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A modified coupled-mode (CM) model is proposed for the optical behavior of thermally chirped Bragg
gratings. The model accounts for the axial gradient in the modulation wavenumber, which has been ig-
nored in the classical CM model. The model is used to characterize the optical behavior of a polymethyl
methacrylate-based polymer Bragg grating subjected to nonisothermal conditions. The validity of the
proposed method is verified by comparing the results of the modified CMmodel with those obtained from
the exact numerical solution. © 2010 Optical Society of America

OCIS codes: 050.1590, 060.3735.

1. Introduction

Chirped gratings, resulting from natural or inten-
tional variations in the properties and geometries
of an otherwise periodic structure, have been exten-
sively treated in the literature [1–14]. Analyses of
chirped gratings are usually based on the coupled-
mode (CM) theory, first proposed by Kogelnik [1].
The direct numerical integration of the CM

equations along chirped gratings, as suggested by
Kogelnik [1], has been shown to agree well with ex-
perimental results of mildly chirped gratings. Hong
et al. [2] have developed asymptotic approximations
of the CM equations for linearly chirped gratings.
Fukuzawa and Nakamura [3] and Livanos et al.
[4] have suggested a chirped grating reflectivity cal-
culation method, which is based on the approximate
form of the CM theory. In the approximate form, use
is made of an “effective” grating length—defined
as the distance over which significant reflectance
occurs. Their approximation was found to agree
reasonably well with the results of the direct CM
numerical integration.

Yamada and Sakuda [5] have suggested a method
applicable to mildly chirped gratings, or “almost per-
iodic” gratings. Their method is a piecewise-uniform
approach, in which the grating is divided into a num-
ber of segments of uniform periodicity, the CM equa-
tions are solved for each segment, and the results
combined in a series of matrices. Erdogan [6] has
concluded that the approximation of the piecewise-
uniform approach is in good agreement with the
solutions of the direct CM numerical integration,
for a variety of mildly chirped gratings. A similar ap-
proach was taken byWeller-Brophy and Hall [7], who
analyzed chirped gratings using the Rouard method,
approximating the grating as a stack of a finite num-
ber of slabs and determining the effective reflectivity
of each slab by the CM theory. At the asymptotic
limit, where the grating is represented by an infinite
number of slabs, the Rouard approximation becomes
exact. Sipe et al. [8] have suggested an “effective
properties” description of chirped gratings in the con-
text of the CM equations. A later study by Poladian
[9] made use of that “effective properties” descrip-
tion to develop phase integral Wentzel–Kramers–
Brillouin (WKB) approximate solutions of the CM
equations for chirped gratings. These have been
found to agree with the results of the direct CM
numerical integration.
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The thermo-optic effects of intrinsic heating on the
performance of polymer fiber gratings have attracted
recent attention. Notable examples of such experi-
mental studies include the work of Peng and Chu
[10] on the photosensitivities of polymer optical fi-
bers and use of fiber temperature changes to create
tunable fiber gratings, the work of Liu et al. [11] on a
thermal stability test for polymer fibers, which
pointed to a potential compatibility of polymers with
such applications, and a more recent study by Littler
et al. [12], considering the effect of intrinsic heating
on the Bragg shift in an isothermal grating.
Consideration was then extended by Kim et al. [13]

to gratings with axial temperature gradients, cre-
ated by nonuniform intrinsic heating, leading to a
nontraditional, “thermally chirped” Bragg grating.
When exposed to a temperature gradient, the fiber
Bragg grating (FBG) optical properties will be al-
tered in two ways: by a thermo-optic effect (varied,
nonuniform, shift in the refractive index unrelated
to the Bragg grating) and by a thermomechanical
effect (varied, nonuniform, thermal expansion of
the material, altering the period of the Bragg grat-
ing). The nonuniformity of these effects along the
grating causes a chirp in the FBG. A model to pre-
cisely characterize the optical behavior of such ther-
mally chirped gratings must consider the axial
gradient of the modulation wavenumber, which has
been ignored in the original CM model.
In this study, a rigorous approach to modeling of

thermal effects on thermally sensitive Bragg grat-
ings is suggested, in which the CM optical equations
are rederived for thermally chirped polymer Bragg
gratings.

