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We investigate the cosmological consequences of the modified Friedmann equations when the
entropy associated with the apparent horizon, given by Barrow entropy, S ∼ A1+δ/2, where 0 ≤

δ ≤ 1, represents the amount of the quantum-gravitational deformation of the horizon. We study
implications of this model in a flat Friedmann-Robertson-Walker (FRW) universe with/without
cosmological constant. Taking the cosmological constant into account, this model can describe the
current accelerated expansion, although the transition from deceleration phase to the acceleration
phase takes place in the lower redshifts. We investigate the evolution of the scale factor and show
that with increasing δ, the value of the scale factor increases as well. We also estimate the age of the
universe in Barrow cosmology which is smaller than the age of the universe in standard cosmology.

I. INTRODUCTION

Inspired by the Covid-19 virus structure, recently Bar-
row discussed [1] that quantum-gravitational effects may
deform the geometry of the black hole horizon leading to
an intricate, fractal features. He argued that the area
law of the black hole entropy get modified and is given
by

Sh =

(

A

A0

)1+δ/2

, (1)

where A is the black hole horizon area and A0 is the
Planck area. The exponent δ ranges as 0 ≤ δ ≤ 1 and
represents the amount of the quantum-gravitational de-
formation effects. The area law is reproduced in case
of δ = 0 and A0 → 4G. On the other hand, δ = 1
corresponds to the most intricate and fractal structure
of the horizon. In the cosmological setup, the effects of
Barrow entropy on the cosmic evolution have been inves-
tigated from different viewpoints. For example, modifi-
cation of the area law leads to a new holographic dark
energy model based on Barrow entropy [2, 3]. A cosmo-
logical scenario based on Barrow entropy was proposed in
[4], where it was shown that new extra terms that consti-
tute an effective dark energy sector appear in the Fried-
mann equations. Although, it was argued in [4] that the
modified Friedmann equations based on Barrow entropy
(1) can describe the thermal history of the universe from
early deceleration to the late time acceleration, with the
dark-energy epoch following the matter one, regardless
of the presence of cosmological constant Λ, nevertheless,
it seems this conclusion is only correct in the presence of
cosmological constant [4]. In other words, when Λ = 0
the equation of state (EoS) parameter of the dark sector
is always positive (wDE > 0) [4] (see Appendix). This
implies that the exponent δ in Barrow entropy cannot re-
produce any term which may play the role of dark energy
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[4]. On the other hand, it was recently proven that Bar-
row entropy as well as any other known entropy (Tsalis,
Renyi, Kaniadakis, etc) is just sub-case of generalized en-
tropy expression introduced in [5, 6]. Other studies on
the cosmological consequences of the Barrow entropy can
be carried out in [7–17].

In the present work, we are going to investigate cosmo-
logical implications of the modified Friedmann equations
when the entropy associated with the apparent horizon
is given by the Barrow entropy (1). Our work differs
from [4] in that the author of [4] modifies the cosmolog-
ical field equations in such a way that leads to an extra
component of energy in the Friedmann equations. In this
approach the gravity side of the Friedmann equation is
not modified and the Barrow entropy acts as an effective
dark energy in the right hand side of the field equations.
However, our studies in the present work is based on
the modification of the geometry part (left hand side) of
the cosmological filed equations [18] and keeping the en-
ergy content of the universe in the form of ordinary mat-
ter and radiation. This approach is well motivated and
more physically reasonable, since basically the entropy
depends on the geometry of spacetime (gravity part of
the action). Any modification to the entropy expression
should affect directly the gravity side of the field equa-
tions. In the Appendix of the present work, we compare
the results of [4] with the present work and clarify the
difference of our work with [4]. Throughout this paper
we set κB = 1 = c = ~, for simplicity.

