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�is research paper deals with the optimization of a large antenna array for maximum directivity using a modi	ed fruit 
y
optimization algorithm (MFOA) with random search of two groups of swarm and adaptive fruit 
y swarm population size. �e
MFOA is utilized to determine three nonlinear mathematical test functions, analysis of the optimal number of elements and
optimal element spacing of the large antenna array, and analysis of nonuniform amplitude of antenna array. �e numerical results
demonstrate that the MFOA is e�ective in solving all test function and electromagnetic problems. �e advantages of the proposed
algorithm are ease of implementation, large search range, less processing time, and reduced memory requirement.

1. Introduction

�e nature of an electromagnetic (EM) problem which con-
tains a myriad of local and global optimal solutions contrib-
utes to its complexity and di�culty to locate the best solution
to the problem. An EM problem refers to a large radiation
problem with a vast search space. Prior research on large EM
problems focused mostly on the problems of antenna array
radiation [1, 2] and of radio wave scattering of ships, aircra,
and rough surfaces. To obtain an optimal global solution to an
EM problem requires high performance optimization algo-
rithms, particularly for the EM problems associated with the
antenna array radiation and the wave scattering. Currently,
the application of optimization algorithms has been extended
beyond engineering to other 	elds, for example, sciences and
	nance.

Optimization algorithms can be classi	ed into two types:
local optimization and global optimization. �is paper has
focused on the global optimization since this optimization
type is oen applied to solving EM problems. Examples of
global optimization algorithms applied to EM problems are
the genetic algorithm (GA), evolution strategy (ES), particle

swarm optimization (PSO), ant colony optimization (ACO),
and simulated annealing (SA). In [3], GA was adopted to
optimize the radiation patterns of linear and planar antenna
arrays and it was found that GAwas suitable for the EMprob-
lems of both types of antenna arrays. Although GA returned
an optimal solution in a very short time period, according to
[4], it is di�cult to identify the optimal GA initial parameters.
To address this issue, [5] proposed an evolutionary program
(EP) and evolutionary strategies (ES) in which the optimal
parameters of the algorithms were self-adaptive. �e hybrid
EP and ES were proved to be e�ective in solving EM prob-
lems, but the convergence to the optimum solution required
a great amount of time.

In [6, 7], a PSO algorithm was proposed to minimize the
side lobe level (SLL) of a phased array antenna.�e algorithm
was employed to solve a number of EM problems related
to radio communications. In [8], a multiobjective particle
swarm optimization (MOPSO) algorithm was used in a sym-
metric phased linear array to optimize energy consumption.
It is found that the MOPSO algorithm is e�ective in energy
saving and minimizing the SLL in the symmetric phased
linear array. In [9], a thinned linear array and another planar
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antenna array both with minimum SLL were designed using
ACO. To successfully minimize SLL, [10] applied SA to an
array antenna.

�e aforementioned optimization algorithms have been
proved to be optimally applicable to their respective designs
of antenna array; however, these algorithms are so advanced
and complicated that it requires great amount of time and
e�orts for a beginner to comprehend. A new optimization
algorithm, which is called the fruit 
y optimization algorithm
(FOA), has thus been recently proposed by Pan [11]. FOA is a
stochastic searching algorithm based on the principle of nat-
ural selection. �e algorithm has its use in numerous appli-
cations, for example, 	nancial distress detection, web-auction
logistics service, neural network, PID controller parameters
tuning, key control characteristics optimization, and swarms
of miniautonomous surface vehicles [12–18]. However, FOA
has never been applied to EM problems because it has no
enough search space and is oen meeting a local optimum
solution for EM problems.

�is research has proposed the modi	ed fruit 
y opti-
mization algorithm (MFOA) to analyze the radiation pattern
of the large antenna array. �e MFOA is improved upon by
incorporating random search of two groups of swarm and
self-adaptive population size feature into the conventional
FOA.�emodi	ed algorithm is found to be e�ective in solv-
ing three nonlinear test functions and EM problems for the
large antenna array. In addition, the advantages of theMFOA
are ease of implementation, large search range, less processing
time, and reduced memory requirement.

