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We construct new classes of modified theories in which the matter sector couples with the Einstein
tensor, namely we consider direct couplings of the latter to the energy-momentum tensor, and to the
derivatives of its trace. We extract the general field equations, which do not contain higher-order
derivatives, and we apply them in a cosmological framework, obtaining the Friedmann equations,
whose extra terms give rise to an effective dark energy sector. At the background level we show
that we can successfully describe the usual thermal history of the universe, with the sequence of
matter and dark-energy epochs, while the dark-energy equation-of-state parameter can lie in the
phantom regime, tending progressively to −1 at present and future times. Furthermore, we confront
the theory with Cosmic Chronometer data, showing that the agreement is very good. Finally, we
perform a detailed investigation of scalar and tensor perturbations, and extracting an approximate
evolution equation for the matter overdensity we show that the predicted behavior is in agreement
with observations.

PACS numbers: 04.50.Kd, 98.80.-k, 95.36.+x

I. INTRODUCTION

According to the concordance model of cosmology the
universe is currently accelerating, while it entered this
era after being in a long matter-dominated epoch. This
behavior, alongside the early accelerated era of inflation,
cannot be reproduced within the standard framework of
general relativity and Standard Model of particles, and
thus extra degrees of freedom should be introduced. One
can attribute these extra degrees of freedom to new, ex-
otic forms of matter, such as the inflaton field at early
times (for reviews see [1, 2]) and/or the dark energy con-
cept at late times (for reviews see [3, 4]). Alternatively,
one can consider the extra degrees of freedom to have
gravitational origin, i.e. to arise from a gravitational
modification that possesses general relativity as a par-
ticular limit (see [5–7] and references therein).

In order to construct gravitational modifications one
usually starts from the Einstein-Hilbert Lagrangian and
extends it in various ways, resulting in f(R) gravity [8],
in Gauss-Bonnet and f(G) gravity [9, 10], in Lovelock
and f(Lovelock) gravity [11, 12], etc (for a review see
[13]). On the other hand, one may start from the equiva-
lent, torsional formulation of gravity, and extend it in
similar ways, obtaining f(T ) gravity [14, 15], f(T,B)
gravity [16], f(T, TG) gravity [17] etc. Nevertheless, one
can consider theories in which the geometric part of the
action is coupled to the non-geometric sector. In the
case of general relativity the simplest models are those
with non-minimally coupled [18–21] and non-minimal-

derivatively coupled [22–27] scalar fields, or the gen-
eral scalar-tensor [28–30] and Horndeski/Galileon theo-
ries [31–33]. In the case of torsional gravity one can sim-
ilarly construct scalar-torsion theories [34, 35] or telepar-
allel Horndeski gravity [36, 37].
Inspired by these couplings between geometric and

non-geometric sectors, one can proceed to the construc-
tion of theories in which the gravitational sector couples
in a non-trivial way with the matter one, since there is
no theoretical reason against such interactions. The sim-
plest way is to consider that the matter Lagrangian Lm

is coupled to functions of the Ricci scalar [38–40], which
can be extended to arbitrary functions of (R,Lm) [41–
45]. Additionally, one can consider models where the
Ricci scalar is coupled to the trace of the energy momen-
tum tensor T and extend to arbitrary functions, such
as in f(R, T ) theory [46–52], or even consider terms of
the form RµνT

µν [53, 54]. Alternatively, one can follow
the same path in the case of torsional gravity, and con-
struct modifications in which the matter Lagrangian is
coupled to functions of the torsion scalar [55–57], as well
as theories where the torsion scalar is coupled to the trace
of the energy momentum tensor [58–62]. We mention
here that the above modifications, in which one handles
the gravitational and matter sectors on equal footing, do
not present any problem at the theoretical level, and one
would only obtain observational constraints only in the
case of baryonic matter due to non-geodesic motion.
In the present work, inspired by the coupling of the

scalar fields to the Einstein tensor, as well as by the cou-
pling of the matter sector to the Ricci scalar, we are in-
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terested in constructing new classes of modified theories,
in which the matter sector couples with the Einstein ten-
sor. As one can see, we can directly couple the energy-
momentum tensor to the Einstein tensor, i.e. consider
a term GµνT

