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Abstract

Dynamic boundary conditions (DBC) for solid surfaces are standard in the weakly compressible smoothed particle hydro-

dynamics (SPH) code DualSPHysics. A stationary solid is simply represented by fixed particles with pressure from the 

equation of state. Boundaries are easy to set up and computations are relatively stable and efficient, providing robust numeri-

cal simulation for complex geometries. However, a small unphysical gap between the fluid and solid boundaries can form, 

decreasing the accuracy of pressures measured on the boundary. A method is presented where the density of solid particles 

is obtained from ghost positions within the fluid domain by linear extrapolation. With this approach, the gap between fluid 

and boundary is reduced and pressures in still water converge to hydrostatic, including the case of a bed with a sharp corner. 

The violent free-surface cases of a sloshing tank and dam break impact on an obstacle show pressures measured directly 

on solid surfaces in close agreement with experiments. The complex 3-D flow in a fish pass, with baffles to divert the flow, 

is simulated showing close agreement with measured water levels with weirs open and gates closed, but less close with 

gates open and weirs closed. This indicates the method is suitable for rapidly varying free-surface flows, but development 

for complex turbulent flows is necessary. The code with the modified dynamic boundary condition (mDBC) is available in 

DualSPHysics to run on CPUs or GPUs.

Keywords SPH · Boundary conditions · DualSPHysics · Free-surface flows

1 Introduction

Smoothed particle hydrodynamics (SPH) is a meshless 

Lagrangian particle numerical method particularly adept 

at modelling complex, highly deforming interfacial and 

free-surface flows. In recent years, SPH numerical schemes 

have been successfully applied to a number of different 

phenomena, including sloshing tanks [1], sediment scour 

[2], debris flows [3], flow around bodies [4] and submarines 

[5], landslides and flooding [6, 7], fish pass flows [8], wave 

action on breakwaters [9] with encouraging results. The SPH 

method is based on an integral approximation incorporating 

a kernel function (typically of compact support and charac-

terised by a smoothing length, h). The meshless nature of 

SPH and the issue of kernel truncation near boundaries can 

create difficulties in enforcing solid boundary conditions, 

and, accordingly, boundary conditions have been highlighted 

as one of the Grand Challenges of SPH [10]. A recent review 

addressing accuracy in SPH is provided by Lind et al. [11], 

and a review of applications in coastal and ocean engineer-

ing is available in Gotoh and Khayyar [12]

Many different approaches have been proposed in the lit-

erature to enforce solid boundary conditions, and they can 

be grouped into three main types: the first approach is the 

method of repulsive forces ([13, 14]), which enables the dis-

cretization of 2-D and 3-D irregular geometries. However, 

non-physical forces are added to prevent particle penetration 

and kernel truncation is not addressed and so the accuracy 
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of SPH spatial interpolation near the walls is remarkably 

reduced. A second possible way to discretize the boundaries 

is the so-called semi-analytical formulation ([15–17]) where 

additional terms in the conservation equations are consid-

ered to compensate for the kernel truncation. At continuous 

level, there are no terms of SPH spatial interpolation, but 

when the particle discretization is introduced, surface inte-

grals have to be approximated and this remains a challenge 

for complex 3-D geometries and/or multi-phase flows. The 

third class of boundary methods are based on fictitious parti-

cles to fill the space beyond the boundary interface to mimic 

the presence of a wall ([18–21]). A hybrid of the first and 

third classes has also been proposed [22]. The method herein 

proposed belongs to the third class and may be considered 

an extension of the dynamic boundary condition (DBC) cur-

rently used in the online version of DualSPHysics [23].

DualSPHysics [23] is an open source SPH code for simu-

lating free-surface flows that is able to run on both CPUs 

and GPUs (graphics processing units) [24]. Using DBC, 

complex geometries can be created such as those in [3, 8] 

and [9]. This tackles one of the aspects of the Grand Chal-

lenge on boundary condition in SPH [10]. However, with 

DBC unphysical gaps form between the boundary and fluid 

particles. The work of [9] estimated the size of the gap to be 

of the order of the kernel smoothing length, but a realistic 

surface pressure may be obtained at this distance from the 

surface.

