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Abstract

Multiple testing has become an integral component in genomic analyses involving microar-
ray experiments where a large number of hypotheses are tested simultaneously. However, before
applying more computationally intensive methods, it is often desirable to complete an initial trun-
cation of the variable set using a simpler and faster supervised method such as univariate regres-
sion. Once such a truncation is completed, multiple testing methods applied to any subsequent
analysis no longer control the appropriate Type I error rates. Here we propose a modified marginal
Benjamini & Hochberg step-up FDR controlling procedure for multi-stage analyses (FDR-MSA),
which correctly controls Type I error in terms of the entire variable set when only a subset of the
initial set of variables is tested. The method is presented with respect to a variable importance ap-
plication. As the initial subset size increases, we observe convergence to the standard Benjamini
& Hochberg step-up FDR controlling multiple testing procedures. We demonstrate the power and
Type I error control through simulation and application to the Golub Leukemia data from 1999.
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1 Introduction
Statistical analysis in genomics research often requires testing a large number of hy-
potheses simultaneously. This is especially true in microarray experiments where
there are tens of thousands of variables and often less than 100 observations. A
common approach to determine which genes are significant is to apply univariate
regression to all variables and test the significance of the coefficient β using a stan-
dard t-statistic with the null hypothesis H0 : β = 0, and then adjust the marginal
p-values for multiple testing.

When applying a more computationally intensive method such as targeted vari-
able importance (Bembom et al., 2007; Tuglus and van der Laan, 2008) which re-
quires data-adaptive estimation, one might want to initially reduce the dimensions
of the data using a simpler method, restricting it to a conservative set of poten-
tially relevant genes. One approach is to use an unsupervised method, for instance
restricting the set to genes that have a variance higher than a specified threshold.
However, when using these methods the potential of discounting relevant genes
can be quite large since the threshold level is independent of the outcome. To al-
leviate this possibility simple supervised methods such as univariate regression or
randomForest (Breiman et al., 1984; Breiman, 2001) can be used to prescreen the
variables. Although, once the initial variable set is restricted with respect to the out-
come, multiple testing procedures on the results of secondary analyses are biased
and no longer control the Type I and Type II error appropriately. Any subsequent
analysis must take this into account.

In this paper we propose a modification to marginal Benjamini & Hochberg
step-up FDR controlling procedure for multi-stage analyses (FDR-MSA) that ap-
propriately controls the False Discovery Rate (FDR) when applied to a reduced and
data-adaptively selected set of null hypotheses. We also show that if the restricted
set contains all relevant variables, this procedure has equivalent control of Type I
error and equivalent power to applying the standard Benjamini & Hochberg step-up
FDR controlling procedure (BH-FDR) to the entire variable set. We generalize this
modification for any monotonic multiple testing adjustment to marginal p-values.

We introduce this method in terms of an application of targeted Maximum
Likelihood (tMLE) variable importance methodology, which we introduce in sec-
tion two. In section three, we present the FDR-MSA method in detail. In section
four, we provide simulation results demonstrating the Type I and Type II error con-
trol. In section five, we present an application of the procedure to the commonly
used Golub et al (1999) leukemia data (Golub et al., 1999) , and we conclude with
a discussion.
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2 Variable Importance Application
As an example of the general application of FDR-MSA, we apply the proposed
method in the context of variable importance analysis. The variable importance
methodology is described thoroughly in van der Laan and Rubin (2006) and van der
Laan (2005) and was previously applied in Bembom et al. (2007) and Tuglus and
van der Laan (2008).

We observe data O = (W ∗,Y ∼ P) where P is the data generating distribution,
the outcome Y is a vector of length n, and W ∗ is an n by M matrix of covariates
(i.e. genes). We define variable A as a single variable W ∗j , in W ∗, where W ∗ =
{W ∗j , j = 1, . . .M}. Note that in practice A can reflect a set of variables, but for this
application is restricted to a single variable.

The objective is to identify variables in W ∗ that are significantly associated
with outcome Y . Therefore in this case, the parameter of interest will be a measure
of the effect of variable A on Y controlling for possible confounders in W = W ∗− j.