This paper is structured as follows. In the next sec-
tion, for completeness, we briefly review the procedure
of deriving the modified Friedmann equations describing
the evolution of the universe, when the entropy associ-
ated with the apparent horizon is in the form of Barrow
entropy (1). We shall see that the cosmological constant
can appear as a constant of integration in the Friedmann
equations. In section III, we investigate the cosmological
consequences of the modified Friedmann equations in the
presence/absence of cosmological constant. We also es-
timate the age of the universe in this section. We finish
with closing remarks in the last section.

http://arxiv.org/abs/2210.12525v3
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II. MODIFIED FRIEDMANN EQUATIONS
BASED ON BARROW ENTROPY

In this section, we briefly review the approach of con-
structing the modified Friedmann equations based on
Barrow entropy by using the gravity-thermodynamics
conjecture. We refer to [18] for details of calculations.
In the background of FRW universe, the line elements

of the metric is given by

ds2 = −dt2 + a2(t)

(

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)

,

(2)
where a(t) is scale factor of the universe, k = 0,±1 stand
for the curvature parameter, and (t, r, θ, φ) are the co-
moving coordinates. We further assume a0 = a(t = t0) =
1, at the present time. Assuming the apparent horizon
as boundary of the universe, the temperature associated
with the horizon is given by [19]

Th = − 1

2πr̃A

(

1−
˙̃rA

2Hr̃A

)

, (3)

where r̃A = 1/
√

H2 + k/a2 is the apparent horizon ra-
dius [20]. From the thermodynamical viewpoint the ap-
parent horizon is a suitable horizon consistent with first
and second law of thermodynamics [21–26]. We further
assume the energy-momentum tensor of the universe is
Tµν = (ρ + p)uµuν + pgµν , where ρ and p are the en-
ergy density and pressure, respectively. The energy-
momentum tensor is conserved, ∇µT

µν = 0, which re-
sults the continuity equation, ρ̇ + 3H(ρ + p) = 0 where
H = ȧ/a is the Hubble parameter. The work density
associated with the volume change of the expanding uni-
verse, is also given by W = (ρ−p)/2 [27]. To employ the
gravity-thermodynamics conjecture, we propose the first
law of thermodynamics on the apparent horizon satisfies
as

dE = ThdSh +WdV, (4)

where E = ρV is the total energy of the universe enclosed
by the apparent horizon, and Th and Sh are, respectively,
the temperature and entropy associated with the appar-
ent horizon. Here V = 4π

3 r̃3A is the volume enveloped by
a 3-dimensional sphere with the area of apparent horizon
A = 4πr̃2A. Taking differential form of the total matter
and energy, we find dE = 4πr̃2Aρdr̃A + 4π

3 r̃3Aρ̇dt, which
after combining with conservation equation, we arrive at

dE = 4πr̃2Aρdr̃A − 4πHr̃3A(ρ+ p)dt. (5)

Differentiating the Barrow entropy (1), yields

dSh = (2 + δ)

(

4π

A0

)1+δ/2

r̃1+δ
A

˙̃rAdt. (6)

Finally, combining Eqs. (3), (5) and (6) with the first law
of thermodynamics (4), after some algebraic calculations

and using continuity relation, we arrive at

− 2 + δ

2πA0

(

4π

A0

)δ/2
dr̃A

r̃3−δ
A

=
dρ

3
. (7)

After integration, we find the first modified Friedmann
equation in Barrow cosmology,

(

H2 +
k

a2

)1−δ/2

=
8πGeff

3
ρ+

Λ

3
, (8)

where Λ is a constant of integration which can be inter-
preted as the cosmological constant, and Geff stands for
the effective Newtonian gravitational constant,

Geff ≡ A0

4

(

2− δ

2 + δ

)(

A0

4π

)δ/2

. (9)

If we define ρΛ = Λ/(8πGeff), Eq. (8), can be rewritten
as

(

H2 +
k

a2

)1−δ/2

=
8πGeff

3
(ρ+ ρΛ). (10)

In this way, we derive the modified Friedmann equation
by starting from the first law of thermodynamics, and as-
suming the entropy associated with the apparent horizon
has the form (1). When δ = 0, the area law of entropy
is restored and A0 → 4G. In this case, Geff → G, and
Eq. (8) reduces to the standard Friedmann equation in
General Relativity.
To get the second Friedmann equation, we can combine

the continuity equation with the first Friedmann equation
(8). It is a matter of calculations to show that [18]

