white dashed 

and solid lines, 95°–115°) before hyperpolarization prevented action potential generation 

beyond a certain orientation (α2 ≈ 115°, right of white solid line). For the modified CE, in 

comparison, TP in the proximal axon decreased threshold for outward tangent field 

orientations (95°–115°) and allowed transverse activation with lower antidromic thresholds 

(α1 ≈ 105°–110°, right to white dashed line).

The RMG model (Figure 7, right column) had lower thresholds overall and similar behaviors 

for field orientations into or inward tangent to the bend. There was also orthodromic 

preferred activation for outward tangent orientations and long pulse durations (between gray 

dashed line and white lines). For the conventional CE, however, hyperpolarization only 

prevented action potentials for short pulse durations (α2 ≈ 110°–115°, within white solid 

line) and anode-break excitation occurred for longer pulses (white dotted line); for the 

modified CE, TP resulted in transverse activation for short pulse durations (α1 ≈ 110°–115°, 

white dashed line) and anode-break excitation occurred for longer pulses (white dotted line). 

The effect of TP on threshold was limited to a very small parameter space.

Overall, transverse polarization influences threshold for some field orientations in the HH 

model and has minimal effect in the RMG model. The modified CE is valid for curved axons 

when the radius of curvature is larger than the axon radius and similar to the length constant. 

Results varied quantitatively based on the ratio between the bend radius and the length 

constant; however, qualitative feature were persistent with shifts for the boundaries (α1 and 
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α2) of the different behavior. A more gradual curvature allowed the conventional activating 

function to produce activation over a wider orientation angles (larger α2), whereas tighter 

bends led to the opposite, i.e., larger parameters space of transverse activation due to TP 

(smaller α1).

4.3. Axonal stimulation by point source and disk electrodes

Point sources (Figure 5, bottom left) are often used to model stimulating electrodes. The 

thresholds of the nonlinear models were examined within a smaller and more representative 

parameter space compared to the linear model in section 3.2. The axon–electrode distance H 

ranged between 30 µm and 3 cm, sampled with 6 values per decade. Minimal axon length 

was at least 5H or 8.0 mm (10·λDC) in either direction; the dλ rule or a maximum of H/5 

was used for axial discretization of the HH model. For the RMG model, the electrode was 

aligned with the central node to maximize the transverse field and the effect of TP. 

Threshold was determined as action potentials reaching axial locations at least 2 mm or 3H 

away from the center in either direction. This distance allowed propagation beyond the point 

of maximum hyperpolarization at .

Disk electrodes (Figure 5, bottom right) are commonly used to represent larger flat 

electrodes used in stimulation applications. The radius of the disk electrode was 100 µm and 

the analytical steady state solution of an ideal disk electrode in a semi-infinite medium 

[58,59] was used for all pulse widths. The axon was positioned parallel to the electrode 

surface and aligned through its center. All other parameters were the same as the point 

source electrodes.

The thresholds of the HH model (Figure 8) exhibited behaviors consistent with literature for 

both point source and disk electrodes, including the −1 log–log slope of the strength–

duration curve and the quadratic relationship between threshold current and electrode 

distance [44]. Threshold currents were smaller for the disk electrode due to the insulating 

substrate “doubling” the effective current amplitude compared to the point source. The near 

field (H ≤ 100 µm) behavior differed slightly between the two electrodes, with smaller 

thresholds for the point source (adjusted for the doubling). TP affected thresholds only for 

large electrode distances (H > 10 mm) and short pulse durations; however, thresholds for 

such parameters were unrealistically high (even considering the use of the HH model with a 

small axon radius).