We define our parameter of interest as the marginal variable importance of A
at a particular value A = a as

µ(a) = EW [m(A = a,W |β)]

where

m(A,W |β) = EP[Y |A,W ]−EP[Y |A = 0,W ]

satisfying m(0,W | β) = 0 for all β and W .
For this analysis we define our model m(A,W |β) = βA, where parameter β

identifies the importance curve over the support of A. Inference is completed for β,
but can be extended for any value A = a.

Estimation of β for each A∈W ∗ is completed using tMLE variable importance
(tVIM) methodology, which can require the estimation of E[Y |A,W ] and E[A|W ]
for each individual variable, A. For optimal efficiency, we estimate E[Y |A,W ] and
E[A|W ] using data-adaptive algorithms which are often computationally intensive,
making pre-screening of the variable set a very attractive option. This is particu-
larly true for microarray experiments where W ∗ is very high dimensional. Possible
prescreening methods include univariate regression, randomForest (Breiman et al.,
1984; Breiman, 2001), and simple tVIM which uses univariate regression to esti-
mate E[Y |A,W ] and E[A|W ]. In this paper, univariate regression will be used as the
pre-screening method. Details on the tVIM method applied in this paper can be
found in Tuglus and van der Laan (2008).
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3 Methods
The modified marginal Benjamini & Hochberg step-up FDR controlling procedure
for multi-stage analyses (FDR-MSA), is applied directly to the raw marginal p-
values.

Given a multivariate parameter Ψ(P) = (ψ(m) : m = 1, ...M), we can define
the null hypotheses and alternative hypotheses in terms of the parameter null value
ψ0, which typically equals 0. For the two-sided hypothesis test, the null hypothesis
is H0(m) = I(ψ(m) = ψ0(m)) and the alternative hypothesis is H1(m) = I(ψ(m) 6=
ψ0(m)).

Whether or not we reject the null hypothesis is determined by the value of the
test statistic Tn = (Tn(m) : m = 1, ...,M). The parameter of interest can be tested
using a standard t-statistic defined below

Tn(m) =
√

n
ψn(m)−ψ0(m)

σn(m)

where ψn(m) is an asymptotically linear estimator of ψ(m) with specified influence
curve ICm(P)(O), and σ2

n(m) is an estimate of the variance σ2(m) = E[ICm(P)(O)2]
of the influence curve.

Specifically for variable importance measures, ψ(m) = βn for a given A = W ∗m,
where W ∗ = {W ∗m,m = 1, . . . ,= M,}. We test the null hypothesis H0 : ψ(m) = 0
using a standard t-test,

Tn(m) =
√

nψn(m)
σn(m)

∼n→∞ N(0,1)

where σn(m) is the standard error estimated from the variance of the empirical
influence curve (Tuglus and van der Laan, 2008).

3.1 Marginal Benjamini & Hochberg Step-up FDR Controlling
Procedure

According to the standard marginal Benjamini & Hochberg step-up FDR control-
ling procedure (Benjamini and Hochberg, 1995) we define

FDR = E
[

V
R

]
= E

[
V
R

∣∣∣∣R > 0
]

P(R > 0)

where V = number of false positives and R = number of total rejections of the null.
For a set of variables W = {Wm,m = 1, ...M} given a set of M test statistics Tn =

{Tn(m) : m = 1, ...,M} and their associated p-values pn = {pn(m) : m = 1, ...,M},
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define the ordered set of p-values as pn(1) ≤ pn(2) ≤ ... ≤ pn(M). According to
Benjamini and Hochberg (1995), to control FDR at level α, find k̂ such that

k̂ = max
{

k : p(k) ≤
k
M

α

}
and reject pn(1) ≤ ...≤ pn(k̂). We define the set of rejected null hypotheses as R .

3.2 Modified Marginal Benjamini & Hochberg Step-up FDR
Controlling Procedure for Multi-Stage Analyses

FDR-MSA is applied using a simple modification of the standard marginal Ben-
jamini & Hochberg step-up FDR (BH-FDR) controlling procedure (Benjamini and
Hochberg, 1995). This method will be generalized to any monotonic multiple test-
ing adjustment with marginal p-values.