(2− δ)
ä

a

(

H2 +
k

a2

)

−δ/2

+ (1 + δ)

(

H2 +
k

a2

)1−δ/2

= −8πGeff(p+ pΛ), (11)

where pΛ = −Λ/(8πGeff). This is the second modified
Friedmann equation governing the evolution of the uni-
verse based on Barrow entropy. In the limiting case where
δ = 0 (Geff → G), Eq. (11) reduces to the second Fried-
mann equation in standard cosmology. Combining Eqs.
(8) and (11), yields

(2− δ)
ä

a

(

H2 +
k

a2

)

−δ/2

= −8πGeff

3
[3(p+ pΛ) + (δ + 1)(ρ+ ρΛ)]

= −8πGeff

3
(ρ+ ρΛ) (3wtot + δ + 1) , (12)

where wtot is the EoS parameter of the total energy and
matter, defined as

wtot =
p+ pΛ
ρ+ ρΛ

. (13)
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From Eq. (12), one may notice that the condition for the
acceleration of the cosmic expansion (ä > 0), yields

1 + δ + 3wtot < 0 −→ wtot < −1 + δ

3
. (14)

For δ = 0, we have wtot < −1/3, while for δ = 1 we find
wtot < −2/3. The former is the standard cosmology,
while the later represents the most intricate and fractal
structure of the horizon. As we shall see in the next sec-
tion, our model can reproduce the accelerated expansion
provided we take the cosmological constant into account.
This is, perhaps, the main difference between Barrow and
Tsallis cosmology [28], despite the origin of the correc-
tions in entropy which are completely different in these
two cases [29]. It was argued that choosing the non-
extensive parameter in Tsallis cosmology as β < 1/2,
leads to an accelerated universe, without invoking any
kind of dark energy (cosmological constant) [28] (see also
[30, 31] for dark energy models based on Tsallis entropy).
However, in Barrow cosmology, we observe that in order
to have ä > 0, the EoS parameter should be always neg-
ative in the allowed range of δ, requiring an additional
component of dark energy/cosmological constant to re-
produce an accelerated universe [4].
Given the modified Friedmann equations (10) and (11)

at hand, in the next section, we investigate the cosmo-
logical implications of this model.

III. MODIFIED COSMOLOGY

In this section we are going to investigate cosmological
consequences of the modified Friedmann equations given
in Eqs. (10) and (11). For simplicity, we focus on the
flat universe (k = 0), although the study can be carried
out for k = ±1.

A. The case Λ = 0

Let us first consider the case where the cosmologi-
cal constant is zero (Λ = 0) and the universe is domi-
nated with pressureless matter. Integrating, the continu-
ity equation ˙ρm(t) + 3Hρm(t) = 0, immediately yields

ρm(t) ∝ a−3 ⇒ ρm(t) = C1a
−3, (15)

where C1 is a constant of proportionality. In order to de-
rive the evolution of the scale factor, we insert ρm from
(15) in the modified Friedmann equation in Barrow cos-
mology (10). We find

(

ȧ

a

)2−δ

=
8πGeff

3
C1a

−3, (16)

which can be rewritten as
(

da

dt

)2−δ

= C2a
−1−δ, (17)

where the constant C2 is defined

C2 ≡ 8πGeffC1

3
. (18)

One can easily integrate Eq. (17), which has the solution

a(t) = C3t
(2−δ)/3, (19)

where

C3 ≡
[

3

2− δ
C

1/(2−δ)
2

](2−δ)/3

. (20)

When δ = 0, we have

a(t) =

[

3

2

√

C2

]2/3

t2/3, (21)

which is the well-known result of standard cosmology.
The second time derivative of the scale factor is given by