The main purpose of the present work is thus to avoid 

some of the limitations of DBC, while maintaining the capa-

bility for discretizing complex geometries, without affecting 

the efficiency of the GPU implementation. To reduce the 

gap and increase the accuracy of the pressure measured at 

the boundary particles, we follow the approach of [19] for 

updating physical quantities of the boundary particles by 

means of a first-order consistent SPH interpolation evaluated 

at ghost nodes, located inside the fluid domain. First-order 

consistency in the boundary is obtained by introducing the 

SPH corrected interpolation proposed in [25]. In this way, 

the flow properties may be extrapolated into the boundary 

and a fluid continuum is presented. Finally, the use of an 

adequate number of layers of boundary particles prevents 

inconsistencies due to kernel truncation effects for fluid par-

ticles located near the boundaries, as discussed in the early 

work of Vacondio et al. [26]. The corrected SPH interpola-

tion herein adopted does not require an additional particle 

sweep, and thus the computational overheads of the pro-

posed correction are low. The modified boundary conditions 

are named mDBC (modified DBC).

This paper is organised as follows: in Sect. 2 the SPH 

method used in this work is outlined; in Sect. 3 the DBC 

methodology is described and the advantages and issues 

with the method highlighted along with the new mDBC 

method. In Sect. 4 results for a number of 2D and 3D test 

cases are presented comparing between the existing DBC 

and the new mDBC, finally in Sect. 5 conclusions of the 

work are provided along with suggestions for future work.

2  SPH methodology

The open source SPH solver DualSPHysics is described as 

follows. The conservation of mass is defined in compressible 

form, including the density diffusion term

where �
i
 is particle density, m

i
 its mass,c

0
 is the speed of 

sound in the fluid, vij = vi − vj is the velocity difference 

between particles i and j , and ∇W ij is the kernel gradient. �

=0.1 is generally applied. The SPH kernel used in this work 

is the quintic Wendland kernel [27] given by

where rij is the distance between particles, h = �dp is the 

smoothing length ( � = 1.3 or 2 in this work) and the nor-

malisation term �
D
= 7∕4�h

2 in 2D and �
D
= 21∕16�h

3 in 

3D . Two options for the density diffusion function Ψij are 

used, the first of Molteni and Colagrossi [28] is given by

The second option is that of Fourtakas et al. [21] and is 

given by

where �T and �H are the total hydrostatic densities. The con-

servation of momentum is given by

where g is the acceleration due to gravity, P
i
 is the particle 

pressure and Πij is the artificial viscosity given by

A standard value of � = 0.01 will be used unless other-

wise stated.

Finally, the pressure is given by the Tait equation of state
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where �
0
= 1000 kg/m3 is the reference density of water and 

� = 7.

Time stepping is by the Symplectic predictor–cor-

rector option with time step given a CFL (Courant–Frie-

drichs–Lewy) value of 0.2. The speed of sound is usually 

given a value of 10× times the wave speed, 
√

gH , where 

g is the modulus of the gravitational acceleration and H is 

initial water depth.

Note that the SPH formulation adopted in the present 

work is variationally consistent and therefore conserves 

mass, linear and angular momentum. In particular, the con-

servative form of the momentum equation (Eq. (5)) is used 

here and it is used both for fluid–fluid and fluid-boundary 

interactions. Mass is also conserved, as in the proposed 

scheme each particle carries its own mass during the simu-

lation. This allows the continuity equation to be written in 

non-conservative form (Eq. (1)) without breaking conserva-

tion of relevant physical quantities and allows density to be 

assigned to boundary particles through a consistency cor-

rection (Eq. (12)) which improves remarkably the accuracy 

of the pressure field.

