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�e computation of image segmentation has become more complicated with the increasing number of thresholds, and the option
and application of the thresholds in image thresholding 	elds have become anNP problem at the same time.�e paper puts forward
the modi	ed discrete grey wolf optimizer algorithm (MDGWO), which improves on the optimal solution updating mechanism of
the search agent by the weights. Taking Kapur’s entropy as the optimized function and based on the discreteness of threshold in
image segmentation, the paper 	rstly discretizes the grey wolf optimizer (GWO) and then proposes a new attack strategy by using
the weight coe
cient to replace the search formula for optimal solution used in the original algorithm. �e experimental results
show that MDGWO can search out the optimal thresholds e
ciently and precisely, which are very close to the result examined by
exhaustive searches. In comparison with the electromagnetism optimization (EMO), the di�erential evolution (DE), the Arti	cal
Bee Colony (ABC), and the classical GWO, it is concluded that MDGWO has advantages over the latter four in terms of image
segmentation quality and objective function values and their stability.

1. Introduction

Image segmentation involves the technique and process of
segmenting an image into several particular unique areas
and extracting useful or interested targets [1]. �ese areas or
targets are the keys for image analysis and understanding.
With the in-depth research of image segmentation tech-
nology, image segmentation techniques have been widely
applied in various 	elds, such as medical analysis [2], image
classi	cation [3], object recognition [4], image copy detection
[5], and motion estimation [6].

In recent years,many researchers have conductedmassive
research on image segmentation. However, there has been no
theory of segmentation so far which is universally applicable.
�ere are many algorithms for image segmentation, and
classical ones are classi	ed as algorithms based on threshold,
edge, area, and others which are combinedwith other speci	c
theories [7, 8]. As a commonly used image segmentation
algorithm, threshold segmentation selects proper threshold

to divide image into di�erent areas or classes. Numerous
di�erent thresholding approaches have been reported in the
literature. Basically, thresholdingmethods fall into two kinds:
parametric and nonparametric [9, 10]. Parametric methods
are time-consuming and computationally expensive, while
nonparametric methods try to determine the optimal thresh-
old value by optimizing some standards [10]. By introducing
the optimization methods, nonparametric methods reduce
the time consumption and computation and show better
robustness and accuracy. Based on the above analysis, the
paper will take nonparametric methods to analyze and study
multilevel image segmentation.

It has proved to be feasible to determine the optimal
threshold value by analyzing the histogram characteristics
or optimizing objective functions [9]. �ese nonparametric
methods can be achieved by optimizing objective functions.
�e commonly used optimization functions include maxi-
mization of the entropy [11], maximization of the between-
class variance (e.g., Otsu’s method) [12], the use of the fuzzy
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similarity measure [13], and minimization of the Bayesian
error [14]. Among them, Kapur’s optimal entropy thresh-
old method does not require prior knowledge, which can
obtain desirable segmentation result for the nonideal bimodal
histogram of images which make it the most widely used
method [4]. All of these techniques were originally used
for bilevel thresholding and then extended to multilevel
thresholding areas. However, a�er thesemethods are used for
multilevel thresholding (MT), the computational complexity
grows exponentially. �erefore, numerical evolutionary and
swarm-based intelligent optimizations are much preferred in
MT [3].

Optimization algorithm [15] is mainly used to solve the
problem of the option of the threshold value and reduce
the time consumption from the increase of the number
of the thresholds. Genetic algorithm (GA) [16] is an early
method used in the image thresholding. With the constantly
emerging of the optimization algorithms, a large number
of MT methods based on optimization algorithms follow.
Fujun et al. [17] put forward an improved adaptive genetic
algorithm (IAGA) image segmentation method; this method
can adjust control parameters adaptively according to the size
of individual 	tness and dispersion degree of the population,
which keeps the diversity of the population and improves
the convergence speed; evolutionary algorithms which are
inspired by swarm behavior such as Particle Swarm Opti-
mization (PSO) [18] and arti	cial colony algorithm (ABC)
[19] are also widely used in image segmentation problem.
Oliva et al. [20] used EMO algorithm for MT problem and
also applied HAS algorithm [17] to MT tasks; there are many
other optimization algorithms which are also used to deal
with this kind of problem and the results are also satisfactory,
such as DE, CS, BF, and FFA [21–25].

As a newly proposed optimization algorithm, the GWO
[26] algorithm mimics the leadership hierarchy and hunting
mechanism of grey wolves in nature. Four types of grey
wolves (�, �, �, �) are employed as the leadership hierar-
chy. �e main steps are hunting, searching for prey, encir-
cling, and attacking. Compared to well-known evolutionary-
based algorithms such as PSO, GSA, DE, EP, and ES, the
GWO algorithm shows better global convergence and higher
robustness. Moreover, the GWO has high performance in
solving challenging problems in unknown search spaces, and
the results on semireal and real problems also prove that
GWOcan show high performance not only on unconstrained
problems but also on constrained problems [26]. �is paper,
by making an analysis of GWO, tries to determine the
optimal threshold for image segmentation, discretizes the
continuous GWO algorithm, and then proposes modi	ed
discrete GWO algorithm. Original GWO algorithm mainly
solves the problem of continuity, but the image thresholding
is a discrete problem for di�erent thresholds; therefore, GWO
algorithm has to be discretized. In addition, this paper has
also improved thewolves attack strategy (i.e., determining the
optimal solution). While the original GWO used the average
of the optimal three wolves as the best solution, the proposed
algorithm in this paper abandons the average optimization
strategy in the process of determining the optimal solution,
and calculates the di�erent weights on the basis of wolves

	tness function and, at the same time, gives the highestweight
to the dominant wolf so as to improve the convergence. �e
experimental results show that the algorithm determines the
appropriate thresholds quickly and has better segmentation
e�ect, high e
ciency, and accuracy. Finally, the simulation
experiment veri	es the superiority of MOGWO. Moreover,
it is the 	rst time that MDGWO algorithm is applied to
multilevel image segmentation.