3.2.1 Procedure

The BH-FDR adjusted p-values have the property such that if we replace pk by a qk
for all k such that pk ≤ qk, then the set of rejections of FDR applied to qk is included
in the set of rejections of FDR applied to the original pk. Our proposed method
is then applied by setting qk equal to pk for a supervised/data-adaptively selected
subset of the null hypotheses and setting qk = 1 for all other null hypotheses. The
procedure is outlined below.

1. Given set of M variables, select a subset of U variables based on an initial
supervised analysis (i.e. univariate regression with a p-value cut-off)

2. Complete the desired test statistics for the null hypotheses of interest for these
U variables only, and calculate their raw p-values.

3. Assign a value of one to the p-values of all M−U unselected variables.

Thus, with regard to construction of the ordered list of p-values, add to the
end of the list of the U p-values K = (M−U) ones.

4. Apply multiple testing procedure as usual, in this case standard marginal
Benjamini & Hochberg step-up FDR controlling procedure (Benjamini and
Hochberg, 1995).

Loss of power will only occur if the initial restriction excludes variables that
would have been rejected by the BH-FDR procedure when applied to the original
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pk. In other words, the FDR-MSA procedure will maintain Type I and Type II
error control equivalent to applying BH-FDR to all M variables given that the rank
order of the p-values is maintained between the raw p-values of the pre-screening
method and the adjusted p-values of the secondary analysis. The effectiveness of
the FDR-MSA in preserving Type I and Type II error control is therefore contingent
on the relationship between the pre-screening method and the test statistics of the
secondary analysis.

For example, the supervised subset of the null hypotheses can be selected to
be all variables for which their univariate regression p-value is smaller than 0.1.
In the special case that our supervised subset does include the FDR selected set
R when applied to the p-values pk, then the two stage FDR procedure applied to
qk is equivalent with FDR applied to pk. Thus, in this case the two stage FDR is
equivalent to applying BH FDR to all variables.

3.2.2 Theorem

We propose the following theorem showing control of Type I error with the MSA
method for any type I error which is a only a function of the number of false posi-
tives (i.e. FWER).

Theorem 1 Let R be a set of rejections, i.e., a random subset of {1, . . . ,M} con-
sisting of the indicators of all null hypotheses H0(m), m = 1, . . . ,M. If H0(m) is
true we will denote that with H0(m) = 1. Let p(m), m = 1, . . . ,M be the marginal
p values for H0(m). Assume that R is a deterministic function of these marginal
p-values (p(m) : m = 1, . . . ,M). Let V ≡ {m : m ∈ R ,H0(m) = 1} be the number of
false positives in R . Let R≡| R | be the number of elements in R .

Let g(V ) be a function and let the type-I error rate of R be defined as the
expectation Eg(V ). To express dependence on marginal p-values we use notation
R (~p).

Assume the following monotonicity property in p-values: for any ~q ≥ ~p (for
each component), we have

R (~q)⊂ R (~p).

Then, for any random ~qn s.t. P(~q ≥ ~p) = 1, we have ER (~q) ≤ ER (~p). As a
consequence, if the procedure R (~p) satisfies Eg(V ) ≤ α, then the same applies to
the modified procedure R (~q).

This theorem does not generalize for Type I errors that are a function of both
the number of false positives and the total number of rejections (i.e. FDR) without
the addition of constraints on the prescreening method. We investigate the control of
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FDR by FDR-MSA through simulation and we demonstrate that given a reasonable
prescreening method, FDR-MSA will correctly control FDR.

The control of FDR under FDR-MSA is explored in simulation by applying
two prescreening methods where the original list of M adjusted p-values is obtained
from univariate regression. Method (1) is the ”worst possible” prescreening method
in which p-values of true positives are set to one. In simulation this is obtained by
setting the lowest U adjusted p-values to one. Method (2) sets a randomly selected
set of U adjusted p-values to one. Results are summarized here, but are shown and
discussed in more detail in Appendix A.

Results show that as expected by Theorem 1, the expected number of false
positives (E[V]) is controlled correctly under both methods. In term of controlling
the FDR, method (1) does not maintain control, but method (2) does and is actually
conservative as U increases. However under method (1), the ”worst possible” pre-
screen, attempting to control FDR at 0.05 results in FDR control at ∼ 0.06. This
increase is small and begins to decrease as U increases. As stated previously under
method (2) where we are randomly selecting the p-values to set to one resulting in
an arbitrary prescreen, E[V/R]≤ α, becoming more conservative as the number of
p-values set to one increases. Given these results, we are confident that in practice
we can control FDR adequately.

