
ORIGINAL ARTICLE

Modified firefly algorithm for workflow scheduling in cloud-edge
environment

Nebojsa Bacanin1 • Miodrag Zivkovic1 • Timea Bezdan1 • K. Venkatachalam2
• Mohamed Abouhawwash3,4

Received: 13 July 2021 / Accepted: 4 January 2022 / Published online: 2 February 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Edge computing is a novel technology, which is closely related to the concept of Internet of Things. This technology brings

computing resources closer to the location where they are consumed by end-users—to the edge of the cloud. In this way,

response time is shortened and lower network bandwidth is utilized. Workflow scheduling must be addressed to accomplish

these goals. In this paper, we propose an enhanced firefly algorithm adapted for tackling workflow scheduling challenges in

a cloud-edge environment. Our proposed approach overcomes observed deficiencies of original firefly metaheuristics by

incorporating genetic operators and quasi-reflection-based learning procedure. First, we have validated the proposed

improved algorithm on 10 modern standard benchmark instances and compared its performance with original and other

improved state-of-the-art metaheuristics. Secondly, we have performed simulations for a workflow scheduling problem

with two objectives—cost and makespan. We performed comparative analysis with other state-of-the-art approaches that

were tested under the same experimental conditions. Algorithm proposed in this paper exhibits significant enhancements

over the original firefly algorithm and other outstanding metaheuristics in terms of convergence speed and results’ quality.

Based on the output of conducted simulations, the proposed improved firefly algorithm obtains prominent results and

managed to establish improvement in solving workflow scheduling in cloud-edge by reducing makespan and cost com-

pared to other approaches.

Keywords Edge computing � Swarm intelligence � Workflow scheduling � Firefly algorithm � Genetic operator �
Quasi-reflection-based learning

& K. Venkatachalam

venkatachalam.kandasamy@uhk.cz

Nebojsa Bacanin

nbacanin@singidunum.ac.rs

Miodrag Zivkovic

mzivkovic@singidunum.ac.rs

Timea Bezdan

tbezdan@singidunum.ac.rs

Mohamed Abouhawwash

abouhaww@msu.edu

1 Singidunum University, Danijelova 32, Belgrade 11000,

Serbia

2 Department of Applied Cybernetics, Faculty of Science,

University of Hradec Králové, 50003 Hradec Králové, Czech

Republic

3 Department of Mathematics, Faculty of Science, Mansoura

University, Mansoura 35516, Egypt

4 Department of Computational Mathematics, Science, and

Engineering (CMSE), Michigan State University,

East Lansing, MI 48824, USA

123

Neural Computing and Applications (2022) 34:9043–9068
https://doi.org/10.1007/s00521-022-06925-y(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-06925-y&domain=pdf
https://doi.org/10.1007/s00521-022-06925-y

1 Introduction

Internet of Things (IoT) provides a set of mechanisms

aimed at offering an environment in which various remote

devices are connected through the Internet. These devices

should be able to collect, process, and share data. The IoT

refers to the next generation of engineered systems that

require tight integration of computing, communication, and

control technologies to achieve stability, performance,

reliability, robustness, and efficiency in dealing with

physical systems of many application domains.

One of the main challenges in cloud-edge environments

is to find an efficient task scheduling algorithm that is able

to minimize completion time and cost simultaneously, as

two contradictory objectives. In this paper, we address the

workflow scheduling problem in cloud-edge environments,

which is NP-hard by its nature. The solution space grows

exponentially with an increase in the number of computing

tasks. Thus, it becomes virtually impossible to find an

optimal scheduling scheme [40]. Therefore, since in such

scenarios classical deterministic algorithms cannot gener-

ate satisfying solutions within a reasonable period of time,

different intelligent heuristic and metaheuristics approa-

ches can be employed for finding solutions to this problem.

The main motivation behind the research proposed in

this manuscript is to implement an efficient algorithm for

workflow scheduling in hybrid cloud-edge environments.

The basic assumption behind the conducted research is that

solving an important challenge of workflow scheduling in

cloud-edge can be further improved by using enhanced

metaheuristics.

To efficiently address this challenge, we devised and

implemented an enhanced firefly algorithm (FA). The FA is

well-known and widely applied approach from the swarm

intelligence family, that is able to successfully tackle a

variety of NP-hard problems. The FA has proven as a

robust optimizer and was successfully validated against

many standard benchmarks [44], and practical problem

instances [45].

Following the no free lunch theorem, an universal

algorithm that solves all possible optimization problems

does not exist. We have tested a considerable amount of

famous swarm intelligence algorithms, both on this par-

ticular problem and on other different optimization prob-

lems in our previous research. FA metaheuristics has

proven to show good exploitation capabilities, and in most

cases it achieves solid performances. Based on our previ-

ous research, we have seen that FA can be further improved

by utilizing different mechanisms, and that was the main

motivation why we have selected it for solving this par-

ticular problem.

However, since the original implementation of the FA

expresses some deficiencies in terms of insufficient

exploration and inadequately established balance between

intensification and diversification, which are elaborated in

this paper, we devised an improved FA approach by

introducing genetic operators and a quasi-reflection-based

learning mechanism in its basic version.

According to the above statements, we formulated the

following research question: ‘‘Is it viable to establish fur-

ther improvements in addressing workflow scheduling in a

hybrid cloud-edge environment by using improved state-of-

the-art FA metaheuristics’’. Based on the research ques-

tion, the objectives, as well as contributions, of the con-

ducted research are defined as follows:

• Devising enhanced version of the FA metaheuristics

that outperforms basic implementation in terms of the

quality of solutions and convergence speed and

• Improvements in solving workflow scheduling chal-

lenges in a cloud-edge environment by establishing

efficient scheduling strategy based on the improved FA

approach that obtains better values of performance

indicators than strategies that are based on other state-

of-the-art heuristics and metaheuristics.

• Validation of the efficiency of the proposed scheduling

strategy throughout comprehensive simulations with

different workflow samples, that can prove the superior

performances of the proposed approach in comparison

with other cutting-edge methods.

Following the most commonly used practice from modern

computer science, the devised improved FA was firstly

validated against a set of 10 modern CEC19 benchmarks

and compared with the original FA and 9 other state-of-the-

art metaheuristics. Afterward, the devised improved FA

was utilized to solve the workflow scheduling task in cloud

computing, that belongs to the group of classical NP-hard

optimization challenges in computer science. The opti-

mization of the workflow scheduling requires simultaneous

accomplishment of several mutually conflicting goals,

including the cost and makespan reduction. Consequently,

4 simulations for practical workflow scheduling in a cloud-

edge environment were conducted and the performance of

our improved FA was compared against the original FA, as

well as with 8 other state-of-the-art metaheuristics and

heuristics.

The remainder of the manuscript is structured as fol-

lows. In Sect. 2, the background of task scheduling and

swarm intelligence along with the relevant literature review

is presented. The mathematical formulation of the work-

flow scheduling model in the cloud-edge environment that

was used in simulations is shown in Sect. 3. The original

FA approach was described in Sect. 4, while a detailed

description of our proposed enhanced FA’s inner workings

9044 Neural Computing and Applications (2022) 34:9043–9068

123

along with elaborated deficiencies of original FA is shown

in Sect. 5. Section 6 is divided into two parts. In the first

part, conducted empirical simulations for modern bench-

marks are shown, while the second part provides details

regarding the experiments conducted for practical work-

flow scheduling challenge. In both parts, a comparative

analysis with other approaches is included. Finally, Sect. 7

concludes this manuscript and provides possible directions

for future research in this prominent domain.

2 Background and related work

This section first provides the background for task and

workflow scheduling in cloud systems. This is followed by

a brief overview of the nature inspired metaheuristics and

swarm intelligence, where the selected FA approach

belongs to. Finally, this section is concluded by the survey

of practical swarm intelligence solutions in the cloud/edge

systems that are relevant for the research proposed within

this paper.

2.1 Task scheduling

The objective of the task scheduling algorithm in cloud/-

cloud-edge environments is to minimize the performance

indicators (makespan, mean response time, energy con-

sumption costs, etc.) of the system to provide on-demand

and timely satisfaction of end-users’ need for resources.

Some of the simplest methods from this category include

first come first served (FCFS), last come first served

(LCFS), min-min, and join the shortest queue (JQS) policy.

These methods can obtain satisfying results in tackling this

challenge; for example, it is shown that JSQ, which assigns

a new job to the server with the fewest tasks, in combi-

nation with FCFS minimizes the mean delay of the cloud

system [22].

List-scheduling heuristics creates a list of tasks by

assigning them some priority value. After that, the task

with the highest priority is scheduled on the processor that

allows the earliest start time. This procedure is repeated

until the task-list is empty [12]. The earliest time first

(ETF) algorithm adopts the strategy of selecting the task

with the shortest start time on all processors. The starting

time is determined by several factors: the completion time

of preceding tasks, communication delay, and allocation of

the task and its predecessors. The heterogeneous earliest-

finish-time (HEFT) algorithm assigns a task from the list to

the processor based on the task’s earliest estimated finish

time.

2.2 Nature inspired and swarm intelligence
metaheuristics

Many real-world challenges, such as cloud/cloud-edge

scheduling, belong to the group of NP-hard problems that

cannot be solved in polynomial time by utilizing any of the

traditional (classical) deterministic methods. However, in

this case, stochastic approaches, which include meta-

heuristics, by finding an approximate solution within a

satisfactory reasonable time, can be applied.

Metaheuristics that have been inspired by nature (bio-

inspired, nature-inspired) can be divided into two distinc-

tive groups. Algorithms that belong to the first group are

known as evolutionary algorithms (EA), while the second

group are swarm intelligence algorithms. One famous

representative of the EA is a genetic algorithm (GA),

which has been applied to a large number of real-life NP-

hard problems, including load balancing and scheduling

challenges from the cloud computing paradigm [42].

On the other hand, swarm intelligence algorithms are

inspired by social behavior, collaboration, and communi-

cation among groups of relatively primitive individuals

such as bees, ants, bats, fish, and fireflies. Swarm intelli-

gence approaches were utilized with great success in

solving a broad range of real-world problems in practice,

including prolonging the network lifetime, clustering, and

sensor localization in wireless sensor networks [4, 48, 50],

cloud optimization problems [2, 8, 10], artificial neural

networks optimization [7, 20, 27, 36], machine learning-

based COVID-19 cases prediction [49, 52], and MRI

classification optimization to name a few [5, 9].

2.3 Swarm intelligence applications in the cloud
scheduling domain

In the following few paragraphs, some of the selected

swarm intelligence applications for cloud/cloud-edge

scheduling are briefly shown. Research published in [26]

proposes a novel task scheduling algorithm based on bac-

terial foraging optimization (BFO), with the goal to reduce

the idle time of virtual machines. The proposed method

obtained excellent results. In [33], the authors presented a

quantum-behaved PSO (QPSO) algorithm for minimizing

job completion time (makespan). The obtained results

proved that, when compared to other well-known algo-

rithms, this approach is effective in reducing makespan due

to the small value of the observed relative deviation.

Xie et al. in their work [46] implemented a novel

directional and non-local-convergent particle swarm opti-

mization (DNCPSO) algorithm for solving workflow

scheduling in a cloud-edge environment. By using

DNCPSO, the authors were able to dramatically reduce the

Neural Computing and Applications (2022) 34:9043–9068 9045

123

task completion time and cost. The results show that this

method can obtain better performance than other PSO

variants, as well as other state-of-the-art heuristics and

metaheuristics methods. Some of the other swarm algo-

rithms that were adopted for cloud computing scheduling

include whale optimization algorithm (WOA) [34], ele-

phant herding optimization (EHO) [35], and artificial flora

(AF) [3].

Cloud workflow scheduling problem was also recently

targeted by metaheuristics approaches. An improved vari-

ant of Harris’ hawks optimization (HHO) was used in [51]

to solve the workflow scheduling in cloud-edge systems

with very promising results. The experiments were exe-

cuted by using CloudSim environment and benchmark

workflow models with a goal to minimize cost and make-

span. Research presented in [28] used improved chaotic

binary variant of gray wolf optimizer (GWO) to improve

the workflow scheduling in green cloud systems. The

proposed approach was tested with CloudSim with a goal

to minimize cost, makespan, and energy consumption.