�e rest of the paper is organized as follows: Section 2
introduces Kapur’s entropy and related work of intelligent
optimization in the 	eld of MT. Section 3 presents the
formulation of MT and Kapur’s entropy objective function.
�e detailed process and pseudocode of the initializing,
encircling, hunting, and attacking behaviors inMDGWO are
presented in Section 4. Section 5 analyzes the superiority of
MDGWO based on numerous experiments in combination
with Figures and Tables. Section 6 concludes.

2. Related Works

In recent years, image segmentation methods based on
intelligent optimization takes Otsu’s method, between-class
variance, Tsallis entropy, and Kapur’s entropy for objective
functions. �ese methods optimized the threshold through
optimization algorithm and obtained better results on image
segmentation [4]. Moreover, Akay [27] compared ABC
with PSO by employing between-class variance and Kapur’s
entropy as objective functions. Kapur’s entropy-based ABC
showed better performance when the number of thresholds
increases and reduced time complexity. Bhandari [28] et al.
conducted comparative analysis in detail between Kapur’s,
Otsu, and Tsallis functions. �e results show that, in remote
sensing image segmentation, Kapur’s entropy-based algo-
rithm performs better than the rest generally. Ghamisi [29]
et al. analyzed the performances of Particle Swarm Opti-
mization (PSO), Darwinian Particle Swarm Optimization
(DPSO), and Fractional-Order Darwinian Particle Swarm
Optimization (FODPSO) in MT. By comparing them to Bac-
teria Foraging (BF) algorithm and genetic algorithms (GA),
PODPSO shows better performance in overcoming local
optimization and computational speed. Electromagnetism
was introduced for MT by Horng [19], which compared
it to Kapur’s entropy and Otsu’s method, respectively. �e
experimental results show that Kapur’s entropy is more
e
cient. Before that, they veri	ed the same test experiment
through Harmony Search Optimization and obtained similar
results [20]. In our previous work [30], we also take Discrete
Grey Wolf Optimizer (GWO) as the tool, with fuzzy theory
and fuzzy logic to achieve image segmentation. Compared
with EMO and DE, our method shows better performance
in segmentation quality and stability. Based on the above
analysis, the algorithmwhich takes Kapur’s entropy for objec-
tive function shows better performance. By taking Kapur’s
entropy as the optimization goal, the paper analyzes and
studies the application of GWO in MT.

Wolf Pack Algorithm (WPA) is a new swarm intelli-
gent method proposed by Wu et al. in 2013 [25–29, 31–
33]. According to the wolf pack intelligent behavior, the
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researchers abstracted three intelligent behaviors, scouting,
calling, and besieging, and two intelligent rules, winner-take-
all generation rule of leadwolf and stronger-survive renewing
rule of wolf pack.�e experiments show thatWPA has better
convergence and robustness, especially for high-dimensional
functions. In the same year, Q. Zhou and Y. Zhou [34]
proposed Wolf Colony Search Algorithm based on Leader
Strategy (LWCA). �e idea of the algorithm originated from
the phenomenon that there exists individual competitions
among the wolf pack. �e strongest wolf was selected as
the leader of the wolves; the wolves hunted prey under the
leadership of the leader, so that they could be more e�ective
in capturing prey. �e experiments show that the algorithm
has better performance on convergence speed and accuracy,
and it is di
cult to trap-in local minimum. Coincidentally,
Mirjalili et al. [26] proposed grey wolf optimizer (GWO)
inspired by grey wolves in 2014. In GWO algorithm, �e� wolf is also called the dominant wolf, the level of other
three types decreases in turn, and the � is the lowest-
level wolf. In addition, the three main steps of hunting,
searching for prey, encircling prey, and attacking prey, are
implemented. Compared to well-known heuristics such as
PSO, GSA, DE, EP, and ES [35–38], the GWO algorithm
shows better convergence and higher local optima avoidance.
In 2014, Muangkote et al. [39] proposed an improved grey
wolf optimizer method (IGWO). �e strategy on parameter
selection of IGWO improves the search capability and the
hybridization strategy increases the diversity of the agent.
Zhu et al. [40] proposed to combine GWO with di�erence
algorithm for solving the global optimization problem in
2015.

By introducing MDGWO to MT, the paper solves the
problem of thresholds option by taking Kapur’s entropy for
objective function.�e proposed algorithm shows better seg-
mentation result, high e
ciency and accuracy, and stability of
the range of threshold.

3. Formulation of the Multilevel
Image Thresholding

MT needs to set a set of threshold values ��; based on that,
the image can be segmented into di�erent regions. By means
of intelligent optimization to obtain the optimal threshold
value, the process of image segmentation has to be formulated
before taking image elements or image features as parameters,
to determine the optimized objective functions with the
purpose of getting close to the optimal threshold value.

3.1. Pixel Grouping Based on �resholding. Supposing that
each image has � grey levels, the thresholding conversion
is a process in which the pixels of image are divided into
di�erent classes or groups according to the grey levels. �is
kind of classi	cation has to choose a threshold (th) or follow
the following rules:

�1 ←
 � if 0 ≪ � < th,
�2 ←
 � if th ≪ � < � − 1, (1)

where � indicates the grey level of a pixel in image �, � ={0, 1, 2, . . . , � − 1}. �1, �2 is the class of pixel � and th is the
threshold.

Equation (1) is the description of bilevel thresholding. For
MT problem, the description is

�1 ←
 � if 0 ≪ � < th1�2 ←
 � if th1 ≪ � < th2...
�� ←
 � if th�−1 ≪ � < th�...

