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Modified Cohen–Lee Time–Frequency Distributions
and Instantaneous Bandwidth of Multicomponent

Signals
Patrick J. Loughlin, Member, IEEE,and Keith L. Davidson

Abstract—Cohen has introduced and extensively studied
and developed the concept of the instantaneous bandwidth of
a signal. Specifically, instantaneous bandwidth is interpreted
as the spread in frequency about the instantaneous frequency,
which is itself interpreted as the average frequency at each
time. This view stems from a joint time–frequency distribution
(TFD) analysis of the signal, where instantaneous frequency and
instantaneous bandwidth are taken to be the first two conditional
spectral moments, respectively, of the distribution. However, the
traditional definition of instantaneous frequency, namely, as the
derivative of the phase of the signal, is not consistent with this
interpretation, and new definitions have therefore been recently
proposed. In this paper, we show that similar problems arise
with the Cohen–Lee instantaneous bandwidth of a signal and
propose a new formulation for the instantaneous bandwidth that
is consistent with its interpretation as the conditional standard
deviation in frequency of a TFD. We give the kernel constraints
for a distribution to yield this new result, which is a modification
of the kernel proposed by Cohen and Lee. These new kernel
constraints yield a modified Cohen–Lee TFD whose first two
conditional moments are interpretable as the average frequency
and bandwidth at each time, respectively.

Index Terms—Conditional moments, instantaneous bandwidth,
instantaneous frequency, time–frequency analysis.

I. INTRODUCTION

T HE instantaneous bandwidth of a signal is a concept that
has been extensively developed by Cohen, particularly in

the context of time–frequency distributions (TFDs), where it is
taken to be the standard deviation in frequency at a given time
[3]–[6]. This approach and view stem from the interpretation of
instantaneous frequency as the mean frequency at a given time,
which arises because many TFDs yield the instantaneous fre-
quency (derivative of the phase) of a signal for their first condi-
tional spectral moment [3]. As Cohen reasons, given the mean,
it is natural to ask about the standard deviation, which gives rise
to the concept of instantaneous bandwidth [3]–[6].

While this view and approach are appealing, difficulties arise
in interpreting the traditional definition of instantaneous fre-
quency (derivative of the phase) as the average frequency at a
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given time, particularly for so-called “multicomponent” signals
[18]. Indeed, it is well known that the derivative of the phase of
a signal often ranges beyond the spectral support of the signal
[3], [18], yielding the paradox that the supposed average fre-
quency at a given time is often outside the bandwidth of the
signal. This difficulty in interpretation of the derivative of the
phase has given rise to renewed efforts to find new definitions
of instantaneous frequency that are amenable to clear physical
interpretation [17]–[21].

As we show here, similar difficulties arise in the interpreta-
tion of the Cohen–Lee instantaneous bandwidth as the standard
deviation in frequency at a given time. Namely, like the instanta-
neous frequency, the instantaneous bandwidth often ranges be-
yond the global bandwidth of the signal. Nevertheless, the in-
terpretation itself is appealing, and we are therefore motivated
to pinpoint the source of difficulties that arise in interpreting
instantaneous bandwidth as the spread in frequency at a given
time and to suggest a new candidate for instantaneous band-
width that is consistent with this interpretation. Such is the pur-
pose of this paper. Because our approach builds on recent results
regarding instantaneous frequency, we summarize these results
first and then present new results regarding instantaneous band-
width. We give the kernel constraints for a Cohen-class TFD to
yield this new candidate for instantaneous bandwidth and illus-
trate these results by computing TFDs with these conditional
moments for synthetic and real signals. Because of the sym-
metry between the time-domain and frequency-domain formu-
lations of Cohen-class TFDs [3], the results extend readily to
conditional temporal moments, namely, the average time at a
given frequency and the spread in time at a particular frequency
(the “local duration”).