µν, or we can couple the Einstein tensor
to derivatives of the trace of the energy-momentum ten-
sor, i.e. consider a term Gµν(∂

µT )(∂νT ). Interestingly
enough, similarly to the other matter-gravity couplings,
in the cosmological applications of these theories the ex-
tra terms in the Friedmann equations, although origi-
nating from the matter sector, can lead to accelerated
expansion.
The plan of the work is the following: In Section II

we present the theoretical basis of the theories with cou-
plings between matter sector and the Einstein tensor,
extracting the general field equations. In Section III we
proceed to the cosmological application, and in partic-
ular in subsection III A we investigate the background
behavior, while in subsection III B we perform a detailed
perturbation analysis. Finally, in Section IV we summa-
rize the obtained results.

II. NON-MINIMAL (DERIVATIVE)
COUPLINGS BETWEEN MATTER AND

EINSTEIN TENSOR

In this work we propose more general couplings be-
tween the geometric and the matter sectors, and in par-
ticular we study actions in which the energy-momentum
tensor and its trace couple to the Einstein tensor. We
consider actions of the form

S =

∫ √
−g d4x

{ 1

2κ2
(R− 2Λ)

+Gµν [αT
µν + β(∂µT )(∂νT )] + Lm

}

,(1)

where Gµν is the Einstein tensor, T µν is the energy-
momentum tensor defined as

Tµν = − 2√−g
δ(
√−gLm)

δgµν
, (2)

with Lm the matter Lagrangian, and T = T µνgµν is
its trace. Furthermore, κ2 is the gravitational constant,
while α and β are the coupling parameters, while for com-
pleteness we consider the cosmological constant Λ too.
Similarly to Horndeski construction [31–33] the use of
the Einstein tensor ensures that the resulting field equa-
tions will not contain higher-order derivatives.
Variation of the action with respect to the metric leads

to the following field equations

Gµν + Λgµν = κ2T̃µν = κ2[Tµν + αT (α)
µν + βT (β)

µν ], (3)

where we have defined

T (α)
µν ≡ gµνTαβG

αβ +RµνT − 2G α
ν Tµα − 2G α

µ Tνα
−RTµν −✷Tµν +∇α∇µT

α
ν +∇α∇νT

α
µ

−gµν
(

∇α∇βT
αβ

)

+ gµν✷T −∇µ∇νT

−2Ξµν , (4)

and

T (β)
µν ≡ gµνG

αβ (∇αT ) (∇βT ) + gµνR
αβ (∇αT ) (∇βT )

+Rµν (∇αT ) (∇αT )− 2 (∇α∇νT ) (∇α∇µT )

+gµν (∇α∇βT )
(

∇α∇βT
)

− gµν (✷T )
2

−2Rµανβ (∇αT )
(

∇βT
)

− 2G α
ν (∇αT ) (∇µT )

−2G α
µ (∇αT ) (∇νT )−R (∇µT ) (∇νT )

+2 (∇α∇αT ) (∇µ∇νT )

+4Gαβ∇α∇βT
(

Tµν +Θµν

)

. (5)

In the above expressions we have used that

δTαβ
δgµν

=
δgαβ
δgµν

Lm+
1

2
gαβgµνLm− 1

2
gαβTµν −2

∂2Lm

∂gµν∂gαβ
,

(6)
and we have introduced the tensors Θµν and Ξµν as

Θµν ≡ gαβ
δTαβ
δgµν

= gµνLm − 2Tµν − 2gαβ
δ2Lm

δgµνδgαβ
, (7)

and

Ξµν ≡ Gαβ δTαβ
δgµν

= −GµνLm +
1

2
Gαβgαβ

(

gµνLm − Tµν
)

−2Gαβ δ2Lm

δgµνδgαβ
. (8)

Note that due to the specific form of action (1), the
above general field equations do not contain higher-order
derivatives, and thus the theory does not suffer from
ghost instabilities. Finally, taking the covariant deriva-
tive of (3), and using that ∇µGµν = 0, we can obtain as

usual the conservation equation ∇µGµν = κ2∇µT̃µν = 0,
namely

∇µ[Tµν + αT (α)
µν + βT (β)

µν ] = 0. (9)

Lastly, we mention that in the case where α = β = 0 we
recover General Relativity and ΛCDM cosmology.

