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Modified Cohen-Lee Time—Frequency Distributions
and Instantaneous Bandwidth of Multicomponent
Signals

Patrick J. LoughlinMember, IEEEand Keith L. Davidson

Abstract—Cohen has introduced and extensively studied given time, particularly for so-called “multicomponent” signals
and developed the concept of the instantaneous bandwidth of [18]. Indeed, it is well known that the derivative of the phase of
a signal. Spec_lflcally, instantaneous b_andwndth is interpreted a signal often ranges beyond the spectral support of the signal
as the spread in frequency about the instantaneous frequency, 31 1181 vielding th dox that th d fre-
which is itself interpreted as the average frequency at each [3], [18], yie I_ng gpara OX tha _e suppose a\_/erage re
time. This view stems from a joint time—frequency distribution quency at a given time is often outside the bandwidth of the
(TFD) analysis of the signal, where instantaneous frequency and signal. This difficulty in interpretation of the derivative of the
instantaneous bandwidth are taken to be the first two conditional phase has given rise to renewed efforts to find new definitions

spectral moments, respectively, of the distribution. However, the ot instantaneous frequency that are amenable to clear physical
traditional definition of instantaneous frequency, namely, as the . .
interpretation [17]-[21].

derivative of the phase of the signal, is not consistent with this I L ) L .
interpretation, and new definitions have therefore been recently ~ As we show here, similar difficulties arise in the interpreta-
proposed. In this paper, we show that similar problems arise tion of the Cohen—Lee instantaneous bandwidth as the standard
with the Cohen-Lee instantaneous bandwidth of a signal and deviation in frequency at a given time. Namely, like the instanta-
propose a new formulation for the instantaneous bandwidth that - a5 frequency, the instantaneous bandwidth often ranges be-
is consistent with its interpretation as the conditional standard . . .
deviation in frequency of a TFD. We give the kernel constraints yond the_ glqbal b.andw'dth.Of the signal. Nevertheless, the In-
for a distribution to yield this new result, which is a modification ~ terpretation itself is appealing, and we are therefore motivated
of the kernel proposed by Cohen and Lee. These new kernel to pinpoint the source of difficulties that arise in interpreting
constraints yield a modified Cohen-Lee TFD whose first two jnstantaneous bandwidth as the spread in frequency at a given
gﬁgdgg%ré%\'lig:ﬁ”;fgi I?;?rr:gti;%rs;‘igfegs the average frequency ime and to suggest a new candidate for instantaneous band-
‘ ' width that is consistent with this interpretation. Such is the pur-
~ Index Terms—Conditional moments, instantaneous bandwidth, pose of this paper. Because our approach builds on recent results
instantaneous frequency, time—frequency analysis. regarding instantaneous frequency, we summarize these results
first and then present new results regarding instantaneous band-
|. INTRODUCTION width. We give the kernel constraints for a Cohen-class TFD to
ield this new candidate for instantaneous bandwidth and illus-

has b velv develobed by Coh icularl te these results by computing TFDs with these conditional
as been extensively developed by Cohen, particular Y floments for synthetic and real signals. Because of the sym-

the context of time—frequency d_istri_butions (TFDs), wh_ere it_ '|§1etry between the time-domain and frequency-domain formu-
taken to b? the standard deylanon n frequengy atagiven t“@?ions of Cohen-class TFDs [3], the results extend readily to
[3]-[6]. This approach and view stem from the interpretation Yonditional temporal moments, namely, the average time at a

m?a}? tar?eousl;frequency as “}"*‘Fgeaf‘ :Le(tqhuencyt atta given tifiGe frequency and the spread in time at a particular frequency
which arises because many s yie e instantaneous fige, « o duration”).

quency (derivative of the phase) of a signal for their first condt-
tional spectral moment [3]. As Cohen reasons, given the mean,
itis natural to ask about the standard deviation, which gives rise
to the concept of instantaneous bandwidth [3]-[6]. A. Instantaneous Frequency and Bandwidth

While this view and approach are appealing, difficulties arise For a signak(t), written in complex form in terms of its am-
in interpreting the traditional definition of instantaneous frepjitude and phase
quency (derivative of the phase) as the average frequency at a

T HE instantaneous bandwidth of a signal is a concept t

Il. BACKGROUND

_ _ _ _ s(t) = A(t)e?*® (1)
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and the instantaneous bandwidth, per Cohen and Lee [4]-[6]wieen the components exhibit symmetry [19], [21]. For an odd
given by the (absolute value of the) derivative of the log-amplirumber of componentsy = 2K + 1 in (6)], the signal com-
tude ponents have (even) symmetry when

A'(t) Gak11=a 11— oK = g2 —
‘ ‘ ‘ A(t) ‘ i 3) 2K +1 1 P2K+1 — P2K Y2 — @1
Qo = A2 P2k — P2K-1 = ¥P3 — P2
The instantaneous bandwidth is related to the global bandwidth,
given by
K42 = aK  Pr+2 — Pr+1 = Pr+1 — pr.  (11)

7= ([ Pt @) @) See (19, 21] for detais

In addition, even for signals without this symmetry, it has
where S(w) is the Fourier transform ofs(¢), and recently been shown that this weighted average instantaneous

(w) = [w|S(w)|* dw, according to [3] frequency (WAIF) can be obtained from the first conditional
) . ) . spectral moment of a spectrogram for an appropriately chosen
0L = /'Lb (H)A°(t) dt + /(<w> —w;(t))"A(t)dt.  (5) (signal-dependent) window [15]. These results support the inter-
pretation of the WAIF as the average frequency at each time. We
build on these results and consider the interpretation of instanta-

Nl

For the case of a “multicomponent sigrral”