3  mDBC formulation

Dynamic boundary conditions were first introduced in [29] 

and further studied in [18]. The boundaries consist of a set 

of particles that satisfy the same continuity equation as 

the fluid particles. To approximate the no-slip condition 

at solid boundaries, the velocities of the boundary parti-

cles are set to zero. The repulsion mechanism generated 

by the dynamic boundary particles works in the follow-

ing way: the incoming fluid particle increases the den-

sity locally according to the continuity equation (Eq. 1), 

which results in an increase in pressure following equa-

tion of state (Eq. 7) and in an increase in the pressure 

term ( (Pj + Pi)∕�i�j ). In consequence, this increase in the 

pressure term in momentum equation (Eq. 5) will lead 

to an increase in the acceleration magnitude ( dv∕dt ) for 

the incoming fluid particle, which defines the repulsion 

force. The study of Domínguez et al. [30] showed how it 

is evident that as a repulsive force, this boundary keeps the 

particles at a certain distance from the boundary, and this 

“gap” was found to be of the order of the smoothing length 

(h). Therefore, this approach presents a drawback in that 

the evolution of density and pressure of the fixed boundary 

particles leads to unphysical values at the surface, with 

unphysically large boundary layers in the flow. The bound-

ary pressure has to be output at a distance of a smoothing 

(7)P =

c
2

0
�

0

�

[(

�

�
0

)�

− 1

] length from the actual surface to be representative and the 

dynamic boundary particles need to be initially created 

considering that “gap” in order to generate the repulsion 

force at the desired boundary limit. On the other hand, an 

advantage of these boundary particles is their computa-

tional simplicity, since density, and therefore pressure, can 

be calculated inside the same loops as fluid particles with 

a considerable saving of computational time. These con-

ditions are able to represent complex shaped geometries. 

Validations with dam-break flows and wave flumes have 

been published and DBC has been successfully applied 

to coastal engineering problems, discretizing complex 3D 

geometries without the need for implementing complex 

mirroring techniques or semi-analytical wall boundary 

conditions. A good example is the work of Zhang et al. 

[9] where DualSPHysics was used to reproduce a labo-

ratory test where a porous breakwater structure made of 

cubes was analysed. The SPH results were obtained for 52 

numerical wave probes, and good agreement was obtained 

for this complex problem.

We propose here a new method to palliate the prob-

lems described for DBC that is named mDBC (modified 

dynamic boundary conditions). The boundary particles 

of mDBC are arranged in the same way as the boundary 

particles in the original DBC, with an additional bound-

ary interface created between the fluid and the boundary 

particles. The boundary interface is located half a particle 

spacing ( dp∕2 ) from the layer of boundary particles clos-

est to the fluid. For each boundary particle, a ghost node 

is projected into the fluid across the boundary interface 

in a procedure similar to Marrone et al. [19]. For a flat 

surface, the ghost node is mirrored across the boundary 

interface along the direction of the boundary normal point-

ing into the fluid (Fig. 1a) and fluid properties are found 

at this ghost node through a first-order consistent SPH 

spatial interpolation over the surrounding fluid particles 

only (Fig. 1b). For a boundary particle located in a corner, 

the boundary normal is ill defined with more than one 

option. However, the boundary interfaces of each solid 

boundary meet to form an interface corner, and the ghost 

node is mirrored through the point of this corner into the 

fluid region (Fig. 1c). Again, fluid properties are found at 

the ghost node through a first-order consistent SPH spatial 

interpolation of the surrounding fluid (Fig. 1d).

The boundary particles receive fluid properties using 

the values calculated at the ghost node and an extrapola-

tion method similar to the one used for open boundaries in 

[31]. For the density of the boundary particle �
b
 the ghost 

density �
g
 and its gradient 

[

�
x
�

g
;�

y
�

g
;�

z
�

g

]

 are computed at 

the ghost node using the first-order consistent SPH inter-

polation proposed by Liu and Liu [25], which requires 

solving the following linear system for each ghost node:
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where:

where the volume V  j is computed as Vj = mj∕�j.

To evaluate the matrix �
g
 and the vector �

g
 at each ghost 

node g , a new particle interaction loop needs to be set up. 

The new interaction requires the inversion of the matrix �
g
 ; 

however, this requires limited additional computational 

effort when compared to the original DBC formulation. Note 

also that the matrix �
g
 is diagonally dominant and in most 
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cases remains well-conditioned (with condition numbers of 

O(10) even for disordered particle distributions) provided 

there is near complete support. Due to this property, the 

adopted formulation to compute �
g
 and 

[

�
x
�

g
;�

y
�

g
;�

z
�

g

]

 is 

still suitable for real engineering applications with complex 

surfaces. If ghost node neighbours decrease to very low 

numbers (e.g. less than 3 or 4 fluid particles), the  Ag matrix 

does become ill-conditioned and the matrix is not inverted. 