2. Modeling

In this analysis the Bragg grating is treated as a
large number (N) of sequential elements, with reflec-
tion occurring at the interfaces between elements
and propagation within the elements. Considering
the jth element, the local jth wave amplitudes of
the forward (F) and the backward (R) waves are re-
lated to the (jþ 1)th amplitudes through the multi-
plication of the complex transmission coefficient, the
complex reflectivity matrix, and the propagation ma-
trices [14], i.e.,
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Rj

�
¼ 1

τj

�
1 −ρj�
ρj 1

��
eikjΔz 0
0 e−ikjΔz
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where the complex transmission coefficient and the
complex reflectivity coefficient are given, respec-
tively, by

τj ¼
2nj

nj þ njþ1
; ρj ¼

nj − njþ1

nj þ njþ1
; ð2Þ

The complex refractive index for any element in
the grating can be expressed as the sum of the non-
periodic and the periodic contributions to the refrac-
tive index variation, i.e.,

nðzÞ ¼ n0ðzÞ þ δneiBðzÞz: ð3Þ

The modulation wavenumber, BðzÞ varies along the
grating, i.e., BðzÞ ¼ 2π

ΛðzÞ, where ΛðzÞ is the grating
period. The propagation wavenumber may also vary
along the grating, according to kðzÞ ¼ 2π

λ0 nðzÞ, where
λ0 is the wavelength in vacuum.

Subtracting the (jþ 1)th wave amplitudes vector
from both sides of Eq. (1) and allowing the elements
to become vanishingly thin, yields a simple differen-
tial equation:
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The first term of the Taylor series of τ, ρ, and eikΔz

can be expressed as
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where n0
≡

dn
dz. Substituting these relations into

matrix A, and taking the first term in Δz, yields
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By assuming that the modulated variation of re-
fractive index is small in comparison to its base value
(i.e., δn ≪ n0ðzÞ) and that the chirp-induced spatial
variation of the base refractive index is much smaller
than the modulated spatial variation of the refrac-
tive index (i.e., n0

0ðzÞ ≪ δnBðzÞ), the refractive index
terms can be evaluated as

n0ðzÞ
nðzÞ ¼ n0

0ðzÞ þ i½BðzÞ þ zB0ðzÞ�δneiBðzÞz
n0ðzÞ þ δneiBðzÞz

≈ i
δn

n0ðzÞ
½BðzÞ þ zB0ðzÞ�eiBðzÞz; ð7Þ

where B0ðzÞ≡ dBðzÞ
dz . In Eq. (7), explicit notation is

used to emphasize z-dependent variables. These
assumptions can be quantitatively justified for glass
and polymer fibers [13] by inserting typical optical
properties of glass and polymer (Table 1 [13]).

By substituting Eq. (7) in (6) and making an addi-
tional assumption that the numerical value of δn=n0
is far smaller than k=B, i.e., δnn0

≪
k
B, which can also be

quantitatively justified, Eq. (6) can be expressed as
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A ≈ −i
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Converting to the phase-shifted wave amplitude
parameters (i.e., f ≡ Fe

1
2iBðzÞz and r≡ Re−

1
2iBðzÞz) such

that jf j ¼ jFj and jrj ¼ jRj, serves to eliminate the ex-
ponents from the above relations. Then, Eq. (4) can
take a final form as
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where
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For an isothermal grating in which B0ðzÞ ¼ 0,
Eq. (9) reverts to the original CM model (see Orfani-
dis [14]). It is worth noting that the contribution of
zB0ðzÞ to the cross-diagonal terms in a is negligible
since, typically, zB0ðzÞ ≪ BðzÞ. However, the zB0ðzÞ
contribution to the diagonal terms is not negligible
close to the Bragg condition, where − 1

2BðzÞ þ kðzÞ ≈ 0.