Another approach based on the self-adaptive fruit fly

algorithm (SA-FFOA) was utilized in [1]. The proposed

method was tested against traditional metaheuristics

approaches, and experimental findings have shown supe-

rior performance in terms of cost and flow time. Finally, a

whale optimizer (WOA) variant was used in another recent

publication [37] to tackle the workflow scheduling. The

findings indicate that the WOA-based approach outper-

formed other traditional methods for both makespan and

overall cost.

The are several technical gaps that were observed in

existing works related to workflow scheduling, and that

inspired the design proposed in this paper. The geograph-

ical distribution of data, the emerging cloud-edge tech-

nology, heterogeneous data, and the efficient management

of distributed data pose an important set of challenges even

for large companies with a lot of resources at their disposal

[18]. The enormous amount of workload must be pro-

cessed, with the request to accomplish multiple often

conflicting criteria, such as load balancing, cost reduction,

overall execution time reduction, energy efficiency and

green operation (reduction in the carbon pollution)

[17, 19]. These challenges must be tackled with the

development of the new algorithms tailored to address

multiple opposing goals while keeping in mind scalability

as one of the priorities.

3 System model formulation

The general structure of cloud-edge computing is formed

by three distinctive layers. The end-user layer consists of

smart IoT devices (human wearable devices, phones, etc.)

that send requests for service to the devices in the edge-

layer. Edge devices can process time-sensitive tasks and

reduce latency to the minimum. On the top side, the edge-

layer is connected to the cloud system which contains the

infrastructure for providing on-demand resource availabil-

ity and data storage.

Edge cloud computing has undoubtedly offered numer-

ous advantages; however, it still has serious challenges that

need to be addressed. The first challenge in such a complex

environment, consisting of numerous resources of different

types, is scheduling business tasks. This challenge typically

considers execution in real-time, together with a huge

amount of flowing data in this complex environment.

Therefore, it is required to find a scheduling approach that

is effective in making all tasks completed on time, resulting

in real-time execution. The second challenge considers

processing business workflows, with the goal of complete

execution of workflows by taking into account QoS

(quality of service) requirements (for example cost and

deadline).

Additionally, some tasks are flexible in terms of

resource allocation, while others with real-time and loca-

tion requirements are considered inflexible. Therefore, the

scheduling algorithm must be able to efficiently determine

resource allocation for every task, while minimizing the

cost and required deadline for task completion. Workflow

scheduling in the cloud-edge environment, which is the

focus of research conducted within this paper, is considered

by nature to be an NP-hard problem by nature.

As part of the research published in [46], the authors

have provided a good example to illustrate the business

workflow scheduling problem in a cloud-edge environ-

ment. They consider a video surveillance/object tracking

(VSOT) application, under the scenario with two require-

ments: mobile and geo-distribution, respectively. Two

main features that must be taken into account for different

types of applications are real-time execution and trans-

mission-intensive requirement.

In the context of the given example, workflow

scheduling in the cloud-edge system can be formulated as

follows—how to assign different type resources and dif-

ferent processing powers to the tasks belonging to work-

flow, in order to minimize the overall completion time and

cost.

Generally speaking, a typical workflow contains multi-

ple repeatable business activities which usually provide

services for business applications. It is a sequence of sev-

eral different tasks, which can be represented in the form of

a directed acyclic graph (DAG). Therefore, the DAG

model can be directly utilized to represent a workflow

application, as shown in the example given in Fig. 1. Every

task is represented as a node in DAG, while every depen-

dency relation is denoted with an edge.

9046 Neural Computing and Applications (2022) 34:9043–9068

123

DAG can be formally defined as G ¼ ðT ;EÞ, where T

denotes a collection of tasks, and E stands for the set of

temporal dependencies and communication constraints

between individual tasks. Every task in the set of tasks,

ts 2 TðT ¼ ft1; t2; . . .; tngÞ, has a specified computational

workload cws. The edges in DAG are directed, and edge

eij ¼ ðti; tjÞ denotes that the task tj must be executed after

the task ti has been completed. Additionally, edge eij has an

assigned weight, cvij, which is a non-negative value that

represents the amount of data transfer from the task ti to the

task tj.

The observed VSOT scenario given in [46] assumes

numerous business workflows that result in a specific set of

requirements needed to be addressed, including a real-time

response, a deadline for the completion of tasks, a balanced

usage of different cloud and edge resources, etc. Therefore,

the proposed model must take into account makespan, cost,

and objective function.

In the given context, makespan can be defined as the

maximum time for execution of the observed workflow

application. In the observed scenario, the cloud-edge

resources can be separated into two distinctive groups,

namely cloud servers, and edge servers. Each task

belonging to the observed workflow can be executed on

both types of servers, based on the chosen resource allo-

cation strategy. When a task ts has been allocated to a

specific server, its execution time is calculated as given in

Eq. (1):

Tl
ts
¼ cws

dl
ð1Þ

where dl denotes the processing rate of the server l and cws

represents the computational workload. If we take that

ctðel
ijÞ is the time required for data transfer from the task ti

to the task tj, it can be calculated as given in Eq. (2):

ctðel
ijÞ ¼

cvij

B
ð2Þ

In the previous equation, cvij specifies the amount of data

transfer between tasks i and j, and B denotes the network

bandwidth between the servers where tasks are allocated.

Every task ts is allocated to exactly one server; it has the

start time STts , given with Eq. (3), and finish time FTts ,

calculated with Eq. (4).

STts ¼maxfFTtp þ ctðel
psÞ; tp 2 preðtsÞg ð3Þ

FTts ¼STts þ Tl
ts

ð4Þ

In Eq. (3), preðtsÞ marks the collection of tasks that are

direct predecessors of the observed task ts. When observing

an application workflow as a whole, the total amount of

time required for workflow completion can be calculated as

the time from the start of the first task in the workflow,

until the completion of the last task, as given in Eq. (5):

Ttotal ¼ maxfFTts; ts 2 Tg ð5Þ

The second important parameter, namely the cost, can be

considered twofold in the given context. For both cloud and

edge resources, computational cost and communication

cost can be identified. The first type of cost, the compu-

tational cost from the task ti to the task tj on the server l,

can be calculated by using Eq. (6):

Cl
ts
¼ ppl � ðFTts � STtsÞ ð6Þ

where ppl represents the price for the processing unit on the

observed server l.

The second type of cost, communication cost from the

task ti to the task tj on the server l, can be calculated by

using Eq. (7):

ccðel
ijÞ ¼ cpl � ctðel

ijÞ ð7Þ

where cpl represents the price of the communication unit

on the observed server l.

The total cost can be calculated as the sum of compu-

tational and communication costs by using Eq. (8):

Ctotal ¼
Xm

l¼1

Xn

s¼1

Cl
ts
þ
X

ccðel
ijÞ ð8Þ

Finally, after defining the calculation method for both the

makespan and the cost, it is possible to define the combined

objective function that takes into account the makespan and

the total cost, in the observed cloud-edge system, as given

in Eq. (9):

f ¼ jTtotal þ ð1 � jÞ � Ctotal ð9Þ

Fig. 1 A simple DAG of a typical workflow application

Neural Computing and Applications (2022) 34:9043–9068 9047

123

As it can be seen from Eq. (9), the weighted sum approach

is used for defining the objective function. The value j is a

coefficient between 0 and 1, and it is used to determine the

relative weights of each objective. The goal is to find the

function value f that minimizes these two main compo-

nents, therefore helping to achieve the balance (trade-off)

between the makespan and the cost for the observed

workflow scheduling problem.

4 Original FA

The firefly algorithm (FA) was first introduced by Yang in

[44]. This well-known algorithm was inspired by the fire-

flies, more precisely, their social behavior and flashing

characteristics. Since the real firefly ecosystem is very

complex and sophisticated, the FA metaheuristic is its

approximation.

The actual formulation of attractiveness is a crucial

challenge that should be addressed in the implementation

of the FA. Typically, the attractiveness of the firefly

depends on its brightness, which in turn depends on the

objective function. For minimization problems, the

brightness of the firefly on the location x can be calculated

by using Eq. (10) [44]:

I xð Þ ¼
1

f xð Þ ; if f xð Þ[0

1 þ f xð Þj j; otherwise

8
<

: ð10Þ

where I(x) denotes the attractiveness, and f(x) represents

the value of the objective function at the location x. It is

clear that Eq. (10) represents fitness functions.

If we observe mathematical properties, both light

intensity and attractiveness are monotonously decreasing

functions, as the distance from the source of light increases,

the light intensity, and the attractiveness will drop. This can

be expressed with Eq. (11):

IðrÞ ¼ I0

1 þ cr2
ð11Þ

where I(r) represents the intensity of light, r denotes the

distance, and I0 stands for the light intensity at the source

location. Additionally, light is partially absorbed by the

surrounding air, causing light to become weaker. These

phenomena can be modeled by the light absorption coef-

ficient c.

According to the literature survey, almost all imple-

mentations of the FA take into account the combined

impact of both the inverse square law for the distance and

absorption of light, by approximating them with the fol-

lowing Gaussian form [44]:

IðrÞ ¼ I0 � e�cr2 ð12Þ

Attractiveness b of an individual firefly is relative

depending on the distance between the observer and the

target firefly. On the other hand, the attractiveness is

directly proportional to the light intensity of the given

firefly, which can be calculated with Eq. (12):

bðrÞ ¼ b0 � e�cr2 ð13Þ

where the parameter b0 denotes the attractiveness at a

distance r ¼ 0. Eq. (13) also helps in determining the

characteristic distance C ¼ 1=
ffiffiffi
c

p
where the attractiveness

of the firefly changes significantly from b0 to b0e�1.

However, in practice, Eq. (13) is often replaced by Eq. (14)

[44]:

bðrÞ ¼ b0

1 þ cr2
ð14Þ

The arbitrary firefly i moves to the new position (in the next

iteration t þ 1) in the direction of the brighter, more

attractive firefly j, which can be modeled as:

xtþ1
i ¼ xt

i þ b0 � e�cr2
i;jðxt

j � xt
iÞ þ atðj� 0:5Þ ð15Þ

where para

xtþ1
i ¼ xt

i þ b0 � e�cr2
i;jðxt

j � xt
iÞ þ atðj� 0:5Þ ð16Þ

where parameter b0 denotes the attractiveness at a distance

r ¼ 0, a marks a randomization parameter, j represents a

random number drawn from either uniform or Gaussian

distribution, and meter b0 denotes the attractiveness at a

distance r ¼ 0, a marks a randomization parameter, j
represents a random number drawn from either uniform or

Gaussian distribution, and ri;j represents the distance

between two observed fireflies i and j. The positions of

fireflies are updated sequentially, by comparison and

update of each pair of fireflies in each iteration.

The distance between two observed fireflies i and j can

be calculated by using the Cartesian distance, as shown in

Eq. (17):

ri;j ¼ jjxi � xjjj ¼

ffi
XD

k¼1

ðxi;k � xj;kÞ2

vuut ð17Þ

where D marks the number of parameters for the given

problem. The appropriate values for most problems are

b0 ¼ 1 and a 2 ½0; 1�.

9048 Neural Computing and Applications (2022) 34:9043–9068

123

5 Improved FA metaheuristics

In this section, we first describe the drawbacks of the

original FA metaheuristics. Afterward, we justify and

provide details of mechanisms that we incorporated in the

basic FA to overcome the observed deficiencies. Finally,

we present the implementation details and inner workings

of the proposed improved FA version.

5.1 Drawbacks of the basic FA

It can observed that in early iterations the basic FA algo-

rithm may be stuck in sub-optimal search space domains

due to the lack of exploration power. As a consequence of

this deficiency, in some runs, the search process converges

to under optimum solutions and the mean results’ quality is

not satisfying.

The basic FA version does not employ a clearly

emphasized diversification equation. The balance between

intensification and exploration is established by utilizing

the randomization parameter (step size) a, as the third

component of the FA’s search equation (Eq. 16).