II. BACKGROUND

A. Instantaneous Frequency and Bandwidth

For a signal , written in complex form in terms of its am-
plitude and phase1

(1)

the instantaneous frequency is defined as the derivative of the
phase [9]

(2)

1We take the signal to be normalized to unit energy so that the temporal, spec-
tral, and time–frequency densities integrate to one for consistency with distri-
bution theory.
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and the instantaneous bandwidth, per Cohen and Lee [4]–[6], is
given by the (absolute value of the) derivative of the log-ampli-
tude

(3)

The instantaneous bandwidth is related to the global bandwidth,
given by

(4)

where is the Fourier transform of , and
, according to [3]

(5)

For the case of a “multicomponent signal”2

(6)

we have for the instantaneous frequency and bandwidth, per (2)
and (3) (for the case )

(7)

(8)

(9)

where .3

Note the presence of oscillatory terms in the instantaneous
frequency and bandwidth, which cause difficulties in interpre-
tation of these quantities as conditional averages. Specifically,
both quantities generally extend beyond the spectral range of
the signal (except under special circumstances in the case of in-
stantaneous frequency [19], [21]).

It is generally held that a more appropriate expression for
the instantaneous frequency of a multicomponent signal is a
“weighted average” of the instantaneous frequencies of the in-
dividual signal components [12]

(10)

It has recently been shown that the instantaneous frequency
(derivative of the phase)exactlyequals this weighted average

2We consider a signal to be multicomponent when its TFD exhibits well-sep-
arated ridges in the time–frequency plane. One measure of this separation, given
by Cohen and Lee [4], is that the instantaneous bandwidth of each component be
less than the separation between the instantaneous frequencies of neighboring
components:(a (t)=a (t)) < (' (t) � ' (t)) ; i 6= k. We take that to be
the case here. Such signals may be categorized as “locally narrowband.”

3The generalN -component case is a straightforward but lengthy extension
of the two-component case, which we consider here for simplicity and lucid
presentation of the main ideas. See the Appendix for the more general case.

when the components exhibit symmetry [19], [21]. For an odd
number of components [ in (6)], the signal com-
ponents have (even) symmetry when

...
...

(11)

See [19], [21] for details.
In addition, even for signals without this symmetry, it has

recently been shown that this weighted average instantaneous
frequency (WAIF) can be obtained from the first conditional
spectral moment of a spectrogram for an appropriately chosen
(signal-dependent) window [15]. These results support the inter-
pretation of the WAIF as the average frequency at each time. We
build on these results and consider the interpretation of instanta-
neous bandwidth as a conditional spectral moment, namely, as
the standard deviation in frequency at a given time. Such an in-
terpretation requires that the result be positive and bounded by
the global bandwidth of the signal. We give here a suitable can-
didate that meets these requirements and provide the (signal-de-
pendent) kernel constraints for a TFD to yield this candidate for
its second conditional spectral moment. We also give the kernel
constraints for the TFD to yield the WAIF for its first condi-
tional spectral moment (which is a generalization of the result
previously obtained for the spectrogram [15]).

B. TFDs and Conditional Moments

From a TFD of the signal [2], [3]

(12)

where is a kernel that specifies the particular TFD, the
conditional spectral moments are given by

(13)

where is the time marginal of the TFD, and is
the time-conditional spectral density. The average frequency at
each time is given by the first moment of , which is the
conditional mean frequency, , and the spread in frequency
at each time is obtained from the variance of

(14)

By substituting (12) into (13), we may express the condi-
tional spectral moments in terms of the signal and kernel (see
Appendix), as in (15), shown at the bottom of the next page,
where denotes convolution, denotes the th derivative
of , and

(16)
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For the signal , the first two moments are

(17)

and

(18)

Thus, for the Wigner distribution, with kernel ,
the conditional moments are

(19)

from which we obtain the well-known results for the first two
moments of the Wigner distribution [3]

(20)

(21)

(22)

For the Rihaczek distribution [23] with kernel
[3], we obtain the moments in (23), shown at the

bottom of the page, which can be written equivalently, and
more compactly, as

(24)

This latter expression was derived by Poletti [22] by direct cal-
culation of the conditional moments of the Rihaczek distribution

. The first two moments are

(25)

(26)

(27)

Note that the conditional spectral variance of the Wigner dis-
tribution can be negative and that of the Rihaczek distribution
is complex. Accordingly, for both distributions, there are diffi-
culties in interpreting the conditional standard deviation in the
usual way, namely, as the spread about the mean at each time.