3. Analysis

The present analysis addresses a nonisothermal
FBG, with an assumed axial temperature variation,
representing a thermally chirped Bragg grating. The
temperature effect is taken into account through the
modulation and propagation wave numbers. The
modulation wavenumber varies along the axial di-
rection as

BðzÞ ¼ 2π
ΛðzÞ ¼

2π
Λ0½1þ αΔTðzÞ� ; ð10Þ

where Λ0 is the grating period at the reference tem-
perature, α is the thermal expansion coefficient, and
ΔTðzÞ is the excess temperature, representing the
deviation from the reference temperature. The pro-
pagation wavenumber varies along the axial direc-
tion as

kðzÞ ¼ 2π
λ0

nðzÞ ≈ 2π
λ0

½n0 þ n0
TΔTðzÞ�; ð11Þ

where n0 is the refractive index at the reference
temperature and n0

T is its derivative with respect
to temperature, i.e., n0

T ≡
dn
dT.

The optical behavior of such a nonisothermal poly-
meric Bragg grating is determined by three different
methods: the CM method, the thermally modified
CM method (henceforth referred to as CMT), and
the exact method, which is a direct numerical calcu-
lation based on Eq. (1) [or Eq. (4)] and does not con-
tain any limiting assumptions. To obtain correct
results, the direct numerical solution must be per-

formed using extremely small steps (Δz), typically
2 orders of magnitude smaller than the wavelength.
To assure convergence, in the present study Δz for
the direct numerical solution was taken equal to
5:3nm.

The boundary conditions set the amplitude of the
forward wave at the grating outlet to unity and the
amplitude of the reflective wave at the outlet to zero:

�
FN

RN

�
¼

�
1
0

�
: ð12Þ

Linear normalization of the solution can further be
applied to tune the results to different forward wave
amplitudes at inlet.

For the CM and CMT methods, numerical compu-
tations are performed in Δz steps (j):

�
f j
rj

�
¼ e−ajΔz

�
f jþ1

rjþ1

�
; ð13Þ

For each step, matrix a is approximated as a con-
stant, i.e., aj ¼ aðzþΔz=2Þ, and calculated by its
definition [see Eq. (9)], where for the CM method
B is set equal to zero. Equation (13) is then solved
using the boundary conditions:

�
f N
rN

�
¼

�
1
0

�
: ð14Þ

Further linear normalization of results, as noted for
Eq. (12), can be applied.

The numerical calculations of CM and CMT can be
performed in far fewer steps (largerΔz) than the “ex-
act” method since they only need to be smaller than
the relevant length scale of temperature change.

4. Results and Discussion

In subsequent sections, thermo-optic results are gi-
ven for grated fibers made of glass and polymethyl
methacrylate (PMMA) polymer, respectively, and
chosen to represent an extreme variation in the
thermo-optic material properties of the Bragg grat-
ings. The relevant optical and thermal parameters
of these two materials are given in Table 1 [13]. It
is to be noted that the values of the thermo-optic coef-
ficient (dn=dT) and thermal expansion coefficient (α)
of the PMMA polymer are much larger than those
of glass.

In order to examine the effect of temperature non-
uniformity on the optical behavior of a grating, the
impact of different temperature profiles on the power
and spectral characteristics of the backward/
reflected light wave is evaluated with the aid of
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the classic CM equations, the CMT equations, and
the exact numerical calculation, respectively.
Figure 1 shows the individual and aggregated ef-

fects of the mechanisms responsible for the thermo-
optic behavior of a thermally chirped glass Bragg
grating, subjected to a steep exponential axial tem-
perature variation, ΔT ¼ 85e−3:344

z
L, dropping from

an excess temperature of 85K at the inlet to just
3K at the outlet of the grating. The thermomechani-
cal effect, due to the thermal expansion of the grat-
ing, is captured in the variation of the grating pitch
wavenumber (B) and its axial derivative (B0). The
temperature sensitivity of the refractive index (n0

T)
is embodied in the variation of the propagating light
wavenumber (k).
Because of the small thermal expansion coefficient

in glass, however, it is observed that the thermome-
chanical effect (B andB0) is quite small in comparison
to the thermo-optic effect, and that, therefore, there
are only minor differences between the predictions of
the CMT and the CM methods. It is noted that the
magnitude of the thermo-optic effect in glass is small,
due to its small thermo-optic coefficient, n0

T (much
smaller than that of PMMA). Nevertheless, in the
absence of the thermo-optic compensation that can

occur under small gradients in PMMA, the total
Bragg shift for the glass fiber under the stated con-
ditions reaches 0:1nm.

