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Abstract: Problem statement: This study introduced an adaptive thresholding method for removing 
additive white Gaussian noise from digital images. Approach: Curvelet transform employed in the 
proposed scheme provides sparse decomposition as compared to the wavelet transform methods which 
being nongeometrical lack sparsity and fail to show optimal rate of convergence. Results: Different 
behaviors of curvelet transform maxima of image and noise across different scales allow us to design 
the threshold operator adaptively. Multiple thresholds depending on the scale and noise variance are 
calculated to locally suppress the curvelet transform coefficients so that the level of threshold is 
different at every scale. Conclusion/Recommendations: The proposed algorithm succeeded in 
providing improved denoising performance to recover the shape of edges and important detailed 
components. Simulation results proved that the proposed method can obtain a better image estimate 
than the wavelet based restoration methods. 
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INTRODUCTION 

 
 In the real world signals do not exist without noise, 
which arises during image acquisition (digitization) 
and/or transmission (Gonzalez and Woods, 2002). 
When images are acquired using a camera, light levels 
and sensor temperature are major factors affecting the 
amount of noise. During transmission, images are 
corrupted mainly due to interference in the channel 
used for transmission. Removing noise from images is 
an important problem in image processing (Ruggeri and 
Vidakovic, 1999). This noise removal takes place in the 
original time space domain or in a transform domain. In 
transform domain Fourier transform is used in the time-
frequency domain and multiresolution transforms like 
wavelet/curvelet/contourlet transforms are used in the 
time-scale domain.  
 Denoising a given noise corrupted signal is a 
traditional problem in both statistics and in signal 
processing applications. Linear denoising methods are 
not so effective when transient non-stationary wideband 
components are involved since their spectrum is similar 
to the spectrum of noise (Zhang and Luo, 1999). Non-
linear denoising methods (Smith and Agaian, 2004) rely 

on the basic idea that the energy of a signal will often 
be concentrated in a few coefficients in the transform 
domain while the energy of noise is spread among all 
coefficients in transform domain. Therefore, the non-
linear methods will tend to keep a few larger 
coefficients representing the signal while the noise 
coefficients will tend to reduce to zero. Denoising 
methods based on multiresolution transforms involves 
three steps: A linear forward transform, nonlinear 
thresholding step and a linear inverse transform. 
Wavelets are successful in representing point 
discontinuities in one dimension, but less successful in 
two dimensions. As a new multiscale representation 
suited for edges and other singularity curves, the 
curvelet transform has emerged as a powerful tool. The 
developing theory of curvelets predict that, in 
recovering images which are smooth away from edges, 
curvelets obtain smaller asymptotic mean square error 
of reconstruction than wavelet methods (Candes and 
Donoho, 2004). 
 
Curvelet transform: An image, when analyzed using a 
2-D wavelet transform exhibits large wavelet 
coefficients, along the edges in the image. At each 
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scale, these edges in the image are seen repeated. This 
requires many wavelet coefficients to reconstruct the 
edges in an image and it puts a limit on wavelet 
denoising. The estimation of these large numbers of 
coefficients lead to high Mean Square Error (MSE). A 
comparison of order of error in case of wavelets and 
that of curvelet reconstruction is presented in the 
literature (Candes and Donoho, 2004) below. 
 Non-linear approximation of objects can be 
considered by treating them as function of two variables, 
one with discontinuities along edges and second, which 
are smooth.  If an object f is represented in a wavelet 
basis, then the number of wavelet coefficients of f 
exceeding the threshold, 1/n, in absolute value increases 
rapidly as c.n as n→∞. This increase indicates the 
requirement of many terms to reconstruct a good image. 
If the best partial reconstruction obtained by selecting the 
n largest terms is represented by W

nf , the best n-term 

approximation would obey: 
 

2

2W 1
n L

f f n , n  −− ≈ → ∞  (1) 

 
 This result is not optimal and hence wavelets fail to 
represent objects with edges. If the edge curve is 
considered to be of length one, then at each scale 2−j, 
there are approximately 2j wavelets interacting with the 
edge, resulting in coefficient of size 2−j. This shows that 
the wavelet coefficient decay only as 1/n. Wavelets do 
not take advantage of the geometry of the edge and hence 
about 2j coefficients are needed to reconstruct the 
frequency content of an edge up to the subband j2ξ ≈ . 