�e organization of the rest of this research is as fol-
lows: Section 2 discusses the modi	ed fruit 
y optimization
algorithm with adaptive population size. Section 3 deals with
the geometry of the large antenna array and its problem for-
mulation. Section 4 presents the numerical results. �e con-
clusions are provided in Section 5.

2. Modified Fruit Fly Optimization Algorithm

�e conventional FOA is a technique to search for a global
optimization. �e algorithm is modeled aer the food-seek-
ing behavior of fruit 
ies [11]. Figure 1 illustrates a food-
seeking iterative process of a fruit 
y swarm [11].

�e FOA can be e�ciently used with several problems
[11–18], but it has never been used with EM problems. Nat-
urally, EM problems have large search space, complexity,
and discontinuous behaviour, which may be a�ected to the
optimization algorithms to meet the local optimum solution.
From the FOA procedure, it likes the food-seeking behaviour
of fruit 
ies.When some swarmsmeet the optimum solution,
another swarm will follow that solution. It can make the
algorithm converge to the wrong solution or local optimum.
�erefore, the FOA ismodi	ed to havemore search space and
global search for complexity and discontinuous function such
as EM problems which is referred to as “modi	ed FOA or
MFOA.” �e conventional FOA procedure is shown below,
and the 
ow diagram is shown in Figure 2(a):

(1) Initiate the number of iterations (�).
(2) Initiate the population size (�).
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Figure 1: A food-seeking iterative process of a fruit 
y swarm.

(3) Randomly generate the initial location of the fruit 
y
parameters:�-axis and �-axis.

(4) Generate the direction and distance for all population
(�) of the 	rst iteration
for � = 1 to � = �,

�� = �-axis+ random value,
�� = �-axis+ random value. (1)

Estimate the distance and calculate the smell concen-
tration (	),

Dist� = √(�2

� + �2� ),
	� = 1

Dist�
.

(2)

Calculate Smell� = Function(	�) and 	nd the best
smell.

Set the best smell concentration “bestSmell.”

End.

(5) Search the procedure from the second to the last
iteration.

Randomize the assigned direction and distance
for all population size,

for � = 1 to � = �,
�� = �-axis+ random value,
�� = �-axis+ random value. (3)

Estimate Dist� = √(�2

� + �2� ) and 	� = 1/Dist�.
Calculate Smell� = Function(	�) and 	nd the best-
Smell.
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Figure 2: Flow diagrams of the (a) conventional FOA and (b) MFOA with adaptive population size.

If the new bestSmell is better than the old one, the
bestSmell will be updated.

Set the�-axis and �-axis into the bestSmell.

End.

(6) Iterate for number (5) until the optimum solution is
met by considering a bestSmell or the last number of
iterations is reached.

For the MFOA, it separated the population size into two
groups. �e 	rst group is assigned to 	nd a new search
space with the wide area, and the second group is assigned
to 	nd nearby optimum space. �is procedure can achieve
a wider search space. Moreover, [19] found the limitation
of FOA in some applications because it cannot estimate the
negative value of searching parameters, in which they put the
random value of sign (sign()) on point (−1, 1) at the smell
function (	� = sign()/Dist�). It is also employed in this paper.

AlthoughMFOA can search in the large space, it is dispersed
toomuch and does not converge to the optimum solution. To
avoid this problem, the best parameter is collected for use in
the next iteration. �eMFOA procedure is shown below and
the 
ow diagram is shown in Figure 2(b):

(1) Initiate the number of iterations (�).
(2) Initiate the population size (�).
(3) Randomly generate initial location of fruit 
y param-

eters:�-axis and �-axis.
(4) Generate direction and distance for all population (�)

for the 	rst iteration

for � = 1 to � = �.
For group 1,

�� = random value,
�� = random value. (4)



4 International Journal of Antennas and Propagation

Table 1: Compared results of the FOA, MFOA, and GA with nonlinear mathematical test functions.

Mathematical functions
FOA MFOA GA

Fitness value � � Fitness value � � Fitness value � �
Four-peak function 2 0.0014 0.0008 2 0.0014 0.001 2 0 0

Parabolic function 12 0.0014 0.0008 12 0.0013 0.001 12 0 0

Goldstein-Price function 7.0549 0.5206 0.6841 7.22 0.0014 0.0009 7.22 0 0

For group 2,

�� = �-axis+ random value,
�� = �-axis+ random value. (5)

Estimate the distance and calculate the smell concen-
tration (	):

Dist� = √(�2

� + �2� ),
	� = sign ()

Dist�
.