Figure 2 shows the individual and aggregated ef-
fects of the mechanisms responsible for the thermo-
optic behavior of a thermally chirped polymer Bragg
grating, subjected to a steep exponential axial tem-
perature variation, ΔT ¼ 35e−3:555

z
L, dropping from

an excess temperature of 35K at the inlet to just
1K at the outlet of the grating. It is clear from the
figure that the contributions of B and k to the reflec-
tivity of a PMMA grating are almost symmetrical
about the Bragg wavelength, leading to significant
“compensation” between these two mechanisms
and only a modest net Bragg shift. However, the com-
bined thermomechanical contribution, including the
effects of both the wavenumber, B, and the axial de-
rivative of the wavenumber, B0, destroys this symme-
try. Consequently, while the solution of the classic
CM equations (without the B0 contribution) suggests
strong thermo-optic compensation and a very modest
Bragg shift of 0:04nm in this PMMA grating (see also
Kim et al. [13]), inclusion of the B0 term in the CMT,
derived specifically to deal with large axial tempera-
ture gradients, yields a significant Bragg shift and

Fig. 1. (Color online) Contribution of thermo-optic effects to spec-
tral variation (shift from Bragg wavelength) in reflected power for
a 10mm glass grating. A 10mm glass grating under an exponen-
tial temperature profile of ΔT ¼ 85° − 3 °C is considered. Calcula-
tions are separated for the sole effects of k, B, B& B0, and the
combined effects models CM (k and B) and CMT (k and B& B0).
Power is normalized to the incident light of unity.

Fig. 2. (Color online) Contribution of thermo-optic effects to spec-
tral variation (shift from Bragg wavelength) in reflected power for
a 10mmPMMAgrating, under an exponential temperature profile
of ΔT ¼ 35° − 1 °C. The individual effects of k, B, B& B0, and the
combined effects models CM (k and B) and CMT (k and B&B0) are
shown. Power is normalized to the incident light of unity.

Table 1. Physical Parameters for Glass and PMMA (from Kim [13]) at Standard Room Temperature

Glass PMMA

Refractive index (at reference temperature) n0 1.4567 1.4853
Index modulation δn 7:123 × 10−5 7:244 × 10−5

Index derivative with respect to temperature n0
T 8:6 × 10−6 K−1

−1:1 × 10−4 K−1

Thermal expansion coefficient α 0:55 × 10−6 K−1 73 × 10−6 K−1

Grating period (at reference temperature) Λ0 532:00nm 530:70nm
Bragg wavelength (λB ¼ 2n0Λ0) λB 1549:93nm 1576:50nm
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strong spectral “ringing” in the reflectivity of the
grating.
Figure 3 presents an example of a thermally

chirped Bragg grating, chosen to highlight the signif-
icant effect of temperature nonuniformity on the
thermo-optic behavior of polymer grating and on
the predictive inaccuracy of the classic CM model.
The figure depicts the axial variation in the normal-
ized reflected power, at the Bragg wavelength of
1576:5nm [Fig. 3(a)] and at 0:1nm below the Bragg
wavelength [Fig. 3(b)], for a thermally chirped,
10mm long, PMMA polymer FBG. The calculations
were performed for an assumed linear excess tem-
perature profile, dropping from 5K above ambient
at the inlet to 0K at the outlet of the grating.
At the Bragg wavelength, all three techniques

yield a nearly monotonic increase in reflected power
as the grating inlet is approached, but while the
direct numerical solution and the CMT method yield
nearly identical results with a reflected power of
some 9%, the classic CM method substantially over-
predicts the reflected power with a normalized value
of 0.8. Examining Fig. 3(b), it may be seen that the
close agreement between the CMT approximation
and the exact solution is maintained at a 0:1nm
lower wavelength and reflects somewhat larger per-

iodicity than seen at the Bragg wavelength. But, the
results of the classic CM calculation display broad
and unacceptable deviations—in the shape and mag-
nitude of the axial power distribution. This compar-
ison reveals that even a relatively modest axial
temperature variation (5K across a 10mm grating)
can produce significant “thermal chirp” effects.