The value of parameter a has a great influence on the

searching ability. If its value is larger, the global search

(diversification) is more emphasized. In the original FA

implementation, the value of a was fixed during the whole

run time, taking values from the interval [0, 1] [44], and

the distance between individuals that is decreasing in later

iterations was not taken into account [23]. In some

improved versions, this parameter is set to be dynamic by

gradually decreasing during the course of execution [41].

However, the dynamic behavior of this parameter alone is

not sufficient for establishing a balanced trade-off between

exploitation and exploration, which is moved toward (in

favor of) exploitation.

Moreover, on top of these deficiencies, the intensifica-

tion process of the original FA can be further enhanced.

The utilization of dynamic parameter a is not sufficient

enough to overcome these deficiencies and some other

mechanisms are needed.

5.2 Proposed improvements

To address the observed drawbacks of the original FA and

to further improve intensification, our proposed upgraded

implementation incorporates the following in its basic

version:

• Genetic operators—uniform crossover and Gaussian

mutation and

• Quasi-reflection-based learning mechanism.

All proposed changes address both—the absence of explicit

diversification and the inappropriate balance between

intensification and diversification of the basic FA, and also

make the exploitation process more efficient.

Genetic operators help in improving exploration in early

iterations of the algorithm’s run when the search process

did not converge to the region where an optimum solution

resides. This has direct implications for the convergence

(mean values). On the contrary, in later iterations, with the

premise that the promising domain of the search space is

identified, applying genetic operators enables fine

exploitation around the current best solutions and this

influences the quality of the final result (the best solution).

According to previous researches, by incorporating

quasi-reflection-based learning in metaheuristics, both

solutions diversity and convergence rate can be improved

[16]. In the initialization phase, as well as in early itera-

tions of a run, quasi-reflection-based learning may increase

population diversity, while at the later phases, this mech-

anism enhances convergence speed.

Moreover, we have also utilized a dynamically adjusted

step size parameter a. In early iterations, this parameter is

larger and is directed toward the global search (explo-

ration). As iterations progress, the value of this parameter

decreases and is more oriented toward exploitation (local

search).

Inspired by included upgrades, proposed improved FA

metaheuristics is named genetic operators quasi-reflected

FA (GOQRFA).

5.2.1 Genetic operators

As noted, in our proposed GOQRFA we have incorporated

uniform crossover and Gaussian mutation genetic operators

to efficiently combine existing and/or random solutions

with the goal of improving exploration and exploitation

processes. With that in mind, we introduce terminology

from the GA in our approach.

The GA approach represents each potential problem

solution as a chromosome, which is further divided into

genes. For example, an objective function that should be

minimized/maximized is represented as a chromosome,

while each parameter denotes one gene. In our approach,

we have applied the probability of crossover and mutation

on the gene level (gene probability—GP).

In our approach, we utilized a uniform crossover oper-

ator. In this type of crossover, each gene (solution

parameter) with a probability p will be exchanged between

two parent solutions. If the value of p is close to 0.5, then

the gene exchange will be frequent and the uniform

crossover will show global (exploratory) behavior.

Neural Computing and Applications (2022) 34:9043–9068 9049

123

However, if the value of p is closer to 0 or 1, the fewer

number of genes will be exchanged between two parents

and the uniform crossover will exhibit local tendency

(exploitation).

In our proposed approach, by applying uniform cross-

over to each pair of parents, only one offspring solution is

created. Here, we also adapt different terminology, and call

offspring a hybrid solution. For example, if two best

solutions (xbest1 and xbest2) from the population are com-

bined, each parameter j of the hybrid solution (xhyb) is

calculated in the following way:

xhyb;j ¼
xbest1;j; if /� p

xbest2;j, otherwise

�
ð18Þ

where / is a pseudo-random number drawn from the uni-

form distribution.

When such a hybrid solution is generated, it is being

subdued to mutation. Among various types of mutations

used in methods from modern literature, uniform, polyno-

mial, and Gaussian are considered to be classical ones [13].

Since the Gaussian mutation operator proved to be very

efficient for tackling NP-hard problems by preventing the

loss of diversity during the search process, we used this

operator to overcome deficiencies of the original FA.

Gaussian mutation, that was first proposed by B€ack and

Schwefel [6], is based on the Gaussian density function

defined as:

fgaussianð0;r2ÞðhÞ ¼
1

r
ffiffiffiffiffiffi
2p

p e�
h2

2r2 ð19Þ

where the variance of candidate solutions is denoted as r2.

Gaussian density function can be reduced for the mean

of 0 and the standard deviation r of 1. In the context of our

proposed approach, Gaussian distributed random vector

GðhÞ can be generated and applied for each parameter j of

the solution hhyb:

xhyb;j ¼ xhyb;j � ð1 þ GðhjÞÞ ð20Þ

5.2.2 Quasi-reflection-based learning

The basic assumption that inspired us to incorporate this

modification in the original FA is that when generating new

solutions by using opposite numbers, there is more chance

that such solutions will be close to the optimum region,

than the random ones. The idea is to generate the opposite

solution of the feasible solution created by using the

metaheuristics search process, to evaluate the opposite

solution, and to select the better one.

The first mechanism that supports this logic is opposi-

tion-based learning (OBL) introduced in [38]. The OBL

proved to be an efficient technique that can substantially

enhance the metaheuristics search process.

Let xj denotes j-the parameter of the solution x and the

xo
j represents its opposite number. The opposite number of

the j-th parameter of an individual x can be calculated as

follows:

xo
j ¼ lbj þ ubj � xj ð21Þ

where xj 2 ½lbj; ubj� and lbj; ubj 2 R; 8j 2 1; 2; 3; :::D.

Notations lbj and ubj represent lower and upper bound of

the j-th parameter, respectively, and D denotes the number

of solution dimensions (parameters).

One instance of OBL that also proved to be very

effective is quasi-opposition-based learning (QOBL),

introduced by [32]. Research work presented in the modern

literature proved that quasi-opposite numbers can be more

effective in tackling NP-hard continuous problems than the

opposite numbers. A quasi-opposite number xqo
j of xj can

be expressed as:

xqo
j ¼ rnd

�
lbj þ ubj

2
; xo

j

�
ð22Þ

where
lbj þ ubj

2
represents the arithmetic mean (the center)

of the interval ½lbj; ubj�, while rnd

�
lbj þ ubj

2
; xo

j

�
gener-

ates uniformly distributed pseudo-random from the interval�
lbj þ ubj

2
; xo

j

�
.

Finally, an improved mechanism called quasi-reflection-

based learning (QRBL) was proposed recently by [15],

based on the QOBL principles.

The quasi-reflected component j of the solution x (xqr
j)

can be determined as a reflection of xqo in the following

way:

xqr
j ¼ rnd

�
lbj þ ubj

2
; xj

�
ð23Þ

where
lbj þ ubj

2
represents the arithmetic mean (center) of

the interval ½lbj; ubj�, while rnd

�
lbj þ ubj

2
; xj

�
generates

uniformly distributed pseudo-random from the interval�
lbj þ ubj

2
; xj

�
.

5.2.3 Dynamic parameter a

As already pointed out, with the larger parameter a in the

FA’s basic search equation (Eq. (16)), the global search

9050 Neural Computing and Applications (2022) 34:9043–9068

123

(exploration) dominates. As the algorithm converges to the

optimum regions during iterations, the value of this

parameter should decrease with the goal of gradually

redirecting the search from global to local (exploitation).

Due to this reason, we have adopted a dynamic step a
from [41], which gradually decreases from its initial value

a0, until it reaches the minimum threshold amin as iterations

advance, in our approach:

atþ1 ¼ at �
�

1 � t

MaxIter

�
ð24Þ

where t and t þ 1 denote current and next iterations,

respectively, while the MaxIter is the maximum iteration

number in one run of an algorithm.

5.3 Working details of proposed GOQRFA

Taking into account the improvements of the original FA

metaheuristics showed in Sect. 5.2, details of the proposed

GOQRFA can be given.

First, the exploration–exploitation trade-off is enhanced

by using uniform crossover and Gaussian mutation genetic

operators. However, in early iterations, exploration should

be amplified, while in later cycles, with the assumption that

search has converged to optimum region, fine-tuned

exploitation around the current best solutions should be

dominant.

For that reason, we employed two different uniform

crossover mechanisms—one for exploration and one for

exploitation. We introduced two additional control

parameters: the number of replaced solutions nrs, which is

used for adjusting the number of worst solutions from the

population that are replaced with hybrid solutions, and

exploration break point (ebp) that controls which of the

above-mentioned crossover mechanisms will be triggered.

In the first ebp iterations, the diversification uniform

crossover (DUC) mechanism is triggered in the following

way: nrs worst solutions from the population are replaced

with the hybrid solutions generated by performing recom-

bination between the completely random solution (xrnd)

from the search domain and randomly chosen existing

solutions from the population (xprnd) by using Eq. (18) with

probability p on the gene level. A completely random

solution is created in the same way as in the initialization

phase (Eq. 28). If the nrs[1, for each worst solution, a

new pair of completely random and random existing

solutions from the population is chosen. The DUC mech-

anism is executed in each iteration.

After ebp, with the goal of improving exploitation

around the current best solutions, intensification uniform

crossover (IUC) mechanism is triggered as follows: nrs

worst solutions from the population are replaced with the

hybrid solutions generated by performing recombination

between the first best (xbest1) and the second-best (xtextbest2)

solutions from the population by utilizing Eq. (18) with

uniform crossover probability p on the gene level. If

nrs[1, then for each replaced solution, the new hybrid is

generated. By conducting extensive empirical simulations,

we have observed that if the IUC is triggered too fre-

quently, the population may lose diversity and may con-

verge to sub-optimal solutions. As the iterations progress,

the IUC frequency should increase because the algorithm is

progressing toward the optimum region of the search space.

To control this behavior, in each iteration, the IUC is

executed with probability IUCp (IUC probability), which is

increasing directly proportionally to the current iteration

from the initial value IUCp0. We modeled this behavior

similarly as in the case of dynamic parameter a:

IUCptþ1 ¼ IUCpt �
�

1 þ t

MaxIter

�
ð25Þ

In both cases (IUC and DUC), Gaussian mutation on the

gene level (gene probability - GP) is performed for each

hybrid solution by applying Eq. (20). However, different

mutation probabilities are applied for each gene (solution’s

parameter)—mutation probability for diversification (mpd)

and mutation probability for intensification (mpi) for

hybrids generated during DUC and IUC phases, respec-

tively. Since stronger exploration is required in the first ebp

iterations, the mpd is higher than mpi. We have empirically

determined best values for mpd and mpi, as shown in

Eqs. (26) and (27), respectively.

mpd ¼ 1

D
ð26Þ

mpi ¼ 1

2D
ð27Þ

where D represents the number of solutions’ parameters

(gene numbers in the context of GA).

Moreover, to further improve solutions’ diversity and

convergence speed we incorporated the QRBL strategy.

This procedure is first added in the initialization phase to

improve the diversity of the initial population. The QRBL

is also introduced in the solutions’ position update phase

with the goal of enhancing the search process convergence

rate.

In the initialization phase, each solution parameter j for

every solution xi from the initial population

(Pinit ¼ fXi;jg; i ¼ 1; 2; 3:::;NS; j ¼ 1; 2; ; :::D) is generated

by using standard initialization expression [39]:

xi;j ¼ lbj þ ðubj � lbjÞ � rand ð28Þ

where rand is an uniformly distributed random number

from the interval [0, 1].

Neural Computing and Applications (2022) 34:9043–9068 9051

123

Then, the QRBL is applied (Eq. 23) to determine quasi-

reflective solution of each individual from the population,

and quasi-reflective initial population

(Pqr
init ¼ fXqr

i;j g; i ¼ 1; 2; 3:::;NS; j ¼ 1; 2; ; :::D) is gener-

ated. Both populations are then merged together

(Pinit [Pqr
init) and sorted in descending order according to

the fitness value and NS best solutions are selected as the

new initial population.