The density at the ghost node is then found through a Shep-

ard filter evaluated at the ghost node according to:

Once the density and density gradient are computed at the 

ghost node, then the density of the boundary particle �
b
 is 

(11)�g =

∑

j �jWgjVj
∑

j WgjVj

Fig. 1  Mirroring of ghost nodes 

(crosses) and the kernel radius 

around the ghost nodes for 

boundary particles in a flat sur-

face (a) and a corner (c). Fluid 

particles (pink) included in the 

kernel sum around ghost nodes 

for boundary particles in a flat 

surface (b) and a corner (d)
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obtained by means of a linear extrapolation with the values 

found using the above relations through:

where r
b
 and r

g
 are the position of the boundary particle 

and associated ghost node, respectively. In this way, the 

boundary density is presented as part of a fluid continuum 

and pressure from the equation of state gives smoother and 

more physical pressure fields, avoiding the non-physical gap 

between the boundary and the fluid observed when using 

DBC. If the matrix is ill-conditioned, the boundary parti-

cle is given the Shephard filtered ghost node density found 

in Eq. (11). The boundary particles have zero velocity as 

before. As the boundary velocity is set to zero for all bound-

ary particles; by definition, u ∙ n = 0 (as u = 0 ) is guaran-

teed on the boundary. It is noted, however, that this approach 

is at best first order for velocity and velocity gradients on and 

near the boundary are in general not as well approximated 

as they are in other velocity boundary condition approaches 

(see [19], for example). Neumann boundary conditions on 

the pressure, however, are approximated at higher order fol-

lowing from the formulation above, and this is sufficient to 

significantly improve results over the standard DBC.

4  Results

This section will show the capabilities of mDBC and the 

improvements comparing with original DBC. Initially 2D 

simulations are investigated including still water with a tri-

angular corner (a wedge) and a sloshing tank, and the 3D 

cases of a dam break impacting a cuboid obstacle, and flow 

through a fish pass. In each test case the performance of the 

boundary conditions will be assessed.

(12)�b = �g +

(

�b − �g

)

⋅

[

�x�g;�y�g;�z�g

]

4.1  Still water on bed with a wedge (sharp corner)

A 2D still water tank with dimensions of 2.4 m × 1.2 

m encloses a trigonal wedge in the bottom centre of the 

tank with a height of 0.24 m. The initial water height is 

H = 0.5 m. Results are analysed during 4 s of physical time. 

The ratio of smoothing length h to initial particle spacing dp , 

h∕dp = 2 . Two simulations with different resolutions were 

executed (dp = 0.02 m and dp = 0.01 m).

The final instant (t = 4 s) is depicted in Fig. 2 for the 

two different resolutions and using DBC (left) and mDBC 

(right). The first row corresponds to dp = 0.02 m and the sec-

ond row to dp = 0.01 m. Good results and improvements can 

be observed using mDBC with smoother and more physi-

cal pressure values now being obtained for the boundary 

particles, not only in the flat surface but also in the cor-

ners. Figure 3 shows more detail at the corners for the case 

with dp = 0.01 m, where this improvement becomes more 

apparent.

The vertical distribution of pressure is plotted to show the 

accuracy of the hydrostatic pressure distribution. Values of 

depth ( z∕H ) against pressure ( p∕�gH) are plotted in Fig. 4 

(at 4 s) for each fluid particle. For both resolutions, much 

improved hydrostatic pressure behaviour is obtained using 

mDBC, accurate down to the solid surface. In addition, the 

kinetic energy of the particles is measured. The time series 

for the summation of kinetic energy of all the fluid particles 

is shown in Fig. 5 (note a logarithmic scale is used). It is 

clear that mDBC generates much smaller particle move-

ment than DBC. Runs up to 20 s showed negligible noise in 

the pressure, but a small amount of noise became apparent 

around 200 s.

