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Abstract: Problem statement: This study introduced an adaptive thresholdinghmetfor removing
additive white Gaussian noise from digital imagagproach: Curvelet transform employed in the
proposed scheme provides sparse decompositiomagzaced to the wavelet transform methods which
being nongeometrical lack sparsity and fail to shaptimal rate of convergencResults. Different
behaviors of curvelet transform maxima of image aaide across different scales allow us to design
the threshold operator adaptively. Multiple thrddeadepending on the scale and noise variance are
calculated to locally suppress the curvelet tramsfaoefficients so that the level of threshold is
different at every scaleConclusion/Recommendations. The proposed algorithm succeeded in
providing improved denoising performance to recotlee shape of edges and important detailed
components. Simulation results proved that the @sed method can obtain a better image estimate
than the wavelet based restoration methods.
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INTRODUCTION on the basic idea that the energy of a signal efitn
be concentrated in a few coefficients in the trarmsf
In the real world signals do not exist withoutsei domain while the energy of noise is spread amohg al
which arises during image acquisition (digitiza)ion coefficients in transform domain. Therefore, thenno
and/or transmission (Gonzalez and Woods, 2002)inear methods will tend to keep a few larger
When images are acquired using a camera, lightdevecoefficients representing the signal while the aois
and sensor temperature are major factors affetting coefficients will tend to reduce to zero. Denoising
amount of noise. During transmission, images arenethods based on multiresolution transforms inwlve
corrupted mainly due to interference in the channethree steps: A linear forward transform, nonlinear
used for transmission. Removing noise from images ithresholding step and a linear inverse transform.
an important problem in image processing (Ruggedi a Wavelets are successful in representing point
Vidakovic, 1999). This noise removal takes placéhim  discontinuities in one dimension, but less succgsef
original time space domain or in a transform domlin  two dimensions. As a new multiscale representation
transform domain Fourier transform is used in theet  suited for edges and other singularity curves, the
frequency domain and multiresolution transforme lik curvelet transform has emerged as a powerful Tuod.
wavelet/curvelet/contourlet transforms are usedhi  developing theory of curvelets predict that, in
time-scale domain. recovering images which are smooth away from edges,
Denoising a given noise corrupted signal is acurvelets obtain smaller asymptotic mean squarer err
traditional problem in both statistics and in signa of reconstruction than wavelet methods (Candes and
processing applications. Linear denoising metha#s a Donoho, 2004).
not so effective when transient non-stationary Wwadel
components are involved since their spectrum islaim Curvelet transform: An image, when analyzed using a
to the spectrum of noise (Zhang and Luo, 1999).-Non2-D wavelet transform exhibits large wavelet
linear denoising methods (Smith and Agaian, 2088) r coefficients, along the edges in the image. At each
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scale, these edges in the image are seen rep@aisd.
requires many wavelet coefficients to reconstringt t
edges in an image and it puts a limit on wavelet
denoising. The estimation of these large numbers of
coefficients lead to high Mean Square Error (MSE).
comparison of order of error in case of waveletd an
that of curvelet reconstruction is presented in the
literature (Candes and Donoho, 20bdlow.

Non-linear approximation of objects can be
considered by treating them as function of twoalags,
one with discontinuities along edges and secondghwh
are smooth. If an object f is represented in aelev
basis, then the number of wavelet coefficients of f
exceeding the threshold, 1/n, in absolute valueeages
rapidly as c.n as f. This increase indicates the
requirement of many terms to reconstruct a goodyéna
If the best partial reconstruction obtained by cétg the
n largest terms is represented hY, the best n-term

approximation would obey:

Fig. 1: Frequency domain view of the curvelet glin

The size of each coefficient can be estimated by:

|eu| = |<f ' yu>| <|f "L '"Yu"L1 (2)
W4y

i =nhnow Q)
g Curvelets ard_, normalized so thaHy“"L <1 and are

This result is not optimal and hence waveletstéil supported in a box of side lengt?"2and width 2.
represent objects with edges. If the edge curve iFherefore they obey:
considered to be of length one, then at each ale
there are approximately #avelets interacting with the "
edge, resulting in coefficient of siz€.2This shows that g
the wavelet coefficient decay only as 1/n. Wavetkis ) ) ) o
not take advantage of the geometry of the edgdande _Since, fis a bounded function, the coefficiefits
about 2 coefficients are needed to reconstruct theVerify the apriori estimate:
frequency content of an edge up to the subbgnd2’.