Similarly, during the update phase, in each iteration,

quasi-reflective population Pqr of updated population P is

created. Also, like in the initialization phase, populations

are then merged (P [Pqr) and sorted in descending order

according to the fitness value, and NS best solutions are

selected to propagate to the next iteration.

Pseudo-code for generating quasi-reflective population

in the update phase is given in Algorithm 1. The same can

be applied for creating Pqr
init.

The basic search procedure is the same as in the original

FA metaheuristics (Eq. 16), as described in Sect. 4.

Control parameters of proposed GOQRFA are summa-

rized in Table 1. Besides parameter description and nota-

tion, in the third column, we show parameter origin (FA

standard or GOQRFA specific) and type (static or

dynamic).

High-level steps of proposed GOQRFA can be sum-

marized as follows:

1. Initialize main metaheurisitcs parameters, search space

and GOQRFA control parameters

2. Generate random population Pinit and apply QRBL

mechanism to create quasi-reflective population Pqr
init.

Select best NS solutions from Pinit [Pqr
init and form

population P

3. Perform solutions’ update phase in population P by

using the FA search equation

4. Execute DUC or IUC mechanisms and replace nrs

worst solutions from the population with hybrid

individuals

5. Generate quasi-reflective population Pqr from the

current population P, merge two populations and select

the best NS individuals

6. Output the best solution if the number of iterations

reaches MaxIter, otherwise return to (3)

Detailed pseudo-code of proposed GOQRFA metaheuris-

tics is given in Algorithm 2, while the visual representation

of GOQRFA steps in the form of a flowchart diagram is

depicted in Fig. 2.

Table 1 GOQRFA control

parameters summary
Parameter Description Notation Type

Number of solutions in population NS FA standard (static)

Maximum iteration number MaxIter FA standard (static)

Absorption coefficient c FA standard (static)

Attractiveness parameter at r ¼ 0 b0 FA standard (static)

Randomization (step) parameter a FA standard (dynamic)�

Initial value of step parameter a0 FA standard (static)

Minimum value of step parameter amin FA standard (static)

Exploration break point ebp GOQRFA specific (static)

Number of replaced solutions nrs GOQRFA specific (static)

Uniform crossover probability p GOQRFA specific (static)

Intensification uniform crossover probability IUCp GOQRFA specific (dynamic)��

Initial value of intensification uniform crossover probability IUCP0 GOQRFA specific (static)

Mutation probability for diversification mpd GOQRFA specific (fixed)

Mutation probability for intensification mpi GOQRFA specific (fixed)

*Changes according to Eq. (24)

**Changes according to Eq. (25)

9052 Neural Computing and Applications (2022) 34:9043–9068

123

5.3.1 Algorithm complexity

The number of objective function evaluations is usually

taken to calculate swarm intelligence algorithm complexity

[45]. In the basic FA algorithm, fitness is calculated in the

initialization phase and in the solutions’ updating phase. In

the updating phase, the basic FA has one main loop for

iterations t and two inner loops going through NS solutions

[45].

Thus, including the initialization phase, the complexity

in the worst case of the basic FA metaheuristics is

OðNSÞ þ OðNS2tÞ. However, if NS is relatively large, it is

possible to use one inner loop by ranking the attractiveness

or brightness of all fireflies using sorting algorithms, and in

this case complexity is OðNSÞ þ OðNSt log ðNSÞÞ [45].

The complexity of the GOQRFA is higher than the

original FA due to the application of the QRBL mecha-

nism. The UCD and UCI mechanisms are not counted since

in these phases, objective function evaluations are per-

formed only nrs times in each iteration, and nrs is typically

small (1 or 2). The QRBL is applied in the initialization

phase and after the solution’s update phase in each itera-

tion, and in both cases, an additional NS number of func-

tion evaluations are performed. Therefore, the complexity

of the proposed GOQRFA in the worst-case scenario can

be expressed as: 2 � OðNSÞ þ OðNS2tÞ þ OðSNtÞ.
Also, it should be noted that the GOQRFA employs

more control parameters than the basic FA. Therefore, it

requires more time to obtain the suboptimal set of param-

eters. However, substantial performance improvements of

GOQRFA over the original FA, as it is shown in Sect. 6,

justify more control parameters.

6 Simulations and discussion

Following the good practice from modern computer sci-

ence literature, the simulations, and experimental section is

divided into two parts. In the first part, we show simula-

tions on a modern set of ten CEC 2019 benchmarks, where

we compare our proposed GOQRFA with the basic FA

implementation and nine other state-of-the-art meta-

heuristics, as it was performed in [29] (Sect. 6.1). Later, in

the second part of this section, we show the evaluation of

proposed metaheuristics for business workflow scheduling

in the heterogeneous cloud-edge environment by conduct-

ing several categories of experiments, similarly as in [46]

(Sect. 6.2)

Neural Computing and Applications (2022) 34:9043–9068 9053

123

To validate improvements of GOQRFA over the origi-

nal FA, we have implemented and tested both meta-

heuristics for the purpose of this research. For each

algorithm, we created two implementations—one in

Python and one in Java. Moreover, with the goal of visu-

alizing the results, we have employed data science Python

libraries: scipy, pandas, pyplot, and seaborn. Unconstrained

benchmarks’ simulations were conducted with both

implementations and generated results, which are reported

in the experimental section, are the same. However, since

the simulator used for cloud-edge scheduling experiments

is implemented in Java, we have utilized only Java

GOQRFA and FA implementations in these experiments.

We did not implement and tested metaheuristics and

heuristics, that were taken for the comparative analysis,

and its results were retrieved from [29] and [46] for

unconstrained benchmarks and cloud-edge workflow

scheduling comparative analysis, respectively.

All experiments were conducted on Intel� CoreTM i7-

8700K CPU and 32GB of RAM running under Windows

10 x64 operating system computer platform.

6.1 CEC 2019 modern benchmarks simulations

The performances of the proposed GOQRFA approach

were validated against the most recent and challenging

benchmark test functions suite, known as CEC 2019

benchmarks [31]. This suite of benchmark functions was

created with a goal to evaluate metaheuristics for single-

objective optimizing problems. All ten provided functions

are minimization problems.

Benchmark CEC01, CEC02 and CEC03 have the

dimensionality of 9, 16 and 18, with boundaries

½�8192; 8192�, ½�16384; 16384� and ½�4; 4�, respectively.

All remaining benchmarks have ten dimensions and the

boundaries ½�100; 100�, and they are shifted and rotated

[31].

The performances of the suggested GOQRFA method

on CEC 2019 test suite were evaluated and compared with

the original FA metaheuristics, and nine other state-of-the

art metaheuristics, namely EHOI, EHO, SCA, SSA, GOA,

WOA, BBO, MFO and PSO, whose results were taken

from the [29]. In order to provide fair comparative analysis,

we have utilized the same setup as in [29]. For all meta-

heuristics, the initial population size was set to fifty, while

the maximal amount of iterations was limited to 500. Every

algorithm was executed 30 times on each benchmark. The

Fig. 2 Flowchart of proposed GOQRFA metaheuristics

9054 Neural Computing and Applications (2022) 34:9043–9068

123

mean and standard deviation of fitness values are noted and

presented in Table 3, where the best mean values are in

boldface.

The GOQRFA control parameter values that were used

in experiments are summarized in Table 2.

The results from Table 3 clearly indicate that the pro-

posed GOQRFA metaheuristics achieved the best fitness

value on most of the modern CEC 2019 benchmarks over

30 independent runs. Only in case of two functions,

GOQRFA is the second best approach.

A statistical Friedman’s nonparametric test was exe-

cuted in order to prove the significant difference between

the suggested GOQRFA, the basic FA and other meta-

heuristics algorithms that were included in the comparative

analysis. This statistical test utilizes rank information of the

data in order to verify significant differences, as stated in

[21]. In accordance with the Friedman’s test rank, the

algorithms that have lower rankings are considered more

efficient than the algorithms that have a higher ranking.

Table 4 summarizes the results of the applied Friedman

test. It can be seen that the ranking of the proposed

GOQRFA over different benchmark functions has small

values, in comparison with the basic FA and other meta-

heuristics included in the analysis.

Additionally, Holm’s step-down procedure is used as a

post hoc procedure to analyze the significance level of the

compared algorithms. The Holm’s step-down procedure

result is reported in Table 5, which shows that the proposed

method outperforms all other comparable methods, at 0.05,

as well as at 0.1 significance level.

Figure 3 presents the convergence graph of the original

FA and the proposed GOQRFA algorithms on the 10 CEC

2019 benchmark functions. Based on the convergence

graph, we can conclude that GOQRFA improves the con-

vergence of the original FA.

6.2 Workflow scheduling in cloud-edge
environment simulations

In this subsection, we first show the simulation environ-

ment and workflow models utilized in experiments along

with the GOQRFA control parameters’ setup. Afterward,

we present the solutions encoding strategy and adaptations

of GOQRFA for this practical challenge and discuss the

weight coefficient of the makespan and the total cost

objectives. Finally, we present a comparative analysis with

other state-of-the-art heuristics and metaheuristics that

were tested for the same workflow scheduling in cloud-

edge environment problem instances and under the same

experimental conditions.

6.2.1 Simulation environment, workflow models
and parameters’ setup

To validate the performance of the proposed GOQRFA on

the real-world problem of workflow-scheduling in a cloud-

edge environment and to make an objective comparative

analysis with results of state-of-the-art heuristics and

metaheuristics that were showed in [46], we used the same

simulation environment and workflow models (datasets) as

in this paper, that was published in an outstanding inter-

national journal.

To simulate a real-world distributed cloud-edge envi-

ronment, we have employed WorkflowSim-1.0 in all

experiments, which is a well-known open-source workflow

simulator, created by the Pegasus WMS group at the

University of Southern California [14]. This simulator was

chosen as it generates an environment very similar to the

real distributed system. Additionally, it provides numerous

algorithms for clustering, task scheduling, provisioning of

the resources, and so on, making it ideal for experiments

Table 2 GOQRFA control

parameters value utilized in

simulations

Parameter and notation Value

Absorption coefficient c 1.0

Attractiveness parameter at r ¼ 0 b0 1.0

Randomization (step) parameter a Eq. (24)

Initial value of step parameter a0 0.5

Minimum value of step parameter amin 0.1

Exploration break point ebp MaxIter/3

Number of replaced solutions nrs 1

Uniform crossover probability p 0.5

Intensification uniform crossover probability IUCp Eq. (25)

Initial value of intensification uniform crossover probability IUCP0 0.2

Mutation probability for diversification mpd Eq. (26)

Mutation probability for intensification mpi Eq. (27)