ä(t) = −C3

9
(1 + δ)(2− δ) t−(4+δ)/3, (22)

which is always negative (ä < 0) during the evolution
of the universe in the allowed range of δ. Thus, in Bar-
row cosmology, one should take into account a dark en-
ergy/cosmological constant component to explain the ac-
celeration of the cosmic expansion. This is consistent
with the argument given in [4].
The evolution of the energy density, the Hubble and

the deceleration parameters are calculated as

ρm(t) ∝ 1

t2−δ
, (23)

H(t) =
ȧ

a
=

2− δ

3t
, (24)

q(t) = −1− Ḣ

H2
=

1 + δ

2− δ
. (25)

Again, all above parameters reduce to those of standard
cosmology for δ = 0. Looking at the deceleration param-
eter indicates q > 0, implying a decelerated universe in
Barrow cosmology filled with pressureless matter.
Now we consider a universe filled with radiation. This

case makes only sense at the early stage of the universe
where the radiation was dominated. Since our Universe is
expanding, the proper momenta of freely moving parti-
cles decreases as P (t) ∼ 1/a(t). This implies that the
random velocities of particles seen today should have
been large in the past when the scale factor was much
smaller than its present value [32]. As a result, the pres-
sureless approximation is break down in the early uni-
verse. Our aim here is to obtain the evolution of the
Universe in the framework of Barrow cosmology, when
the energy content of the universe is composed of highly
relativistic gas (radiation) with EoS pr = ρr/3. In this
case from the continuity equation, ρ̇r(t) + 4Hρr(t) = 0,
we can get

ρr(t) ∝ a−4 ⇒ ρr(t) = B1a
−4, (26)
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where B1 is an integration constant. Combining ρr(t)
given in (26) with the first Friedmann equation (10) for
k = 0 = Λ, one gets

(

ȧ

a

)2−δ

=
8πGeff

3
B1a

−4, (27)

which can be rewritten as
(

da

dt

)2−δ

= B2a
−2−δ, (28)

where we have defined

B2 ≡ 8πGeff

3
B1. (29)

Solving Eq. (28) for scale factor, we arrive at

a(t) = B3 t(2−δ)/4. (30)

where

B3 =

[

4

2− δ
B

1/(2−δ)
2

](2−δ)/4

. (31)

The standard cosmology is deduced by setting δ = 0,
yielding

a(t) =
√
2B

1/4
2 t1/2. (32)

Taking the second time derivative of the scale factor (30)
leads to

ä(t) = −B3

(

4− δ2

16

)

t−(6+δ)/4 < 0. (33)

which is an expected result for radiation dominated era,
where the universe was undergoing a decelerated phase
(ä(t) < 0). Now, we calculate the energy density, the
Hubble and the deceleration parameters in the radiation
dominated era. We find

ρr(t) ∝ 1

t2−δ
, (34)

H(t) =
ȧ

a
=

2− δ

4t
, (35)

q(t) = −1− Ḣ

H2
=

2 + δ

2− δ
> 0, (36)

which again confirm that q > 0 (ä(t) < 0). This implies
that in the early stage of the universe where the rela-
tivistic particles have been dominated, our Universe has
been in a decelerated phase. In summary, in the presence
of radiation and pressureless matter, Barrow cosmology
cannot explain the cosmic phase transition from a de-
celeration phase to an acceleration phase during the his-
tory of the universe, unless the dark energy/cosmological
constant is taken into account [4]. This is in contrast
to the Tsallis cosmology [28] where by suitably choice of
the nonextensive parameter, it is quite possible to ex-
plain the history of the universe from a deceleration to
acceleration phase without invoking any kind of dark en-
ergy/cosmological constant.