III. COSMOLOGICAL APPLICATIONS

In the previous section we constructed theories with
couplings between the Einstein tensor and the energy-
momentum tensor and its trace. In the present section we
proceed to the investigation of their cosmological appli-
cations. We consider a flat Friedmann-Robertson-Walker
(FRW) spacetime metric of the form

ds2 = −dt2 + a(t)2δijdx
idxj , (10)
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where a(t) is the scale factor. For the matter sec-
tor we consider the standard perfect fluid, with energy-
momentum tensor

Tµν = (ρm + pm)uµuν + pmgµν , (11)

where uµ is the 4-velocity which satisfies uµu
ν = −1.

Moreover, concerning the matter Lagrangian we assume
the standard form Lm = pm [38–45]. Under these con-
siderations, the tensors Θµν and Ξµν become

Θµν = −2 (ρm + pm)uµuν − pmgµν , (12)

Ξµν = −Gµνpm − 1

2
Gαβgαβ (ρm + pm)uµuν . (13)

A. Background Evolution

We start our investigation by the examination of the
background evolution. Substituting (10)-(13) into the
general field equations (3) we obtain the Friedmann equa-
tions

3H2 − Λ = κ2(ρm + ρα + ρβ) , (14)

3H2 + 2Ḣ − Λ = −κ2(pm + pα + pβ) , (15)

with H = ȧ/a the Hubble function, and where we have
introduced

ρα ≡ α
[

−6(pm + ρm)Ḣ + 3H2(pm − ρm) + 6Hṗm

]

,

ρβ ≡ β
{

− 12H(pm + ρm)(3ṗm − ρ̇m)(3H2 + 2Ḣ)

−3H2 [4(pm + ρm)(3p̈m − ρ̈m)

−3(3ṗm − ρ̇m)2
]

}

, (16)

and

pα ≡ α
{

− (3pm + ρm)(3H2 + 2Ḣ)

− [2H(3ṗm + ρ̇m) + 2p̈m]
}

,

pβ ≡ β
{

− (3ṗm − ρ̇m)2(3H2 + 2Ḣ)

−4H(3ṗm − ρ̇m)(3p̈m − ρ̈m)
}

. (17)

Additionally, in the case of FRW metric, the general con-
servation (9) becomes

ρ̇m + ρ̇α + ρ̇β + 3H (ρm + ρα + ρβ + pm + pα + pβ) = 0.
(18)

We mention here that, as expected by the form of the
general field equations (3)-(8), the Friedmann equations
(14),(15) do not contain higher-order derivatives, and
thus the theory is free from Ostrogradsky instabilities.
Nevertheless, in the theory at hand, although the field
equations are healthy, one can in principle have higher
than second order derivatives in the general conserva-
tion equation (18) (in particular in the β-term). This is

typical in all theories of non-minimal matter couplings
(see e.g. the relevant discussion in the well-known paper
[46]). However, this is not a problem, since the conserva-
tion equation is not used in order to obtain the solutions
(one uses only the two Friedmann equations), and after
one has extracted the solutions he inserts them in the
conservation equation which is trivially satisfied as ex-
pected.
As we observe, in the scenario of non-minimal coupling

between the matter sector and the Einstein tensor, we
obtain an effective dark energy sector with energy density
and pressure

ρDE ≡ Λ

κ2
+ ρα + ρβ (19)

pDE ≡ − Λ

κ2
+ pα + pβ , (20)

respectively, and thus with effective equation-of-state pa-
rameter

wDE ≡ pDE

ρDE

. (21)

Note that the above total conservation equation (18) can
be further handled in two ways. The first is to consider
that although the total energy is conserved the individual
sectors do not, namely we obtain an effective interaction
and a transfer of energy between matter and geomet-
ric sectors and vice versa, typical in all theories with
matter-geometry couplings [38–62] (this effective inter-
action, apart from other features, has the advantage that
it can alleviate the coincidence problem). The second
choice is to additionally impose by hand the standard
matter conservation equation, and thus to obtain also a
separate conservation equation for the effective dark en-
ergy sector. In the following without loss of generality
we make the first choice, and hence separately the mat-
ter sector is not conserved, however due to the imposed
parameter values the effective interaction between dark-
matter and dark energy is weak, and thus matter scales
very close to a(t)−3 as required by observations.
Let us proceed to the numerical examination of the

above Friedmann equations. Without loss of generality
we focus on the case of dust matter (pm ≈ 0). Moreover,
we introduce the density parameters as