��+1 ←
 � if th� ≪ � < � − 1,

(2)

where {th1, th2, . . . , th�, th�+1, th�} indicates di�erent thresh-
olds. �erefore, MT can be described as the problem of
solving the set of th. Kapur’s entropy is a well-knownmethod
used to solve this kind of problem by maximizing the
objective function to determine the optimal threshold.

3.2. Concept of Kapur’s Entropy for Image Segmentation.
Kapur’s entropy is one of the early methods used in bilevel
thresholding, and it has been applied in MT 	eld by scholars.
Kapur’s entropy is an e�ective image segmentation technique
based on threshold and probability distributions of image
histogram.When the optimal threshold is allocated correctly,
the entropy is the biggest of all. Entropy is used tomeasure the
compactness and separability between classes.�epurpose of
the method is to 	nd the optimal threshold and produce the
maximum entropy. �is method extracts the brightness level� from a greyscale image or a RGB image. �e probability
distribution of brightness value is calculated as follows:

�ℎ�� = ℎ��
SP

,
SP∑
�=1

�ℎ�� = 1,
� = {{{

1, 2, 3, if RGB Image,
1, if Grayscale Image,

(3)

where � indicates a speci	c brightness level, ranging from 0 to�−1, parameter � is used to judge whether the image is a grey
image or a RGB image, SP is the total of pixels, and ℎ�� is the
pixel number of the brightness level � in �. For the simplest
segmentation, there are two classes de	ned as follows:

�1 = �ℎ�1��0 (th) , . . . ,
�ℎ�

th��0 (th) ,
�2 = �ℎ�

th+1��1 (th) , . . . ,
�ℎ����1 (th) ,

(4)
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where�0(th),�1(th) are the probability distribution of�1,�2,
respectively; the equation is as follows:

��0 (th) = th∑
�=1

�ℎ�� ,
��1 (th) = �∑

�=th+1
�ℎ�� .

(5)

�erefore, the objective function of Kapur’s entropy can
be de	ned as

� (th) = ��1 + ��2 ,
� = {{{

1, 2, 3, if RGB Image,
1, if Grayscale Image,

(6)

where entropy�1 and entropy�2 are derived by (4):

��1 = th∑
�=1

�ℎ����0 ln(�ℎ����0 ) ,
��2 = �∑

�=th+1

�ℎ����1 ln(�ℎ����1 ) ,
(7)

where �ℎ�� is the probability distribution of strength grades by
(3) and �0(th), �1(th) are the probability distribution of �1,�2, respectively.

Naturally, the entropy-based method can be extended to
multithresholdingmethod. In this case, image can be divided
into � classes with � − 1 thresholds. �erefore, multilevel
thresholding objective function can be de	ned as follows:

� (TH) = �∑
�=1

��� ,
� = {{{

1, 2, 3, if RGB Image,
1, if Grayscale Image,

(8)

where TH = [th1, th2, . . . , th�−1] is a vector containing
multiple thresholds and each entropy is calculated with
the corresponding threshold, respectively. And (7) can be
extended to the calculation of � entropies as follows:

��1 = th1∑
�=1

�ℎ����0 ln(�ℎ����0 ) ,
��2 = th2∑

�=th1+1

�ℎ����1 ln(�ℎ����1 ) ,
...

��� = �∑
�=th�−1+1

�ℎ�����−1 ln( �ℎ�����−1) ,

(9)

where the probabilities of � classes are calculated by (10);
	nally, it needs to categorize the pixels into corresponding
classes and complete the multilevel image segmentation by
(2):

��0 (th) = th1∑
�=1

�ℎ�� ,
��1 (th) = th2∑

�=th1+1
�ℎ�� ,

...
���−1 (th) = �∑

�=th�−1+1
�ℎ�� .

(10)

As mentioned above, multilevel thresholding is formu-
lated tomaximize Kapur’s entropy, and the objective function
is shown in (8). As previously mentioned, this paper will
use the MDGWO to optimize the objective function; the
optimization algorithm is the key to the quality of image
segmentation.

4. Image Segmentation Based on MDGWO

4.1. Standard Grey Wolf Optimizer. Grey wolfs (Canis lupus)
belongs to Canidae family, which are considered as apex
predators, meaning that they are at the top of the food
chain. �ey have a very strict social dominant hierarchy. �e
algorithm divides the wolves into four types: �, �, �, and �.
�e social behavior of each type wolves can be summarized
as follows.

�e leaders are amale and a female, called alpha.�ey are
the most brilliant wolves and the best in terms of managing
the pack.�e alphawolf is also called the dominant wolf since
his/her orders should be followed by the pack uncondition-
ally. �e location of alpha presents the best solution of the
problem.

�e second level in the hierarchy of grey wolves is
beta. �e betas are subordinate wolves that help the alpha
in decision-making or other pack activities. �e beta wolf
should respect the alpha but commands the other lower-
level wolves as well. It plays the role of an advisor to the
alpha and discipliner for the pack. �e beta reinforces alpha’s
commands throughout the pack and gives feedback to the
alpha.

�e third level in the hierarchy of grey wolves is delta.
Delta wolves have to submit to alphas and betas, but they
dominate the omega, scouts, sentinels, elders, hunters, and
caretakers who belong to this category. �ey are responsible
for watching the boundaries of the territory, warning the pack
in case of any danger, protecting and guaranteeing the safety
of the pack, helping the alphas and betas when hunting prey,
and providing food for the pack and caring for the weak, ill,
and wounded wolves in the pack.

�e lowest ranking grey wolf is omega. It may seem the
omega is not an important individual in the pack, but it has
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Table 1: �e corresponding relationships between MDGWO and
image segmentation.