B. The case with Λ 6= 0

In this case, we define the density parameters as

Ωm =
ρm
ρc

, ΩΛ =
ρΛ
ρc

, ρc =
3H2−δ

8πGeff
. (37)

Therefore, in terms of the density parameters, the first
Friedmann equation (10) can be written as

Ωm +ΩΛ = (1 + Ωk)
1−δ/2, (38)

where, as usual, the curvature density parameter is given
by Ωk = k/(a2H2). We consider a flat universe filled
with pressureless matter (p = pm = 0) and cosmological
constant, and hence

Ωm +ΩΛ = 1. (39)

The total EoS parameter can be written

W
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FIG. 1: Evolution of wtot as a function of redshift parameter
z in modified Barrow cosmology for different values of Ω0

Λ.

wtot =
pm + pΛ
ρm + ρΛ

=
pΛ

ρm + ρΛ
=

pΛ/ρΛ
ρm/ρΛ + 1

,

= − 1

ρm/ρΛ + 1
, (40)

where pΛ/ρΛ = −1, according to the definition of pΛ and
ρΛ. Taking into account the fact that ρΛ = ρ0Λ, and
ρm = ρ0m(1 + z)3, and using the definition of density
parameters in Eq. (37), we obtain

wtot(z) = − Ω0
Λ

Ω0
m(1 + z)3 +Ω0

Λ

. (41)

If we take Ω0
Λ ≃ 0.7 and Ω0

m ≃ 0.3, we have

wtot(z) = − 0.7

0.7 + 0.3(1 + z)3
. (42)

At the present time where z → 0, we have wtot = −0.7,
while at the early universe where z → ∞, we get wtot =
0. This implies that at the early stages, the universe
undergoes a decelerated phase while at the late time it
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experiences an accelerated phase. The behaviour of the
total EoS parameter in term of the redshift is plotted
in Fig. 1. This figure shows that wtot decreases with
increasing Ω0

Λ, which is an expected result.
We can also obtain the deceleration parameter defined

as q = −1− Ḣ/H2. It is a matter of calculations to show
that

q(z) = −1 +
3

2− δ
(1− Ω0

Λ)(1 + z)3

×
[

Ω0
Λ + (1− Ω0

Λ)(1 + z)3
]

−1
. (43)

The behaviour of q versus z are plotted in Figs. 2 and
3. In Fig. 2, we keep δ = 0.4 and investigate the effects
of Ω0

Λ on q(z). We observe that q is not sensitive to the
present values of Ω0

Λ, while in Fig. 3, we see that q is very
sensitive to the Barrow exponent δ. From Fig. 3, we see
that with increasing δ, the transition from deceleration
phase (q > 0) to the acceleration phase (q < 0) takes
place at lower redshifts. Indeed, the best consistency
with observation for the phase transition happens for δ =
0 at z ≈ 0.63.
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FIG. 2: Evolution of q as a function of redshift parameter z

in modified Barrow cosmology for δ = 0.4 and different values
of Ω0

Λ.
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FIG. 3: Evolution of q as a function of redshift parameter
z in modified Barrow cosmology for Ω0

Λ = 0.68 and different
values of δ.

Next, we investigate the scale factor of the universe.
The first Friedmann equation (10) for flat universe (k =

∆=0
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∆=0.6
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FIG. 4: Evolution of scale factor a versus H0t in modified
Barrow cosmology for Ω0

Λ = 0.70 and different values of δ.
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FIG. 5: Evolution of scale factor a versus H0t in modified
Barrow cosmology for δ = 0.4 and different values of Ω0

Λ.

0) can be rewritten as

H2−δ = H2−δ
0

[

Ω0
ma−3 +Ω0

Λ

]

,

⇒ da

dt
= H0a

[

Ω0
ma−3 +Ω0

Λ

]1/(2−δ)
, (44)

where H0 = H(t = t0) is the Hubble parameter at the
present time t0. Integrating (44), yields

H0t =

∫

a−1
[

(1 − Ω0
Λ)a

−3 +Ω0
Λ

]1/(δ−2)
da. (45)

Let us look at the above relation for the special case
where Ω0

Λ ≈ 1 and Ω0
m ≈ 0. In this case, we have H0t ∼

ln a, and hence a(t) ∼ exp(H0t), which describes a de-
Sitter universe, independent of the value of δ. For Ω0

Λ ≃
0.7 and Ω0

m ≃ 0.3, we have

H0t =

∫

a−1
[

0.3a−3 + 0.7
]1/(δ−2)

da. (46)
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In principle, one can solve the Eq. (46) to obtain the
scale factor of the universe for different values of δ. In-
deed, for a given value of δ, it is better to plot the scale
factor a versus H0t which are shown in Figs. 4-5. From
Fig. 4, we see that at each time, the scale factor increases
with increasing δ. Therefore, in modified Barrow cosmol-
ogy the radius of the universe increases comparing to the
standard cosmology.