Wavelets being hongeometrical, move only in horiabn
and vertical directions and not along the curve g A A
cannot achieve the optimal rate of convergence. At each scale 2 there are O(2) coefficients

The curvelet transform has a tight frame whichwhich are bounded by C#%* and thenth largest
combines multiscale analysis and ideas of geonaetdy coefficient|e|n is bounded by:
can achieve optimal rate of convergence by simple
thresholding (Starcket al., 2002). This multiscale |e| <c. % )
transform has a strong directional character inctvhi '™ ™
elements are anisotropic at fine scales. The stiggfor
these elements is according to the parabolic ggalin
Frlnuple IengtﬁDmdth. Qurvelets partition the keeping the n largest term in the curvelet expanaiod
requency plane into dyadic coronae. Unlike walet . .

o . it obeys:

these corona are subpartitioned into angular wedges
displaying the parabolic aspect ratio as showrign &

Curvelets at scale™2 are of rapid decay away from
a ‘ridge’ of length 2" and width 2' and this ridge is
the effective suppory,. If coefficients of only those From the above equation the faster rate of detay o
curvelets, which overlap with the edge and are Ipear coefficients in a curvelet basis is obvious as careg
tangent to it are considered, then for a fixedes@|  to the decay of wavelet coefficients in Eq. 1 for a
there are at most O2) coefficients of such type. object with arbitrary &singularity.
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The above decay gives Ofhconvergence rate for
the nonlinear n-term approximation, defined by

W4:

1 < mz>n|9|(2m) <C.n? (6)
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MATERIALSAND METHODS An image features a wide variety of charactesstic
Hence, instead of using a single value as the globa
Preliminary algorithm for image denoising: The  threshold, the operator D(.) can be designed tduyme

mathematical model of noisy image is as follows: multiple local thresholds\; adaptively for different
scales from fine to coarse. For wavelets an adaptiv

y=x+n (7)  threshold is (Li and He, 2006):

Where: o2logN

y = The observed image A =D;(Y) “Tog(+1) (11)

X = The unknown original image

n = The contaminating noise - .
where, j is the decomposition level of wavelet pEck

.transform. This modified multiple local thresholdin

Complete  curvelet ~denoising procedure IStechnique obtained better results than the softthad
f d by taki let t f f the i . : ey :
periormed by taKing curvelet franstorm o1 the Imagehard thresholding methods, which utilizes a single

and then applying thresholding to eliminate noisyth hold | ¢ le. C ot t ¢
coefficients. Thus, the inverse curvelet transfafthe reshold vajue al every scale. LUrvelet transiorm
employs the 1-D wavelet transform as a component

thresholded coefficients give the denoised image. step, but, along the radial variable in Radon spabas

The fast discrete curvelet transform (Canetes ., . :
2006) of the observed image is evaluated asi¥ig the Eq. 11 does not prove to b? _effect|ve for thr_esngld
the curvelet transform coefficients and requiremeo

curvelet transform operator C(.) using following ovE
equation: modification.