MDGWO Image segmentation

Positions �reshold segmentation solution

Alpha Pos Optimal solution

Alpha score �e largest 	tness value

Fitness Fitness function value

Best R Best 	tness

been observed that the whole pack face internal 	ghting and
problems in case of losing the omega, which is harmful to the
group structure.

In addition to the social hierarchy of wolves, group
hunting is another interesting social behavior of grey wolves.
�emain phases of greywolf hunting are as follows: searching
for the prey; tracking, chasing, and approaching the prey;
pursuing, encircling, and harassing the prey until it stops
moving; attacking toward the prey.

In order to mathematically model the social hierarchy of
wolves in GWO [26], the 	ttest solution is considered as the
alpha (�). Consequently, the second and third best solutions
are named beta (�) and delta (�), respectively. �e rest of
the candidate solutions are assumed to be omega (�). In the
GWO algorithm, the hunting (optimization) is guided by �,�, and �. �e � wolves follow these three wolves.

In addition to the above four abstract models, this paper
proposes MDGWO based on the standard GWO settings for
MT. In the improved algorithm, the corresponding relation-
ships between grey wolf hunting and image segmentation are
shown in Table 1.

4.2. �e Initialization of MDGWO. �e size of the wolf pack
is assumed as SN. SN candidate solutions (the location of
the wolves is the threshold values) are generated randomly in
the initialization phase. Di�erent from the GWO, the image
threshold is a set of discrete integers by rounding toward zero:


→�� = ⌊rand (SN, 1) ⋅ (� − ! ) + ! ⌋ , (11)

where � and ! are the upper limit and the lower limit of
parameters (namely boundaries of parameter).

A�er the initialization of candidate solutions, MDGWO

judges whether the initial solution

→�� is in the range of[� , ! ]. If it is, the 	tness value will be calculated, otherwise

the search agent will be put back in the search space (i.e.,
guaranteeing the initial solution in the range of [� , ! ])
by (12), and then the 	tness value will be recalculated by
rounding toward zero:


→�� = ⌊(
→�� ⋅ (� + !)) + � ⋅ � + ! ⋅ !⌋ , (12)

where � = 
→�� > � , ! = 
→�� < ! .

In the all 	tness values calculated by (13) of candidate
solutions, MDGWO chooses three optimal candidate solu-

tions to assign to

→��,
→�	,
→�
, and records all the 	tness values

and candidate functions (namely locations of the wolves).

Fitness (
→��) = {{{{{{{
1(1 + � (
→��)) , (� (
→��) ≥ 0) ,

1 + ------� (
→��)------ , (� (
→��) ≥ 0) , (13)

where

→�� is one of the candidate solutions which include a set

of thresholds; then �(
→��) is calculated by Kapur’s function as
shown in (8).

4.3. Iterative Process. A�er the initialization, all the search
agents have to update their current locations for optimize the
candidate solutions over the course of iteration. In the range
of the maximum iteration (Max iter), all the update process
and optimization process will be completed.

4.3.1. Encircling Prey. Grey wolves encircle prey before the
hunt. In the mathematical model, the wolf pack has to update
the position (namely the threshold value) constantly so that
they can approach the prey. In the algorithm, all the agent
position updated by (15) over the course of encirclement:

4⃗ = ------�⃗ ⋅ 

→�� (�) − �⃗ (�)------ , (14)

�⃗ (� + 1) = 

→�� (�) − 5⃗ ⋅ 4⃗, (15)

where � indicates the current iteration, 5⃗ and �⃗ are coe
cient

vectors,


→�� is the position vector of the prey, and �⃗ indicates

the position vector of a grey wolf. �e vectors 5⃗ and �⃗ are
calculated as follows:

5⃗ = 2 ⃗6 ⋅ 
→71 − ⃗6, (16)

�⃗ = 2
→72 , (17)

where components of ⃗6 are linearly decreased from 2 to 0 over

the course of iterations and
→71 ,
→72 are random vectors in [0, 1].
�e detailed selection of the two vectors can be found in [26].

4.3.2. �e Behavior of Hunting. �e hunt is usually guided by
the alpha.�ebeta and deltamight also participate in hunting
occasionally. However, in an abstract search space, we have
no idea about the location of the optimum (prey). In order to
mathematically simulate the hunting behavior of grey wolves,
it is supposed that the alpha, beta, and delta have better
knowledge about the potential location of prey. �erefore,
the algorithm saves the 	rst three best solutions obtained
so far and obliges the other search agents (including the
omegas) to update their positions according to the position
of the best search agents. �e original GWO algorithm in
literature [26] calculates the updated parameter of search
agents by the 	rst three best solutions and then updates the
location of search agents (namely new candidate solutions)
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if
�����
A⃗
�����
< 1

(a)

if
�����
A⃗
�����
> 1

(b)

Figure 1: Attacking prey of grey wolf.

according to their average value. As for the speci	c formulas
and the detailed calculation, please refer to literature [26].
In order to approach the best solution more quickly, the
proposed algorithm in this paper improves the current best
solution in solutions updating by weighting method. �e
update formulations are as shown in (20) and correlation
coe
cients are calculated by (18), (19), where 51, 52, 53 are
calculated by (16).
→4� = ------
→�1 ⋅ 
→�� − �⃗------ ,
→4	 = ------
→�2 ⋅ 
→�	 − �⃗------ ,
→4
 = ------
→�3 ⋅ 
→�
 − �⃗------ ,

(18)


→�1 = 
→�� − 
→51 ⋅ 
→4�,
→�2 = 
→�	 − 
→52 ⋅ 
→4	,
→�3 = 
→�
 − 
→53 ⋅ 
→4
,
(19)

�⃗ (� + 1) = 81 ⋅ 
→�1 + 82 ⋅ 
→�2 + 83 ⋅ 
→�3, (20)

where 81, 82, 83 are the corresponding weights, which are
calculated by

81 = �19 ,
82 = �29 ,
83 = �39 ,

(21)

where �1, �2, �3 calculated by (13) are the corresponding
	tness values of�,�, �:9 = �1+�2+�3.�is paper emphasizes

that, di�erent from GWO updating search agents, MDGWO
uses (20) and (21) to update the location of search agents
by weighting method for the 	rst time; it is also the major
contribution to the improved GWO.