It has been shown by Cohen and Lee [4] that with rather mild
constraints on the kernel, a conditional variance that is always
non-negative for all signals can be obtained. Specifically, for

, and
, the conditional mean frequency and the conditional spec-

tral variance are given by

(28)

(29)

(30)

Although, unlike the Wigner and most other TFDs, the second
moment here is real and positive (as it should be), TFDs that
yield these results are nevertheless generally not non-negative.
Because the TFD contains negative values, it may produce first
and second conditional spectral moments that range beyond the
spectral support of the signal—such as the instantaneous fre-
quency and instantaneous bandwidth above. For such a TFD of
a multicomponent signal , the second conditional mo-
ment [see (29)] is evaluated as

(31)

Note the oscillatory terms, which tend to cause difficulty in in-
terpretation of this quantity, as well as of .

TFDs that are non-negative and satisfy the marginals [7],
[16] do not generally yield these results and, as such, cast fur-
ther doubt on the interpretation of these definitions of instan-
taneous frequency and instantaneous bandwidth as the average
frequency at a given time and the spread in frequency at a given
time. One of our aims is to obtain an expression for the instan-
taneous bandwidth that can be interpreted as a true conditional
spectral variance, analogous to the results recently obtained for
instantaneous frequency (namely, the WAIF).

(15)

(23)
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III. RESULTS

In this section, we derive an expression for the instantaneous
bandwidth of multicomponent signals from two different ap-
proaches. Examples are then provided to demonstrate the re-
sults.

A. First Approach: Eliminate Oscillatory Terms from
Expression

As we remarked earlier, under certain conditions of signal
symmetry, the oscillatory terms in the usual definition of instan-
taneous frequency drop out, resulting in the WAIF [see (10)] for
such signals [19], [21]. In addition, even for signals without this
symmetry, the first conditional spectral moment of a spectro-
gram can eliminate the oscillatory terms from the instantaneous
frequency and yield the WAIF [15]. We are therefore naturally
led to consider the result one obtains for the instantaneous band-
width by simply dropping the oscillatory terms from the second
moment [see (31)] as well. Doing so, we obtain

(32)
Taking this result together with the WAIF [see (10)], we obtain
the conditional spectral variance

(33)

Note that this expression for is non-negative for all sig-
nals, which is good. Further, it exhibits reasonable behavior as
a measure of spread in frequency at each time: As the sepa-
ration between the instantaneous frequencies increases, so too
does this measure of “instantaneous bandwidth,” and as the am-
plitude modulations become more pronounced (i.e., such that

and are very different from zero), the instantaneous
bandwidth again increases. Conversely, as the amplitude mod-
ulations decrease (i.e., and become constants), the
instantaneous bandwidth also decreases.

But can we justify simply dropping the troublesome oscil-
latory terms from the second conditional moment expression?
At least for the first conditional moment, the oscillatory terms
were “naturally” eliminated under certain conditions to yield
the WAIF, namely, for symmetric components and in the condi-
tional mean of a spectrogram in many cases. Do the same con-
ditions eliminate the oscillatory terms in the second conditional
moment, as well? Unfortunately, no. It is easy to verify that the
oscillatory terms do not cancel out by setting in
(9); see [13] for a specific example. In addition, the second con-
ditional moment of a spectrogram is typically distorted by the
window [5]. This distortion, which cannot generally be elim-
inated, makes it virtually impossible for the conditional spec-
tral variance of a spectrogram to exactly equal the expression in
(33), even when the first conditional moment of the spectrogram
does exactly equal the WAIF [see (10)].