Neural Computing and Applications (2022) 34:9043–9068 9055

123

Ta
bl
e
3

C
o

m
p

ar
at

iv
e

an
al

y
si

s
o

f
th

e
re

su
lt

s
ac

h
ie

v
ed

b
y

th
e

b
as

ic
F

A
an

d
p

ro
p

o
se

d
G

O
Q

R
F

A
w

it
h

o
th

er
m

et
ah

eu
ri

st
ic

s
al

g
o

ri
th

m
s

o
n

1
0

m
o

d
er

n
C

E
C

2
0

1
9

b
en

ch
m

ar
k

fu
n

ct
io

n
s

F
u

n
ct

io
n

S
ta

ts
E

H
O

I
E

H
O

S
C

A
S

S
A

G
O

A
W

O
A

B
B

O
M

F
O

P
S

O
F

A
G

O
Q

R
F

A

C
E

C
0

1
M

ea
n

4
.6

9
E
?

0
4

1
.4

1
E
?

0
7

9
.5

4
E
?

0
9

2
.7

3
E
?

0
9

1
.5

3
E
?

1
0

1
.0

8
E
?

1
0

3
.4

0
E
?

1
0

6
.6

5
E
?

0
9

8
.6

7
E
?

1
1

2
.5

8
E
?

0
5

4
.2
2
E
1
0
4

S
td

2
.8

7
E
?

0
3

7
.7

8
E
?

0
6

7
.8

8
E
?

0
9

2
.5

8
E
?

0
9

3
.0

5
E
?

1
0

8
.7

2
E
?

0
9

2
.5

8
E
?

1
0

8
.5

1
E
?

0
9

9
.2

3
E
?

1
1

5
.1

5
E
?

0
4

2
.8

1
E
?

0
.5

C
E

C
0

2
M

ea
n

1
.7

3
E
?

0
1

1
.7

3
E
?

0
1

1
.7

5
E
?

0
1

1
.7

3
E
?

0
1

1
.7

4
E
?

0
1

1
.7

3
E
?

0
1

9
.1

9
E
?

0
1

1
.7

3
E
?

0
1

9
.9

9
E
?

0
3

3
.8

1
E
?

0
1

1
.2
8
E
1
0
0

S
td

1
.1

8
E

-1
5

4
.5

9
E

-1
5

4
.2

2
E

-0
2

7
.9

8
E

-0
5

1
.4

9
E

-0
2

2
.8

2
E

-0
3

2
.6

8
E
?

0
1

3
.7

4
E

-1
5

3
.8

4
E
?

0
3

2
.5

5
E

-0
1

1
.3

1
E
?

0
1

C
E

C
0

3
M

ea
n

1
.2

7
E
?

0
1

1
.2

7
E
?

0
1

1
.2

7
E
?

0
1

1
.2

7
E
?

0
1

1
.2

7
E
?

0
1

1
.2

7
E
?

0
1

1
.2

7
E
?

0
1

1
.2

7
E
?

0
1

1
.2

7
E
?

0
1

1
.0

1
E
?

0
1

1
.0
0
E
1
0
.1

S
td

1
.8

7
E

-1
5

1
.8

7
E

-1
5

1
.0

4
E

-0
4

2
.3

7
E

-1
5

1
.1

7
E

-0
4

1
.4

4
E

-0
7

2
.6

3
E

-0
7

3
.4

8
E

-0
5

6
.5

2
E

-0
4

4
.7

1
E

-0
1

1
.0

6
E
?

0
0

C
E

C
0

4
M

ea
n

1
.2

7
E
?

0
1

1
.5

2
E
?

0
1

1
.0

8
E
?

0
3

3
.3

6
E
?

0
1

1
.4

7
E
?

0
2

3
.1

0
E
?

0
2

7
.8

4
E
?

0
1

1
.3

4
E
?

0
2

7
.3

0
E
?

0
1

3
.6

2
E
?

0
0

2
.6
6
E
1
0
0

S
td

3
.9

5
E
?

0
0

6
.2

6
E
?

0
0

3
.9

1
E
?

0
2

1
.1

8
E
?

0
1

1
.9

8
E
?

0
2

1
.2

4
E
?

0
2

2
.6

4
E
?

0
1

1
.7

8
E
?

0
2

7
.7

7
E
?

0
0

4
.6

9
E

-0
1

1
.0

1
E
?

0
0

C
E

C
0

5
M

ea
n

1
.0

4
E
?

0
0

1
.0

4
E
?

0
0

2
.1

9
E
?

0
0

1
.2

1
E
?

0
0

1
.3

4
E
?

0
0

1
.6

1
E
?

0
0

1
.2

8
E
?

0
0

1
.1

4
E
?

0
0

1
.5

3
E
?

0
0

1
.0

5
E
?

0
0

1
.0
3
E
1
0
0

S
td

2
.1

2
E

-0
2

2
.2

2
E

-0
2

7
.6

5
E

-0
2

1
.1

5
E

-0
1

1
.2

5
E

-0
1

4
.0

4
E

-0
1

9
.8

4
E

-0
2

7
.9

9
E

-0
2

1
.2

1
E

-0
1

1
.5

1
E

-0
2

1
.8

9
E

-0
2

C
E

C
0

6
M

ea
n

8
.2

9
E
?

0
0

9
.5

2
E
?

0
0

1
.0

8
E
?

0
1

3
.6

9
E
?

0
0

6
.2

2
E
?

0
0

8
.9

8
E
?

0
0

5
.8

4
E
?

0
0

5
.3

0
E
?

0
0

1
.0

6
E
?

0
1

1
.7

5
E
?

0
0

1
.1
5
E
1
0
0

S
td

8
.1

9
E

-0
1

1
.2

7
E
?

0
0

7
.4

2
E

-0
1

1
.4

3
E
?

0
0

1
.2

9
E
?

0
0

1
.0

7
E
?

0
0

6
.4

8
E

-0
1

2
.1

8
E
?

0
0

6
.6

9
E

-0
1

1
.4

9
E

-0
2

5
.0

7
E

-0
2

C
E

C
0

7
M

ea
n

1
.4

0
E
?

0
2

1
.8

4
E
?

0
2

6
.5

6
E
?

0
2

2
.8

8
E
?

0
2

2
.9

6
E
?

0
2

4
.4

8
E
?

0
2

4
.8
2
E
1
0
0

3
.1

6
E
?

0
2

6
.1

4
E
?

0
2

9
.2

4
E
?

0
1

5
.1

2
E
?

0
0

S
td

1
.0

4
E
?

0
2

1
.4

7
E
?

0
2

1
.4

6
E
?

0
2

2
.2

7
E
?

0
2

1
.7

1
E
?

0
2

2
.2

2
E
?

0
2

1
.2

6
E
?

0
2

2
.1

2
E
?

0
2

1
.6

1
E
?

0
2

2
.9

2
E
?

0
0

1
.0

7
E
?

0
2

C
E

C
0

8
M

ea
n

2
.7

2
E
?

0
0

2
.8

4
E
?

0
0

6
.0

3
E
?

0
0

5
.1

6
E
?

0
0

5
.4

7
E
?

0
0

5
.7

9
E
?

0
0

4
.6

5
E
?

0
0

5
.7

3
E
?

0
0

5
.1

5
E
?

0
0

2
.0

8
E
?

0
0

1
.8
7
E
1
0
0

S
td

8
.7

7
E

-0
1

1
.1

5
E
?

0
0

5
.4

3
E

-0
1

6
.3

5
E

-0
1

8
.0

4
E

-0
1

7
.8

8
E

-0
1

1
.1

2
E
?

0
0

5
.8

4
E

-0
1

7
.4

2
E

-0
1

3
.2

1
E

-0
1

5
.5

4
E

-0
1

C
E

C
0

9
M

ea
n

2
.3

5
E
?

0
0

2
.3

6
E
?

0
0

9
.9

9
E
?

0
1

2
.4

3
E
?

0
0

2
.4

7
E
?

0
0

4
.7

3
E
?

0
0

3
.4

9
E
?

0
0

2
.5

5
E
?

0
0

2
.8

8
E
?

0
0

1
.4
1
E
1
0
0

1
.5

6
E
?

0
0

S
td

6
.2

3
E

-0
3

1
.2

9
E

-0
2

9
.3

0
E
?

0
1

4
.4

6
E

-0
2

7
.2

5
E

-0
2

7
.7

7
E

-0
1

2
.3

0
E

-0
1

6
.0

1
E

-0
2

9
.6

7
E

-0
2

2
.0

3
E

-0
1

9
.7

4
E

-0
.3

C
E

C
1

0
M

ea
n

1
.9

8
E
?

0
1

2
.0

3
E
?

0
1

2
.0

5
E
?

0
1

2
.0

0
E
?

0
1

2
.0

1
E
?

0
1

2
.0

2
E
?

0
1

2
.0

1
E
?

0
1

2
.0

2
E
?

0
1

2
.0

4
E
?

0
1

2
.1

0
E
?

0
1

2
.0
0
E
1
0
0

S
td

1
.5

0
E
?

0
0

9
.7

7
E

-0
2

8
.1

3
E

-0
2

8
.3

5
E

-0
2

9
.0

7
E

-0
2

4
.8

6
E

-0
2

2
.3

6
E

-0
2

1
.4

6
E

-0
1

9
.9

6
E

-0
2

4
.8

5
E

-0
4

1
.5

0
E

-0
5

9056 Neural Computing and Applications (2022) 34:9043–9068

123

and simulations of the workflow scheduling in the cloud-

edge environment. This simulator is widely used by the

academic society for numerous other fields of research as

well, such as fault tolerance, energy consumption, and

resource scheduling.

As in [46], we utilized Pegasus’s workflow generators in

the conducted experiments. The Pegasus group has

implemented a collection of workflow generators, based on

the available data gathered from the real-life execution

environments of numerous real-world scientific workflows.

Workflow models that have been released by the Pegasus

group and freely available in the workflow generator

include CyberShake, Epigenomics, Inspiral, Montage, and

Sipht.

For each of the implemented workflows, the properties

which specify the number of nodes and edges, the average

size of data, and mean task reference time based on

Xeon@2.33 GHz CPU (cu = 8) are presented in Table 6

[47]. Each of the workflows has a characteristic DAG

structure. For instance, CyberShake has three options for

the number of task nodes, 30, 50, and 100. This can be

observed as DAG structures with low, medium, and high

number of task nodes in the conducted experiments. As

those workflows are frequently utilized in practical appli-

cations, we have used them in conducted experiments in

order to be able to measure the performance, evaluate and

compare scheduling algorithms.

The structures of all employed workflows (CyberShake,

Epigenomics, Inspiral, Montage, and Sipht) are available

on https://confluence.pegasus.isi.edu/display/pegasus/

WorkflowHub.

The parameters for the cloud/edge servers, with differ-

ent processing power and communication capabilities, that

were used in simulations, are given in Table 7. There are

six cloud and four edge servers in the system, and their

characteristics include the following: processing rate and

cost, available bandwidth, and the cost of communication.

Again, we have used cloud and edge servers with the same

characteristics as in [46].

Finally, since by conducting empirical simulations on

standard unconstrained benchmarks (Subsection 6.1), we

have established satisfying control parameters’ adjustments

for the proposed GOQRFA, and since adaptations of the

GOQRFA for practical workflow scheduling do not include

modifying metaheuristics for discrete optimization, in all

simulations we used GOQRFA parameters as shown in

Table 2. Similarly, we used the same settings of the orig-

inal FA as it is shown in Table 2.

Table 4 Comparative analysis

of Friedman Test results for 10

modern CEC2019 benchmark

functions

Function EHOI EHO SCA SSA GOA WOA BBO MFO PSO FA GOQRFA

CEC01 2 4 7 5 9 8 10 6 11 3 1

CEC02 4 4 8 4 7 4 10 4 11 9 1

CEC03 7 7 7 7 7 7 7 7 7 2 1

CEC04 3 4 11 5 9 10 7 8 6 2 1

CEC05 2.5 2.5 11 6 8 10 7 5 9 4 1

CEC06 7 9 11 3 6 8 5 4 10 2 1

CEC07 4 5 11 6 7 9 1 8 10 3 2

CEC08 3 4 11 7 8 10 5 9 6 2 1

CEC09 3 4 11 5 6 10 9 7 8 1 2

CEC10 2 8 10 3 4.5 6.5 4.5 6.5 9 11 1

Mean 3.75 5.15 9.8 5.1 7.15 8.25 6.55 6.45 8.7 3.9 1.2

Rank 2 5 11 4 8 9 7 6 10 3 1

Statistic 56.96818182

p-value 7.91E-13

Table 5 Holm’s step-down procedure result

Comparison p value Rank 0.05/(k-i) 0.1/(k-i)

GOQRFA vs SCA 3.35E-09 0 0.00500 0.01000

GOQRFA vs PSO 2.14E-07 1 0.00556 0.01111

GOQRFA vs WOA 1.00E-06 2 0.00625 0.01250

GOQRFA vs GOA 3.02E-05 3 0.00714 0.01428

GOQRFA vs BBO 1.55E-04 4 0.00833 0.01667

GOQRFA vs MFO 2.00E-04 5 0.01000 0.02000

GOQRFA vs EHO 3.87E-03 6 0.01250 0.02500

GOQRFA vs SSA 4.28E-03 7 0.01667 0.03333

GOQRFA vs FA 3.44E-02 8 0.02500 0.05000

GOQRFA vs EHOI 4.28E-02 9 0.05000 0.10000

Neural Computing and Applications (2022) 34:9043–9068 9057

123

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowHub
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowHub

Moreover, for the purpose of objective comparative

analysis with approaches presented in [46], we have exe-

cuted both metaheuristics (GOQRFA and original FA with

dynamic step size) in 300 iterations (MaxIter=300) with 45

and 50 individuals in the population (NS=45, NS=50) for

GOQRFA and basic FA, respectively. Approaches shown

in [46] were tested with a population size of 50, however,

based on the GOQRFA complexity in terms of function

evaluations, we decreased the population size to make a

fair comparative analysis. To neutralize the impact of

randomness on algorithms’ performance, each algorithm is

executed in 30 independent runs, and mean results were

recorded.