C. Age of the universe

Given the Hubble parameter at hand, we can estimate
the age of the universe at the present time (t = t0). In
the absence of cosmological constant ( Λ = 0) and for the
matter dominated universe, from (24) we can estimate
the age of the universe in modified Barrow cosmology as

t0|B =
2− δ

3H0
=

2− δ

2
t0|S , (47)

where H0 = H(t0) is the Hubble constant and t0|S =
2/(3H0) is the age of the universe in standard cosmology
with Λ = 0. Thus, compared to the standard cosmology,
the age of the universe decreases by factor (2− δ)/2 <
1. This implies that in modified cosmology based on
Barrow entropy, the age problem cannot be alleviated.
This is in contrast to the Tsallis cosmology [28], where
the age problem can be alleviated provided one take the
non-extensive parameter β < 1/2 [28]. When we take
the cosmological constant into account, the age of the
universe can be obtained through relation

t0 − t =

∫ z

0

dz

H(z)(1 + z)
, (48)

where a = (1 + z)−1. Substituting H(z) from Eq. (44),
we arrive at

t0 − t =
1

H0

∫ z

0

dz

(1 + z) [Ω0
m(1 + z)3 +Ω0

Λ]
1/(2−δ)

. (49)

In order to obtain the age of the universe, we must take
the limit t → 0 when z → ∞. Rewriting the above
expression in terms of x = (1 + z)−1, we have

t0 =
1

H0

∫ 1

0

dx

x [Ω0
mx−3 +Ω0

Λ]
1/(2−δ)

. (50)

We observe that the age of the Universe in this model
depends on δ. In table I we present the values of H0t0
for different δ and fixed value of Ω0

Λ. We observe that
with increasing the value of δ, the age of the universe
decreases. Besides, from table II, we see that for a fixed
value of δ, the age of the universe increases with increas-
ing Ω0

Λ.

δ 0 0.2 0.4 0.6

H0t0 0.9468 0.8725 0.7970 0.7199

TABLE I: Numerical results for H0t0 in modified Barrow cos-
mology for Ω0

Λ = 0.68 and different values of δ.

Ω0
Λ 0.68 0.69 0.70 0.71

H0t0 0.7970 0.8052 0.8136 0.8224

TABLE II: Numerical results for H0t0 in modified Barrow
cosmology for δ = 0.4 and different values of Ω0

Λ.

IV. CLOSING REMARKS

The cosmological field equations govern the evolu-
tion of the universe get modified, due to the quantum-
gravitational deformation effects of the apparent hori-
zon. In this work, we have investigated the cosmological
consequences of the modified Friedmann equations when
the entropy associated with the apparent horizon is in
the form of Barrow entropy (1). We showed that in the
presence of cosmological constant, this model can explain
the current accelerated universe, although the transition
from decelerated phase (q > 0) to the accelerated phase
(q < 0) takes place in the lower redshifts, compared to the
standard cosmology. We obtained the scale factor, Hub-
ble parameter and deceleration parameter in the pres-
ence/absence of cosmological constant which depend on
the Barrow exponent δ. We have also estimated the age
of the universe in this model and observed that compar-
ing to the standard cosmology (δ = 0), the age of the
universe decreases with increasing δ. On the other hand
for each value of δ, the age of the universe increases with
increasing Ω0

Λ.