N neous bandwidth as a conditional spectral moment, namely, as
s(t) = A(t)e’? P =" ap (1) O (6) the standard deviation in frequency at a given time. Such an in-
k=1 terpretation requires that the result be positive and bounded by
we have for the instantaneous frequency and bandwidth, per (3§ global bandwidth of the signal. We give here a suitable can-
and (3) (for the casé&/ = 2) idate that meets these requirements and provide the (signal-de-
pendent) kernel constraints for a TFD to yield this candidate for
A%(t) = ( )+ a3(t) + 2a1(t)az(t) cos Ap1a(t)  (7) its second conditional spectral moment. We also give the kernel
Iy / constraints for the TFD to yield the WAIF for its first condi-
(8 = ( ) ( D1 (1) + a3(D)a (1) tional spectral moment (which is a generalization of the result
+ (d} (t)aa(t) — a1 (t)ab(t)) sin Apia(t) previously obtained for the spectrogram [15]).
!
, + a1(Dax()(#1 (1) + 9a(1) cos Apia(H)) - (8) B. TFDs and Conditional Moments
Al(t 1 .
<A((t))> - )(al(t)a’l (t) + as(#)ah(t) From a TFD of the signal [2], [3]
+ (a1 ()ab(t) + d} (£)as(t)) cos Agis(t) P(t0) = 73 /// u—7Ys(ut )
— a(Dax()(P (1) — #h(1) sin Agra(1)) (9)

x $(8,7)e 0 J”W“ dudf dr (12)
whereApy»(t) = ¢1(t) — 2(1) _ . _

Note the presence of oscillatory terms in the instantanedly§ere¢(6, ) is a kernel that specifies the particular TFD, the
frequency and bandwidth, which cause difficulties in interpré&onditional spectral moments are given by

tation of these quantities as conditional averages. Specifically, [wrP(t, w) dw 1

both quantities generally extend beyond the spectral range of (w"): = TP( c;)dw = 0] /w"P(t,w) dw

the signal (except under special circumstances in the case of in- ’

stantaneous frequency [19], [21]). = / W P(w|t)dw (13)

It is generally held that a more appropriate expression for

the _instantaneous frequen_cy of a muIticomponen_t signal i%/\ihereP(t) is the time marginal of the TFD, anB(w | t) is
“weighted average” of the instantaneous frequencies of the the time-conditional spectral density. The average frequency at

dividual signal components [12] each time is given by the first moment B{w | ¢), which is the
2 ! 2 / conditional mean frequency)., and the spread in frequency
ai ()¢’ (t) + a3 (t)es(t) o : )
(1) = . 1
wi(t) a2(6) + ad(t) (10) at each time is obtained from the varianceltv | ¢),
It has recently been shown that the instantaneous frequency ol = (W) — (W) (14)

(derivative of the phasexactlyequals this weighted average By substituting (12) into (13), we may express the condi-

2We consider a signal to be multicomponent when its TFD exhibits well-sefional spectral moments in terms of the signal and kernel (see

arated ridges in the time—frequency plane. One measure of this separation, gj - ;
by Cohen and Lee [4], is that the instantaneous bandwidth of each component endix), as in (15), shown at the bottom of the next page,

less than the separation between the instantaneous frequencies of neighbd¥igre+ denotes convolutiors™ (t) denotes theith derivative

components{a’(t)/a:(t))? < (£i(t) — 4 ()2, i # k. We take that to be of s(¢), and
the case here. Such signals may be categorized as “locally narrowband.”
3The generalV-component case is a straightforward but lengthy extension A 1 o\’
of the two-component case, which we consider here for simplicity and lucid ~ K;(t) = — / <—> 6,7) e~ dp. (16)
presentation of the main ideas. See the Appendix for the more general case. V2r ar =0
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For the signak(t) = A(t)e’*®, the first two moments are Note that the conditional spectral variance of the Wigner dis-

A2(8)! (£) % Ko(t) — 2A2(t) K1 (t) tribution can be negative and that of the Rihaczek distribution
(wh = 12 (17) is complex. Accordingly, for both distributions, there are diffi-
() * Ko?) lties in interpreting the conditional standard deviation in th
and cu |e|s inin erpre; ing tr(]a condi |(c]|)nat1J s ??h ar ewa; ion |hnr e
CAZ(E) 5 Ko () — 29A2(8)0! () % K (£ usual way, namely, as the spread about the mean at each time.
(W), = (1) Ka(t) = 2747(0)'(H) + Ks(?) It has been shown by Cohen and Lee [4] that with rather mild

L AQ(? ¥ K,g(t) . constraints on the kernel, a conditional variance that is always

4 (A1) +24%(t)p 2(t) — A(HA”()) * Ko(t)  non-negative for all signals can be obtained. Specifically, for
A2(t) % Ko(t) ©4(0,0) = 1,0¢(0,7) /07| =0 = 0, andd* (0, 7) /72| =0 =

(18) 6?/4, the conditional mean frequency and the conditional spec-

Thus, for the Wigner distribution, with kerne{6,7) = 1, tral variance are given by

the conditional moments are (W) = (1) (28)
(=3)" 30 (1) (D' P 1)s" () ABN:
w™, = 2y 2 2
(W™ = EOE (W) <A(t)> + ¢ (1) (29)
(" (&) {s(t+3) 5 (t- 9)} ) <Af<t>)
_ u=0 [ . (30)
from which we obtain the weII-known results for the first twoAlthough, unlike the Wigner and most other TFDs, the second
moments of the Wigner distribution [3] moment here is real and positive (as it should be), TFDs that
(@) = &() (20) yield these results are nevertheless generally not non-negative.
i ) Because the TFD contains negative values, it may produce first
(w2, = 1 A'(t) _ A"(t) + 'Q(t) 1) and second conditional spectral moments that range beyond the
t7 2 A(t) A(t) spectral support of the signal—such as the instantaneous fre-
W 2 guency and instantaneous bandwidth above. For such a TFD of
O'f-u = < (t)> — () (22) a multicomponent signdlV = 2), the second conditional mo-
2 |\ A®) A(t) ment [see (29)] is evaluated as
For the Rihaczek distribution [23] with kernel(d,7) = 5 1 - - o o o o
¢#7)/2 [3], we obtain the moments in (23), shown at thel® )t = A2 (“l () + a5 (1) + a1 (W), (1) + az(t)es ()
bottom of the page, which can be written equivalently, and 21 (1) dy (1)@ () — d, ()az(£)y()) sin Apia(t)
more compactly, as L , ;
(1 . ) . + 2(a1 (H)ay(t) + ar(t)az (D)1 ()¢, (1))
s(t)
(™) = [ 7 dt s ] ' (24) X cos A(plg(t)) (31)
S
Note the oscillatory terms, which tend to cause difficulty in in-