However, the second conditional spectral moment and vari-
ance expressions above can be obtained from another rather dif-
ferent approach: a Gaussian mixture model of the time-varying
spectrum of the multicomponent signal. This approach, which

we present next, also yields the WAIF. We then give kernel con-
straints for a Cohen-class TFD to yield the proposed conditional
moments.

B. Second Approach: Gaussian Mixture Model

Let be a multicomponent random process
where the are independent (and unknown). The spectral
density is thus of the form , where the

are the (unknown) spectral densities of the individual
(unknown) components . Suppose we are given the mean
frequency and bandwidth (spectral variance) of the indi-
vidual independent components, and their relative power

. Given this information, a Gaussian mixture
model [24] of the spectral density can be made and is given by

(34)

(As an aside, note that is the (nor-
malized) maximum entropy spectral estimate for . The en-
tropy of the Gaussian mixture is given by

(35)

from which we observe that the entropy of the Gaussian mixture
is lower bounded by the weighted sum of the entropies of the in-
dividual (maximum entropy) densities [14].4 Thus, the Gaussian
mixture may also be viewed as a “minimax” solution to a max-
imum entropy statement of the problem, given the individual
means and variances.)

The first- and second-order spectral moments of are
readily calculated and given by

(36)

(37)

4The inequality in (35) follows from the non-negativity of the cross-en-
tropy between any two densitiesP (!) and P (!), i.e., P (!)
ln (P (!)=P (!)) d! � 0.
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and the spectral variance is therefore

(38)

We extend this model to the time-varying case by letting the
individual spectral means, variances, and relative powers de-
pend on time; accordingly, the spectral density also depends on
time. From the previous considerations, given the time-depen-
dent mean frequency , spectral variance , and rela-
tive power of each component, the time-dependent spec-
tral density is

(39)

The first and second (conditional) spectral moments are exactly
as in (36)–(38), except that now they depend on time. For
, we have

(40)

(41)

(42)

[where (42) follows from the fact that ].
If we take for the time-dependent mean frequency, spectral

variance, and relative power of each component the following
quantities:

(43)

(44)

(45)

then on substituting (43)–(45) into (40)–(42), we obtain

(46)

(47)

(48)

These conditional moments are identical to (10), (32), and (33),
respectively. In the next section, we give kernel constraints in the
Cohen class to produce TFDs that yield the above expressions
as time-conditional moments.

IV. TFD KERNEL CONSTRAINTS

It has been previously shown [15] that a spectrogram will
yield the WAIF for its first conditional spectral moment if the

signal components are well separated in the time–frequency
plane and the spectrogram window is lowpass with cut-off fre-
quency less than the smallest separation between the instan-
taneous frequencies of the components. (Note that this con-
straint is signal dependent.) We generalize this result for ar-
bitrary kernel and consider the second conditional moment by
giving the kernel constraints such that we obtain the moment
candidates derived in the previous section.

Specifically, for a locally narrowband multicomponent signal
with well-separated components and a TFD with a lowpass
kernel such that

Sa (49)

(50)

Sa (51)

where was defined in (16) and
Sa , it follows by substitution into (17) and (18)
that the first two conditional spectral moments and the spectral
variance for this multicomponent signal are given by (for
)

(52)

(53)

(54)

(see the Appendix). These results are identical to those obtained
in the previous section.

The constraints given in (49)–(51) may be given in terms of
the kernel as

otherwise
(55)

(56)

otherwise.
(57)

A kernel that satisfies these constraints and that yields (52)–(54)
as conditional moments is given by

rect (58)

where , and

rect
otherwise.