6.2.2 Encoding and adaptations of proposed algorithm

To adapt the proposed GOQRFA for workflow scheduling

in a cloud-edge environment, we used a similar encoding

strategy as in [46] and [34]. Each potential solution

(GOARFA individual) represents a scheduling plan for the

tasks submitted by end-users to the cloud-edge system. The

length of each solution is equal to the number of tasks in

the workflow (DAG), for example, if there are 10 tasks in

the workflow, consequently the solution’s dimension (D) is

10.

In the algorithm, each task in a solution (workflow) is

mapped to the cloud or the edge server’s ID. The assigned

server is responsible for the task execution. The ID of the

servers is from 0 to 9. The cloud servers have IDs from 0 to

5, while the edge servers have IDs from 6 to 9 and their

configuration is detailed in Table 7. An example of the

solution encoding is illustrated in Fig. 4a, where a work-

flow contains 10 tasks, and each task is assigned to a server

ID.

However, some of the submitted tasks should be exe-

cuted in almost real-time, and such tasks must be assigned

to edge servers for fast processing because the transfer time

between the end-user device and the edge server is sig-

nificantly lower than from the end-user device and the

cloud server. We implemented this similarly as in [46] by

setting priorities for these tasks to differentiate them from

the common tasks that can be executed on either cloud or

the edge server. An example of tasks with priority is given

in Fig. 4b, where tasks 3 and 7 have real-time requirements

and were scheduled for execution on edge servers with ids

8 and 7, respectively. All tasks with priority can only be

assigned, at initialization as well as at each update, to a

server with ID between 6 and 9.

In the state-of-the-art approach presented in [46], the

authors used combined objective function f (Eq. (9)) for

fitness. In our GOQRFA proposed approach, the fitness of

each solution is determined in the same way as it is

expressed brightness in the original FA approach:

fitðxÞ ¼
1

f ðxÞ , if f ðxÞ[0

1þ j f ðxÞ j , otherwise

8
<

: ð29Þ

where fit(x) and f(x) denote the fitness and objective

function value for solution x, respectively. The scheduling

algorithm implementation is detailed in Algorithm 3.

Fig. 3 Convergence graph of the CEC2019 benchmark function

9058 Neural Computing and Applications (2022) 34:9043–9068

123

Also, since there are many tasks in the utilized workflow

models (Table 6), we did not adapt GOQRFA meta-

heuristics for discrete optimization problems, and the

results are rounded to the closest integer value. Based on

the conducted empirical tests, better results can be obtained

by using this approach.

6.2.3 Weight coefficient simulations

The objective function (Eq. 9) is determined by balancing

between makespan and total cost objectives using a weight

coefficient j. Following a similar strategy as in [46], we

wanted to establish j value that will obtain the lowest

objective.

We have performed a set of simulations for Montage

100 workflow with the values of j between 0.1 and 0.9

using the step size of 0.1 for the original FA and proposed

GOQRFA. We wanted to find a value of j that will gen-

erate the lowest objective function value. Based on

empirical simulations, our GOQRFA and the original FA

generate good results for this Montage workflow with 100

task nodes.

Each simulation is conducted in 30 independent runs

and the mean results of makespan, total cost, and combined

objective (makespan ? total cost) are reported. Simulation

results of GOQRFA, the FA, and directional and non-local-

convergent PSO (DNCPSO) for makespan, cost, and

combined objective are summarized in Table 6.2.3, and

corresponding charts are shown in Fig. 5. The DNCPSO

approach results were taken for the purpose of comparative

analysis, and they are retrieved from [46].

According to the analysis of the results from Table 8 and

Fig. 5 using an ‘‘elbow’’ method, the optimal value of j,

that generates the lowest combined objective value, is 0.8.

The same conclusion was derived in [46], where

DNCPSO was tested for the same Montage 100 workflow.

With the increase of j, the influence of makespan in the

combined objective is increasing, while the influence of

cost is decreasing. Moreover, by analyzing the results from

Table 8, it can be seen that the makespan is more sus-

ceptible to changes in j than the cost. For example, the

variance of the makespan of our proposed GOQRFA is

71.80, while the same value for the cost is only 1.20. It

further means that on average, the makespan has a higher

influence on the combined objective than the cost and it is

better to set a large weight coefficient j for the makespan

in the combined objective function (Eq. 9).

Moreover, by observing the results from Table 8 and

Fig. 5, it can be seen that for all values of weight coeffi-

cient j, our proposed GOQRFA obtains better results for

makespan, cost, and combined objective than both—the

original FA and DNCPSO. It is also interesting to note that

the DNCPSO proved to be significantly better meta-

heuristics than the original FA by reaching better results for

all three metrics.

Since we concluded that the value of j ¼ 0:8 obtains the

best objective function value, by significantly minimizing

makespan and only slighting increasing the cost, we used

this setting for the purpose of comparative analysis with

other state-of-the-art approaches, that was given in Sect.

6.2.4.

Neural Computing and Applications (2022) 34:9043–9068 9059

123

6.2.4 Comparative analysis and discussion

In this subsection, we show a comparative analysis with

other state-of-the-art metaheuristics and heuristics that

were tested under the same conditions for the same

workflow models (Table 6).

Following practice from [46], we have first compared

the proposed GOQRFA with the original FA, DNCPSO

[46] and other classical state-of-the-art metaheuristics and

heuristics by using five workflow DAGs with fewer

number of task nodes: CyberShake, Epigenomics, Inspiral,

Montage and Sipht with 30,24,30,25 and 30 task nodes,

respectively. Heuristics that were taken for the comparative

analysis are heterogeneous earliest finish time (HEFT) [11]

and MIN-MIN [43]. Moreover, besides the two above-

mentioned metaheuristics approaches (the original FA and

DNCPSO), we have also included PSO and GA in the

analysis.

The objective function for all approaches included in the

comparative analysis was adjusted with j ¼ 0:8 according

to Eq. (9). As already mentioned, for the purpose of

comparative analysis, we implemented and integrated into

WorkflowSim the proposed GOQRFA and the original FA,

while simulation results for other heuristics and meta-

heuristics were retrieved from [46].

Table 6 Properties of the DAGs

in practice
DAG Nodes Edges Average data size (MB) Average task runtime (per time unit)

CyberShake_30 30 112 747.48 23.77

CyberShake_50 50 188 864.74 29.32

CyberShake_100 100 380 849.60 31.53

Epigenomics_24 24 75 116.20 681.54

Epigenomics_46 46 148 104.81 844.93

Epigenomics_100 100 322 395.10 3954.90

Inspiral_30 30 95 9.00 206.78

Inspiral_50 50 160 9.16 226.19

Inspiral_100 100 319 8.93 206.12

Montage_25 25 95 3.43 8.44

Montage_50 50 206 3.36 9.78

Montage_100 100 433 3.23 10.58

Sipht_30 30 91 7.73 178.92

Sipht_60 60 198 6.95 194.48

Sipht_100 100 335 6.27 175.55

Table 7 Parameter list of cloud and edge computing resource used in simulations

Server type Server ID Processing rate (MIPS) Processing cost (time unit) Bandwidth (Mbps) Communication cost (time unit)

Cloud servers 0 5,000 0.5 800 0.5

1 5,000 0.5 500 0.4

2 3,500 0.4 800 0.5

3 3,500 0.4 500 0.4

4 2,500 0.3 800 0.5

5 2,500 0.3 500 0.4

Edge servers 6 1,500 0.2 1,500 0.7

7 1,500 0.2 1,000 0.6

8 1,000 0.1 1,500 0.7

9 1,000 0.1 1,000 0.6

Fig. 4 Solutions encoding: a mapping between common tasks and

servers b mapping between priority tasks and servers

9060 Neural Computing and Applications (2022) 34:9043–9068

123

A visual representation of comparative analysis for the

makespan, the cost, and the combined objective is shown in

Fig. 6.

On average, according to the simulation results from

Fig. 6, by taking into account all test instances, the pro-

posed GOQRFA establishes the best performance in terms

of all three metrics (the makespan, the cost, and the com-

bined objective). By comparing metaheuristics approaches,

it can be concluded that the original PSO obtains a worse

performance. This is expected since the PSO does not

employ an efficient mechanism for exploration and it is

susceptible to being trapped in some of the sub-optimal

regions of the search space. The GA establishes a better

performance than the original PSO for all three indicators

because by using a proper encoding strategy, GA can be

easily adapted for discrete optimization problems such as

cloud-edge workflow scheduling. The original FA meta-

heuristics obtains slightly better results than the original

PSO. Based on the observed drawbacks of the basic FA

(Subsection 5.1), like PSO, FA can easily be trapped in

sub-optimal domains of the search region due to the lack of

exploration power. However, the exploitation procedure of

the original FA is better than in the case of PSO and the FA

manages to establish a better performance in this type of

challenge.

The DNCPSO as efficient state-of-the-art metaheuristics

overcomes deficiencies of the original PSO and proves to

be an effective optimizer for cloud-edge workflow

scheduling [46]. However, our proposed GOQRFA proved

to be even more efficient. For example, in the case of

Cybershake 30 instance, GOQRFA and DNCPSO both

establish the same makespan value, but GOQRFA obtains a

lower objective because it manages to slightly improve the

cost compared to the DNCPSO. On the other hand, in the

case of Inspiral 30 and Sipht 30 benchmarks, GOQRFA

obtains a slightly higher cost than the DNCPSO, but a

lower combined objective due to the shorter makespan. In

the test instance, Montage 25 GOQRFA establishes a better

makespan, while both approaches generate the same cost

value and finally, for the benchmark Epigenomics 24,

GOQRFA obtains better values for the makespan and the

cost and consequently for the combined objective.

The comparison between metaheuristics and HEFT and

MIN-MIN heuristics is biased in favor of heuristics due to

the experiment setup. Heuristics, as static scheduling

algorithms, allocate resources to tasks before the start of

the scheduling process, and they are oriented toward

Fig. 5 Makespan, cost and combined objectives for different values of weight coefficient j for three approaches

Neural Computing and Applications (2022) 34:9043–9068 9061

123

minimizing the makespan. As a consequence, the make-

span for HEFT and MIN-MIN is generally short; however,

the cost is relatively high. An exception from this is the

simulation with Sipht 30 test instance. In this case, MIN-

MIN heuristics maps certain tasks with heavy computation

requirements to servers with a low processing rate and the

makespan indicator is higher. With the established value of

j ¼ 0:8, the makespan has much more influence on the

combined objective than the cost and the value of this

indicator for both heuristics is relatively low.

Despite the good makespan and the combined objective

values of HEFT and MIN-MIN heuristics, the cost is high

which is not acceptable in real-work workflow applica-

tions. Metaheuristics, as dynamic scheduling algorithms,

obtain more stable results than heuristics and provide a

better balance between the makespan and the cost and that

is why they are more suitable for real-world environments.

In the second experiment suite, we have compared

GOQRFA with DNCPSO, three other state-of-the-art

improved PSO metaheuristics and the original FA for five

workflows with more task nodes: CyberShake 100,

Epigenomics 100, Inspiral 100, Montage 100 and Sipht

100. In this simulation, we wanted to see how our approach

performs on larger datasets.

Besides the original FA and DNCPSO in the compara-

tive analysis, we have included the following enhanced

metaheuristics: a multi-objective PSO (MPSO) [30], a

hybrid GA-PSO (HGAPSO) [25], and a cooperative multi-

swarm PSO (DMXPSOCLS) [24]. The results for

DNCPSO, MPSO, HGAPSO, and DMXPSOCLS were

retrieved from [46], while the results for GOQRFA and FA

were generated by running simulations.