4.3.3. Attacking Prey. �e grey wolves 	nish the hunt by
attacking the prey when it stops moving. In order to mathe-
matically model approaching the prey, we decrease the value

of ⃗6. Note that the �uctuation range of 5⃗ is also decreased

by ⃗6. In other words, 5⃗ is a random value in the interval[−6, 6] where ⃗6 is decreased from 2 to 0 over the course of
iterations. When random values of 5⃗ are in [−1, 1], the next
position of a search agent can be in any position between
its current position and the position of the prey; that is, the
search agent will approach the best solution gradually, as
shown in Figure 1.

At the same time, for the purpose of mathematical model

divergence, we utilize 5⃗ with random values greater than 1
or less than −1 to oblige the search agent to diverge from the

prey. As shown in Figure 1(b), 5⃗ > 1 forces the grey wolves to
diverge from the prey to hopefully 	nd a better prey.

4.4. Pseudocode of MDGWO. �e application of MDGWO
algorithm in image segmentation mainly lies in optimizing
Kapur’ entropy to obtain the best threshold; therefore, the
	tness function as shown in (13) will be calculated based on
Kapur’s entropy.

Step 1. Read image :; if : is a RGB image, then it will be
processed by three channel of :R, :G, :B and store the data

in ℎR, ℎG, ℎB, respectively; if : is a grey image, then read the
grey value and store it in ℎgr.
Step 2. According to (3), calculate image grey values and
probability distribution histogram.
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Step 3. Initialize the population of grey wolves, parameter ⃗6,5⃗, �⃗, and Max iter.

Step 4. Initialize the population

→�� (� = 1, 2, . . . , SN)

randomly: 
→�� = rand (SN, 1) ⋅ (� − ! ) + ! . (22)

Step 5. Use (11) to discretize

→�� , that is, being rounded

toward zero. Use (12) to adjust the singular data beyond the
boundaries of search space.

Step 6. Calculate objective functions of each search agent by
using (8). And calculate the 	tness value of each search agent
on the basis of objective functions.

Step 7. According to the 	tness values, assigning 	rst three

best search agents to

→��, 
→�	, 
→�
, respectively.

Step 8. Updating encircling parameters based on

→��,
→�	,
→�
,

which include calculating

→51, 
→52, 
→53 by (16), 
→�1, 
→�2, 
→�3 by

(17), and

→4�, 
→4	, 
→4
 by (18).

Step 9. Update the position of search agents based on (19) and
(20) for the next hunting.

Step 10. Add one to circular point, if ; ≥ Max iter ormeet the
stop condition of the algorithm, the iteration will be 	nished
and skip to Step 11; otherwise skip to Step 5.

Step 11. Set the location of the wolf that has the best objective
function as the best threshold of segmentation.

Step 12. Input best threshold and images before and a�er
segmentation.

5. Experiments and Discussion

5.1. Parameters Settings. �e proposed algorithm has been
tested under a set of benchmark images. Some of these
images are widely used in the multilevel image segmenta-
tion literature to test di�erent methods (Cameraman, Lena,
Baboon, and Maize). Others are chosen on purpose from
the Berkeley Segmentation Data Set and Benchmarks 500
(BSD500 for short, see [41]), as shown in Figure 2. �e
experiments were carried out on a Lenovo Laptop with an
Intel Core i5 processor and 4GBmemory.�e algorithmwas
developed via the signal processing toolbox, image processing
toolbox, and global optimization toolbox of Matlab R2011b.
According to relevant literatures, manymethods were proved
to have certain advantages compared with previous meth-
ods. �is paper chooses the best advantageous method as
comparison objective; the earlier or inferior literatures will
no longer be used for the analysis. Based on quantities of
contrast experiments, this paper will verify the superiority of
MDGWO in image segmentation by comparison of image,
data, chart, and so forth. In the following sections, MDGWO
will be compared with the algorithm using electromagnetism

optimization (EMO) proposed in [20], the di�erential evo-
lution (DE) [27], the Arti	cal Bee Colony (ABC) [10], and
the original grey wolf optimizer. �e EMO, DE, and ABC are
the latest intelligent optimization methods by using Kapur’s
entropy so far. �e comparison with GWO is mainly used to
test the advantages of MDWGO.

In order to avoid the randomness of results, we use
appropriate statistical metrics to compare the e�ectiveness of
these algorithms. According to [19, 20] and the experiments,
test thresholds are th = 2, 3, 4, 5 [1–3] and the stop criterion
of each experiment is 150 iterations; the detailed settings of
parameters are showed in Table 2.

For verifying the stability, we use (23) to calculate the
standard deviation (STD) at the end of each test. Once the
STD value increases, the algorithms becomes more instable
correspondingly [29]:

STD = √Max iter∑
�=1

(C� − D)2
Max iter

. (23)

In addition, the peak signal to noise ratio (PSNR [20]) is
used to compare the similarity between the segmented image
and original image according to the mean square error (MSE
[26]) of each pixel:

PSNR = 20 log10 ( 255
MSE

) , (dB) , (24)

MSE = √∑ro
�=1∑co
�=1 (� (�, J) − �th (�, J))

ro × co
, (25)

where � is the original image, �th is the segmented image, and� depends on the type of image (grey image or RGB image);
ro, co are, respectively, the total number of rows and columns
in an image.