This latter expression was derived by Poletti [22] by direct calerpretation of this quantity, as well as®f |,
culation of the conditional moments of the Rihaczek distribution TFDs that are non-negative and satisfy the marginals [7],

P(t,w) = s(t)S*(w)e™**. The first two moments are [16] do not generally yield these results and, as such, cast fur-
A'(t) ther doubt on the interpretation of these definitions of instan-
(Whr =¢'(t) + A (25) taneous frequency and instantaneous bandwidth as the average
frequency at a given time and the spread in frequency at a given
/ A"(t) A'(t) . S . ; :
(w2>t = Q(t) — +7 <¢”(t) +92 <p’(t)> (26) time. One of our aims is to obtain an expression for the instan-
A(t) A(t) taneous bandwidth that can be interpreted as a true conditional
s (A1) A "y 27) spectral variance, analogous to the results recently obtained for
Tuolt = A ) T AW + 39" (t). instantaneous frequency (namely, the WAIF).

L () B () (1 Ot @ | Ka(®) a5
W= SR+ Kol?)

DY () (1R (L ) (D' () st=D(t)
oy = BT () 1 () |S{(N;o() ) -
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lll. RESULTS we present next, also yields the WAIF. We then give kernel con-
In this section, we derive an expression for the instantaneoﬁgaintS for a Cohen-class TFD to yield the proposed conditional
’ oments.

bandwidth of multicomponent signals from two different apr-n

proaches. Examples are then provided to demonstrate theE!e_Secon d Approach: Gaussian Mixture Model

sults.

Letxz(t) = Ef‘zl x;(t) be a multicomponent random process
A. First Approach: Eliminate Oscillatory Terms from where ther; () are independent (and urnknown). The spectral
Expression density is thus of the fornP(w) = Ef‘zl F;(w), where the

As we remarked earlier, under certain conditions of sign F(“’) are the (unknown) spectral densities Of. the individual
symmetry, the oscillatory terms in the usual definition of insta unknown) components;(t). Suppose we are given the mean

taneous frequency drop out, resulting in the WAIF [see (10)] f r[((ejqutlapcgm ang bandwidth (spectra:jvirignoaiﬁ of the indi-
such signals [19], [21]. In addition, even for signals without thi¥ uaNln epen en'g comppngnts, an their re auvg pQwer
> ;-1 pi = 1. Given this information, a Gaussian mixture

symmetry, the first conditional spectral moment of a spectro: ; Lo
gram can eliminate the oscillatory terms from the instantanedigde! [24] of the spectral density can be made and is given by
frequency and yield the WAIF [15]. We are therefore naturally N Coiy?

led to consider the result one obtains for the instantaneous band- Po(w) = Z pi G—T}Z (34)
width by simply dropping the oscillatory terms from the second em  \/2n0? '

moment [see (31)] as well. Doing so, we obtain

), = d2(8) + d2(t)  a2(DQ2(t) + (e 2 (H) (As an aside, note thaV(\/27ra§)c—<<‘°‘—fff>2>/2"? is the (nor-
Wit = a2(t) + a3(t) a2(t) + ad(t) : malized) maximum entropy spectral estimatedg(t). The en-

(32) tropy of the Gaussian mixture is given by
Taking this result together with the WAIF [see (10)], we obtain

the conditional spectral variance H[Pyn(w)] = — / Pyn(w) 1 Py () doo
2= alzgg j: af((tt)) a?(t)aégt)(w’l (ti - <p2’2(t))2_ L

a a as(t) + a3t =— e 7

HORY: @raor I

Note that this expression fmf-u is non-negative for all sig- N N i
nals, which is good. Further, it exhibits reasonable behavior as x In Z b e dw
a measure of spread in frequency at each time: As the sepa- j=1 27r0]2»
ration between the instantaneous frequencies increases, so too N i)
does this measure of “instantaneous bandwidth,” and as the am- > _ Zpi / 1 o 7
plitude modulations become more pronounced (i.e., such that =1 2n07
ay(t) andab(t) are very different from zero), the instantaneous 1 _wmnp)?
bandwidth again increases. Conversely, as the amplitude mod- X 111< =C 20 ) dw
ulations decrease (i.ez; (¢) anday(t) become constants), the Vino;

instantaneous bandwidth also decreases. N 1 -l
But can we justify simply dropping the troublesome oscil- = ZPZH \/ﬁe %
latory terms from the second conditional moment expression? =1 i

At least for the first conditional moment, the oscillatory term . . .
were “naturally’ eliminated under certain conditions to yiel rom which we observe that the entropy of the Gaussian mixture

the WAIF, namely, for symmetric components and in the condB Ipwer bounded by the weighted.s.um of the entropies of t'he in-
tional mean of a spectrogram in many cases. Do the same c89_{1d“a' (maximum ent.ropy) densTe; [.141]I.'r1us, thg Gaussian
ditions eliminate the oscillatory terms in the second conditiong]'xture may also be viewed as a “minimax .SOIUUO” t_o amax-
moment, as well? Unfortunately, no. It is easy to verify that tHEUM entropy §tatement of the problem, given the individual
oscillatory terms do not cancel out by settiagt) = ax(¢) in means _and variances.)