(6)

Calculate Smell� = Function(	�) and 	nd the best
smell.

Set the best smell concentration “bestSmell.”

Collect the best�� and ��.
End.

(5) Search procedure from the second to the last iteration.

Determine the optimal random population size.

Randomly assign direction and distance for all
population size

for � = 1 to � = �.
For group 1,

�� = random value,
�� = random value. (7)

For group 2,

�� = �-axis+ random value,
�� = �-axis+ random value. (8)

Use the best direction and distance�� and�� from the
previous iteration.

Estimate Dist� = √(�2

� + �2� ) and 	� = sign()/Dist�.
Calculate Smell� = Function(	�) and 	nd the
bestSmell.

If the new bestSmell is better than the old one, the
bestSmell will be updated.

Set the�-axis and �-axis into the bestSmell.

Collect the best�� and ��.
End.

(6) Iterate for number (5) until the optimum solution is
met by considering a bestSmell or the last number of
iterations is reached.

To demonstrate the e�ciency of MFOA, it is employed
with three basic functions and compared with the conven-
tional FOA andGA.�ey are employed to 	nd themaximum
value of three nonlinear mathematical functions, where two
variables (� and �) are adjusted by optimization algorithms.
�erefore, smell function (for FOA and MFOA) and 	tness
function (for GA) are the value of considered functions. �is
section considers three nonlinear mathematical functions
[20] with two variables as below.

(1) Four-peak function is

� (�, �) = �−(�−4)2−(�−4)2 + �−(�+4)2−(�−4)2

+ 2 [�−�2−�2 + �−�2−(�+4)2] .
(9)

(2) Parabolic function is

� (�, �) = 12− (�
2 + �2)
100

. (10)

(3) Goldstein-Price function is

� (�, �) = 10

+ log[
[

1

{1 + (1 + � + �)2 (19 − 14� + 3�2 − 14� + 6�� + 3�2)}

∗ 1

{1 + (1 + � + �)2 (19 − 14� + 3�2 − 14� + 6�� + 3�2)}]]
.

(11)

From the numerical results, FOA, MFOA, and GA can
	nd the optimum parameter of three mathematical functions
as shown inTable 1, except that FOAcannot 	nd the optimum
parameter of Goldstein-Price function. Moreover, the con-
vergence rates of FOA,MFOA, andGA are shown in Figure 3.
In Figure 3(a), GA and MFOA are rapidly converged, but
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Figure 3: Compared convergence rate of the FOA, MFOA, and GA with nonlinear mathematical test functions.

FOA is converged in the fourth iteration. Next, FOA, MFOA,
and GA can 	nd the optimum solution of parabolic function
within the 	rst iteration as shown in Figure 3(b). However,
Goldstein-Price function is solved. It is found thatMFOAand
GAcan 	nd the optimumparameter, but FOA cannot achieve
it, as shown in Figure 3(c). It is obvious that the MFOA is
more e�cient than the FOA. In addition, the MFOA has
slower convergence rate than the GA. Moreover, the MFOA
is not complexity algorithm and it is easy to implement, while
the GA is di�cult to specify the optimum GA parameters
such as crossover and mutation probability for appropriate
problems.

To monitor the behavior of FOA and MFOA, the param-
eter distribution due to the optimization algorithm is con-
sidered as shown in Figures 4, 5, 6, and 7, respectively. It
is obvious that the MFOA has more spread than the FOA,
where the FOA has faster convergence for four-peak function
as shown in Figures 4 and 5. For Goldstein-Price function,
the FOA is not converged, while the MFOA is converged
with larger distribution. It is found that the MFOA has the
larger search space than the FOA and can be converged to

the optimumparameter aswell. Next, the adaptive population
is presented in the MFOA to save the time consumption. It is
still converged with a large search space.

�e parameter distribution of the MFOA for four-peak
function is shown in Figure 4. In this 	gure, it is obviously
demonstrated that the distributions of the MFOA method
for four-peak function between both � and � parameters are
similar. �e random distribution caused by the 	rst popu-
lation size group is shown in the initial phase to determine
the solution in the entire search space. �en, the uniform
distribution which is caused by the second population size
group appears to converge to the optimum solution. From
the parameter distribution above, it can conclude that the
solution produced from the distribution procedure of the
	rst population size group will a�ect the behavior of the
distribution procedure of the second population size group
to converge to the optimum solution.