4.2  Sloshing tank (moving boundaries)

The second 2D test case reproduces an experiment with 

moving boundaries. This is the SPHERIC Benchmark Test 

Fig. 2  Pressure in a 2D 

still water tank: last instant 

of the simulation for: 

a DBC dp = 0.02 m; b 

mDBC dp = 0.02 m; c DBC 

dp = 0.01 m, and d mDBC 

dp = 0.01 m
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Case 10 (https:// spher ic- sph. org/ tests/ test- 10), consisting of 

a sloshing tank of 0.9 m × 0.508 m with an initial water level 

H = 0.093 m (Fig. 6). The numerical pressures are obtained 

using DBC and mDBC and compared with the experimen-

tal values detected at Sensor 1 (Fig. 6). Two simulations 

with different resolutions are executed ( dp = 0.004 m and 

dp = 0.002 m), again with h∕dp = 2.

The instant of the simulation at time t = 2.47 s seconds 

is shown in Fig. 7, where the first impact of the fluid with 

left wall (Sensor 1) has just occurred. The colour of the 

particles corresponds to their pressure values.

Fig. 3  Last instant of the still 

water simulation: a DBC 

dp = 0.01 m, and b mDBC 

dp = 0.01 m (close up of the 

pressure field in the corners)

Fig. 4  Particle pressure values versus depth at last instant of the still water simulation for: a DBC dp = 0.02 m; b mDBC dp = 0.02 m; c DBC 

dp = 0.01 m, and d mDBC dp = 0.01 m

https://spheric-sph.org/tests/test-10
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Figure 8 shows in more detail the pressure field of the par-

ticles with DBC (left) and mDBC (right) with dp = 0.002 m. 

Two improvements can be observed using mDBC: (i) val-

ues of pressure for the boundary particles in the walls using 

mDBC are less noisy than the ones shown for DBC and 

(ii) the unphysical gap between the fluid and the bound-

ary is negligible when mDBC is used. This is an important 

improvement since the computation of pressure values at 

Sensor 1 (Fig. 6) with DBC provides representative results 

only if the numerical pressure gauge is moved to take into 

account the size of the gap between the fluid and the bound-

ary. The work of [32] estimated the size of the gap to be the 

smoothing length ( h ). There is a small high pressure region 

seen towards the top of the boundary of Fig. 8(b), which 

is a spurious but ineffectual pressure carried from a previ-

ous time step. This may occur when there are no nearby 

fluid particles: the correction matrix (Eq. (9)) does not meet 

the criteria to be solved due to its poor conditioning and 

the Shepard filter (Eq. 11) cannot be used as there are no 

fluid particles near a ghost node. This spurious pressure is 

not a concern in practice as it only results when there are 

no nearby fluid particles (within the support length of the 

ghost node) and so can have no effect on the fluid dynamics. 

As soon as there is fluid near the boundary, the correction 

matrix is able to solve and so provides correct densities (and 

pressures) in the boundary.

The experimental pressure (black line) is compared with 

numerical results in Fig. 9. The blue line, in the first row, 

corresponds to numerical pressure computed using DBC 

with pressure gauge at the original location; however the 

results are erroneous due to the large gap (in the order of h ) 

without fluid particles. The second row shows the numerical 

pressure (green line) using DBC with pressure gauge moved 

+h into the fluid, much improving agreement with experi-

mental data. However the use of mDBC, avoiding the gap 

and creating a realistic boundary layer, allows the computa-

tion of pressure at the exact location of the gauge obtaining 

very good results; the red line in the bottom panel of Fig. 9 

shows again a good agreement with the experimental data. 

Note that negative pressures are observed in the experimen-

tal data and the mDBC numerical data around the time of 

the most violent impacts, coinciding with highly transient 

pressure shocks rebounding after high velocity water impact. 

The fact these transients are captured provides a further 

demonstration of the benefit of the mDBC approach over 

DBC. While persistent negative pressures can be an issue in 

SPH (leading potentially to the tensile instability), no evi-

dence of this instability was observed here as the negative 

pressure event is so short-lived (existing for only O(1) time 

steps).

4.3  3D Dam break over cuboid obstacle

This is the SPHERIC Benchmark Test Case 2 (https:// spher 

ic- sph. org/ tests/ test-2) shown in Fig. 10; surface elevation 

was measured at positions H1, H2, H3 and H4 and pres-

sures on the centreline plane of the cuboid obstacle surface 

[33]. Particle spacings dp = 0.01 m and 0.02 m were applied 

giving a particle number close to 1 million and 170,000, 

respectively. In this case h∕dp = 1.3.