(9); see [13] for a specific example. In addition, the second con-Th.e first- and second—_order spectral moment#pf(w) are
ditional moment of a spectrogram is typically distorted by threeadlly calculated and given by

window [5]. This distortion, which cannot generally be elim-

(39)

N
inated, makes it virtually impossible for the conditional spec- /
. . . m = P, m dw = 7 36
tral variance of a spectrogram to exactly equal the expression in (W) wFgm(w) dw ;p K (36)
(33), even when the first conditional moment of the spectrogram N
does exactly equal the WAIF [see (10)]. (@) gm = /wQPgm(w) dw — Zpi (62 +43)  (37)
However, the second conditional spectral moment and vari- p}

ance expressions above can be obtained from another rather dif- L .
. . . . . “The inequality in (35) follows from the non-negativity of the cross-en-
ferent approach: a Gaussian mixture model of the time-varyifgy, petween any two densitie®®, (w) and Py(w), ie. [ Py(w)

spectrum of the multicomponent signal. This approach, whiaky P, (w)/Py(w)) dw > 0.
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and the spectral variance is therefore signal components are well separated in the time—frequency

) ) ) plane and the spectrogram window is lowpass with cut-off fre-
Ogm = (w Yem — {w >gm guency less than the smallest separation between the instan-
N taneous frequencies of the components. (Note that this con-

= sza + sz (1—pi)p Z pip;iiti. (38)  straint is signal dependent.) We generalize this result for ar-

%J;ejl bitrary kernel and consider the second conditional moment by

giving the kernel constraints such that we obtain the moment
We extend this model to the time-varying case by letting tif@ndidates derived in the previous section.

individual spectral means, variances, and relative powers deSpecifically, for alocally narrowband multicomponent signal

pend on time; accordingly, the spectral density also depends'#h well-separated components and a TFD with a lowpass

time. From the previous considerations, given the time-depésgrnel such that

dent mean frequency;(¢), spectral variance?(¢), and rela-

tive powerp;(t) of each component, the time-dependent spec- Ko(t) = 20. ) (49)
tral density is V2
Kiit)=0 (50)
SN pilt) | -t K(®) (6.6) (51)
Pm wlt) = 246 2072(0 . 39 2 =
(@ |7) ;mz(t) (39) 2#

The first and second (conditional) spectral moments are exadfferede < |¥1(f) — ¢h(#)|, Ki(t) was defined in (16) and

as in (36)—(38), except that now they depend on time J¥ct S&z) = sin(x)/z, it follows by substitution into (17) and (18)
that the first two conditional spectral moments and the spectral

2, we have ; i : X X
variance for this multicomponent signal are given by (=
(W)t = pr(H)pa (t) + p2(t)pa(t) (40) 2)
2 _ 2 2
<w2 >t — pl(t) (z—l (t) + M1 (t)Q) +p2(t) (0 (t) + NQ(t)) (41) _ a%(t)SOi (t) + a%(t)gaé(t) 5o
o211 = P (D3 (2) + B (Do3() + p1 ()p2(t) Wi == 20T a0 52
2 ’ ’ ’ ’
X (i) = pa(t) (42) 2y, = LOHGEW | AP0 +dOeF ) oo
- 2 2 2 2
[where (42) follows from the fact that, (£) + pa(#) = 1]. ai(t) + a3(t) ai(t) +a3(t)
If we take for the time-dependent mean frequency, spectrala  _ a(t) + as(t) " ai (t)a3 (1) (¥1(t) — 5(t)? (54)
variance, and relative power of each component the following “!'* ~ a2(t) + a2(t) (a2(t) + ag(t))Q
gquantities:
y y (see the Appendix). These results are identical to those obtained
pi(t) 2 % palt) & - ay( )2 (43) in the previous section. o
af(t) + a3(t) ai(t) + a3(t) The constraints given in (49)—(51) may be given in terms of
AN AN
TORTACEITORIEAD (4q) the kemelas
o & (AN 5 A (ah®)) 0
a(?) a2(?) #(8,0) 0, otherwise (53)
then on substituting (43)—(45) into (40)—(42), we obtain ap(6,7) _0 (56)
2 / ! or — N
_ a3()¢1(8) + a3(t)ph(t) =0 )
W=+ a0 o) Foen| - - { o<1 7)
7 7 2 .
oy, = LO () Ol + BEei() o lr=o [0, otherwise.
ai (t) + a3(t) ai(t) + a3(t) . : .
(47) A kernel that satisfies these constraints and that yields (52)—(54)
GO+ | GOBAD = Gh0) g T T TOTEnS S NN By
<187 a2 (t) + a3(0) (a2(t) + a3(t))?

$(0,7) = (1 + c(f7)2)e="F rect<2z ) (58)
These conditional moments are identical to (10), (32), and (33), ¢
respectively. In the next section, we give kernel constraintsin t .

Cohen class to produce TFDs that yield the above expressig{?]serec = (1/8)+ (1/0), and

as time-conditional moments. < 1L, |6 <6
rect

4 :
290> - {0, otherwise. (59)

It has been previously shown [15] that a spectrogram willhis kernel is a modification (lowpass version) of the
yield the WAIF for its first conditional spectral moment if theCohen—Lee kernel [4], which was itself a modification of the

IV. TFD KERNEL CONSTRAINTS
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Choi—Williams kernel [1F Other kernels that satisfy theseconstraints, namely
constraints are also possible. For example, the kernel

1, H <1
$(0,7) = (1 + c(fr)2)e™ 7 Cos<9§> rect<2z ) (60) { 0, otherwise
c b (67)
(here,c = (1/4) 4 (1/0)) also yields the conditional moments 0, otherW|se
above. A RID-type kernel [10] can be designed to yield these 9p(6,7) ad)(g 7)
moments as well, simply by using a RID kernel in lieu of the o =0 =0 (68)
Choi—Williams kernel in the expressions above (with a different ) =0 §=0
value for the constantthat depends on the particular RID kernel I*P(8,7) _ % ‘—‘ <1
used). ar? | otherwise
2 72

A. Conditional Temporal Moments 0 (/(;(992 ) - { Py (69)

Due to the time-domain and frequency-domain symmetry of =0 0, otherW|se.