Based on the empirical simulation results, which are

visualized in Fig. 7, like in the first comparative analysis,

on average our proposed GAQRFA performs better than

the other state-of-the-art metaheuristics included in the

analysis. Again, the second-best approach is DNCPSO. For

Epigenomics 100 and Montage 100 workflows, GOQRFS

obtained better results for all three indicators: the make-

span, the cost, and the combined objective than DNCPSO.

In the Inspiral 100 test instance, the GOQRFS established a

better makespan with a slightly higher cost than the

DNCPSO and better combined objective value. Only in

CyberShake 100 and Sipht 100 DNCPSO slightly outper-

formed our GOQRFA.

As expected, the original FA obtained substantially

worse performance metrics than GOQRFA for all the test

instances. On average, FA performed similarly as

HGAPSO.

The goal of the third conducted simulation is to validate

the convergence speed of the proposed GOQRFA against

the original FA. For this purpose, we employed five DAGs

with medium number of task nodes: CyberShake, Epige-

nomics, Inspiral, Montage and Sipht with 50,46,50,50 and

60 task nodes, respectively. Based on the obtained results

in 10 independent runs, we have generated convergence

speed graphs for the combined objective function, which

are shown in Fig. 8.

From the presented graphs, it can be stated that the

GOQRFA substantially enhances the convergence rate of

the original FA. After the initialization phase (iteration 0),

the QRBL mechanism of GOQRFA establishes better

solutions’ diversity with a better objective function value in

all the test instances, as can be seen from the graphs.

As iterations progress, GOQRFA converges much faster

than the original FA and obtains the best solution within

fewer iterations. In all simulations, GOQRFA manages to

reach the best solution within 50-150 iterations. In contrast,

the original FA reached the best solution in most simula-

tions in the last 30% iterations. For example, in

Table 8 Makespan, cost and combined objective function values for

different j weight coefficients

j Metric DNCPSO FA GOQRFA

0.1 makespan 134.15 143.75 125.21

cost 129.02 135.70 126.32

combined objective 129.53 136.50 126.20

0.2 makespan 116.52 125.11 111.17

cost 131.13 138.43 126.43

combined objective 128.20 135.77 123.38

0.3 makespan 116.16 121.92 107.34

cost 131.62 139.29 126.67

combined objective 126.98 134.07 120.87

0.4 makespan 105.03 112.7 98.12

cost 131.95 141.45 127.34

combined objective 121.18 129.95 115.65

0.5 makespan 106.96 117.32 102.98

cost 131.56 142.02 126.95

combined objective 119.26 129.67 114.97

0.6 makespan 111.41 121.67 106.42

cost 131.72 142.60 127.55

combined objective 119.53 130.04 114.87

0.7 makespan 119.19 127.25 110.11

cost 132.35 143.17 128.15

combined objective 123.14 132.02 115.52

0.8 makespan 101.96 115.43 98.45

cost 132.72 145.19 130.66

combined objective 108.11 121.38 104.89

0.9 makespan 113.03 123.05 107.21

cost 133.95 147.3 129.59

combined objective 115.12 125.47 109.45

9062 Neural Computing and Applications (2022) 34:9043–9068

123

CyberShake 50 simulation, GOQRFA converges to the best

solution after the first 100 iterations, while the basic FA

obtained the best solution after all available 300 iterations.

Both metaheuristics showed good performance in Sipht 60

test instance, where the GOQRFA reached the best solu-

tions after 50 and the original FA after 100 iterations.

Also, the presented graphs show the influence of the

novel GOQRFA’s exploration mechanism DUC (refer to

Sect. 5), which is triggered in the first 100 iterations,

according to the ebp parameter adjustment (refer to

Table 2). The experimental results illustrate that the DUC

enables GOQRFA to quickly converge to optimal regions

of the search domain in the early iterations. Afterward, the

IUC mechanism that conducts a fine search in the optimum

region is triggered.

Finally, motivated by the conducted simulations in [46],

we have experimented with randomly generated workflow

by DAG generator to validate the efficiency of the pro-

posed GOQRFA for minimizing the communication cost

and time against the original FA approach. The compara-

tive analysis between GOQRFA and the original FA for

communication time and cost indicators for the random

workflow is shown in Fig. 9.

From the presented figure, it can be clearly seen that for

both indicators (communication time and cost) the pro-

posed GOQRFA substantially outperforms the original FA

by establishing lower values for these indicators. The

Fig. 6 Simulation 1 results—a comparison between GOQRFA, the original FA, DNCPSO and other metaheuristics and heuristics for datasets

with fewer task nodes

Neural Computing and Applications (2022) 34:9043–9068 9063

123

GOQRFA generates a more efficient scheduling plan than

the original FA by establishing better utilization of edge

computing resources. The scheduling strategy generated by

the original FA transfers more tasks for execution on the

cloud and as a consequence, communication time and cost

are higher.

7 Conclusion

In the research shown in this manuscript, we have proposed

and implemented a novel efficient algorithm to tackle the

problem of workflow scheduling in an edge-cloud

environment. The main challenge in such environments is

to find an efficient scheduling algorithm that can simulta-

neously minimize contradictory objectives, which are in

the case of this experiment completion time (makespan)

and cost. Since the solution space grows exponentially with

the increase in computing tasks, it is practically impossible

to find an optimal scheduling plan. Although many meta-

heuristics have already been implemented to solve this

challenge, results still can be improved by utilizing

enhanced methods.

To solve the problem of workflow scheduling, we have

implemented an enhanced version of well-known FA

swarm intelligence metaheuristics. We have chosen FA

Fig. 7 Simulation 2 results—a comparison between GOQRFA, the original FA, DNCPSO and other improved PSO implementations for

workflow models with 100 task nodes

9064 Neural Computing and Applications (2022) 34:9043–9068

123

over other state-of-the-art algorithms because it has proven

to be an efficient optimizer in numerous practical domains.

Furthermore, we have identified the deficiencies of the

original FA, which can be summarized as the lack of

explicit exploration and not a well-adjusted trade-off

between intensification and diversification. Based on the

observed deficiencies, we have devised and implemented

an improved FA approach GOQRFA that overcomes

observed drawbacks by incorporating genetic operators and

quasi-reflective-based learning in the original

implementation.

Following the usual practice from the modern computer

science literature, the proposed GOQRFA was first tested

on ten modern CEC 2019 benchmarks and compared with

other outstanding methods. Afterward, practical experi-

ments (simulations) along with comparative analysis with

Fig. 8 Simulation 3 results—a convergence speed comparison between GOQRFA and the original FA for workflow models with medium nodes

Neural Computing and Applications (2022) 34:9043–9068 9065

123

other heuristics and metaheuristics for practical cloud-edge

workflow scheduling challenge were performed. In both

cases, GOQRFA outperformed the original FA and other

state-of-the-art approaches used in the analysis.

The main contribution of this research is twofold. First,

we have developed enhanced FA metaheuristics that

establishes substantial improvements in terms of the solu-

tion quality and convergence than the basic FA and also

obtains a better performance than other-state-of-the-art

approaches. The proposed GOQRFA, such as any other

hybridized or improved metaheuristic method, has the

disadvantage of having more control parameters, which

should be fine-tuned by the researcher. However, sub-

stantial performance improvements of GOQRFA over the

original FA justify more control parameters. Second, we

have managed to improve tackling workflow scheduling in

cloud-edge environments by obtaining better results for the

makespan, the cost, the combined objective, communica-

tion, and transfer costs than the results that are already

published in the literature. The GOQRFA scheduler is

capable of seeking the correlated balance between make-

span and cost criteria, and at the same time, satisfying the

real-time requirements.

There are many possible future research directions in

this domain of computer sciences. We plan to continue our

research with swarm intelligence by improving other out-

standing algorithms either by hybridization with other

heuristics/metaheuristics or by introducing minor changes

(additional control parameters, search procedure modifi-

cations, etc.). Moreover, as part of future research, we will

also try to simulate other scheduling scenarios in cloud-

edge/cloud environments and establish improvements in

generated scheduling plans.

Funding This research was supported by Ministry of Science of

Republic of Serbia, Grant No. III-44006.

Declarations

Conflict of interest We declare that we have no financial and personal

relationships with other people or organizations that can inappropri-

ately influence our work.

Ethics approval The authors declare that they their work is compliant

with ethical standards.

Consent to participate All authors have given their consent for this

research.

Consent for publication All authors have given their consent for

publication of this work.

References

1. Aggarwal A, Dimri P, Agarwal A, Bhatt A (2020) Self adaptive

fruit fly algorithm for multiple workflow scheduling in cloud

computing environment. Kybernetes
2. Bacanin N, Bezdan T, Tuba E, Strumberger I, Tuba M, Zivkovic

M (2019a) Task scheduling in cloud computing environment by

grey wolf optimizer. In 2019 27th Telecommunications Forum
(TELFOR) (pp. 1–4). IEEE

3. Bacanin N, Tuba E, Bezdan T, Strumberger I, Tuba M (2019)

Artificial flora optimization algorithm for task scheduling in

cloud computing environment. In: Yin H, Camacho D, Tino P,

Tallón-Ballesteros AJ, Menezes R, Allmendinger R (eds) Intel-

ligent Data Engineering and Automated Learning—IDEAL 2019.

Springer International Publishing, Cham, pp 437–445. https://doi.

org/10.1007/978-3-030-33607-3_47

4. Bacanin N, Tuba E, Zivkovic M, Strumberger I, Tuba M (2019c)

Whale optimization algorithm with exploratory move for wireless

sensor networks localization. In International Conference on
Hybrid Intelligent Systems (pp. 328–338). Springer

5. Basha J, Bacanin N, Vukobrat N, Zivkovic M, Venkatachalam K,

Hubálovskỳ S, Trojovskỳ P (2021) Chaotic harris hawks opti-

mization with quasi-reflection-based learning: an application to

enhance cnn design. Sensors 21:6654

6. Bäck T, Schwefel H (1993) An overview of evolutionary algo-

rithms for parameter optimization. Evol Comput 1:1–23

7. Bezdan T, Cvetnic D, Gajic L, Zivkovic M, Strumberger I,

Bacanin N (2021) Feature selection by firefly algorithm with

improved initialization strategy. In 7th Conference on the Engi-
neering of Computer Based Systems (pp. 1–8)

8. Bezdan T, Zivkovic M, Antonijevic M, Zivkovic T, Bacanin N

(2020a) Enhanced flower pollination algorithm for task

scheduling in cloud computing environment. In Machine Learn-
ing for Predictive Analysis (pp. 163–171). Springer

9. Bezdan T, Zivkovic M, Tuba E, Strumberger I, Bacanin N, Tuba

M (2020b) Glioma brain tumor grade classification from mri

using convolutional neural networks designed by modified fa. In

International Conference on Intelligent and Fuzzy Systems (pp.

955–963). Springer

10. Bezdan T, Zivkovic M, Tuba E, Strumberger I, Bacanin N, Tuba

M (2020c) Multi-objective task scheduling in cloud computing

environment by hybridized bat algorithm. In International Con-
ference on Intelligent and Fuzzy Systems (pp. 718–725). Springer

11. Bittencourt LF, Sakellariou R, Madeira ER (2010) Dag

scheduling using a lookahead variant of the heterogeneous ear-

liest finish time algorithm. In 2010 18th Euromicro Conference
on Parallel, Distributed and Network-based Processing (pp.