The influence of TP on thresholds in the nonlinear models can be compared against its 

influence on membrane polarization in the linear axon membrane model (section 3.2). For a 

linear membrane, thresholds can be estimated from the maximum depolarization, in which 

action potentials are triggered whenever the membrane depolarizes to a certain voltage 

threshold. Therefore, the stimulus amplitude threshold of the linear membrane model is 

inversely proportional to the maximum membrane depolarization for a given pulse width and 

electrode distance, i.e.,  (max φm)−1, and the percentage change of the predicted 

threshold  is equal to the percentage change of the maximum depolarization δφ. Figure 8 

shows that the results with a nonlinear membrane do not agree with those of the linear 

membrane model. The predictions with the linear membrane fail because they attempt to 
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account for the behavior of an entire cylindrical compartment (the center compartment 

where both the activating function and transverse field are strongest) based on an 

infinitesimal thin slice of its membrane (single point in the case of spherical geometry). In 

contrast, the nonlinear membrane model captures the behavior of the entire compartment 

using the modified CE. The polarity of membrane polarization around the center 

compartment does not change for most parameters (50% dashed contour line), and even for 

large electrode distances and short pulse durations, only a relatively small fraction of the 

membrane on the anodal side reverses polarity to hyperpolarization. The behavior of the ion 

channels is dominated by the average potential of the compartment. Nonlinearities are small 

second-order functions of cos θ and the first-order function of TP is averaged out when the 

ionic currents are integrated over the entire surface. Transverse-field dominated activation 

only occurs when φ̄mis close to rest and the average depolarization is negligible compared to 

TP, allowing the two sides of the membrane to polarize with opposite polarity.

For the RMG model, the behavior (threshold, chronaxie, current–distance curves, etc.) 

agreed with the original model [44] and the distribution of thresholds was qualitatively 

similar to the HH model but with smaller amplitude (Figure 9). However, the modified CE 

revealed that TP caused less than 2% reductions in threshold over the same parameter space.

5. Discussion

5.1. Transverse polarization and modified cable equation

TP is a fundamental response of neuronal elements to exogenous E-fields and provides a 

sound biophysical foundation to describe quantitatively the coupling between extracellular 

E-fields and excitable cells. The modified CE captures the effects of TP by modeling the full 

3-D geometry and secondary fields generated by the membrane, thereby addressing 

limitations of the conventional CE. The modified CE reduces to the conventional form for a 

linear membrane, revealing that the latter is an accurate description of the average membrane 

polarization for subthreshold responses to exogenous E-fields. The analysis also 

demonstrates that the presence of the neuron does not affect the normalization condition 

based on extracellular fields (see equations (7) and (9)). Therefore, the secondary field 

generated by the presence of the neuron can be ignored for both the conventional and 

modified CE when calculating the activating function, which is defined based on the 

relationship of the normalization in the axial direction (9).

We demonstrated two implementations of the modified CE, both without significant 

adjustment to current algorithms or solvers. This compatibility reduces computational cost 

and complexity, allowing flexible inclusion of TP in simulations. As TP only occurs when 

exogenous fields are present, a further improvement is to switch the simulation from 

conventional to the modified CE when a transverse field is applied and back when TP 

modulation of the ion channels diminishes and all the membrane patches converge to the 

compartment’s average. The computational overhead for such switching is justified if the 

interpulse intervals are significantly longer than the pulse duration, as is typically the case.
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5.2. Thresholds from linear versus nonlinear membrane models

Linear membrane models were used previously to estimate the effects of TP on membrane 

polarization, with the assumption that the neural activation threshold is inversely 

proportional to the maximum depolarization around the membrane circumference. This 

assumption is equivalent to an idealized, fixed voltage threshold for action potential 

generation applied to all membrane positions. This linear model predicted substantial effects 

of TP on activation thresholds. However, using the modified CE and several stimulation 

configurations with nonlinear membrane models, we demonstrated that the effect of TP on 

the activation threshold is much smaller than expected from the linear models and can be 

neglected for most applications. This discrepancy demonstrates that the fixed threshold 

assumption, when applied to each point around the circumference of the membrane, 

introduces an unrealistically strong nonlinear amplification mechanism that does not 

comport with the softer nonlinearity of a realistic membrane and therefore significantly 

overestimates the effect of TP on activation thresholds.