Y = C(y) ®) Modified curvelet thresholding for image denoising:
In this study a similar multiple threshold techrégior
thresholding the curvelet coefficients is proposéd.
esign the operator D(.), it is proposed to retdirthe
oefficients at the first scale, since they are tlee
values and they provide the average informatiothef
image. For the remaining scales the coefficiamtéch
provide the highest PSNR values seem to be coecklat

nd the curvelet coefficients appear to decay in an

For wavelet based denoising procedures one suczk : P :
: ; : ponential manner as shown in Fig. 2. In Fig. 2
threshold is the universal threshold (Li and HeQ&0 Series 1-3 are plots for. corresponding t@ = 20, 30

given as:
and 50 respectively.
A=D.(Y) =o.2loaN 10 Thus a scale dependent exponential function
oY) 9 (10) multiplied by a scale dependent logarithmic functio
resulted in improvement in PSNR values. Therefore,
the multiple local thresholds are proposed as:

The threshold denoted iy for any transform can
be expressed in general terms using the operatyr D
as:

A =D(Y) 9)

Where:

o = The standard deviation of noise

N = The size of image A =D, (Y) =20 log N.& ™ log(j+ 1) (12)
Wavelet transform maps white noise in the signaf©’j =2 3.

domain to white noise in the transform domain. Thus _

in the transform domain the signal is concentraiéal V\[hefe- .

fewer coefficients but the noise does not conceatra ! —_The decomposition level of curvelet transform

The principle behind separation of signal and nasse v ~ The integer corresponding to the last scale

that, when scale 2 decreases, wavelet transform

maxima of images doesn't increase, but at the sa ‘o . .

time wavelet ?ransform modulus of white noise e process of (_Jlen0|5|ng 's applying the threshold

: . _ operator T(.,.). This can be expressed as:

increases. Thus different behaviors of wavelet

After selecting the threshold level, the next step

transform maxima of images and noise acrosy =T(y)) (13)
different scales allow us to design the operaton D(
adaptively. where, Z gives the thresholded coefficients.
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This study employs cubic, soft and hard threshgldi RESULTSAND DISCUSSION
functions as the threshold operator T(.,.) in E2}. With )
the difference that the threshold is not singleusdl\, The performance of the proposed thresholding

but is multivalued\; as obtained from Eq. 12. methods is evaluated and compared with that of soft
Cubic threshé)lding function is very flexible and hard and cubic thresholding schemes using wavgilets
has the capability to adapt to different typesméges and He, 2006). Gaussian noise was added to theiaahs

and threshold operators. The cubic threshold foncti Lenna and Saturimages. Multiple local thresholds are

(Li and He, 2006) given as: obtained using Eq. 12. The curvelet coefficients ar
processed by thresholding functions in Eq. 14-llge T
0, A performance of denoising is evaluated using Pegikabi
3 : to-Noise Ratio (PSNR) and Mean Square Error (MSE).
T.(Y.A) = v l_ﬁ els (14)  PSNR is defined as the ratio of signal power tes@oi
' power. It basically obtains the gray value differen

between resulting image and original image. MSE is

The soft (Donoho, 1995) and the hard thresholdgiVen by the formula:
(Donoho, 1994) are some simple but powerful shgeka
functions. These thresholds select a single global MSE =
threshold for all the scales using Eq. 10. Empigyin

of Eq. 12 with the soft thresholding operator psg®the
multiple local soft thresholding as:

m-1n

X

1

G, ) -Ka, )|

3 [~

i=0

Where:
I = The original image

0, Y| <\; K = The reconstructed image
L (Y')\'j)={Y—)\, , | ’} (15) mandn = The number of rows and columns
sign(y), - else respectively
Similarly, by combiningA; of Eq. 12 with the hard PSNR is given as:
threshold operator, multiple local hard threshajdian
be given by: 2
d Y PSNR= 1OIogO(MAX']
0, |Y|<N MSE
T (Y, A) ={ ' ‘} (16)
Y. else where, MAX ? is the maximum pixel value of the image.