Results of surface elevation at H4, H3, H2 are shown in 

Fig. 11 to be in close agreement with experiment, closer than 

DBC which shows a spurious value for H2 for small time.

Figure 12 shows the particle distribution at t = 0.8 s with 

jet height close to maximum, and the spurious DBC value 

at H2 is due to jet formation too far upstream, in front of 

the obstacle.

Fig. 5  Time series of fluid particles kinetic energy during the still 

water simulation for initial partial spacings a dp = 0.02  m and b 

dp = 0.01 m

Fig. 6  Initial setup of the sloshing tank including location of pressure 

sensor 1 and the centre of rotation denoted as COR

https://spheric-sph.org/tests/test-2
https://spheric-sph.org/tests/test-2
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Pressures are shown at P2 (front face) and P5 (top corner 

of upper surface) in Fig. 13. For P2 agreement of mDBC 

with experiment is again close, generally closer than DBC. 

The peak pressures for P2 are in close agreement with 

experiment. Note again that DBC requires measurement 

at + h from the surface. For P5 mDBC with finer resolution 

is generally close to experiment as is DBC. Now the coarser 

mDBC shows some spurious fluctuations not present with 

the finer resolution.

This test case demonstrates how SPH with mDBC pre-

dicts highly transient free surface flow and pressures quite 

accurately.

4.4  Fish pass

The complex 3D test case of a fish pass, as shown in 

Fig. 14, is now simulated. A fish pass is a structure that 

facilitates the natural migration of some species of fish 

on or around artificial and natural barriers (such as dams, 

locks and waterfalls). Technical fish passes include: pool 

and weir fish passes, which is the type treated in the pre-

sent work; vertical slot fish passes, and Denil fish passes. 

The principle of a pool and weir fish pass is to divide a 

channel by installing cross-walls, in order to form a suc-

cession of stepped pools from the headwater to the tailwa-

ter. The discharge usually passes through openings in the 

cross-walls and fishes migrate from one pool to the next 

through the submerged orifices (or gates) or through the 

notches (or weirs). Previous examples of fish pass flows 

being simulated using DualSPHysics with DBC include 

the work of Novak et al. [8] for a vertical slot type fish 

pass.

The fish pass considered here comprises a long channel 

inclined at an angle of 4.5° to the horizontal with vertical 

cross baffles restricting the flow, dividing the pass into 

three pools. Each of the baffles has a gate in one of the 

bottom corners and a weir in the opposite top corner, the 

orientation of the gates and weirs alternates between pairs 

Fig. 7  Sloshing tank simula-

tion at time t = 2.47 s, with: 

a DBC dp = 0.004 m; b 

mDBC dp = 0.004 m; c DBC 

dp = 0.002 m, and d mDBC 

dp = 0.002 m

Fig. 8  Sloshing tank simulation 

at the time t = 2.47 s, close up of 

the pressure field in the corner 

and the lateral wall for DBC 

boundary (left) and mDBC 

boundaries (right)
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Fig. 9  Comparison of 

experimental and numeri-

cal ( dp = 0.002 m) pressures 

measured at probe location P1 

with: (top) DBC and numerical 

probe in the correct location; 

(middle) DBC and numerical 

probe placed a distance of h 

from the wall, (bottom) mDBC 

with numerical probe in the cor-

rect location

Fig. 10  The geometric configuration of initial conditions for the dam break and obstacle (left) and pressure measurement points (right)
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of baffles, as shown in Fig. 15. For this case h∕dp = 1.3 , 

α in the range 0.01 (standard) to 0.001 was tested and 

particle shifting based of Fick’s equation [34] was applied 

to regularise the particle distributions. The particles are 

shifted a distance �r
s
 according to the equation

where C is the particle concentration and D is the diffusion 

coefficient given by Skillen et al. [34] as

(13)�r
s
= − D∇C

i

(14)D = Ahu
i
dt

Fig. 11  3D Dam Break over cuboid obstacle: surface elevations at measured at points H4 (left), H3 (middle) and H2 (right)

Fig. 12  Dam break at t = 0.8 s 

from DBC and mDBC showing 

extent of jet formation

Fig. 13  Time variation of pressure at probe P2 (left), probe P2 focussing on the first peak (middle) and probe P5 (right)
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where A is a dimensionless constant which takes the value 

A = 2 for this case.