Despite allowing transverse activation in some of the simulated scenarios, in most realistic 

situations TP is unlikely to affect thresholds at axon terminals or bends. The relatively 

symmetric distribution of dendrites and axon collaterals, for example of cortical neurons, 

results in low threshold activation of aligned terminals or bends before TP can activate 

transverse branches at much higher field strength. For axons, the threshold changes due to 

TP are insignificant for typical electrode and current parameters (pulse duration > 10 µs and 

electrode distance < 1 cm), especially for myelinated axons. Large electrode distances are 

only present in transcranial electrical stimulation, for which the model’s assumption of 

straight and sufficiently long axons is invalid.

Several other factors not included in our simulations are unlikely to change the conclusion 

that the effect of TP is minimal. When branching of the neural cable is considered, for 

example in dendritic arbors, additional terms are introduced into the CE at branch points to 

balance the axial currents. These terms are determined by the longitudinal field components 

and result in stronger activating functions compared to unbranched cables. Similarly, 

changes and especially discontinuities in parameters along the cable for example changes in 

diameter, also increase the activating function term. Furthermore, the interaction between 

neighboring fibers shields the applied field and reduces the TP of each axon. The effect is 

strongly dependent on the density of the cell packing, and may significantly reduce or even 

eliminate the 1/nD factor in the TP solution [34–36,38]. Therefore, realistic threshold 

changes due to TP are even smaller, and the percentage changes obtained in our study are an 

upper boundary. Overall, the conventional CE captures the neuronal response with accuracy 

sufficient for most practical applications of electrical stimulation.

5.3. Potential significance of modified cable equation

Despite the limited effect of TP on axonal activation thresholds, the modified CE could be 

used to explore specific stimulation scenarios where TP may be significant. For example, 

simulations could routinely include TP for the soma due to its size and proximity to the 

highly sensitive axon initial segment [40]. Further, models of magnetic stimulation could 

potentially benefit from the modified CE because the short pulse duration and low spatial 
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gradient of the induced E-field are characteristics associated with relatively strong influence 

of the transverse field. Moreover, subthreshold modulation due to TP could be of interest for 

modeling of network level behavior. Finally, ephaptic coupling between neighboring neural 

elements can also be studied without building FEM [39]. A neural element with significant 

membrane current  during action potentials generates an additional 

extracellular field that can be approximated by a series of time-dependent point sources, 

each representing a compartment of the neural membrane. At a neighboring compartment, 

the resulting field is added to existing extracellular fields and then applied to the modified 

CE. Such contributions are needed for only a limited number of predetermined neural 

elements that satisfy certain conditions, such as short separation distances and large ionic 

currents at the source element.

5.4. Limitations

Although the CE modified with TP improves the conventional CE significantly, it is still an 

approximation to the actual field distribution due to interaction of cell membranes with 

applied or self-generated E-field, especially for complex neural microstructures. For 

example, the branching of axons or dendrites may result in strong interaction of the 

secondary fields arising from cable segments close to the branching point. The analysis did 

not consider ephaptic interactions between neighboring neurons or the influence of a 

confined extracellular space. Further, any change in axon radius along the axial direction 

was assumed to be small, while the radius can indeed vary, for example following branching 

or at the axon hillock. For the myelinated axons, the modified CE did not accurately 

represent detailed geometrical properties of the periaxonal space, myelin attachment, 

paranode, and node [46]. Also, the adjustment term for the soma was derived for an ideal 

spherical geometry, whereas realistic neurons have irregularly-shaped somas that are further 

complicated by the dendritic arbor [38]. A detailed comparison with morphologically 

faithful FEM can further evaluate how well the modified CE captures the neural behavior in 

such cases.