(59)

This kernel is a modification (lowpass version) of the
Cohen–Lee kernel [4], which was itself a modification of the
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Choi–Williams kernel [1].5 Other kernels that satisfy these
constraints are also possible. For example, the kernel

rect (60)

(here, ) also yields the conditional moments
above. A RID-type kernel [10] can be designed to yield these
moments as well, simply by using a RID kernel in lieu of the
Choi–Williams kernel in the expressions above (with a different
value for the constantthat depends on the particular RID kernel
used).

A. Conditional Temporal Moments

Due to the time-domain and frequency-domain symmetry of
the Cohen formulation of TFDs, i.e., because (12) can be equiv-
alently expressed as

(61)

where , the above results hold
also in the case of conditional temporal moments with a simple
transcription of variables. That is, for a two-component signal
with spectrum

(62)

we maintain that the first- and second-order conditional tem-
poral moments and conditional (local) duration are given by

(63)

(64)

(65)

These results, along with the conditional spectral moments
given previously, may be obtained from a Cohen-class TFD
with a kernel such as

rect rect (66)

where , and . It is
straightforward to verify that this kernel satisfies the proposed

5Note that the� parameter of the Choi–Williams kernel(�(�; � ) =

e ) is retained in the modified Cohen–Lee kernel. Thus, the
reduction of crossterms may also be controlled in the present formulation, with
smaller values of� producing a kernel that decays faster away from the� -�
axes and, hence, greater cross-term attenuation.

constraints, namely

otherwise

otherwise
(67)

(68)

otherwise

otherwise.
(69)

Other kernels that yield these moments can also be designed.
Indeed, any product kernel that yields the Cohen–Lee instanta-
neous bandwidth can be modified by multiplying it with the rec-
tangle functions above to obtain a TFD with the proposed con-
ditional moments in time and frequency. Additionally, the rec-
tangle functions, which form an ideal, separable lowpass filter in
the ambiguity domain, can be replaced by a nonseparable low-
pass filter with finite rolloff. For example, a Butterworth-type
lowpass kernel that (approximately) satisfies the kernel con-
straints is

(70)

For this kernel, we have

(71)

(72)

(73)

where the degree of rolloff in theand directions is controlled
by the parameters and , respectively. A comparison of this
kernel to the rectangle-based kernel of (66) is shown in Fig. 1(a)
and (b). Note that unlike the more conventional kernels, for ex-
ample, the Choi–Williams kernel shown in Fig. 1(c), these new
lowpass kernels peak away from theand axes.

One can also think of other signal-dependent modifications to
add to the lowpass nature of the kernel, for example, such as in-
corporating the kernel design method of Baraniuk and Jones to
align the kernel along the chirp direction of auto-components in
the ambiguity plane [11]. As with kernel design in general, there
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Fig. 1. (a) Separable (ideal lowpass) modified Cohen–Lee kernel [see (66)].
(b) Nonseparable (Butterworth-type) modified Cohen–Lee kernel [see (70)]. (c)
Choi–Williams kernel�(�; � ) = e . (� = 100 for all kernels).

is great flexibility in designing kernels to meet the new con-
straints proposed in (67)–(69) while simultaneously allowing
the incorporation of additional desirable design criteria. In the
examples that follow the next section, we focus on the satisfac-
tion of the proposed conditional moment constraints and utilize
the lowpass rectangle-based form of the Cohen–Lee kernel.

B. Global Averages

We have shown in the previous sections that the proposed
second-order conditional moment candidate can be obtained in
two different ways. Furthermore, we have given kernel con-
straints such that a Cohen-class TFD can yield these results for
its conditional moments. We now show that the proposed con-
ditional moments satisfy the necessary condition that their time
average equals the global moments [3].