The spectral variations in the power reflected by a
PMMA grating, operating under different tempera-
ture profiles, i.e., a uniform temperature change of
ΔT ¼ 35°, an exponential temperature profile from
10K to 1K (ΔT ¼ 10e−2:303

z
L), and a linear tempera-

ture profile decreasing from an excess temperature
of 10K at the inlet to zero at the outlet, are compared
in Fig. 4. It is evident that in a PMMA Bragg grating,
even a relatively small deviation from uniformity
in temperature causes a significant shift in the re-
flected power and in the wavelength of the maximum
reflectivity, while for a uniform temperature profile
the overall thermo-optic effect is minor (small shift
in reflected power versus wavelength behavior). This
is due to the fact that in PMMA the effect of k and B
result in Bragg shifts of opposite sign and nearly the
same magnitude, thus leading to nearly complete
compensation. However, when the axial variation
in the expansion of the grating is included in the de-
termination of the Bragg shift, through the contribu-
tion of B0 to the CM solution, a decidedly asymmetric
and complex spectral distribution emerges from the
CMT methodology.

It is interesting to note thatPMMAgratings appear
to be more sensitive to a linearly varying than to an
exponentially varying temperature distribution. This
canbeattributed to a larger average value of zB0ðzÞ for
a linear temperature profile. These pronounced ef-
fects of nonuniform temperature cannot be predicted
by the original CMmodel since it ignores the effect of
the axial gradient of themodulation wavenumber,B0,

Fig. 3. (Color online) Normalized backward wave power for a
thermally chirped 10mm PMMA grating (at ΔλB ¼ 0 and
−1:0nm) under a linear temperature profile of ΔT ¼ 5° − 0 °C
(start to end of grating). Calculations are according to exact nu-
merical model, CM, and CMT. Power is normalized to the incident
light of 100 units.

Fig. 4. (Color online) Effect of temperature nonuniformity on
spectral variation (shift fromBragg wavelength) in reflected power
for a 10mm PMMA grating. Power is normalized to the incident
light of unity.
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butarewell capturedby the thermallymodifiedmeth-
odology (CMT model) presented in the previous
sections.
It is also interesting to note that previous methods

of accounting for chirped gratings (see the Introduc-
tion) were largely based on the original CM model.
Some methods [5–7] have utilized the CM model di-
rectly, by applying it to discrete finite segments of the
chirped grating. Asymptotically, as the segments be-
come infinitely small, the method becomes, at the
infinite limit, identical to the exact numerical calcu-
lation. Hence, exact results will only be obtained
from calculations that are as computationally inten-
sive as the exact numerical method. Indeed, these
studies report the method to be useful only for mild
chirps. These are not compatible with realistic ther-
mal chirps in polymer fibers. Applying this method to
the thermally chirped PMMA fibers would yield re-
sults largely between those obtained from the CM
model to those obtained from the exact numerical
method, with their numerical accuracy converging
only at the computational-intensivity limit of the
exact method, hence offering no practical (or other)
advantage over the latter. Other methods [8,9] have
suggested semianalytical approximate solutions of
the CM equations for chirped gratings. These math-
ematical approximations were shown in those
studies to be successfully close to numerical calcula-
tions of the CM equations (classical CM model) and,
hence, are essentially simplifying approximations of
the numerical CMmodel. As such, they do not offer to
produce the substantially different behavior pre-
dicted by the CMT model in this study, which was
verified by exact numerical calculations.

5. Conclusions

A thermally modified coupled-mode model (CMT)
was developed to characterize the optical behavior
of thermally chirped Bragg gratings. The CMTmodel
enjoys the benefit of simplicity, as provided by the
original CM model yet predicts the optical behavior
of thermally chirped polymer Bragg gratings as accu-
rately as the much more computationally intensive
exact numerical calculation. Use of the CMT model
has revealed the importance of accounting for the ax-
ial variation in the thermomechanical terms in the

Bragg shift calculation to capture the aperiodical
distortion that can occur in nonisothermal polymer
gratings.

The proposed CMT method was used to character-
ize the thermo-optic behavior of a PMMA FBG sub-
jected to various nonuniform temperature profiles. It
was demonstrated that even relatively small tem-
perature nonuniformity can cause a significant shift
in the reflected spectrum from the classical solution.
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