6. Conclusions

We developed a theoretical framework to include the contribution of TP to the 

spatiotemporal distribution of neuronal transmembrane potential as described with a 

modified CE. Two numerical methods were proposed for implementation of the modified 

CE in general as well as in specialized CE solvers. The implementations for single 

compartments and distributed axonal cables were validated, and the effect of TP on the 

activation threshold was quantified for several common neural stimulation scenarios using 

two nonlinear membrane models. TP had a minimal effect in most electrical stimulation 

applications and only affected threshold for unmyelinated axons when the applied field had 

very short pulse durations and low spatial gradient. These results indicate that previously 

published models of TP using linear membrane models significantly overestimated the effect 

of TP on activation thresholds. The modified CE provides a full and coherent theory that 

addresses the limitations of these earlier TP models as well as of the conventional CE. The 

small effect of TP demonstrated for typical scenarios with the modified CE helps to validate 

the assumptions and approximations of the conventional CE. When necessary or desired, the 
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modified CE provides a simple solution to include TP for nonlinear membranes without 

involving complex and computationally expensive FEMs.
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List of symbols and notation

x, y, z Cartesian coordinates

ρ, θ, z Cylindrical coordinates: radial, azimuthal, and axial 

coordinate

ρ, θ, ϕ Spherical coordinates: radial, polar, and azimuthal 

coordinate

nD Dimension parameter

x̂, ρ̂ Unit vectors

φ, φ′, φ″ Electrical potentials: total field, primary/applied field, and 

secondary/response field

, Ex
Electric field: vector and component

σi,e Intra- and extracellular conductivities

R Radius of axon or soma

L Length of axonal compartment

S Surface area of neural compartment

φm, im Transmembrane potential and current density

cm, rm Specific membrane capacitance and resistance

τm, τc, τTP Time constant of membrane, cell, and transverse 

polarization

Conductance and reversal potential for ion channel j

Ii, Ri Axon’s axial current and axial resistance per unit length

Rm Axon’s membrane resistance per unit length

λ Axon’s length constant
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f Activating function

Θ Threshold

δ Percentage change

Appendix I

Solution of transverse polarization in cylindrical and spherical cells

The potential of the applied primary field has the form  in the cylindrical/

spherical coordinate system when assuming the neuron is absent. The potential of the 

secondary field has a similar form . Considering cylindrical and spherical 

harmonics with natural boundary conditions so that P(ρ) is bounded and P(∞) = 0, 

Laplace’s equation (2) yields

(26)

Two more time constants are introduced besides τm. The cellular time constant τc is

(27)

which is the time constant of charge redistribution on the cell membrane. The transverse 

polarization time constant τTP combines the contribution of both τc and τm

(28)

The full temporal solution to the system of equations is [4,21]

(29)

where ϵ = τTP/τm. The solution contains two transients, namely TP via global charge 

redistribution and local membrane charging. The membrane polarization is
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(30)

If the intra- and extra-cellular spaces have different conductivities, there is also a net charge 

density qs stored on the membrane

(31)

where ℰi,e are the permittivity of the intra- and extra-cellular spaces.

Given typical values for conductivities of 1–10 mS/cm, membrane capacitance of 1 µF/cm2, 

and radius of 1–10 µm, the cellular time constant is in the range of 10–100 ns, with the lower 

and upper bounds corresponding to axons and somas, respectively. With σm ≪ σi,e and 

membrane resistance of 1–10 kΩ·cm2, the typical membrane time constant at rest is much 

larger (1–10 ms). Therefore, τTP ≈ τc < 1 µs and ϵ ≈ 10−5–10−4. Under this approximation, 

the potentials at steady state after TP are given in (8) by setting the exponential decays to 

zero and substituting (27) and (28) in (29) and (30). Figure 10 illustrates the steady state 

with the charge distribution shown on the membrane.