The average of is obtained from the TFD as

(74)

For the modified Cohen-Lee kernel above (for which
and are given by (49)–(51)), we have (see Ap-

pendix)

(75)

For an arbitrary function , it can be shown [using (49) and
(51)] that

(76)

Plugging this result into (75) gives

Sa

(77)

However, this last equation is exactly the second moment in
frequency [3]

(78)

and thus, we have that indeed for the pro-
posed second conditional moment [see (47)]. Similarly, the first
conditional spectral moment obtained from the modified
Cohen–Lee distribution [i.e., the WAIF, (46)] averages to

Sa

(79)

where a derivation of the last equality can be found in Cohen’s
text [3]. Analogous results hold for the temporal conditional
moments, as can be readily derived. We emphasize again that
although the condition that the average of the local moments
yields the correct global moments is not sufficient to uniquely
define the local moments, it is a necessary condition for local
moment candidates to satisfy [3].

V. EXAMPLES

In this section, we give examples illustrating the results ob-
tained in the previous sections. We begin with simple examples
of synthetic signals to compare our proposed instantaneous
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bandwidth candidate with previously proposed definitions.
We then provide a few examples, for both synthetic and real
signals, of the modified Cohen–Lee TFDs obtained via the
kernel constraints given in the previous section and compute
the conditional moments of these TFDs, with comparison to a
Choi–Williams and a Cohen–Lee TFD.

A. Instantaneous Bandwidth Comparisons

Here, we consider the three signals:

(80)

(81)

(82)

The Cohen–Lee instantaneous bandwidths [see (3)] for these
signals are given by

[rad/s] (83)

[rad/s]

(84)

[rad/s] (85)

The corresponding proposed instantaneous bandwidths [see
(33)] are

[rads/s] (86)

[rad/s] (87)

[rad/s] (88)

Fig. 2(a) shows the Cohen–Lee bandwidth (dashed) plotted
against the proposed instantaneous bandwidth (solid) for.
Note the oscillatory nature of the former. The proposed instan-
taneous bandwidth, however, is constant for this signal, as ex-
pected, since the amplitudes and instantaneous frequencies of
each component are constant.

The signal is the sum of two symmetrically diverging
chirps; the individual instantaneous frequencies of the two
chirps are shown in Fig. 2(b). Since the instantaneous fre-
quencies diverge linearly with time, we expect the spread in
frequency at each time, i.e., the instantaneous bandwidth, to
increase linearly with time as well. That is exactly the case with
the proposed instantaneous bandwidth, plotted in Fig. 2(c), with
comparison to the Cohen–Lee instantaneous bandwidth. Note
that the Cohen–Lee instantaneous bandwidth has an oscillatory
nature and is unbounded, making it difficult to interpret as the
spread in frequency at each time for this signal.

For , which is a two-component signal comprised of
parallel chirps (one with a constant amplitude and the other
a Gaussian amplitude), the Cohen-Lee and proposed instanta-
neous bandwidths are shown in Fig. 2(d). As with the previous
two examples, the Cohen–Lee bandwidth still exhibits behavior

Fig. 2. (a) Cohen–Lee bandwidth (dashed) versus proposed instantaneous
bandwidth (solid) for the two-tone signal given in (80). (b) Individual
component instantaneous frequencies for diverging chirps given in (81). (c)
Cohen–Lee bandwidth (dashed) versus proposed instantaneous bandwidth
(solid) for the diverging chirps given in (81). (d) Cohen–Lee bandwidth
(dashed) versus proposed instantaneous bandwidth (solid) for the chirp plus
Gaussian-enveloped chirp two-component signal in (82).

that is difficult to interpret. The proposed instantaneous band-
width, on the other hand, exhibits readily interpretable varia-
tions; as the amplitude on one of the components decays, the
instantaneous bandwidth decreases steadily, approaching zero
in the limit as , for which the signal becomes a con-
stant amplitude monocomponent signal.

B. Modified Cohen–Lee Distributions

We now give examples of the modified Cohen–Lee distribu-
tion for synthetic and real-world signals. We compare the condi-
tional spectral variance of the modified Cohen–Lee distribution,
which is equivalent to our proposed instantaneous bandwidth, to
that of the Cohen–Lee and Choi–Williams distributions.