Ωm ≡ κ2

3H2
ρm (22)

ΩDE ≡ κ2

3H2
ρDE , (23)

for the matter and effective dark energy sector respec-
tively. Finally, as usual we use the redshift 1 + z = a0/a
as the independent variable, setting the present scale fac-
tor to a0 = 1 (from now on the subscript “0” denotes the
value of a quantity at present).
We solve equations (14),(15) numerically, imposing the

conditions ΩDE(z = 0) ≡ ΩDE0 ≈ 0.7 and therefore
Ωm(z = 0) ≡ Ωm0 ≈ 0.3 in agreement with observa-
tions [63], which then determines the relation between α,
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FIG. 1: The evolution of the effective dark energy density
parameter ΩDE (black-solid) and of the matter density param-
eter Ωm (red-dashed), as a function of the redshift z, for the
scenario of non-minimal (derivative) coupling between matter
and Einstein tensor, with α = −0.05 and β = 0.01, in units
where κ2 = 1. We have imposed Ωm0 ≈ 0.3 at present time.

β and Λ. In Fig. 1 we draw the resulting evolution of
ΩDE(z) and Ωm(z). As we can see the scenario at hand
can describe the thermal history of the universe success-
fully, namely the sequence of matter and late-time ac-
celeration epochs. Additionally, in Fig. 2 we depict the
corresponding evolution of the effective equation-of-state
parameter. As we can see, wDE is algebraically smaller
in the past, while it is closer to −1 at present time, as
required by observations, before going asymptotically to
−1 in the future where the cosmological constant domi-
nates. Note that in this example wDE lies in the phantom
regime despite the fact that the effective dark-energy sec-
tor constitutes from dust matter terms. This is typical
also in other scenarios of couplings between matter and
geometry mentioned in the Introduction, and reveals the
capabilities of such interactions [38–52, 55–62].

For consistency purposes, we close this subsection
by a brief confrontation with the Cosmic Chronometer
datasets, which are based on the H(z) measurements
through the relative ages of massive and passively evolv-
ing galaxies and the corresponding estimation of dz/dt
[64]. In Fig. 3 we compare the H(z) evolution predicted
from our scenario, with the H(z) Cosmic Chronometer
data from [65] at 3σ confidence level, while for complete-
ness we present the ΛCDM curve too. As we observe
the agreement is very good, and the H(z) evolution lies
within the errors of the direct measurements of H(z),
exhibiting a slightly higher accelerating behavior in the
past due to the phantom nature of dark energy in these
examples.
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FIG. 2: The evolution of the effective dark-energy equation-of-
state parameter wDE, as a function of the redshift z, for the
scenario of non-minimal (derivative) coupling between matter
and Einstein tensor, with α = −0.05 and β = 0.01, in units
where κ2 = 1. We have imposed Ωm0 ≈ 0.3 at present time.
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FIG. 3: The H(z) in units of Km/s/Mpc as a function of
the redshift, for or the scenario of non-minimal (derivative)
coupling between matter and Einstein tensor, with α = −0.05
and β = 0.01 (red-dashed), and with α = −0.01 and β = 0.001
(blue-dotted) in units where κ2 = 1, on top of the Cosmic
Chronometers data points from [65] at 3σ confidence level.
For comparison we also present the ΛCDM curve (black -
solid). We have imposed Ωm0 ≈ 0.3.