Because Kapur’s entropy is based on histogram of the
image, this paper provides test images and the corresponding
histograms. From Figure 2, it can be seen that each image
has the only distinctive histogram which can guarantee the
universality and commonality of the algorithm. More impor-
tantly, most of these histograms do not follow the bimodal
characteristic; therefore, the di
culty level of optimization
increases accordingly.

5.2. �e Image Segmentation Result Based on MDGWO with
Dierent �resholds. In order to re�ect the segmentation
e�ect, Figures 3 and 4 illustrate the segmentation results of
original images in Figure 2when the threshold is 2, 3, 4, and 5,
respectively. �e experiments indicate that the segmentation
results turn out to be 	ner and there are alsomore segmented
areas when the number of thresholds is larger and vice versa.
In extreme cases, when the threshold is 2, the algorithm
is reduced to be binary image segmentation (foreground-
background segmentation). Certainly, that how many areas
are segmented is related to the applications and requirements,
this method only needs to set the corresponding number of
thresholds (th). Besides giving the MDGWO segmentation
results, like [20], Figures 3 and 4 also mark the position
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Table 2: Parameters settings of MDGWO.

Parameters Population size �reshold Number of iterations Run time Lower bound Upper bound

Value 50 2, 3, 4, 5 150 35 1 256
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Figure 2: �e original images and their histograms.

of the threshold in each histogram. Compared with other
MT methods, it is di
cult to 	nd the di�erence in terms
of the segmentation e�ect. �erefore, Section 5.4 lists the
thresholds, PSNR, STD, and MEAN for comparisons of
MDGWO results and other techniques.

5.3. �e Comparison of MDGWO in Multilevel Image �resh-
olding with Dierent Objective Functions. In Section 1, we
summarize the relevant objective functions. �e commonly
used optimization functions include maximization of the
entropy andmaximization of the between-class variance (e.g.,
Otsu’s method). In [27], the authors, respectively, analyze

these objective functions and compare Kapur and Otsu
systematically. �e experiment results show that Kapur’s
entropy gets the best e�ectiveness. �erefore, in order to
verify MDGWO’s e
ciency, we compare the thresholds and
PSNR between Otsu and Kapur in Table 3.

As shown inTable 3, the threshold distribution ofKapur is
more dispersed and wider in most cases. However, the e�ect
of image thresholding cannot be seen from the threshold
distribution directly. �erefore, we focus on analysis the
PSNR between Otsu and Kapur. In terms of PSNR, the Kapur
method produces higher PSNR values on most items in
Figure 2, except for the Sea Star Imagewith � = 3, 5 and Surfer
Image with � = 4.



Computational Intelligence and Neuroscience 9

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

0 50 100 150 200 250 300
0

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

0 50 100 150 200 250 300
0

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

0 50 100 150 200 250 300
0

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

Image

C
am

er
am

an
L

en
a

B
ab

o
o

n
B

u
tt

er
fl

y

th = 2 th = 3 th = 4 th = 5

Figure 3: �e segmentation results of (a)–(d) in Figure 2 and their thresholds in histograms.
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Figure 4: �e segmentation results of (e)–(h) in Figure 2 and their thresholds in histograms.
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Table 3: �e comparison of MDGWO’s e
ciency between Otsu and Kapur.

Image � Otsu thresholds PSNR Kapur thresholds PSNR

Cameraman

2 70 144 11.9475 44 106 14.4629

3 58 119 156 12.9933 44 98 148 19.9337

4 40 93 139 170 16.0180 39 83 119 156 21.1684

5 35 81 121 149 174 16.3710 23 58 94 125 159 23.1191

Lena

2 92 151 13.1029 93 163 14.7164

3 80 126 171 15.7626 70 121 172 17.5144

4 75 114 145 180 16.4291 43 81 127 171 20.1729

5 73 109 136 161 189 16.7206 41 73 103 141 178 21.8208

Baboon

2 97 149 12.4396 78 141 16.0302

3 83 123 160 13.7731 46 103 151 18.6340

4 70 105 136 167 14.9493 34 75 117 159 20.5198

5 66 98 125 150 175 16.0012 29 64 100 134 170 22.0929

Butter�y

2 100 152 12.4400 87 150 14.9325

3 81 118 159 14.2563 62 104 152 18.5539

4 73 101 129 164 14.6987 49 88 128 168 21.0711

5 69 95 121 149 177 16.4688 48 80 113 145 180 22.4539

Maize

2 92 168 13.6677 84 165 14.0407

3 76 128 187 15.2676 59 113 171 16.5853

4 65 104 150 200 16.7309 45 80 125 187 18.9818

5 56 86 123 164 208 18.5649 39 74 108 147 198 20.8792

Sea Star

2 85 157 14.8445 81 160 14.8595

3 69 120 178 17.6040 60 111 172 17.4583

4 59 99 137 187 19.4039 46 89 131 184 19.4487

5 51 85 117 150 193 21.4000 47 83 118 150 196 20.9681

Smiling Girl

2 60 123 13.1358 88 145 18.0033

3 47 100 131 12.8470 44 91 145 19.1148

4 28 74 111 136 15.6914 24 67 100 145 20.0759

5 20 63 95 124 158 18. 2260 44 83 115 152 203 21.7937

Surfer

2 92 162 12.5401 52 141 16.4343

3 71 111 177 16.0569 52 103 168 18.9343

4 47 81 118 179 20.8786 49 86 131 185 20.7218

5 46 77 105 143 196 21.6071 24 53 88 126 183 21.8961

�e average value of Kapur is improved averagely by
22.24% compared to Otsu by checking against the cor-
responding PSNR values which are obtained from the
MDGWO. �e maximum value is increased by 53.42% for
Cameraman Image when � = 3. �erefore, the Kapur
method is signi	cantly better than the Otsu method, and we
also mainly analyze the e�ectiveness of Kapur’s method in
Section 5.4.