Wavelets being nongeometrical, move only in horizontal 
and vertical directions and not along the curve and thus 
cannot achieve the optimal rate of convergence. 
 The curvelet transform has a tight frame which 
combines multiscale analysis and ideas of geometry and 
can achieve optimal rate of convergence by simple 
thresholding (Starck et al., 2002). This multiscale 
transform has a strong directional character in which 
elements are anisotropic at fine scales. The support of 
these elements is according to the parabolic scaling 
principle length2∼width. Curvelets partition the 
frequency plane into dyadic coronae. Unlike wavelets, 
these corona are subpartitioned into angular wedges 
displaying the parabolic aspect ratio as shown in Fig. 1. 
 Curvelets at scale 2−j, are of rapid decay away from 
a ‘ridge’ of length 2−j/2 and width 2−j and this ridge is 
the effective support γµ. If coefficients of only those 
curvelets, which overlap with the edge and are nearly 
tangent to it are considered, then for a fixed scale 2−j, 
there are at most O(2−j/2) coefficients of such type.  

 
 
Fig. 1: Frequency domain view of the curvelet tiling 
 
 The size of each coefficient can be estimated by: 
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Curvelets are L2 normalized so that 

2L
1µγ ≤  and are 

supported in a box of side length 2−j/2 and width 2−j. 
Therefore they obey: 
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 Since, f is a bounded function, the coefficients θµ, 
verify the apriori estimate: 
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 At each scale 2−j  there are O(2j/2) coefficients 
which are bounded by C.2−3j/4 and the nth largest 
coefficient 

n
θ is bounded by: 

 
3

2
n

C. n    
−

θ ≤  (5) 
 
 The above decay gives O(n−2) convergence rate for 
the nonlinear n-term approximation fn defined by 
keeping the n largest term in the curvelet expansion and 
it obeys: 
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f f C. n−

>

− ≤ θ ≤∑  (6) 

 
 From the above equation the faster rate of decay of 
coefficients in a curvelet basis is obvious as compared 
to the decay of wavelet coefficients in Eq. 1 for an 
object with arbitrary C2 singularity. 
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MATERIALS AND METHODS 
 
Preliminary algorithm for image denoising: The 
mathematical model of noisy image is as follows: 
 
y = x + n                                                    (7) 
 
Where: 
y = The observed image 
x = The unknown original image  
n = The contaminating noise 
 
 Complete curvelet denoising procedure is 
performed by taking curvelet transform of the image 
and then applying thresholding to eliminate noisy 
coefficients. Thus, the inverse curvelet transform of the 
thresholded coefficients give the denoised image. 
 The fast discrete curvelet transform (Candes et al., 
2006) of the observed image is evaluated as Y using the 
curvelet transform operator C(.) using following 
equation: 
 
Y = C(y) (8) 
 
 The threshold denoted by λ, for any transform can 
be expressed in general terms using the operator D(.) 
as: 
 
λ = D(Y)   (9) 
 
 For wavelet based denoising procedures one such 
threshold is the universal threshold (Li and He, 2006) 
given as: 
 

gD (Y) 2log Nλ = = σ  (10)    

 
Where: 
σ = The standard deviation of noise 
N = The size of image 
 
 Wavelet transform maps white noise in the signal 
domain to white noise in the transform domain. Thus 
in the transform domain the signal is concentrated into 
fewer coefficients but the noise does not concentrate. 
The principle behind separation of signal and noise is 
that, when scale 2−j decreases, wavelet transform 
maxima of images doesn’t increase, but at the same 
time wavelet transform modulus of white noise 
increases. Thus different behaviors of wavelet 
transform maxima of images and noise across 
different scales allow us to design the operator D(.) 
adaptively. 