B. Cosmological perturbations

In this subsection we perform a detailed perturbation
analysis of the theory at hand in the linear regime [66–
72]. Concerning the scalar perturbations we start form
the standard perturbed metric of isentropic perturba-
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tions in the Newtonian gauge:

ds2 = − (1 + 2φ) dt2 + a2δij (1− 2ψ) dxidxj ,

and as usual we consider the expressions

δT 0
0 = −δρm

δT i
j = δpmδij

δT i
0 = − (ρm + pm)

a
∂iV

δT 0
i = a (ρm + pm) ∂iV, (24)

where V is defined through uµ = a (−φ, ∂iV ). Hence,
inserting these in the general field equations (3), and
using additionally the background Friedmann equations
(14),(15) to eliminate terms, we finally obtain the time-
time and the space-diagonal equations respectively given
by

6H(Hφ+ ψ̇)− 2
∇2

a2
ψ = −κ2

{

δρm + α
{

3(H2 − 2Ḣ)δpm + 6Hδṗm − 3(H2 + 2Ḣ)δρm + 6 (ρm + pm) ψ̈

+6
[

H2 (ρm − pm)− 2Hṗm + 2Ḣ (ρm + pm)
]

φ+ 6H (ρm + pm) φ̇+ 6 [H (ρm − pm)− ṗm] ψ̇

+
∇2

a2
[4H (ρm + pm) aV + 2 (ρm + pm)φ− 2 (ρm − pm)ψ − 2δpm]

}

+β
{

− 36H2 (ρm + pm) δp̈m − 18[6H3 (ρm + pm) + 4HḢ (ρm + pm) + 3H2 (ρ̇m − 3ṗm)]δṗm

+12H
[

(2Ḣ + 3H2) (ρ̇m − 3ṗm) +H (ρ̈m − 3p̈m)
]

(δρm + δpm)

+6H [(4Ḣ + 6H2) (ρm + pm) + 3H (ρ̇m − 3ṗm)]δρ̇m + 12H2 (ρm + pm) δρ̈m

+
{

(144H3 + 96HḢ) [3pmṗm + ρm (3ṗm − ρ̇m)− pmρ̇m]

+12H2
[

12pmp̈m − 3 (3ṗm − ρ̇m)
2
+ 4ρm (3p̈m − ρ̈m)− 4pmρ̈m

]}

φ

+36H2 [3pmṗm + ρm (3ṗm − ρ̇m)− pmρ̇m] φ̇+
{

4(27H2 + 6Ḣ) [3pmṗm + ρm (3ṗm − ρ̇m)− pmρ̇m]

+6H
[

12pmp̈m − 3 (3ṗm − ρ̇m)
2
+ 4ρm (3p̈m − ρ̈m)− 4pmρ̈m

]}

ψ̇ + 3H [24pmṗm + 8ρm (3ṗm − ρ̇m)− 8pmρ̇m] ψ̈

+4
[

(2Ḣ + 3H2) (ρm + pm) +H (ρ̇m − 3ṗm)
] ∇2

a2
(3δpm − δρm) + 8H (ρm + pm) (3ṗm − ρ̇m)

∇2

a2
φ

+2
[

(3ṗm − ρ̇m)
2 − 12pmp̈m + 4H (ρm + pm) (ρ̇m − 3ṗm) + 4pmρ̈m + 4ρm (ρ̈m − 3p̈m)

] ∇2

a2
ψ
}}

, (25)

2
(

3H2 + 2Ḣ
)

φ+ 2H
(

φ̇+ 3ψ̇
)

+ 2ψ̈ +
∇2

a2
(φ− ψ) = κ2

{

δpm

−α
{

2δp̈m − 4p̈mφ+
(

3H2 + 2Ḣ
)

[3δpm + δρm − 2 (ρm + 3pm)φ]− 2ρ̇ψ̇ − 2ψ̈ (ρm + 3pm)

+2H
[

3δṗm + δρ̇m − 2 (ρ̇m + 3ṗm)φ− (ρm + 3pm)
(

φ̇+ 3ψ̇
)]

− 2ṗm

(

φ̇+ 3ψ̇
)

+
∇2

a2

{

2 [ρ̇m + ṗm + 2H (ρm + pm)]aV + 2 (ρm + pm) aV̇ − δpm + δρm + (ρm − pm) (φ− ψ)
}}

−β
{

2
(

2Ḣ + 3H2
)

[

3ṗm (3δṗm − δρ̇m)− 2φ
(

9ṗ2m + ρ̇2m
)