Experiments conducted at the University of Parma are 

used for comparison. Five test cases were measured: two 

involving flow only through the gates; three involving flow 

over only the weirs. The flow rates and water depths are 

shown in Table 1.where all the water depths are measured 

with respect to the base of the weir in wall 3.

Fig. 14  Fish pass: a scheme of the experimental setup, note reference z = 0 on wall 3; b detail of a vertical cross baffle; c 3-D view of the flow 

domain, showing pools, gates and weirs

Fig. 15  Water levels with gates open in pools 1 (top) and 2 (bottom) for flow rate Q2, results averaged using a moving mean over 0.3 s
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The numerical fish pass uses the inflow-outflow bound-

ary conditions described in [31] to control the fluid particles 

entering and leaving the channel. The inlet is created in the 

centre of the upstream pool and the outlet in the centre of 

pool 3. To set up steady conditions, the experimental levels 

in each pool are first input and velocities are increased to 

provide the experimental flow rate. The correct flow rates 

are then maintained at inlet and outlet and water levels may 

be compared with experiment. Hin is the depth in the inlet 

zone above the base of the weir in Gate 3 ( z = 0 in Fig. 14). 

H1, H2, H3 are depths in the centre of pools 1, 2, 3.

4.4.1  Gate only cases

We consider Q2 with an initial particle spacing of  

dp = 0.01 m (150,827 particles), dp = 0.005 m (914,467 

particles) and dp = 0.0025 m (6,234,131 particles); results 

for Q1 were similar. Water level results are shown in Fig. 15. 

The water level in pool 1 with the smallest spacing is in 

close agreement with experiment although in pool 2 it is 

0.0075 m, or three particle spacings, different.

4.4.2  Weir only cases

For the cases Q3–5 flow is only allowed to pass over the 

weirs, as the gates have been blocked off. Two particles spac-

ings of dp = 0.01 m (207,784 particles) and dp = 0.005 m 

(1,372,059 particles) are used. We show results for Q5 as 

all cases are quite similar and the water levels are in close 

agreement with experiment, within one particle spacing, 

shown in Fig. 16.

These results show that flow through a very complex 

geometry may be modelled with mDBC. The results with 

weir only show very close agreement with experiment 

while those with gate only were less close. This is prob-

ably because rapidly varying free surface flows are well 

suited to SPH, corresponding with accelerated flow over 

the weirs. With accelerated flow through the gates and rela-

tively tranquil free surface flow, mixing due to turbulence 

will be significant and the SPH model does not have a turbu-

lence model. With the flow over the gates mixing due to the 

jets over the gate is gravity dominated. Flow visualisation 

is shown in Fig. 17 for flow rate Q3 with particle spacing 

dp = 0.005 m.

Table 1  Flow rates and water 

depths measured with respect to 

weir 3 for fish pass test cases

Q(l/s) Hin (mm) H1 (mm) H2 (mm) H3 (mm) Note

Q1 1.70 3.9 − 10.4 − 24.9 − 37.2 Gate only

Q2 2.45 46.2 15.9 − 15.9 − 44.9 Gate only

Q3 2.267 169 115 63 13 Weir only

Q4 1.963 160 109 57 7 Weir only

Q5 1.634 154 103 51 1 Weir only

Fig. 16  Water levels with weirs open in pools 1 (top) and 2 (bottom) for flow rate Q5, results averaged using a moving mean over 0.3 s
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4.5  Computational performance

The computational performance of DualSPHysics on GPUs 

with mDBC and DBC is of practical importance as real 

problems generally require high resolution. This section 

compares the runtimes of DBC and mDBC for the same 

resolution, although mDBC achieves a given level of accu-

racy with lower resolution than mDBC. The performance 

of both boundary conditions is presented for two cases on 

a CPU for reference and on different generations of GPUs. 

The CPU device used here is an Intel Core i7-6700 K with a 

clock speed of 4.0 GHz and 8 execution threads (4 physical 

cores). The specifications of the GPU cards (commonly used 

for numerical computing) are shown in the Table 2.