In terms of selecting and applying a reasonable pre-screening method, we
make the following points with regard to FDR-MSA.

1. The optimal pre-screening method has the property that given the original
list of raw p-values, any variables selected to be removed will not have been
found significant in the secondary analysis.

2. In practice, the goal is to conservatively approach the optimal pre-screen,
reducing the variable set as much as possible without discounting potentially
relevant variables

3. To define the reduced variable set, a p-value cut-off is recommended. P-
values automatically scale with the sample size, adapting to the signal in the
data and making the properties of the method invariant to sample size. Se-
lecting the top k variables will not achieve this.

3.2.3 Generalization

It follows directly that the FDR-MSA method can be generalized to any multiple
testing method with marginal p-values that have the monotonicity property, and
that Theorem 1 holds for any Type I error that is a function of the number of false
positives only.
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4 Simulations
We compare the performance of FDR-MSA under different levels of initial data
screening. In this case the initial screen is determined by ranked p-values from
univariate linear regression results. The different levels of screening correspond to
different (increased) p-value cut-off values. The comparison is completed in terms
of Type I error and power.

4.1 Simulated Data
Covariate matrix W consists of 100 independent variables, each with 100 observa-
tions simulated from a multivariate normal distribution with variance 1 and mean
vector created by randomly sampling mean values from {0.1,0.2, . . . ,50}.

Outcome Y is simulated from a main effect linear model using ten variables
each with coefficient 4. These ten variables are designated as “true effects.” A
normal error with mean zero and a standard deviation σY = 10 is added as noise.
We use σY = 10 to simulate a realistic noise scenario and provide enough variation
to motivate false positive findings. Power and Type I error is calculated over 500
samples.

4.2 Analysis
Univariate linear regressions are applied to all 100 independent variables. Of these
100 variables we define subsets according to their ranked raw p-values from the
univariate tests. We compare five different levels of screening corresponding to p-
value cut-off values of ks = {0.05,0.1,0.2,0.3, and 1}, where a subset is defined as
all variables with raw univariate p-value less than or equal to a specific cut-off. A
p-value cut-off of 1 corresponds to no initial screening of the data at which point
FDR-MSA is equivalent to standard BH-FDR.

For each subset, we apply tMLE variable importance methodology and obtain
measures β and associated inference under a null hypothesis H0 : β = 0. Initial
density estimate for E[Y |A,W ] and E[A|W ] are estimated using lasso regression
(Tibshirani, 1996), applied by the lars() R package (Efron and Hastie). FDR-MSA
is applied to each set of variable importance p-values.

We compare the performance of FDR-MSA under different levels of screening
in terms of Type I error and power. Type I error (or 1-Specificity) is defined as the
probability of rejecting the null hypothesis (β = 0) when the null hypothesis is
true and power (or Sensitivity) is defined as the probability of rejecting the null
hypothesis (β = 0) when the alternative hypothesis (β 6= 0) is true.
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Results are compared using plots representing levels of power and Type I error.
We use a p-value cut-off to define the reduced variable sets. We select all variables
with p-value less than the specified cut-off (α) and assess the power and Type I error
among the variables in that group. Results are shown using the following plots.

1. Sensitivity (Power) versus p-value cut-off (α)

2. Type I error (1-Specificity) versus p-value cut-off (α)

4.3 Results
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Figure 1: (a) Sensitivity (power) and (b) Type I error versus p-value cut-off α
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Overall, as the size of the initial subset of variables increases (ks increases), the
performance of FDR-MSA in terms of both power and Type I error converge to
standard BH-FDR (under no truncation).

From the slight loss of power in Figure 1a, it is evident that initially truncating
the set of variables according to ks = 0.05 was too harsh and did not allow all truly
significant variables into the subset. As ks is increased we see power converging to
the power of BH-FDR applied to the full data (under no truncation).