the Cohen formulation of TFDs, i.e., because (12) can be equi¥mer kemels that yield these moments can also be designed.
alently expressed as Indeed, any product kernel that yields the Cohen—Lee instanta-
P neous bandwidth can be modified by multiplying it with the rec-
P(t,w) — /// S* <u + ) <u — _) (0, 7) tangle functions above to obtain a TFD with the proposed con-
T dr ditional moments in time and frequency. Additionally, the rec-
—30t—jrewtyTu tangle functions, which form an ideal, separable lowpass filter in
X e de dr du (61) . .
the ambiguity domain, can be replaced by a nonseparable low-

e — et pass filter with finite rolloff. For example, a Butterworth-type
whereS(w) = (1/v2m) [ s(t)e dt, the above results hOId Pwpass kernel that (approximately) satisfies the kernel con-

also in the case of conditional temporal moments with a simp fralnts is
transcription of variables. That is, for a two-component signa
2
with spectrum $(6,7) = (1 + C(QT)Q)C_WC)
_ g1 (w) g2 (w) AN 2n\ 7
S(w) = by(w)e + ba(w)e (62) x |14 <_> + <l> m,n > 1. (70)
b Te T

we maintain that the first- and second-order conditional tem-
poral moments and conditional (local) duration are given by For this kernel, we have

B () + B()d () _ AN
2y _ b2() +BR(w) | BR@I(w) + B (w) Y
LB ABW T B B ¢“”’Z<1+<Z> 7
(64) WO o ED o
o a6
2 @) H V) | D@)B@) (] () — v ())* . g - )
He ™ b w) + (W) 02(w) + B3(w))* % = <1 + <9_) )
(65) ™ =0 e
2 2 2n\ 1
These results, along with the conditional spectral moments % = % <1 + <1> ) (73)
given previously, may be obtained from a Cohen-class TFD =0 Te

with a kernel such as where the degree of rolloff in théandr directions is controlled

by the parameters: andn, respectively. A comparison of this
) rect< ) (66)

0-)2

H(0,7) = (1+ c(er)Q)(z_(Trect(ZZ

kernel to the rectangle-based kernel of (66) is shown in Fig. 1(a)
and (b). Note that unlike the more conventional kernels, for ex-
ample, the Choi—Williams kernel shown in Fig. 1(c), these new
éawpass kernels peak away from thendr axes.

One can also think of other signal-dependent modifications to
SNote that thes parameter of the Choi-Williams kerngh(6,7) = add to the lowpass nature of the kernel, for example, such as in-

e~(®D%/7)) is retained in the modified Cohen-Lee kernel. Thus, thegrporating the kernel design method of Baraniuk and Jones to
reduction of crossterms may also be controlled in the present formulation, W|tr|1 he ki lal he chirp di f
smaller values of producing a kernel that decays faster away from#ke align the kernel along the chirp direction of auto-components in

axes and, hence, greater cross-term attenuation. the ambiguity plane [11]. As with kernel design in general, there

wherer. < | (w) — ¥5(w)], andb. < |1 (t) — h(t)]. Itis
straightforward to verify that this kernel satisfies the propos
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For an arbitrary functiorf(¢), it can be shown [using (49) and
(51)] that

2
[0 ot =~ o S+ Kolt). (76)

. Plugging this result into (75) gives
° / (W2, P(t) dt

1 1 d? 1, ,

< taoe) o taz] A = ~ae <_Z?A2(t) - 5(A 2(4) + 24%(t)p 2(t)
© —A(t)A”(t))) * Ko(t) dt
1 1 " 1 1,
= _\/—27/ <—§A(t)A (t) — 5A 2() — §A 2(t)
— A2 () (1) + %A(t)A”(t)) x Ko(t) dt
» .

W
S

"
o =% [ [ 0) + 42 ) S0t — )
Fig. 1. (a) Separable (ideal lowpass) modified Cohen—Lee kernel [see (66)].

(b) Nonseparable (Butterworth-type) modified Cohen—Lee kernel [see (70)]. (c) — /(A 2(“) + AQ(U)SO 2(“)) du. (77)
Choi-Williams kerneb (8, 7) = e—(¢"?/9) (¢ = 100 for all kernels).

However, this last equation is exactly the second moment in
is great flexibility in designing kernels to meet the new corfrequency [3]
straints proposed in (67)—(69) while simultaneously allowing
the incorporation of additional desirable design criteria. In the  {w?) = /602|5(w)|2 dw
examples that follow the next section, we focus on the satisfac- , 9
tion of the proposed conditional moment constraints and utilize - / <A (t)> A2(t) dt + / <p'2(t)A2(t) dt (78)
the lowpass rectangle-based form of the Cohen—Lee kernel. A(t)

and thus, we have that indeé¢l.?);) = (w?) for the pro-

posed second conditional moment [see (47)]. Similarly, the first
We have shown in the previous sections that the proposgshditional spectral momenjt), obtained from the modified

second-order conditional moment candidate can be obtainedibhen—Lee distribution [i.e., the WAIF, (46)] averagegdd

two different ways. Furthermore, we have given kernel con- 1

straints such that a Cohen-class TFD can yield these results foj[«u)tP(t) dt = — /AQ(t)<p’(t) * Ko(t) dt

its conditional moments. We now show that the proposed con Ve

B. Global Aveages

ditional moments satisfy the necessary condition that their time — 1 // A?(u)" (w) Kot — w) du dt
average equals the29lqbalbrra?rr]r;%«:f;’%tihz 1(%’3} ,—[,1?;] 5{%
The average ofw?); is 0 =% /AQ(u)ga/(u)/Se(Hc(t — ) dtdu
(= [ [ rtw o = [ #¢du =) 79)
= /(w%P(t) dt. (74)  \where a derivation of the last equality can be found in Cohen’s

For the modified Cohen-Lee kernel above (for whily(#) text [3]. Analogous resultg hold_for the temporal _conditi(_)nal
K1(t) and Ka(¢) are given by (49)—(51)), we have (see ’Ap_moments, as can l_)g readily derived. We emphasize again that
pendix) ' although the condition that the average of the local moments
yields the correct global moments is not sufficient to uniquely
/(w%P(t) dt define the local moments, it is a necessary condition for local

moment candidates to satisfy [3].