To compute the TFDs of the sampled signals, we first
computed the discrete Wigner distribution and then took a 2-D
inverse FFT to obtain a discrete ambiguity function .
This ambiguity function was then point-by-point multiplied
with the appropriate kernel and evaluated on a square
grid sampling of

[s] [rad] (89)

where is the sampling frequency, and is the signal length.
Finally, the 2-D FFT of the characteristic function

gives the desired TFD .
1) Example 1—Chirps:Consider the two-component signal

given by a sum of two linear FM chirps

(90)
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Fig. 3. (a) Chirp signal corresponding to results in Fig. 4. (b) Automobile signal corresponding to results in Fig. 5. (c) Bat echolocation signal corresponding to
results in Fig. 6.

Fig. 4. (a)–(c) Choi–Williams TFD of signal given in (90), conditional mean frequency(h!i ), and (magnitude of) the instantaneous bandwidth of the
Choi–Williams TFD(� ). (d)–(f) Cohen–Lee distribution, its first conditional moment, and its instantaneous bandwidth. (g)–(i) Corresponding plots for the
modified Cohen–Lee distribution. The frequency and time marginals of each TFD are shown on the left and below the TFD plot, respectively, in (a), (d), and (g).

where is a normalization constant. The real part of this signal
is shown in Fig. 3(a). Fig. 4 shows a Choi–Williams distri-
bution, a Cohen–Lee distribution, and the proposed modified
Cohen–Lee distribution, along with their corresponding con-
ditional moments. [Note that the instantaneous bandwidth of
the Choi–Williams distribution is complex; we therefore plot its
magnitude in Fig. 4(c)]. As designed, the conditional moments
of the modified Cohen–Lee distribution do not range outside the
spectral support of the signal and are readily interpreted as con-
ditional averages in the usual sense. For this example, we chose

rad/s ( Hz).
2) Example 2—Automobile Signal:In this example, we

compute TFDs for an acoustic recording of the racing engine of
a Formula 1 race car, shown in Fig. 3(b).6 The Choi–Williams,
Cohen–Lee, and modified Cohen–Lee distributions for this
signal, along with the corresponding conditional mean frequen-

6The authors thank G. Rizzoni at The Ohio State University for the F1 data.

cies and instantaneous bandwidths, are shown in Fig. 5. The
kernel used for the modified Cohen–Lee TFD is given by (58),
where rad/s ( kHz).

3) Example 3—Bat Echolocation Signal:We next compute
a modified Cohen–Lee distribution of a bat echolocation
signal.7 The signal is shown in Fig. 3(c). Fig. 6 shows the
Choi–Williams distribution, the Cohen–Lee distribution, and
the modified Cohen–Lee distribution, along with the corre-
sponding conditional means and instantaneous bandwidths.
As in the previous examples, the moments of the modified
Cohen–Lee distribution do not range beyond the spectral
support of the signal and can be interpreted as true conditional
averages. The kernel used for the modified Cohen–Lee TFD in
this example is given by (66), where rad/s and

ms ( kHz).

7The authors thank C. Condon, K. White, and A. Feng of the Beckman Insti-
tute, University of Illinois, for making the bat data publicly available.
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Fig. 5. (a)–(c) Choi–Williams TFD of automobile signal, conditional mean frequency(h!i ), and (magnitude of) the instantaneous bandwidth of the
Choi–Williams TFD(� ). (d)–(f) Cohen–Lee distribution, its first conditional moment, and its instantaneous bandwidth. (g)–(i) Corresponding plots for the
modified Cohen-Lee distribution.

Fig. 6. (a)–(c) Choi–Williams TFD of bat echolocation signal, conditional mean frequency(h!i ), and (magnitude of) the instantaneous bandwidth of the
Choi–Williams TFD(� ). (d)–(f) Cohen–Lee distribution, its first conditional moment, and its instantaneous bandwidth. (g)–(i) Corresponding plots for the
modified Cohen–Lee distribution.