�e MFOA method can be proposed in the other aspect.
�epopulation size has beendivided into 2 individual groups.
Each group will increase randomizing procedure into system
to optimize the best solution. �e 	rst population size group
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Figure 4: Parameter distribution of the MFOA for four-peak function.
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Figure 5: Parameter distribution of the FOA for four-peak function.
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Figure 7: Parameter distribution of the FOA for Goldstein-Price function.

runs randomizing procedure upon the large search space.
�erefore, the solution produced from system is the region
near an optimum point.�en, the solution from the 	rst pro-
cedure is used as an initial point for the second population
size group to determine the solution in the local search space.

�e parameter distribution of the FOA for four-peak
function is illustrated in Figure 5. From this 	gure, both �
and � parameters’ distributions of four-peak function which
is analyzed by the FOA method show that the distributions
of population size tend to converge to the optimum solution
when the number of iterations reaches 10, comparing to the
MFOAmethod whose convergence to the optimum solution
appears when the number of iterations is 4. From this point,
the MFOA method suggests high e�ciency in terms of time
consuming and processing of memory space requirement.

�e distributions of � and � parameters considered from
the MFOA method for Goldstein-Price function are plotted
as shown in Figures 6(a) and 6(b), respectively. �e above
parameters present the similar distribution of the MFOA
method between Goldstein-Price function and four-peak
function. �e pattern of the distribution spreads over the
large search space and later on yields speci	c outcome to the
	tness function in order to obtain the optimum solution from
the complex function. �e distribution has been activated by
randomizing procedure of two groups of population size to
help increasing population diversity.

From Figures 7(a) and 7(b), the distributions analyzed
from the FOAmethod for Goldstein-Price function shown in� and � parameters describe distribution which creates non-
convergence to the optimum solution due to the lack of
diversity which is the key of the function to determine the
optimum solution.

3. Geometry and Problem Formulation

�e performance of a single element antenna is limited
because of its broad radiation pattern and low directivity.
Nevertheless, several applications, for example, radar and
sonar communications, require an antenna with narrow radi-
ation pattern and high directivity. To overcome the limita-
tions of single element antennas, in other words, to obtain
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Figure 8: �e geometry of �-element array with isotropic sources
along the �-axis.

a narrow beam and high gain, more single elements must be
added to the antenna design to produce an array antenna.

A linear array antenna is an antenna in which individual
elements of the array are arranged in a straight line and spaced
equally apart. Let us assume a linear array of � isotropic
elements. �e elements are aligned along the �-axis and are
equidistant. �e geometry of the �-element array is shown
in Figure 8 and an array factor (AF) can be written as [21]

AF = �0 + �1�+�(�� cos �+	) + �2�+�2(�� cos �+	) + ⋅ ⋅ ⋅
+ �
��(�−1)(�� cos �+	).

(12)

If we further assume that the excitation of amplitude (�
)
and phase (�) is 1 and 0, respectively, for all elements, the
array factor (AF) can be expressed as

AF = �∑

=1
��(
−1)(�� cos �), (13)
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where � is the number of elements; �
 is the amplitude
current excitation coe�cient;� is the phase current excitation
coe�cient; ! is the spacing between elements; " is the wave
number; # is the angle between the 	eld direction and the �-
axis.

In this research paper, the focus is on the application
of the MFOA with adaptive population size to optimize the
number of elements and element spacing of the broadside
linear array antenna (i.e., #max = 90∘ and � = 0) to achieve
maximum directivity. �us, a 	tness function (or smell func-
tion) can be expressed as

Directivity ($) = 2
%%%%AF (#max = 90∘)%%%%2
∫�
0
|AF (#)|2 sin # !# . (14)

4. Numerical Results

�e numerical results of the conventional FOA and MFOA
with adaptive population size are determined for comparison
purpose and for veri	cation of the accuracy and e�ciency
of the MFOA. �e large antenna array under consideration
is uniform linear array with a broadside radiation pattern,#max = 90∘, and � = 0. �e MFOA is employed to optimize
the large antenna array to obtain the optimal number of ele-
ments and element spacing that yield the maximum directiv-
ity.