1 2
N [A (£) + Ka(t) V. EXAMPLES
L ’ In this section, we give examples illustrating the results ob-
— Z(A(t) 4+ 2A% (1) 2(t) — A(D)A" (1)) * Ko(t)| dt. SR » WE gIVE ¢ P strating
2 tained in the previous sections. We begin with simple examples

(75) of synthetic signals to compare our proposed instantaneous



1160 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 6, JUNE 2001

bandwidth candidate with previously proposed definitions. ,¢ @ s ®
We then provide a few examples, for both synthetic and ree , ,'."n l‘“l‘ .‘,I'a u',:‘ b
signals, of the modified Cohen—Lee TFDs obtained via the_, | it ,’:n'l " "I:ll o
kernel constraints given in the previous section and computs AT 210
the conditional moments of these TFDs, with comparison to ‘§15 ::'l i .:: :‘:l o ;s
Choi-Williams and a Cohen-Lee TFD. § iy T by ! 'y i ' % :
w (N 1 ’ [ ] ' 1 ! 1 w
. . v by
A. Instantaneous Bandwidth Comparisons os) ! v ‘-,' : 'u' Py '
\ ) 1
Here, we consider the three signals: % o2 o4 : o.g 08 1 % 0 4 [ o.:i 08 1
ime [sec. Ime [sec|
51(t) = 27107 4 7207 (80) © @
_—i(3mt?—10mt 5t +20rt o DD 5T
s2(t) =e J(: - )0 i ) (81) N E: ? :: :: :: :: :: p N
33(t) = ¢ L0 + eI +207t) (82) E'S :: :: l: :: l: l: ': l: ': :: oo :ln
= oo gty = i
The Cohen-Lee instantaneous bandwidths [see (3)] for thes gm :: o :: :::::: E [
signals are given by § " o ! ;?s ',-‘ .
sin(10rt) fol il S0 A
4| sin(107t ! "
P i S (¥} | IETECURTINY
"1 = Ty Teon(aort) 12 (2(0) SN TS I3 i B VAR
o i 0 02 04 0.6 0.8 1 0 0.2 0.4 06 0.8 1
57T|(2t + 1) SlIl(].O7r(t2 + t))| Time [sec] Time [sec]

Oul|t = 1T COS(lOW(tQ n t)) [rad/s] (SQ(t))
(84) Fig. 2. (a) Cohen-Lee bandwidth (dashed) versus proposed instantaneous
bandwidth (solid) for the two-tone signal given in (80). (b) Individual

—5t2 |y ,—5t2 : component instantaneous frequencies for diverging chirps given in (81). (c)
_ ¢ ote + 107 sin(10xt) + 10¢ COS(lOWt)‘ Cohen-Lee bandwidth (dashed) versus proposed instantaneous bandwidth
Twit = 14 ¢ 10t2 | 9p—5t? Cos(107rt) (solid) for the diverging chirps given in (81). (d) Cohen-Lee bandwidth
(dashed) versus proposed instantaneous bandwidth (solid) for the chirp plus
[rad/s] (s3(t)). (85)  Gaussian-enveloped chirp two-component signal in (82).
The corresponding proposed instantaneous bandwidths [see = i )
(33)] are that is difficult to interpret. The proposed instantaneous band-
width, on the other hand, exhibits readily interpretable varia-
o,(t) =4n [rads/s] (s1(t)) (86) tions; as the amplitude on one of the components decays, the
ou(t) = 5r|2t + 1| [rad/s] (sa(t)) (87) instantaneous bandwidth decreases steadily, approaching zero
in the limit ast — oo, for which the signal becomes a con-

= 10 #2100 r2emt0 O\ ? stant amplitude monocomponent signal.
ou(t) = 1+ 102 - (1 + c—107)2
[adis] (ss(t).  (88) B. Modified Cohen-Lee Distributions
_ _ We now give examples of the modified Cohen—Lee distribu-
Fig. 2(a) shows the Cohen-Lee bandwidth (dashed) plotiggh for synthetic and real-world signals. We compare the condi-
against the proposed instantaneous bandwidth (solid)fé}.  tional spectral variance of the modified Cohen—Lee distribution,
Note the oscillatory nature of the former. The proposed instaghich is equivalent to our proposed instantaneous bandwidth, to
taneous bandwidth, however, is constant for this signal, as @at of the Cohen—Lee and Choi—Williams distributions.
pected, since the amplitudes and instantaneous frequencies qfy compute the TFDs of the sampled signals, we first
each component are constant. . ~ computed the discrete Wigner distribution and then took a 2-D
The signals,(t) is the sum of two symmetrically diverginginverse FFT to obtain a discrete ambiguity functidfr,,,, 6;).
chirps; the individual instantaneous frequencies of the twihis ambiguity function was then point-by-point multiplied

chirps are shown in Fig. 2(b). Since the instantaneous figith the appropriate kernel(r,,,, 6;) and evaluated on a square
guencies diverge linearly with time, we expect the spread @Pid sampling of

frequency at each time, i.e., the instantaneous bandwidth, to
increase Iinegrlywith time asweII.That is exactl_yth.e case wit_h [_ N 7&} x [-nF,,nF,] [s] x [rad] (89)
the proposed instantaneous bandwidth, plotted in Fig. 2(c), with 2F; 2F;

comparison to the Cohen-Lee instantaneous bandwidth. N@tgere £, is the sampling frequency, add is the signal length.

that the Cohen-Lee instantaneous bandwidth has an oscillatefya|ly, the 2-D FFT of the characteristic function (r,,,, 6;) =

nature and is unbounded, making it difficult to interpret as thﬁ(mﬁz)d)(m, 6:) gives the desired TFIP(t,, wy,).