In Figure 1b, Type I error is compared with respect to p-value cut-off . We see
that when controlling at a level of α = 0.05 or below, the methods are equivalent for
ks values as high as 0.2. Above α = 0.05, the FDR-MSA method slowly converges
to the Type I error of BH-FDR on the entire data as the raw p-value cut-off is
increased, becoming equivalent at higher α values.

5 Application - Leukemia
To illustrate its application in practice, the FDR-MSA method is applied to the
Golub et al (1999) leukemia data in conjunction with targeted variable importance
(Tuglus and van der Laan, 2008). Targeted variable importance is applied to the full
data and subsets of the data defined by an initial univariate raw p-value cut-off. The
resulting p-values from each case will be adjusted with FDR-MSA. The resulting
ranked lists will be compared.

5.1 Data
Variable importance methods (Bembom et al., 2007; Tuglus and van der Laan,
2008) are used to identify genes which distinguish patients with acute lymphoblas-
tic leukemia (ALL) from patients with acute myeloid leukemia (AML). For the
study presented in Golub et al (1999), the gene expression levels were measured
using Affymetric oligonucleotide arrays with 6,817 human genes for n=38 patients
(27 ALL, 11 AML). The gene expression set was pre-processed using unsupervised
methods and reduced to 3,051 genes according to methods described in Dudoit
et al. (2002). This dataset was obtained from the R package multtest, dataset golub
(Pollard et al., 2005).

5.2 Analysis
Univariate logistic regressions are applied to all 3,051 variables. Of these variables
we defined subsets according to their raw p-values from the univariate regressions.
We restrict the data to all variables with raw p-values less than 0.01, 0.025, 0.05,
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0.1, 0.2, 0.3, and 1. We obtain tMLE variable importance measures and associated
p-values for all subsets. The initial density estimate for E[A|W ] is estimated using
polymars regression, applied by the polspline() R package (O’Connor). To estimate
Q(A,W ) = E[Y |A,W ], we use lasso regression using the lars R package (Efron
and Hastie). There are more powerful methods to data-adaptively select Q(A,W ),
such as DSA (Sinisi and van der Laan, March 2004), and super Learner (van der
Laan et al., 2007). Using a less powerful method does cost us consistency and
efficiency with respect to our variable importance estimate. However lars provides
a quick implementation of lasso regression making it convenient for this particular
demonstration. Future work on the variable importance method will use more data-
adaptive estimates for Q(A,W ) estimates.

We apply FDR-MSA to the resulting sets of variable importance p-values. Re-
sults are compared plotting the rank of the p-value versus its value.

5.3 Results
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Figure 2: (a) FDR adjusted p-value versus p-value rank for FDR-MSA for raw p-value
cut-offs ks = {0.01,0.025,0.05,0.1,0.2,0.3, and 1}
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As we weaken the restriction on the initial cut and become more generous, we find
that the results for FDR-MSA converge to the results when BH-FDR is applied to
all the data.

The apparent loss in power from truncating the data is due to the initial screen-
ing process discounting important and significant variables. Ideally screening the
data would result in an initial subset of variables that contain all true variables. The
fact that univariate regression does not accomplish this suggests that more sophisti-
cated screens are necessary.

6 Discussion
Pre-screening of a set of variables is not uncommon and is very attractive for mi-
croarray data where the number of genes can be over 20,000. Ideally prescreening
is done in a supervised fashion, with respect to the outcome. However, once ap-
plied, any inference on secondary analyses must account for the initial set of tests.
The FDR-MSA method presented here does this in a simple straightforward fash-
ion. The procedure allows for proper control of Type I and Type II error when
pre-screening occurs assuming prescreening is applied conservatively and no sig-
nificant variables are removed in the process.

We have shown that the FDR-MSA multiple testing procedure applied to a re-
stricted subset of variables has equivalent power and Type I error control to FDR
applied to all variables when all BH-FDR-significant variables are present in the
restricted set. Thus it conservatively controls FDR while only requiring calcula-
tion of the test statistics for the restricted and data adaptively selected set of null
hypotheses.