Two SPHERIC benchmark cases are selected to analyse 

the performance with the different boundary conditions; a 

2-D case with moving boundaries and a 3-D problem. The 

2-D sloshing tank case shown in Sect. 4.2 was simulated for 

7 physical seconds using dp = 0.002 m and 26,791 particles. 

This simulation was executed on the devices in Table 2, and 

the runtimes are shown in Table 3 with the ratio mDBC to 

DBC runtime. The 3-D dam break case was simulated for 6 

physical seconds using dp = 0.02 m (172,422 particles) and 

dp = 0.01 m (1,015,809 particles). The execution times of 

the 3-D dam break case described in Sect. 4.3 are included 

in Table 4.

The use of mDBC thus results in a 10–20% increase in 

execution time over DBC for 2-D and 3-D simulations for 

the same resolution. This increase depends on the number 

and distribution of boundary and fluid particles of the simu-

lation case, since extra calculation time is required for the 

interpolation carried on the ghost nodes projected from the 

boundary particles into the fluid domain. In practice a given 

level of accuracy may be achieved with mDBC with a lower 

level of resolution than DBC, reducing execution time below 

that for DBC.

Fig. 17  Flow over weirs from 

SPH simulation with contours 

showing velocity magnitude, 

the set up shown if for flow 

rate Q3 with particle spac-

ing dp = 0.005 m (1,372,059 

particles)

Table 2  GPU specifications

Tesla V100 RTX 2080 Ti Tesla K40

GPU microarchitecture Volta Turing Kepler

Compute capability 7.0 7.5 3.5

Global memory (MB) 16,128 10,989 12,207

Cuda cores 5120 4352 2880

Multiprocessors 80 68 15

GPU Max clock rate (MHz) 1530 1545 745

Memory clock rate (MHz) 877 7000 3004

Memory bus width (bits) 4096 352 384

Table 3  Runtimes of the 2-D sloshing tank simulation using 

dp = 0.002 m with different hardware devices

Hardware DBC (s) mDBC (s) mDBC/DBC

CPU i7-6700 K 7350 8191 1.11

Tesla K40 811 967 1.19

GeForce RTX 2080 Ti 625 681 1.09

Tesla V100 376 430 1.14

Table 4  Runtimes of the 3-D dam break simulation with different 

hardware devices

Hardware dp (m) DBC (s) mDBC (s) mDBC/DBC

CPU i7-6700 K 0.02 9998 12,442 1.24

Tesla K40 624 768 1.23

GeForce RTX 2080 Ti 224 252 1.12

Tesla V100 171 190 1.11

Tesla K40 0.01 7366 8700 1.18

GeForce RTX 2080 Ti 1406 1586 1.13

Tesla V100 1050 1180 1.12
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5  Conclusions

The dynamic boundary condition has been improved by 

providing solid boundary particles with density extrapo-

lated from mirror positions within the fluid without sac-

rificing any of the robustness of the original formulation. 

Pressure on a solid surface is predicted accurately. This 

has been demonstrated for the still water case with a sharp 

corner by recovering hydrostatic pressure; for the dynamic 

2D SPHERIC test case 10 of the sloshing tank; for the 

3D SPHERIC test case 2 of the dam break impacting a 

cuboid obstacle; and for the new complex test case of 

fish pass flow with several gates and weirs. Agreement 

with experiment is good for the weirs only case where the 

flow is gravity dominated and less good for the gates only 

case with turbulent mixing and a tranquil free surface. 

The computational overhead on the original DBC is less 

than 25% and depends on application and the choice of 

GPU. However, this is more than compensated by mDBC 

enabling realistic simulation with lower resolution and a 

smaller number of particles. DualSPHysics is now avail-

able with this functionality. This capability should be par-

ticularly beneficial for complex problems requiring high 

resolution such as the rubble mound breakwater [32] and 

marine vehicles [5] studied previously with DBC.

Further work will allow fluid velocity at mirror points 

to be extrapolated to solid boundary particles. This will 

allow for the creation of more accurate no-slip boundaries 

as well as slip and partial slip boundaries for some non-

Newtonian applications.
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