When an E-field with full 3-D variation is applied to an axon, the solution for Laplace’s 

equation is in the form of cylindrical harmonics (Am(k)Im(kρ) + Bm(k)Km(kρ)) exp jkz exp 

jmθ [26,28,30,31,35,36], where Im (kρ) and Km(kρ) are mth-order modified Bessel functions 

of the first and second kinds, respectively. The parameters k and m describe spatial variation 

of the field in the axial and azimuthal directions. For the azimuthal parameter, the zeroth 

mode is the longitudinal solution of CE with axial symmetry. Non-zero modes correspond to 

transverse solutions whose amplitude is modulated by the spatial frequency along the axis. 

The secondary field generated by neurons during TP does not affect the local normalization 

condition (7) due to the cos mθ-modulation for any transverse modes. The first mode 

corresponds to uniform transverse field, and higher modes represent multipolar transverse 

field distributions. It is highly unlike that any realistic applications have microscopic 

multipolar field distribution, and therefore m ≥ 2 terms typically have much smaller 

amplitude; the first order term dominates the transverse field, and high order terms can be 

safely neglected [35]. Due to the slow changes of the field in the axial direction, the spatial 

frequency k of the applied field is very small, typically on the order of 0.1–1 mm−1. 

Therefore kρ ≪ 1 holds for ρ on the cellular scale of micrometers and the potentials 

degenerate into the same form as (26) under the approximations I1(kρ) ∝ ρ and K1 (kρ) ∝ ρ
−1. Hence the solution of TP under uniform E-field condition can be used for most realistic 

exogenous field distributions.
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Appendix II

Ion channel conductance and dynamics

The original HH model [43] is used at room temperature. The RMG model [44] contains 

HH-type fast sodium channels (m3h), persistent sodium channels (p3), and slow potassium 

channels (s) at the nodes of Ranvier. The parameters of both models are listed in Table IV. 

For channel dynamics and their temperature dependence, please refer to the original 

publications.
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Figure 1. 
Unified coordinate system for axons and somas. The local field orientation defines the x 

direction for both geometries. For the axon, the z direction is aligned with its axis. For the 

soma, the y and z directions and azimuth ϕ are arbitrary but are shown to be consistent with 

the axon.
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Figure 2. 
The modified cable equation implementation in NEURON. Additional compartments are 

attached to each compartment subject to transverse field, forming the spoke-hub structure on 

the right with N = 5 and M = 2 shown as an example. For simplicity, the cylindrical 

compartments within the solver are represented as rectangles with their nodes shown as 

points and topological connections as lines. The black hub compartment retains the 

topological connection with adjacent compartments and holds the mean membrane potential 

in the modified cable equation. The spoke compartments represent the membrane modulated 

from the mean values by the transverse polarization resulting from the transverse field. Due 

to the negligible intracellular resistivity, any neurite connected to the soma can be attached at 

the node or either end of the hub.
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Figure 3. 
Strength–duration curves on log–log scale for HH-type single compartments under 

transverse E-field. The threshold values are normalized for compartment radius and results 

are identical within geometry for different radii. See main text for discussion of discrepancy 

between the two implementation methods. The soma has about 60% higher thresholds than 

axon for a given radius. The log–log slope for short pulses is −0.79, different from the −1 

slope for the integrate-and-fire model.
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Figure 4. 
Percentage difference in the maximum membrane depolarization between the conventional 

and the modified cable equations for a linear unmyelinated axon and point source model 

with cathodic current input. The contour lines indicate increasing influences of transverse 

polarization for shorter pulses or farther electrode placement. The dashed horizontal lines at 

about 7.5 ms indicates the pulse width to reach steady state for the membrane potential. The 

left shaded region indicates deviation from the analytical solution [28] in the near field 

where the assumption of uniform transverse field is invalid. The shaded region in the center 

outlines the parameter space of typical neural engineering applications using electrical 

stimulation.
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Figure 5. 
Illustration of test scenarios for electrical stimulation. Top: semi-infinite axon with terminal 

(left) and infinite axon with bend (right) in uniform E-field. Bottom: infinite axon in E-field 

generated by point source (left) or disk (right) electrode.
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Figure 6. 
Influence of transverse polarization on activation of axon terminals under uniform E-field. 