Generally pre-screening can be beneficial and allow for more in depth analysis
while conserving computational time. However if p-values from the prescreening
method and those of the secondary analysis are expected to be far apart or non-
monotonic then pre-screening can be dangerous. Choosing an appropriate cut-off
to define the reduced variable set becomes very important. We must first carefully
consider the relationship between the prescreening method and testing from the sec-
ondary analysis. If we believe that our prescreening method is reasonable and wish
to detect significance at the 0.05 level, we can simply use a raw p-value cut-off of
0.05 on the ranked list from the prescreening results. For example if we believe
tVIM will never find anything more significant than univariate regression, the using
a p-value cut-off of 0.05 on the raw univariate p-values will not discount any vari-
ables that tVIM would have identified as significant had it been applied to the entire
variable set, and it is guaranteed to be conservative. However, if we do not believe
our prescreening method is reasonable and for instance think that the significance
of variables can improve, then we must be extremely careful on how we define our
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reduced variable set. This is often the case when dealing with independent SNP
data or a randomized trial, where you might expect to gain efficiency through ad-
justment (i.e. the p-values of tVIM might be much smaller than those of univariate
regression).

We see this effect both in simulation and in practice, where restricting solely
based on raw p-values from univariate regression did not necessarily provide a con-
servative reduction of the variable set. Therefore, in most cases, we recommend
to be thoroughly generous on how the cut-off is defined. Another possibility is to
apply multiple supervised learning methods and take the union of the selected vari-
ables as the restricted set. For instance applying randomForest to the full variable
set and taking all variables with non-zero importance or univariate regression p-
values less than a particular cut-off (0.1 for instance). Alternatively, one can apply
the tMLE-variable importance analysis with a simple and less computationally in-
tensive initial regression estimator as a first stage analysis, selecting the restricted
set based on a p-value cut-off. Approaches like this one will be investigated in more
detail in order to improve the power of the FDR-MSA method while still maintain-
ing the reduction in computation time.

Finally, we reiterate again that the MSA method for multiple testing applies
to any multiple testing procedure based on marginal p-values that has the mono-
tonicity property in the p-values. For example, one can carry out a MSA modified
method for controlling the generalized family-wise error (FWER-MSA) based on
the appropriate multiple testing procedure controlling this Type I error.

A Type I  rror Control of FDR-MSA
We investigate the ability of FDR-MSA to control the desired FDR level under
two prescreening methods. The first method is what we consider to be the “worst
possible” prescreening method, in which p-values for true positives are set to one. In
practice/simulation is can be obtained most effectively by setting the k lowest BH-
FDR adjusted p-values to one. The second method randomly selects k BH-FDR
adjusted p-values to set to one. We assess the ability of each to control both the
expected number of false positive (E[V], where V is the number of false positives)
and the expected FDR (E[V/R], where R is the number of rejections).

The simulation was set up as follows. Covariate matrix W consists of 100 inde-
pendent variables, each with 500 observations simulated from a multivariate normal
distribution with variance 1 and mean vector created by randomly sampling mean
values within the range [0.17,0.83]. The means are decreased from the simulation
presented in section 4.1 to encourage a greater number of false positives.

Outcome Y is simulated from a main effect linear model using ten variables
each with coefficient 2. These ten variables are designated as “true effects.” A

E
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normal error with mean zero and variance σY = 5 is added as noise. We use σY = 5
to simulate a realistic noise scenario and provide enough variation to motivate false
positive findings.

On each sample prescreening is completed using BH-FDR adjusted univariate
p-values and tVIM is applied. Under α = 0.05, the expected number of false posi-
tives and the expected FDR are calculated from 500 samples. The results are shown
in the plots below.
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Figure 3: Results of simulations assessing performance of FDR-MSA. Shown above are
(a,c) expected number of false positives (E[V]) and (b,d) expected False Discovery rate
(E[V/R] versus the number of original adjusted p-values (k) set to one. The k p-values are
selected by (a,b) taking the k lowest adjusted p-values, and by (c,d) selecting k random
p-values
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We show that under both prescreening methods, E[V] is appropriately con-
trolled as expected from the results of Theorem 1 in section 3.1.2. Under the worst
prescreening method, FDR is not controlled, but is never greater than 0.06 and
decreases as k increases. When selecting a random set of adjusted p-values and
setting them to one, the FDR-MSA does control FDR at the desired level. We pro-
pose that, in practice, using reasonable prescreening method with FDR-MSA will
control FDR.
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