spread in frequency at each time for this signal. 1) Example 1—Chirps:Consider the two-component signal
For s3(t), which is a two-component signal comprised ofjiven by a sum of two linear FM chirps

parallel chirps (one with a constant amplitude and the other

a Gaussian amplitude), the Cohen-Lee and proposed instanta- s(t)=A (G_S(t_O'S)QCJQOW(t_O'S)Q-i_]lOOWt

neous bandwidths are shown in Fig. 2(d). As with the previous

two examples, the Cohen—Lee bandwidth still exhibits behavior

4 e~ 10(t=0.5)° e]lOﬂ'(t—O.())z-l—ngOﬂ-t) (90)
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(a) (b) (c)
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| il
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I i
-0.05 -1o}il ' 1“‘ |
-0.1 -20
0 05 1 -2% 0.1 0.2 0.3 0 1 2

Time [sec] Time [sec] Time [msec]

Fig. 3. (a) Chirp signal corresponding to results in Fig. 4. (b) Automobile signal corresponding to results in Fig. 5. (c) Bat echolocation sigpahdorg to
results in Fig. 6.
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100
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i I g
& g
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[+] 0.5 1 [+] 05 1 [+] 05 1
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Fig. 4. (a)—(c) Choi-Williams TFD of signal given in (90), conditional mean frequeriay.), and (magnitude of) the instantaneous bandwidth of the
Choi-Williams TFD(s ., | ;). (d)—(f) Cohen—Lee distribution, its first conditional moment, and its instantaneous bandwidth. (g)—(i) Corresponding plots for the
modified Cohen—Lee distribution. The frequency and time marginals of each TFD are shown on the left and below the TFD plot, respectively, ind#Q)(d), a

whereA is a normalization constant. The real part of this signales and instantaneous bandwidths, are shown in Fig. 5. The
is shown in Fig. 3(a). Fig. 4 shows a Choi—Williams distrikernel used for the modified Cohen-Lee TFD is given by (58),
bution, a Cohen-Lee distribution, and the proposed modifiehered. = 110w rad/s (V = 700, F, ~ 11 kHz).
Cohen-Lee distribution, along with their corresponding con- 3) Example 3—Bat Echolocation SignalVe next compute
ditional moments. [Note that the instantaneous bandwidth af modified Cohen-Lee distribution of a bat echolocation
the Choi—Williams distribution is complex; we therefore plotitsignal? The signal is shown in Fig. 3(c). Fig. 6 shows the
magnitude in Fig. 4(c)]. As designed, the conditional momen@hoi-Williams distribution, the Cohen—Lee distribution, and
of the modified Cohen—Lee distribution do not range outside tiiee modified Cohen—Lee distribution, along with the corre-
spectral support of the signal and are readily interpreted as cepending conditional means and instantaneous bandwidths.
ditional averages in the usual sense. For this example, we chasein the previous examples, the moments of the modified
6. = 407 rad/s (V = 256, F, = 256 Hz). Cohen-Lee distribution do not range beyond the spectral
2) Example 2—Automobile Signaln this example, we support of the signal and can be interpreted as true conditional
compute TFDs for an acoustic recording of the racing engine@ferages. The kernel used for the modified Cohen—-Lee TFD in
a Formula 1 race car, shown in Fig. 3¢bThe Choi—Williams, this example is given by (66), whefe = 16 000x rad/s and
Cohen—Lee, and modified Cohen—Lee distributions for this = 0.22 ms (V = 400, I, = 142 kHz).

signal, along with the corresponding conditional mean frequen-
"The authors thank C. Condon, K. White, and A. Feng of the Beckman Insti-
6The authors thank G. Rizzoni at The Ohio State University for the F1 datéute, University of lllinois, for making the bat data publicly available.
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Fig. 5. (a)-(c) Choi-Williams TFD of automobile signal, conditional mean frequérey.), and (magnitude of) the instantaneous bandwidth of the
Choi-Williams TFD(o., | ;). (d)—(f) Cohen—Lee distribution, its first conditional moment, and its instantaneous bandwidth. (g)—(i) Corresponding plots for the
modified Cohen-Lee distribution.
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Fig. 6. (a)—(c) Choi-Williams TFD of bat echolocation signal, conditional mean frequgngy ), and (magnitude of) the instantaneous bandwidth of the
Choi-Williams TFD(o., | ;). (d)—(f) Cohen—Lee distribution, its first conditional moment, and its instantaneous bandwidth. (g)—(i) Corresponding plots for the
modified Cohen-Lee distribution.

VI. CONCLUSION given time. We have obtained a new candidate for the instanta-
neous bandwidth of multicomponent signals that can be inter-
Instantaneous bandwidth is interpreted as the spread in fpeeted as the spread in frequency at each time and have provided
guency at a given time, which derives from time—frequency dithe kernel constraints required fora Cohen-class TFDtoyield this
tribution theory. However, the definition of instantaneous bandesult. TFDs that satisfy these new constraints were shown to be
width given by Cohen and Lee does not usually conform to thisodified Cohen—Leedistributions. Aswiththe smoothed-pseudo
interpretation, and most TFDs do not yield second conditiondlignerdistribution, where the correctmarginals are sacrificed for
moments that can be interpreted as the spread in frequency atteer properties, the marginals of the modified Cohen-Lee dis-
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tribution do not equal the true marginals since the kernel is not (=) = /1 Mk
one along the entiré andr axes [see (58) and (66)], in order to = NGTs Z (k) Z I

obtain interpretable first and second conditional momefitse

new instantaneous bandwidth does not exhibit erratic oscillatory y /
behavior for multicomponent signals and does not range beyond

the global bandwidth of the signal. In addition, the new instanta-

neous bandwidth was shown to be consistentwith the global spec- X s (u + 7 }
tral bandwidth in that the time-average of the conditional second 2
moment equals the global second moment. Examples were pro-
vided to demonstrate the new TFD and conditional spectral mo-
ments. Analogous results hold for the conditional temporal mo-

ments and the “local duration” of a signal.