5.4.�eComparison ofQuality Assessment by PSNR, STD, and
MEAN. �is paper adopts PSNR standard to evaluate the
segmentation quality in comparisonwith otherMTmethods.
Tables 4–6 illustrate the PSNR values under di�erent thresh-
olds ofMDGWO,GWO,EMO,DE,ABC, and theMEANand
STD of objective functions. As shown in Table 4, it can be

seen from the PSNR values that MDGWO gets the highest
evaluation in most cases. �us, it proves that MDGWO gets
better results on image segmentation. In addition, when the
number of thresholds increases, it shows superior PSNR
value. In detail, the MDGWO algorithm produces higher
PSNR values on all items in Table 4 except for the Smiling
Girl Image with � = 5 and Surfer Image with � = 4 on the
result of DE.

As shown in Table 4, the average value of MDGWO is
improved averagely by 13.16% compared toGWOby checking
against the corresponding PSNR values.�emaximum value
is increased by 45.05% for Butter�y Image when � = 5.

ComparingwithMTEMO, the average value ofMDGWO
is improved averagely by 11.56% by checking against the cor-
responding PSNR values.�emaximumvalue is increased by
39.94% for Surfer Image when � = 2.
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Table 4: PSNR metrics of MTEMO, DE, ABC, GWO, and MDGWO.

Image � MTEMO DE ABC GWO MDGWO

Cameraman

2 13.626 12.584 13.920 14.279 14.463

3 18.803 17.584 14.462 19.696 19.934

4 20.586 20.111 20.81 20.809 21.168

5 20.661 21.282 22.40 22.404 23.119

Lena

2 14.672 8.823 14.590 14.680 14.716

3 17.247 14.386 17.197 17.416 17.514

4 18.251 16.151 18.559 19.762 20.173

5 20.019 16.720 20.321 21.299 21.820

Baboon

2 16.016 8.103 16.007 16.024 16.035

3 16.016 12.596 18.592 18.632 18.634

4 18.485 13.178 18.417 20.480 20.519

5 20.507 13.135 20.224 22.060 22.092

Butter�y

2 11.065 8.702 14.402 14.762 14.932

3 14.176 13.028 14.504 17.873 18.553

4 16.725 13.028 16.189 21.021 21.071

5 19.026 14.786 19.286 21.485 22.453

Maize

2 13.633 10.549 13.590 13.950 14.040

3 15.229 13.022 15.295 16.201 16.585

4 16.280 14.270 16.346 18.713 18.981

5 17.211 15.079 17.046 20.410 20.879

Sea Star

2 14.398 8.610 14.395 14.809 14.885

3 16.987 14.078 16.981 17.431 17.458

4 18.304 16.191 18.427 19.421 19.448

5 20.165 16.474 20.330 20.887 20.968

Smiling Girl

2 13.420 14.986 13.514 17.989 18.003

3 18.254 11.243 18.069 18.742 19.114

4 18.860 14.556 18.826 19.823 20.075

5 19.840 22.980 19.769 21.214 21.793

Surfer

2 11.744 9.737 11.878 16.154 16.434

3 18.584 11.638 18.762 18.895 18.934

4 19.478 21.866 19.647 20.234 20.721

5 20.468 19.576 20.479 21.699 21.896

By comparing with DE, the average value of MDGWO is
improved averagely by 38.14% by checking against the cor-
responding PSNR values. �e maximum value is increased
by 97.89% for Baboon Image when � = 2. �e PSNR of the
Smiling Girl with � = 5 and Surfer Image with � = 4 are
slightly lower, but the gap is not signi	cant.

Comparing between ABC and MDGWO, the average
value of MDGWO is improved averagely by 10.55% by check-
ing against the corresponding PSNR values. �e maximum
value is increased by 38.36% for Surfer Image when � = 2.

From the perspective of STDwhich is shown in Table 5, it
can be observed that MDGWO shows obviously advantages
over MTEMO, DE, ABC, and GWO.�e smaller the STD is,
the smaller the change of 	tness functions over the course of
iterations will be, that is, the better stability of segmentation.

�erefore, the results show that MDGWO obtains exciting
e�ect in stability. So MDGWO’s stability is better.

Compared with GWO, the average value of MDGWO is
improved averagely by 73.52% compared to GWO by check-
ing against the corresponding STD values. �e maximum
value is increased by 96.44% for Baboon Image when � = 3,
and the minimum value is increased by 24.92% for Baboon
Image when � = 3.

By comparing with MTEMO, the average value of
MDGWO is improved averagely by 47.88%. �e maximum
value is increased by 87% for Lena Image when � = 2, and the
minimum value is increased by 0.6% for Surfer Image when� = 3.

Comparing between DE andMDGWO, the average value
ofMDGWO is improved averagely by 95.60%.�emaximum
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Table 5: STD metrics of MTEMO, DE, ABC, GWO, and MDGWO.