+ ρ̇m (δρ̇m − 3δṗm + 12ṗmφ)
]

−12ṗm (3p̈m − ρ̈m) ψ̇ + 4H
{

3p̈m (3δṗm − δρ̇m) + ρ̈m (δρ̇m − 3δṗm + 12ṗmφ) + ṗm (9δp̈m − 3δρ̈m − 36p̈mφ)

−3

2

(

9ṗ2m + ρ̇2m
)

(

φ̇+ ψ̇
)

+ ρ̇m

[

δρ̈m − 3δp̈m + 4 (3p̈m − ρ̈m)φ+ 9ṗm

(

φ̇+ ψ̇
)]}

−2
(

9ṗ2m + ρ̇2m
)

ψ̈ + 4ρ̇m

[

(3p̈m − ρ̈m) ψ̇ + 3ṗmψ̈
]

+2
∇2

a2

{

[H (ρ̇m − 3ṗm) + ρ̈m − 3p̈m] (3δpm − δρm)− (3ṗm − ρ̇m)2 (φ+ ψ)
}}}

, (26)
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while the space non-diagonal equation reads as

ψ − φ = −κ2
{

α
{

δpm − δρm

−2a [2H (ρm + pm) + ṗm + ρ̇m]V

−2a (ρm + pm) V̇ + (ρm − pm) (ψ − φ)
}

+β
{

2 [H (3ṗm − ρ̇m) + 3p̈m − ρ̈m] (3δpm − δρm)

+ (3ṗm − ρm)
2
(φ+ ψ)

}}

. (27)

Note that the last equation implies that the anisotropic
stress in the scenario at hand is non-zero, and it becomes
zero in the case α = β = 0.
For completeness, we investigate the tensor perturba-

tions, too. As usual we consider

ds2 = −dt2 + a2
(

δij + 2hij
)

dxidxj ,

where hij is transverse and traceless. Hence, we finally
obtain the tensor equation

ḧij + 3Hḣij −
∇2

a2
hij = κ2

{

α
{

(ρm + 3pm) ḧij

+ [3H (ρm + 3pm) + ρ̇m + 3ṗm] ḣij

+(ρm−pm)
∇2

a2
hij

}

+β
{

(3ṗm − ρm)
2
ḧij + (3ṗm − ρm)

2 ∇2

a2
hij

+
[

3H (3ṗm − ρm)2 + 6ṗm (3p̈m − ρ̈m)

+2ρ̇m (ρ̈m − 3p̈m)] ḣij

}}

. (28)

Let us now focus on the scalar perturbations, and in-
troduce as usual the important quantity δ ≡ δρm

ρm

, namely

the matter overdensity. Inserting δ into (25)-(27), con-
sidering dust matter, and transforming as usual to the
Fourier space, with k the wavenumber, we extract the
evolution equation for δ, which can be solved numerically.
However, in order to further simplify the expressions, we
assume small deviations from ΛCDM cosmology, namely
κ2(ρα + ρβ) ≪ Λ, which implies small values for α and
β (α, β ≪ (κ2H2)−1), and moreover we focus on sub-
horizon scales, i.e. with k ≫ aH , and for the sound

speed we consider c
(m)2
eff ≡ δpm/δρm ≪ 1. Hence, we

result in the following equation:

δ̈ + 2Hδ̇ +
κ2ρmδ

{

6βρmρ̇mH
2 +

(

k2 + 8βρmḢ
)

ρ̇m +H
[

4βρ̇2m + 3ρm (α− 2βρ̈m)
]

}

2k2ρ̇m [−1 + κ2β (3Hρmρ̇m + ρ̇2m + 4ρmρ̈m)]
= 0.

The above equation determines the evolution of matter
overdensity in the scenario at hand. We can bring it in
the more convenient form [68–72]

δ̈ + 2Hδ̇ − 4πGeffρmδ = 0,

by defining an effective gravitational constant

8πGeff = κ2eff ≡
κ2

{

6βρmρ̇mH
2 +

(

k2 + 8βρmḢ
)

ρ̇m +H
[

4βρ̇2m + 3ρm (α− 2βρ̈m)
]

}

k2ρ̇m [1− κ2β (3Hρmρ̇m + ρ̇2m + 4ρmρ̈m)]
.