In conclusion, the main result obtained in the present
work is that, in modified Barrow cosmology without cos-
mological constant (Λ = 0), one cannot deduce a thermal
history of the universe compatible with observations and
one needs to take into account the cosmological constant
to reproduce an accelerated universe. In other words,
the exponent δ in Barrow entropy cannot reproduce any
term in the dynamical cosmological equations which may
act as the dark energy sector.

It is also interesting to study the profile of the growth
of density perturbation in the context of Barrow cosmol-
ogy. The details of investigations on the density pertur-
bation as well as the gravitational collapse in the back-
ground of Barrow cosmology will be addressed in the fu-
ture projects.
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Appendix: Comparing with “Modified cosmology
through spacetime thermodynamics and Barrow

horizon entropy” [4]

Here we review the modified cosmology based on Bar-
row entropy discussed in [4] and compare the present
work with it in more details. Taking into account the en-
tropy associated with the apparent horizon in the form of
Barrow entropy given in Eq. (1), the author of [4] applies
the first law of thermodynamics, −dE = TdS, on the ap-
parent horizon and derives the modified Friedmann equa-
tions in Barrow cosmology. Here −dE is the energy flux
crossing the apparent horizon within an infinitesimal in-
ternal of time dt. While in the present work, we take the
first law of thermodynamics as dE = TdS+WdV , where
dE is now the change in the energy inside the apparent
horizon. Besides, in [4] the apparent horizon radius r̃A
has been assumed to be fixed. Thus, the temperature of
apparent horizon can be approximated to T = 1/(2πr̃A)
and there is no the term of volume change in it. But, here,
we have used the matter energy E = ρV inside the ap-
parent horizon and the apparent horizon radius changes
with time. This is the reason why we have included the
term WdV in the first law (4).
For a flat universe the modified Friedmann equations,

based on Barrow entropy, derived in [4], are given by

H2 =
8πG

3
(ρm + ρDE) (51)

Ḣ = −4πG (ρm + pm + ρDE + pDE) , (52)

where the energy density and pressure of the effective
dark energy are defined as [4]

ρDE =
3

8πG

{

Λ

3
+H2

[

1− β(δ + 2)

2− δ
H−δ

]}

, (53)

pDE = − 1

8πG

{

Λ + 2Ḣ

[

1− β

(

1 +
δ

2

)

H−δ

]

+3H2

[

1− β(2 + δ)

2− δ
H−δ

]

}

, (54)

where β and Λ are constants [4]. It is clear that the Fried-
mann equations (51) and (52) differ from the modified

Friedmann equations we derived in Eqs. (10) and (11) of
the present work. According to approach [4] the gravity
side of the Friedmann equation is not modified and the
Barrow entropy acts as an effective dark energy sector
in the right hand side of the field equations. However,
in our work, we keep the energy content of the universe
in the form of ordinary matter and radiation and the
left hand side of the Friedmann equations get modified
due to the correction to the entropy. We believe this is
more reasonable, since basically the entropy expression
depends on the geometry of spacetime (gravity part of
the action). Any modification to the entropy expression
should influence the gravity side (left hand side) of the
field equations.
Considering the effective dark energy in the Friedmann

equations (51) and (52), one can define the effective EoS
parameter as

wDE ≡ pDE

ρDE
= −1− 2Ḣ

[

1− β
(

1 + δ
2

)

H−δ
]

Λ + 3H2
[

1− β(2+δ)
2−δ H−δ

] . (55)

The cosmological implications of the modified Friedmann
equations (51) and (52) were studied in [4]. It was shown
that for Λ = 0 the EoS parameter of the dark sector be-
haves as wDE = δ/(2 − δ)Ω−1

DE which is always positive
(wDE > 0) in the allowed range of exponent 0 ≤ δ ≤ 1.
This means that exponent δ in Barrow entropy cannot re-
produce any term which may play the role of dark energy.
In other words, in order to obtain the thermal history of
the universe in agreement with observations and repro-
duce the late time acceleration in the context of Barrow
cosmology, one needs to consider an additional dark en-
ergy (cosmological constant) in the energy content of the
universe. This is consistent with the results obtained in
the present work.
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