APPENDIX A
COHEN-CLASS CONDITIONAL SPECTRAL MOMENTS

By (12) and (13), we have

(W' P(t) = /w"P(t,w) dw

-[elm ] D)

X (0, 7)eT 0 TIeT RO dT} dw

/// v D)o (s D)o

x WheTIeT dw} =8t =%) O dr

27r/// u—— u+2></)(9,'r)

— 6 (r )} —90=) duy df dr

1ie)
{s*<u—§> (14 5) 0.}

- IEOE)
{o"(e-3)s (e 3)}

« <%)n_k (6, T)] 3y

- IEOEG

;_\

=0

e~ =) gy, d

7=0

8We note that it is possible, using an iterative weighted least-squares method,
to generate Cohen—Posch (positive) TFDs [7] that yield the WAIF and the pro-
posed instantaneous bandwidth for the first and second conditional moment
respectively [8]. These TFDs satisfy the marginals and have signal- depen

kernels (and therefore are not in the bilinear class of TFDs) [7].

] du. (91)
7=0

SubstitutingK’;(¢) from (16) into (91) gives

Zrmx()/E)
<%>k l sED (W) K, (t — ) du
S () (3 ey
/S*a)
-GS () ()

{i( ) 1570 1) sk l>()}

s« Kp_p(t). (92)

(W) P(t) =

x st (u

~—

uw)s* 0 () K,

~~ O

X

_w(t—u)du

A similar calculation gives the time marginaP(t) =
(1/+/2m)]s(t)|* * Ko(t). We then have (93), shown at the top
of the next page. In particular, we have

(W) = —11s(®)]? = K1(t) +Im{s*(#)s' ()} = Ko(t)

[s(D) * Kolt) (94)
and
(w2, = —|s(8)]? * Ka(t) — 25lm{s* (£)s'(t)} = K1(2)
' [ = Ko(t)
L (Refs* ()" (0} = |5/ () ) + Ko (1)
B (95)

[s(8)[? * Ko(?)

ﬁere Ré-} and Im{-} denote the real and imaginary parts,
respectively.
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e 93
e SO * Kot (93
{Ei\ Az Ez k=1 [@;{ar}, cos Ap;, — a) sin A%k)]} K,
= o (104)
{Ez 1% +Ez k#kl a;ak COSA(pzk} * Ko
E]\ (CL —+ CLZQ()O/Q) _ l Ji\:k=l [aiakAQ(Plik - (%)2 (aiak) _ 2a/ia;€
itk
— 2a; (ak‘P;g (‘PZ + ) — alkl):| cos Ap;p — i Z]Z\”;é:kl [aiakASOlilk x Ko
d -
(@), = —2A¢), Laiar — daial ) — 2aiar0] — 2aial 0} + 2afarp)] sin Apir (105)
{Zi\ LaF 4+ Y k=1 i COSA(ka} « K,
i#k
APPENDIX B Finally, taking Fourier transforms of the right sides of the above

MOoDIFIED COHEN-LEE KERNEL

Throughout this work, we have used the functidtig?) de-
fined by

o= {(3) v

e dp
7=0

(96)

where¢(8, ) is the kernel in the Cohen class of bilinear TFDs.

We see thaf(9/97)!¢(0, 7)}|-=o andK;(t) are Fourier trans-
form pairs. Here, we detail the derivation A% (#)—K>(t) for
the modified Cohen—Lee kernel

$(0,7) = (1 + ¢ (6r)2)e 5" rect(zg ) (97)
wheres andf, are positive free parameters, ane= (1/8) +
(1/0).
For this kernel, we have
6
A0, 7). = rect<2€c> (98)
{[1—1—097 ) )—1—2092}
T rect< )} =0 (99)
a
{(E) (f)(e,’/')} .
= { [29270 - 49:9 +26%c — %02(7 + D1+ 0(97)2)}
e ¢ 6
e Fra( L))

7=0

(100)

9(:)'

92
= Z rect<29

equations yields

Kift) = —2=Sa6.1) (101)
Ki(t) =0 (102)
Ko(t) = i&“(t) « Ko(t)

= 2\/_ Sq0.u)8" (t — u) du (103)

which were given in (49)—(51). We see tHé§(¢) is the impulse
response of an ideal lowpass filter with cut-off frequerigy
Similarly, K> (%) is the impulse response of such a lowpass filter
followed by a second-order differentiator.

APPENDIX C
CONDITIONAL SPECTRAL MOMENTS. MULTICOMPONENT
SIGNALS

In this section, we generalize the results obtained in Sec-
tion Il and give an instantaneous bandwidth expression for the
generalN-component signal.

Substituting the multicomponent signaft) = S~ a;
(t)e’#®) into (94) and (95) and noting thak; (t) = 0
and f(¢) = Ko(t) = —(1/4)f"(t) = Ko(t) for the modified
Cohen-Lee kernel, we have (104) and (105), shown at the top
of the page, wheré\y;;, = ¢; — %, and the dependence on
t has been dropped for convenience in notation. Recall that
Ky(t) acts as an ideal lowpass filter with cutoff frequency
8. < |Agl,(t)] for eachi, & and all¢. Thus, (104) and (105)
reduce to

N
(Wh = 7221—; a4 (106)
i=1%
and
N 72 N 2 72
i=1 % i=1 % P
(w2>t = ZNl 5 —+ Z ]i, 7 (107)
2im1 2im1
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It then follows that

[15]

N 2 2 72 r
21 (ai + aze; Ei\:l arg

o2, = - — - 108 [16]
“lt Ei\zl a; Ei\zl a; (109
or equivalently [17]
N 2.2 1\2
N2 Ei,‘k:l a;ay (¢i — #) 18
0_2 _ Zz:l a; + i<k (109) [18]

Note that(w?), ando?,, are positive for all multicomponent g

wl|t — N >
2oim1 [19]

(Za?)

signals and that (106), (107) and (109) generalize (52)—(54),

respectively.

(1

(2
(3]
[4]

(3]

(6]
(71

(8]
[9]
(10]

(11]

[12]

[13]

[14]

[21]
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