VI. CONCLUSION

Instantaneous bandwidth is interpreted as the spread in fre-
quency at a given time, which derives from time–frequency dis-
tribution theory. However, the definition of instantaneous band-
width given by Cohen and Lee does not usually conform to this
interpretation, and most TFDs do not yield second conditional
moments that can be interpreted as the spread in frequency at a

given time. We have obtained a new candidate for the instanta-
neous bandwidth of multicomponent signals that can be inter-
preted as the spread in frequency at each time and have provided
thekernelconstraints required foraCohen-classTFDtoyield this
result. TFDs that satisfy these new constraints were shown to be
modifiedCohen–Leedistributions.Aswiththesmoothed-pseudo
Wignerdistribution,wherethecorrectmarginalsaresacrificedfor
other properties, the marginals of the modified Cohen–Lee dis-
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tribution do not equal the true marginals since the kernel is not
one along the entireand axes [see (58) and (66)], in order to
obtain interpretable first and second conditional moments.8 The
new instantaneous bandwidth does not exhibit erratic oscillatory
behavior for multicomponent signals and does not range beyond
the global bandwidth of the signal. In addition, the new instanta-
neousbandwidthwasshowntobeconsistentwith theglobalspec-
tral bandwidth in that the time-average of the conditional second
moment equals the global second moment. Examples were pro-
vided to demonstrate the new TFD and conditional spectral mo-
ments. Analogous results hold for the conditional temporal mo-
ments and the “local duration” of a signal.

APPENDIX A
COHEN-CLASS CONDITIONAL SPECTRAL MOMENTS

By (12) and (13), we have

8We note that it is possible, using an iterative weighted least-squares method,
to generate Cohen–Posch (positive) TFDs [7] that yield the WAIF and the pro-
posed instantaneous bandwidth for the first and second conditional moments,
respectively [8]. These TFDs satisfy the marginals and have signal-dependent
kernels (and therefore are not in the bilinear class of TFDs) [7].

(91)

Substituting from (16) into (91) gives

(92)

A similar calculation gives the time marginal
. We then have (93), shown at the top

of the next page. In particular, we have

Im
(94)

and
Im

Re
(95)

where Re and Im denote the real and imaginary parts,
respectively.
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(93)

(104)

(105)

APPENDIX B
MODIFIED COHEN–LEE KERNEL

Throughout this work, we have used the functions de-
fined by

(96)

where is the kernel in the Cohen class of bilinear TFDs.
We see that and are Fourier trans-
form pairs. Here, we detail the derivation of – for
the modified Cohen–Lee kernel

rect (97)

where and are positive free parameters, and
.

For this kernel, we have

rect (98)

rect (99)

rect

rect (100)

Finally, taking Fourier transforms of the right sides of the above
equations yields

Sa (101)

(102)

Sa (103)

which were given in (49)–(51). We see that is the impulse
response of an ideal lowpass filter with cut-off frequency.
Similarly, is the impulse response of such a lowpass filter
followed by a second-order differentiator.

APPENDIX C
CONDITIONAL SPECTRAL MOMENTS: MULTICOMPONENT

SIGNALS

In this section, we generalize the results obtained in Sec-
tion III and give an instantaneous bandwidth expression for the
general -component signal.

Substituting the multicomponent signal
into (94) and (95) and noting that

and for the modified
Cohen-Lee kernel, we have (104) and (105), shown at the top
of the page, where , and the dependence on

has been dropped for convenience in notation. Recall that
acts as an ideal lowpass filter with cutoff frequency

for each and all . Thus, (104) and (105)
reduce to

(106)

and

(107)
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It then follows that

(108)

or equivalently

(109)

Note that and are positive for all multicomponent
signals and that (106), (107) and (109) generalize (52)–(54),
respectively.
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