In this research, the population size of the conventional
FOA is varied from 10, 20, 30, and 40 to 50, while that of
the MFOA with adaptive population size is varied in the
ranges of 5–10, 5–20, 5–30, 5–40, and 5–50. �e numerical
results of the conventional FOA and MFOA show the iden-
tical optimum global solution for the large broadside array
antenna. In Figure 9, the computational time increases with
increase in population size in both FOAs. Nevertheless, the
MFOA with adaptive population size requires signi	cantly
less computational time than the conventional FOA.

Figures 10(a)–10(e) illustrate the population size relative
to the number of iterations of the conventional FOA and
the MFOA with adaptive population size with a maximum
iteration of 50. �e population size of the MFOA is self-
adaptive in a range of 5–10 for the population size of 10; 5–20
for 20; 5–30 for 30; 5–40 for 40; and 5–50 for 50. �e self-
adaption of the MFOA helps avoid premature convergence
due to diverse population sizes and reduces the processing
time in comparison with the conventional FOA. Figure 11
illustrates the convergence rates of the GA, MFOA, and
conventional FOA for uniform linear array with a broadside
radiation pattern.�e same 	gure shows that theMFOAwith
adaptive population size can performwell in searching for the
best global solution, that is, the maximum directivity, while
FOA met the local solution. In addition, the MFOA and GA
converge to the same solution with stable convergence rate.
Although the solution is identical, the proposed FOA takes
up less memory and time with increase in population size in
comparison with the conventional FOA.

Figure 12 shows the optimum radiation pattern of the
large broadside antenna array, in which the optimal number
of elements is 81 and the optimal distance between elements
is 0.8'. Under the aforesaid optimal condition, the directivity
is 21 dBi with low side lobe level.

To get insight into the design procedure, a demonstration
of 9 elements with nonuniform amplitude of broadside linear
array is considered by the proposed optimization compared
with the GA and conventional FOA. A 	tness function (or
smell function) is de	ned as amaximumdirectivity.�e spac-
ing between elements is equal to 0.5'. For numerical results,
the GA and MFOA found that the optimum amplitudes
with 9 elements are equal to 0.39, 0.85, 0.79, 0.89, 1.00, 0.89,
0.79, 0.85, and 0.39, respectively. �e obtained maximum
directivity is 9.23 dBi. Figure 13 depicts the convergence rates
of the GA, MFOA, and conventional FOA. �e conventional
FOA converges to other 	tness values, but the GA andMFOA
converge to the best directivity within 4 and 5 iterations,
respectively.�e optimal radiation pattern of the nonuniform
amplitude of broadside linear array with 9 elements is shown
in Figure 14.

5. Conclusion

�e modi	ed fruit 
y optimization algorithm (MFOA) with
adaptive population size can be e�ectively applied to optimize
the electrically large antenna array.�e aim of the application
of the modi	ed algorithm to the large antenna array is to
determine the optimal number of elements and element
spacing that yield the maximum directivity at #max = 90∘.
�e numerical results show that theMFOA and GA converge
to the same solution with stable convergence rate but FOA
is not converging. For the uniform spacing and nonuniform
amplitude of linear array with 9 elements, the MFOA is
employed to determine the amplitude of all elements. It is
obvious that the optimum amplitude can be found at 9 ele-
ments within 5 iterations. �e MFOA has slow convergence
rate compared with the GA. �e advantages of the proposed
algorithm are easy implementation, stable convergence rate,
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Figure 11: �e convergence rates of the GA, MFOA with adaptive
population size, and conventional FOA for uniform linear arraywith
a broadside radiation pattern.
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Figure 12: �e optimal radiation pattern of the large broadside
antenna array from the MFOA with adaptive population size.
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Figure 13: �e convergence rates of the GA, MFOA with adaptive
population size, and conventional FOA for nonuniform amplitude
of broadside linear array with 9 elements.
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Figure 14: �e optimal radiation pattern of nonuniform amplitude
of broadside linear array with 9 elements from the MFOA with
adaptive population size.

large search range, less processing time, and reducedmemory
requirement, while the GA is di�cult to set up the initial
optimization parameters.
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