 An image features a wide variety of characteristics. 
Hence, instead of using a single value as the global 
threshold, the operator D(.) can be designed to produce 
multiple local thresholds λj adaptively for different 
scales from fine to coarse. For wavelets an adaptive 
threshold is (Li and He, 2006): 
 

j j

2log N
D (Y)

log( j 1)

σ
λ = =

+
 (11) 

 
where, j is the decomposition level of wavelet packet 
transform. This modified multiple local thresholding 
technique obtained better results than the soft and the 
hard thresholding methods, which utilizes a single 
threshold value at every scale. Curvelet transform 
employs the 1-D wavelet transform as a component 
step, but, along the radial variable in Radon space. Thus 
Eq. 11 does not prove to be effective for thresholding 
the curvelet transform coefficients and requires some 
modification. 
 
Modified curvelet thresholding for image denoising: 
In this study a similar multiple threshold technique for 
thresholding the curvelet coefficients is proposed. To 
design the operator D(.), it is proposed to retain all the 
coefficients at the first scale, since they are the dc 
values and they provide the average information of the 
image.  For the remaining scales the coefficients, which 
provide the highest PSNR values seem to be correlated 
and the curvelet coefficients appear to decay in an 
exponential  manner  as shown in Fig. 2. In Fig. 2 
Series 1-3 are plots for ,jλ  corresponding to σ = 20, 30 

and 50 respectively. 
 Thus a scale dependent exponential function 
multiplied by a scale dependent logarithmic function 
resulted in improvement in PSNR values. Therefore, 
the multiple local thresholds are proposed as: 
 

, ( j 1)
j jD (Y) 2 log N.e .log( j 1)− −λ = = σ +   (12) 

for j = 2, 3,………J 
 
Where: 
j = The decomposition level of curvelet transform  
J = The integer corresponding to the last scale 
 
 After selecting the threshold level, the next step in 
the process of denoising is applying the threshold 
operator T(.,.). This can be expressed as: 
 
Z = T(Y,λ) (13) 
 
where, Z gives the thresholded coefficients. 
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 This study employs cubic, soft and hard thresholding 
functions as the threshold operator T(.,.) in Eq. 13, with 
the difference that the threshold is not single valued λ, 
but is multivalued λj as obtained from Eq. 12. 
 Cubic thresholding function is very flexible and 
has the capability to adapt to different types of images 
and threshold operators. The cubic threshold function 
(Li and He, 2006) given as: 
 

j

3

n j j

0,

T (Y, )
Y 1 , else

Y

 λ
   λ = λ  −     

        (14) 

 
 The soft (Donoho, 1995) and the hard thresholds 
(Donoho, 1994) are some simple but powerful shrinkage 
functions. These thresholds select a single global 
threshold for all the scales using Eq. 10. Employing ,

jλ  

of Eq. 12 with the soft thresholding operator proposes the 
multiple local soft thresholding as: 
 

,
j,

s j ,
j

0, Y
T (Y, ) Y

sign(Y), else

 < λ λ = − λ  
 (15)                                  

 
 Similarly, by combining ,

jλ  of Eq. 12 with the hard 

threshold operator, multiple local hard thresholding can 
be given by: 
 

,
, j

k j

0, Y
T (Y, )

Y, else

 < λ λ =  
  

 (16) 

 
 Finally C−1(.) takes the fast discrete inverse 
curvelet transform of the thresholded curvelet 
coefficients, Z, as: 
 

1x̂ C (Z)−=  (17) 
 
where, ̂x is the reconstructed/denoised image. 
 

 
 
Fig. 2: Graph indicating relationship of the thresholded 

coefficients with the scale. Series 1, Series 2 
and Series 3 are for standard deviations of 20, 
30 and 50 respectively 

RESULTS AND DISCUSSION 
 
 The performance of the proposed thresholding 
methods is evaluated and compared with that of soft, 
hard and cubic thresholding schemes using wavelets (Li 
and He, 2006). Gaussian noise was added to the classical 
Lenna and Saturn images. Multiple local thresholds are 
obtained using Eq. 12. The curvelet coefficients are 
processed by thresholding functions in Eq. 14-16. The 
performance of denoising is evaluated using Peak Signal-
to-Noise Ratio (PSNR) and Mean Square Error (MSE). 
PSNR is defined as the ratio of signal power to noise 
power. It basically obtains the gray value difference 
between resulting image and original image. MSE is 
given by the formula: 
 

m 1 n 1
2

i 0 j 0

1
MSE I(i, j) K(i, j)

mn

− −

= =

= −∑∑  

 
Where: 
I = The original image 
K = The reconstructed image 
m and n = The number of rows and columns 

respectively 
 
 PSNR is given as: 
 

2
I

10

MAX
PSNR 10log

MSE

 
=  

 
 

 
where, 2

IMAX   is the maximum pixel value of the image. 