Top row: threshold values obtained with modified cable equation. Bottom row: percentage 

change of threshold compared with conventional cable equation.
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Figure 7. 
Influence of transverse polarization on activation of axonal bends under uniform E-field. Top 

and middle rows: threshold values obtained with conventional and modified cable equations, 

respectively. The dashed and solid white/gray lines delineate parameter boundaries for 

different behaviors of the models (see main text for discussion). Bottom row: percentage 

decrease of threshold of modified cable equation. The dotted vertical lines separate field 

orientations into three categories: into the bend (0°–45°), inward tangent (45°–90°) and 

outward tangent to the bend (90°–135°).
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Figure 8. 
Activation of axons by point source (left column) and disk electrodes (right column) for the 

HH model. Top row: threshold values obtained with the modified cable equation. Bottom 

row: percentage decrease of threshold compared with conventional cable equation is shown 

as solid contour lines, with percentage difference in maximum linear depolarization overlaid 

as dashed lines.

Wang et al. Page 35

J Neural Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Activation of axons by point source (left column) and disk electrodes (right column) for the 

RMG model. Top row: threshold values obtained with modified cable equation. Bottom row: 

percentage change of threshold compared with conventional cable equation (note different 

color scale compared to Figure 6–8).
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Figure 10. 
The steady state polarization of the membrane and intracellular space after transverse 

depolarization. The bi-directional charge redistribution through the intra- and extra-cellular 

spaces (with τc time scale) hyperpolarizes and depolarizes the anodal and cathodal 

membrane, respectively. Polarization also occurs through the local membrane resistance 

with τm time scale. The secondary intracellular field is opposite in direction to the applied 

field and almost entirely cancels out the applied field, leaving a residual field with a relative 

magnitude ϵ at steady state. The vector lengths are exaggerated for illustration purpose. The 
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mismatched sizes of the “+” and “–” symbols represent the stored charge, with σi > σe 

assumed; for σi < σe the size relationship is reversed.
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Table I

Parameters for the N compartments in the multicompartment structure modeling transverse polarization shown 

in Figure 2.

Parametersa Axon Soma

Surface areab

c

Axial resistanceb 1 (hub) or 0d (spokes) 0d

Extracellular potentials

a
See (20) for definition of angles θb and indices b. Hub and spoke compartments correspond to b = 0 and b ≠ 0, respectively.

b
Values given as fraction compared to the parameters of the original compartment. Implementation is non-unique and can be achieved by various 

combinations of compartment length, diameter, and intracellular resistivity.

c
Exact ratio is .

d
Or a negligible value, e.g., 10−3, to avoid numerical issues within the solver.
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Table II

Simulation parameters for unmyelinated axon and point source electrode.

Intracellular conductivity σi 28.3 mS/cm

Extracellular conductivity σe 10 mS/cm

Axon radius R 3 µm

Current amplitude I −2 mA

Axon–electrode distance H 4.5 µm–10 cm

Pulse width PW 0.1 µs–100 ms
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Table III

Axon parameters of myelinated axon.

Parameter Units Node Internode

R µm 1.65 3

L µm 1 1150a

cm nF/cm2 2000 0.42

rm kΩ·cm2
0.096b 240

σi mS/cm 14.3 14.3

σe mS/cm 2 2

a
Total length of 10 compartments.

b
At rest.
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Table IV

Ion channel parameters for the HH and RMG axon models.

Parameter Symbol Units HH RMG

Maximum Na+ conductance gNa mS/cm2 120 3000

Maximum persistent Na+ conductance gNap mS/cm2 – 5

Maximum K+ conductance gK mS/cm2 36 80

Leakage conductance gL mS/cm2 0.3 80

Resting potential Vr mV −65 50

Na+ reversal potential ℰNa mV 50 50

K+ reversal potential ℰK mV −77 −84

Leakage reversal potential ℰL mV −53.39 −83.28

Simulation temperature T °C 23.5 37
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