As expected, when the nonminimal derivative coupling switches off, i.e. in the case α = β = 0, we obtain κ2eff =
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κ2 and thus Geff = G and hence we recover the results of
ΛCDM cosmology.
In order to provide a more transparent picture of the

behavior of perturbations and the features of the large
scale structure, in Fig. 4 we depict the evolution of δ
as a function of the redshift. As we observe, the theo-
ries with nonminimal (derivative) coupling between mat-
ter and the Einstein tensor can describe the evolution of
the large scale structure in agreement with observations.
Furthermore, this evolution is sensitive to the coupling
parameters, hence one can use fσ8 data in order to ex-
tract constraints on them and break possible degeneracies
that may appear at the background level.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

z

δ

FIG. 4: The evolution of the matter overdensity δ ≡
δρm
ρm

, as
a function of the redshift z, for the scenario of non-minimal
(derivative) coupling between matter and Einstein tensor, with
α = −0.1, β = 0.1 (black-solid), α = −0.2, β = 0.2 (red-
dashed), and α = −0.5, β = 0.4 (blue-dotted), in units where
κ2 = 1, at scale k = 10−3hMpc−1. We have imposed Ωm0 ≈

0.3 at present time.

IV. CONCLUSIONS

In this work, inspired by the coupling of scalar fields to
the Einstein tensor, as well as by the coupling of the mat-
ter sector to the Ricci scalar, we constructed new classes
of modified theories in which the matter sector couples
with the Einstein tensor. In particular, we considered a
direct coupling of the energy-momentum tensor to the
Einstein tensor, and a coupling of the Einstein tensor
to the derivatives of the trace of the energy-momentum
tensor.
Firstly, we extracted the general field equations, which

comparing to General Relativity include corrections de-
pending on the two coupling parameters of the the-
ory. Then we proceeded to the cosmological application
around a flat FRW background, and at the background
level we extracted the Friedmann equations from the gen-
eral field equations, whose extra terms can be absorbed
in an effective dark energy sector.
Assuming the matter sector to be dust we elaborated

the equations numerically, and we saw that the scenario

at hand can successfully describe the usual thermal his-
tory of the universe, with the sequence of matter and
dark-energy epochs. Additionally, we examined the dark-
energy equation-of-state parameter and we showed that
it can lie in the phantom regime, tending progressively to
−1 at present and future times. It is interesting to men-
tion that this behavior is obtained although the effective
dark-energy sector constitutes from matter terms, nev-
ertheless it is not uncommon in theories with couplings
between matter and geometry. Finally, for completeness
we confronted the theory with Cosmic Chronometer data,
showing that the agreement is very good, and that the
predicted H(z) evolution lies within the errors of the di-
rect measurements of H(z), exhibiting a slightly higher
accelerating behavior in the past due to the phantom na-
ture of dark energy.
We proceeded to the detailed investigation of the per-

turbations, both scalar and tensor ones. Focusing on
scalar perturbations, we extracted the evolution equation
of the matter overdensity, which is a crucial observable
since it quantifies the matter clustering and the large
scale structure. Elaborating the equation numerically,
we saw that the predicted evolution of the matter over-
density is in agreement with observations.
It would be both interesting and necessary to perform a

full observational confrontation with joined datasets from
Cosmic Microwave Background (CMB), Baryonic Acous-
tic Oscillations (BAO), Supernovae Type Ia (SNIa), and
Redshift space distrotion (RSD) fσ8 observations, in or-
der to extract constraints on the new coupling parame-
ters. Additionally, one could perform a detailed phase-
space analysis in order to investigate the asymptotic be-
havior of the scenario, independently of the initial con-
ditions and the specific evolution of the Universe. More-
over, it would be interesting to examine the possible al-
leviation of the H0 and S8 tensions [73] in these theories
(the fact that we obtain effective phantom behavior is a
promising feature). Finally, apart from the linear per-
turbation analysis, whose equations have been presented
in this work, we should investigate the the non-linear
perturbations too, since they play a crucial role when
gravitational instability grows enough to understand the
formation of Large Scale Structure. Such studies lie be-
yond the scope of the present work and are left for future
projects.
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