Image � MTEMO DE ABC GWO MDGWO

Camerman

2 0.1849 1.2592 0.1235 0.1697 0.0462

3 0.1649 1.7601 0.2122 0.2287 0.0758

4 0.2943 2.1995 0.3003 0.3627 0.0659

5 0.2999 2.6579 0.2784 0.4278 0.1964

Lena

2 0.0969 1.2902 0.0349 0.1536 0.0126

3 0.1665 1.7822 0.1300 0.3570 0.0264

4 0.2800 2.2104 0.1872 0.5965 0.0939

5 0.2515 2.5992 0.1827 0.5946 0.1570

Baboon

2 0.0108 1.2862 0.0358 0.2171 0.0102

3 0.0393 1.7678 0.0202 0.4376 0.0156

4 0.1727 2.2126 0.1610 0.2986 0.1184

5 0.2868 2.6239 0.2660 0.5377 0.2316

Butter�y

2 0.0903 1.2708 0.0750 0.2179 0.0465

3 0.2207 1.7429 0.2952 0.2712 0.2036

4 0.2482 2.2368 0.3906 0.4808 0.2415

5 0.2900 2.6571 0.4818 0.5096 0.2684

Maize

2 0.0356 1.3501 0.0218 0.3571 0.0188

3 0.1222 1.8612 0.0901 0.2225 0.0270

4 0.2305 2.3230 0.2605 0.3903 0.0927

5 0.2502 2.7461 0.3834 0.4584 0.1677

Sea Star

2 0.1073 1.3547 0.1088 0.1728 0.0290

3 0.1497 1.8741 0.1752 0.2028 0.0374

4 0.1596 2.3307 0.1817 0.5032 0.1119

5 0.2639 2.7550 0.2180 0.4550 0.1437

Smiling Girl

2 0.0377 1.2516 0.0318 0.1834 0.0111

3 0.0955 1.7311 0.0577 0.1712 0.0242

4 0.1966 2.1878 0.1094 0.2508 0.0781

5 0.1550 2.5989 0.2768 0.5273 0.1302

Surfer

2 0.0579 1.3213 0.0303 0.2681 0.0245

3 0.1002 1.8337 0.1646 0.3014 0.0996

4 0.3382 2.3317 0.1686 0.3162 0.1424

5 0.3690 2.7846 0.2580 0.3815 0.1706

value is increased by 99.21% for Baboon Image when � =2. �e minimum value is increased by 88.32% for Butter�y
Image when � = 3.

Comparing with ABC, the average value of MDGWO
is improved averagely by 45.90%. �e maximum value is
increased by 79.70% for Lena Image when � = 3, and the
minimum value is increased by 12.93% for Baboon Image
when � = 5.

As far as MEAN is concerned, this parameter presents
the average value of 	tness function over the course of
iterations in Table 6, which re�ects the algorithm stability to
some extent. But its accuracy of evaluation is relatively low
which can only re�ect the fuzzy stability of the algorithm.
�e experiment data is o�ered here just in response to the
parameter provided in literature [20]. In comparison with
GWO, MTEWO, DE, and ABC in Table 6, it can be safely

assumed that, inmost cases,MDGWOobtains higherMEAN
of 	tness function. Moreover, the di�erence is extremely
small when MDGWO’s MEAN is lower.

From the analyses of Tables 3–6, together with the visual
e�ects of Figures 2, 3, and 4, it can be observed that
MDGWO method obtains better segmentation e�ect and
has advantage in optimal process, accuracy, stability, and
robustness.�erefore,MDGWO is aMT algorithmwith high
accuracy and high segmentation quality.

6. Conclusion

�is paper proposes a modi	ed discrete grey wolf optimizer,
which is used to optimize the image histograms and realize
the multilevel image segmentation. Based on the high e
-
ciency of GWO in the course of optimization and stability,
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Table 6: MEANmetrics of MTEMO, DE, ABC, GWO, and MDGWO.

Image � MTEMO DE ABC GWO MDGWO

Camerman

2 17.584 12.4212 17.7638 14.634 17.471

3 21.976 17.3764 22.3059 21.107 21.919

4 26.586 21.7520 26.8409 24.927 27.480

5 30.506 26.2505 30.8328 30.436 30.548

Lena

2 17.831 12.7730 17.8139 17.809 18.396

3 22.120 17.6428 22.0832 22.074 22.856

4 25.999 21.8784 26.0615 25.318 26.447

5 29.787 25.7311 29.9664 29.252 30.381

Baboon

2 17.625 12.7333 17.6760 17.679 18.619

3 22.269 17.5005 22.1276 22.129 22.949

4 26.688 21.9010 26.3912 26.194 26.900

5 30.800 25.9681 30.3464 30.067 30.076

Butter�y

2 16.681 12.5796 17.4205 17.425 17.723

3 21.242 17.2545 22.2209 21.585 22.498

4 25.179 22.0176 26.3794 25.267 26.190

5 28.611 26.1795 30.6533 29.492 29.899

Maize

2 18.631 13.3566 18.6316 18.604 19.542

3 23.565 18.4245 23.2496 22.941 23.939

4 27.529 22.9813 27.3931 26.936 27.842

5 31.535 27.1709 31.2127 31.023 30.694

Sea Star

2 18.754 13.4104 18.7295 18.321 19.587

3 23.323 18.5516 23.2738 23.245 23.901

4 27.582 23.0719 27.5057 27.136 28.210

5 31.562 27.2551 31.4919 31.167 31.958

Smiling Girl

2 17.334 12.3892 17.3129 17.136 18.035

3 21.904 17.1339 21.8601 21.253 21.980

4 26.040 21.6541 25.9904 25.050 26.597

5 30.089 25.7130 30.0225 29.870 30.574

Surfer

2 18.339 13.0786 18.3393 18.283 18.869

3 23.231 18.1492 23.2889 23.243 24.135

4 27.863 23.0548 27.8017 27.275 27.447

5 31.823 27.4979 31.7335 31.384 31.325

this paper successfully applies the MDGWO to the 	eld of
MT by improving the location selection mechanism of �, �,
and � during the hunting and using weight to optimize the
	nal position of prey (best threshold).�eMDGWOmethod
not only obtains better segmentation quality but also shows
obvious superiority over GWO, MTEMO, DE, and ABC in
stability, accuracy, and multilevel thresholding.
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