Finally C'(.) takes the fast discrete inverse . Nurr?erlcal,value‘s for I,DSNR .and.MSE for the
curvelet transform of the thresholded curvelet'Mages ‘Lenna _and Saturn’ are given in Tab_Ie_]:ian
coefficients, Z. as: Table 2 respectively. The curvelet reconstructisimg

multiple local thresholds enjoys superior perforoe@n
x=CY(2) (17) over the wavelet based reconstructions. The paitori
denoising performance for images ‘Lenna’ and
‘Saturn’, using wavelet based soft, hard and cubic
thresholds is compared with curvelet based multiple
local soft, hard and cubic thresholds in Fig. 8 @n
respectively. Experiments show that multiple local
thresholding based on curvelets outperforms the
wavelet based methods on the basis of MSE and PSNR.

where, X is the reconstructed/denoised image.
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Table 1: Comparison of different thresholding methdor ‘Lenna’
8 image

Thresholding using Multiple local
e g iy wavelets thresholding using curvelets
eries €ries = €ries 23
_ o _ . Method PSNR/dB MSE PSNR/dB MSE
Fig. 2: Graph indicating relationship of the threlsled  Noisy image 19.80 679.91  19.80 679.910
- ; ; ; oft_thresholding ~ 23.11 31761 2531 191.461
coefﬂue_nts with the scale. Serles. 1., Series ﬁard—threshmdmg Py 2056 613 158,510
and Series 3 are for standard deviations of 20wmultiple local 25.07 202.19  26.56 143.570
30 and 50 respectively cubic_thresholding
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©
Fig. 3: Denoising of ‘Lenna’ (a) original image;) (boisy image; (c) soft thresholding using waveléd multiple

local soft thresholding using curvelets; (e) hahdesholding using wavelets; (f) multiple local hard
thresholding using curvelets; (g) multiple locabuthresholding using wavelets; (h) multiple locabic

thresholding using curvelets

(h)

(e) ® @)

Fig. 4: Denoising of ‘Saturn’. (a) original imagk) (noisy image (c) soft thresholding using wavelefsmultiple
local soft thresholding using curvelets (e) Hardesholding using wavelets (f) multiple local hard
thresholding using curvelets (g) multiple local ruthresholding using wavelets (h) multiple locabic
thresholding using curvelets

Table 2: Comparison of different thresholding mefhdor ‘Saturn’ curvelet transform coefficients is presented. Doe t

image : : _  multiresolutional dictionary, the maxima of the eeiet
Thresholding Multiple local thresholding -
using wavelets using curvelets transform coefficients vary and so the threshold
operator is designed to produce as many localhbids
Method PSNR/dB MSE___PSNR/dB MSE  values as are the scales. The proposed method
Noisy Image 20.00 650.25  20.00 650.25 .. . - .
Soft_thresholding 23.04 26247  26.05 16146 efficiently adapts to noise characteristics forfatiént
ua:g_lthrleshfldigg 2%6;20 113‘286916 22775102 111%66230 scales and reduces the noise while preserving edges
thresholding ' ' ®% the image. The thresholding function chosen are the
cubic, hard and soft thresholds and the proposed
CONCLUSION expression is tested against them. From the rabtore

images it can be visually depicted that the edges a
In this study, a new denoising technique based otexture are well preserved taking the advantagthef
adaptive selection of thresholds to suppress noisjact that curvelets being geometrical very wellgali
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themselves to the contours of the edges. Numericdli, Q. and C. He, 2006. Application of wavelet
experiments show the good performance of the threshold to image denoising, Proceedings of the
proposed method in comparison to wavelet based 1st IEEE International Conference on Innovative
decomposition. Further works involve extending the  Computing, Information Control, pp: 693-696.

proposed method to various classes of images vetieeh DOI: 10.1109/ICICIC.2006.238.
different from natural images. Another importargue  Ruggeri, F. and B. Vidakovic, 1999. A bayesian
is to test the performance on higher resolutiongiesa decision theoretic approach to  wavelet
thresholding, Statistica Sinica, 9: 183-197.
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