 Numerical values for PSNR and MSE for the 
images ‘Lenna’ and ‘Saturn’ are given in Table 1 and 
Table 2 respectively. The curvelet reconstruction using 
multiple local thresholds enjoys superior performance 
over the wavelet based reconstructions. The pictorial 
denoising performance for images ‘Lenna’ and 
‘Saturn’, using wavelet based soft, hard and cubic 
thresholds is compared with curvelet based multiple 
local soft, hard and cubic  thresholds in Fig. 3 and 4 
respectively. Experiments show that multiple local 
thresholding based on curvelets outperforms the 
wavelet based methods on the basis of MSE and PSNR. 
 
Table 1: Comparison of different thresholding methods for ‘Lenna’ 

image 
 Thresholding using  Multiple local  
 wavelets  thresholding using curvelets  
 ---------------------------- ----------------------------------- 
Method PSNR/dB MSE PSNR/dB MSE 
Noisy Image 19.80 679.91 19.80 679.910 
Soft_thresholding 23.11 317.61 25.31 191.461 
Hard_thresholding 24.52 229.86 26.13 158.510 
Multiple local 25.07 202.19 26.56 143.570 
cubic_thresholding 
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 (a) (b) (c) (d) 

 
 (e) (f) (g) (h) 
 
Fig. 3: Denoising of ‘Lenna’ (a) original image; (b) noisy image; (c) soft thresholding using wavelets; (d) multiple 

local soft thresholding using curvelets; (e) hard thresholding using wavelets; (f) multiple local hard 
thresholding using curvelets; (g) multiple local cubic thresholding using wavelets; (h) multiple local cubic 
thresholding using curvelets 

 

 
 (a) (b) (c) (d) 
 

 
 (e) (f) (g) (h) 
 
Fig. 4: Denoising of ‘Saturn’. (a) original image (b) noisy image (c) soft thresholding using wavelets (d) multiple 

local soft thresholding using curvelets (e) Hard thresholding using wavelets (f) multiple local hard 
thresholding using curvelets (g) multiple local cubic thresholding using wavelets (h) multiple local cubic 
thresholding using curvelets 

 
Table 2: Comparison of different thresholding methods for ‘Saturn’ 

image 
 Thresholding  Multiple local thresholding 
 using wavelets  using curvelets  
 ----------------------------- --------------------------------- 
Method PSNR/dB MSE PSNR/dB MSE 
Noisy Image 20.00 650.25 20.00 650.25 
Soft_thresholding 23.94 262.47 26.05 161.46 
Hard_thresholding 26.40 148.96 27.12 126.20 
Multiple local cubic 26.84 134.61 27.50 115.63 
_thresholding 

 
CONCLUSION 

 
 In this study, a new denoising technique based on 
adaptive selection of thresholds to suppress noisy 

curvelet transform coefficients is presented. Due to 
multiresolutional dictionary, the maxima of the curvelet 
transform coefficients vary and so the threshold 
operator is designed to produce as many local threshold 
values as are the scales. The proposed method 
efficiently adapts to noise characteristics for different 
scales and reduces the noise while preserving edges in 
the image. The thresholding function chosen are the 
cubic, hard and soft thresholds and the proposed 
expression is tested against them. From the restored 
images it can be visually depicted that the edges and 
texture are well preserved taking the advantage of the 
fact that curvelets being geometrical very well align 
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themselves to the contours of the edges. Numerical 
experiments show the good performance of the 
proposed method in comparison to wavelet based 
decomposition. Further works involve extending the 
proposed method to various classes of images which are 
different from natural images. Another important issue 
is to test the performance on higher resolution images. 
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