27–34). IEEE

Fig. 9 Simulation 4 results—the communication time and cost

comparison between GOQRFA and the original FA for random

workflow model

9066 Neural Computing and Applications (2022) 34:9043–9068

123

https://doi.org/10.1007/978-3-030-33607-3_47
https://doi.org/10.1007/978-3-030-33607-3_47

12. Boveiri HR (2015) List-scheduling techniques in homogeneous

multiprocessor environments: a survey. Int J Softw Eng Its Appl

9:123–132

13. Cazacu R (2017) Comparative study between the improved

implementation of 3 classic mutation operators for genetic

algorithms. Procedia Engineering, 181, 634–640. http://www.-

sciencedirect.com/science/article/pii/S1877705817310287.

https://doi.org/10.1016/j.proeng.2017.02.444.10th International

Conference Interdisciplinarity in Engineering, INTER-ENG

(2016) 6–7 October 2016. Tirgu Mures, Romania

14. Chen W, Deelman E (2012) Workflowsim: A toolkit for simu-

lating scientific workflows in distributed environments. In 2012
IEEE 8th international conference on E-science (pp. 1–8). IEEE

15. Ewees AA, Abd Elaziz M, Houssein EH (2018) Improved

grasshopper optimization algorithm using opposition-based

learning. Expert Systems with Applications, 112, 156–172. http://

www.sciencedirect.com/science/article/pii/S0957417418303701.

https://doi.org/10.1016/j.eswa.2018.06.023

16. Fan Q, Chen Z, Xia Z (2020) A novel quasi-reflected harris

hawks optimization algorithm for global optimization problems.

Soft Computing, (pp. 1–19)

17. Forestiero A, Mastroianni C, Meo M, Papuzzo G, Sheikhalishahi

M (2014) Hierarchical approach for green workload management

in distributed data centers. In European Conference on Parallel
Processing (pp. 323–334). Springer

18. Forestiero A, Mastroianni C, Papuzzo G, Spezzano G (2010) A

proximity-based self-organizing framework for service compo-

sition and discovery. In 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (pp.

428–437). IEEE

19. Forestiero A, Mastroianni C, Spezzano G (2008) Reorganization

and discovery of grid information with epidemic tuning. Future

Gener Comput Syst 24:788–797

20. Gajic L, Cvetnic D, Zivkovic M, Bezdan T, Bacanin N, Milosevic

S (2021) Multi-layer perceptron training using hybridized bat

algorithm. In Computational Vision and Bio-Inspired Computing
(pp. 689–705). Springer

21. Hollander M, Wolfe DA, Chicken E (2013) Nonparametric sta-

tistical methods, vol 751. Wiley, Hoboken

22. Hyytiä E, Aalto S (2016) On round-robin routing with fcfs and

lcfs scheduling. Perform Eval 97:83–103. https://doi.org/10.1016/

j.peva.2016.01.002

23. Liu J, Mao Y, Liu X, Li Y (2020) A dynamic adaptive firefly

algorithm with globally orientation. Mathematics and Computers
in Simulation, 174, 76–101. http://www.sciencedirect.com/sci

ence/article/pii/S0378475420300598. https://doi.org/10.1016/j.mat

com.2020.02.020

24. Ma K, Hu S, Yang J, Xu X, Guan X (2018) Appliances

scheduling via cooperative multi-swarm pso under day-ahead

prices and photovoltaic generation. Appl Soft Comput

62:504–513

25. Manasrah AM, Ba Ali H (2018) Workflow scheduling using

hybrid ga-pso algorithm in cloud computing. Wireless Commu-
nications and Mobile Computing, 2018

26. Milan ST, Rajabion L, Darwesh A, Hosseinzadeh M, Navimipour

NJ (2019) Priority-based task scheduling method over cloudlet

using a swarm intelligence algorithm. Cluster Computing, (pp.

1–9)

27. Milosevic S, Bezdan T, Zivkovic M, Bacanin N, Strumberger I,

Tuba M (2021) Feed-forward neural network training by hybrid

bat algorithm. In Modelling and Development of Intelligent Sys-
tems: 7th International Conference, MDIS 2020, Sibiu, Romania,
October 22–24, 2020, Revised Selected Papers 7 (pp. 52–66).

Springer International Publishing

28. Mohammadzadeh A, Masdari M, Gharehchopogh FS, Jafarian A

(2020) Improved chaotic binary grey wolf optimization algorithm

for workflow scheduling in green cloud computing. Evolutionary
Intelligence, (pp. 1–29)

29. Muthusamy H, Ravindran S, Yaacob S, Polat K (2021) An

improved elephant herding optimization using sine–cosine

mechanism and opposition based learning for global optimization

problems. Expert Syst Appl 172:114607

30. Pang L-P, Ng S-C (2018) Improved efficiency of mopso with

adaptive inertia weight and dynamic search space. In Proceedings
of the Genetic and Evolutionary Computation Conference Com-
panion (pp. 1910–1913)

31. Price K, Awad N, Ali M, Suganthan P (2018) Problem definitions

and evaluation criteria for the 100-digit challenge special session

and competition on single objective numerical optimization. In

Technical Report. Nanyang Technological University

32. Rahnamayan S, Tizhoosh HR, Salama MMA (2007) Quasi-op-

positional differential evolution. In 2007 IEEE Congress on
Evolutionary Computation (pp. 2229–2236)

33. Singh MR, Mahapatra S (2016) A quantum behaved particle

swarm optimization for flexible job shop scheduling. Comput Ind

Eng 93:36–44. https://doi.org/10.1016/j.cie.2015.12.004

34. Strumberger I, Bacanin N, Tuba M, Tuba E (2019) Resource

scheduling in cloud computing based on a hybridized whale

optimization algorithm. Appl Sci 9:4893

35. Strumberger I, Tuba E, Bacanin N, Tuba M (2020) Hybrid ele-

phant herding optimization approach for cloud computing load

scheduling. In: Zamuda A, Das S, Suganthan PN, Panigrahi BK

(eds) Swarm, Evolutionary, and Memetic Computing and Fuzzy

and Neural Computing. Springer International Publishing, Cham,

pp 201–212

36. Strumberger I, Tuba E, Bacanin N, Zivkovic M, Beko M, Tuba M

(2019b) Designing convolutional neural network architecture by

the firefly algorithm. In Proceedings of the 2019 International
Young Engineers Forum (YEF-ECE), Costa da Caparica, Por-
tugal (pp. 59–65)

37. Thennarasu SR, Selvam M, Srihari K (2021) A new whale

optimizer for workflow scheduling in cloud computing environ-

ment. J Ambient Intell Humanized Comput 12:3807–3814

38. Tizhoosh HR (2005) Opposition-based learning: A new

scheme for machine intelligence. In International Conference on
Computational Intelligence for Modelling, Control and Automa-
tion and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce (CIMCA-IAWTIC’06) (pp.

695–701). vol. 1

39. Tuba M, Bacanin N (2014) Improved seeker optimization algo-

rithm hybridized with firefly algorithm for constrained opti-

mization problems. Neurocomputing 143:197–207. https://doi.

org/10.1016/j.neucom.2014.06.006

40. Wang H, Wang Y (2018) Maximizing reliability and performance

with reliability-driven task scheduling in heterogeneous dis-

tributed computing systems. Journal of Ambient Intelligence and

Humanized Computing. https://doi.org/10.1007/s12652-018-

0926-9

41. Wang H, Zhou X, Sun H, Yu X, Zhao J, Zhang H, Cui L (2017)

Firefly algorithm with adaptive control parameters. Soft Comput

3:5091–5102

42. Wang T, Liu Z, Chen Y, Xu Y, Dai X (2014) Load balancing task

scheduling based on genetic algorithm in cloud computing. In

2014 IEEE 12th International Conference on Dependable,
Autonomic and Secure Computing (pp. 146–152). https://doi.org/

10.1109/DASC.2014.35

43. Xu R, Wang Y, Huang W, Yuan D, Xie Y, Yang Y (2017) Near-

optimal dynamic priority scheduling strategy for instance-inten-

sive business workflows in cloud computing. Concurr Comput

Pract Exp 29:e4167

44. Yang X-S (2009) Firefly algorithms for multimodal optimization.

In: Watanabe O, Zeugmann T (eds) Stochastic Algorithms:

Neural Computing and Applications (2022) 34:9043–9068 9067

123

https://doi.org/10.1016/j.proeng.2017.02.444.
http://www.sciencedirect.com/science/article/pii/S0957417418303701
http://www.sciencedirect.com/science/article/pii/S0957417418303701
https://doi.org/10.1016/j.eswa.2018.06.023
https://doi.org/10.1016/j.peva.2016.01.002
https://doi.org/10.1016/j.peva.2016.01.002
http://www.sciencedirect.com/science/article/pii/S0378475420300598
http://www.sciencedirect.com/science/article/pii/S0378475420300598
https://doi.org/10.1016/j.matcom.2020.02.020
https://doi.org/10.1016/j.matcom.2020.02.020
https://doi.org/10.1016/j.cie.2015.12.004
https://doi.org/10.1016/j.neucom.2014.06.006
https://doi.org/10.1016/j.neucom.2014.06.006
https://doi.org/10.1007/s12652-018-0926-9
https://doi.org/10.1007/s12652-018-0926-9
https://doi.org/10.1109/DASC.2014.35
https://doi.org/10.1109/DASC.2014.35

Foundations and Applications. Springer, Berlin Heidelberg,

Berlin, Heidelberg, pp 169–178

45. Yang X-S, Xingshi H (2013) Firefly algorithm: recent advances

and applications. Int J Swarm Intell 1:36–50

46. Ying X, Yuanwei Z, Yeguo W, Yongliang C, Rongbin X, Abu-

bakar Sadiq S, Dong Y, Yun Y (2019) A novel directional and

non-local-convergent particle swarm optimization based work-

flow scheduling in cloud-edge environment. Future Gener Com-

put Syst 97:361–378. https://doi.org/10.1016/j.future.2019.03.005

47. Zhu Z, Zhang G, Li M, Liu X (2016) Evolutionary multi-objec-

tive workflow scheduling in cloud. IEEE Trans Parallel Distrib

Syst 27:1344–1357

48. Zivkovic M, Bacanin N, Tuba E, Strumberger I, Bezdan T, Tuba

M (2020a) Wireless sensor networks life time optimization based

on the improved firefly algorithm. In 2020 International Wireless
Communications and Mobile Computing (IWCMC) (pp.

1176–1181). IEEE

49. Zivkovic M, Bacanin N, Venkatachalam K, Nayyar A, Djordjevic

A, Strumberger I, Al-Turjman F (2021) Covid-19 cases

prediction by using hybrid machine learning and beetle antennae

search approach. Sustain Cities Soc 66:102669

50. Zivkovic M, Bacanin N, Zivkovic T, Strumberger I, Tuba E,

Tuba M (2020b) Enhanced grey wolf algorithm for energy effi-

cient wireless sensor networks. In 2020 Zooming Innovation in
Consumer Technologies Conference (ZINC) (pp. 87–92). IEEE

51. Zivkovic M, Bezdan T, Strumberger I, Bacanin N, Venkatacha-

lam K (2021b) Improved harris hawks optimization algorithm for

workflow scheduling challenge in cloud—edge environment. In

Computer Networks, Big Data and IoT (pp. 87–102). Springer

52. Zivkovic M, Venkatachalam K, Bacanin N, Djordjevic A,

Antonijevic M, Strumberger I, Rashid TA (2021c) Hybrid genetic

algorithm and machine learning method for covid-19 cases pre-

diction. In Proceedings of International Conference on Sustain-
able Expert Systems: ICSES 2020 (p. 169). Springer Nature

volume 176

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

9068 Neural Computing and Applications (2022) 34:9043–9068

123

https://doi.org/10.1016/j.future.2019.03.005

	Modified firefly algorithm for workflow scheduling in cloud-edge environment
	Abstract
	Introduction
	Background and related work
	Task scheduling
	Nature inspired and swarm intelligence metaheuristics
	Swarm intelligence applications in the cloud scheduling domain

	System model formulation
	Original FA
	Improved FA metaheuristics
	Drawbacks of the basic FA
	Proposed improvements
	Genetic operators
	Quasi-reflection-based learning
	Dynamic parameter \alpha

	Working details of proposed GOQRFA
	Algorithm complexity

	Simulations and discussion
	CEC 2019 modern benchmarks simulations
	Workflow scheduling in cloud-edge environment simulations
	Simulation environment, workflow models and parameters’ setup
	Encoding and adaptations of proposed algorithm
	Weight coefficient simulations
	Comparative analysis and discussion

	Conclusion
	Funding
	References

