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Abstract Itis shown that if a metric in quantum gravity can
be decomposed as a sum of classical and quantum parts, then
Einstein quantum gravity looks approximately like modified
gravity with a nonminimal interaction between gravity and
matter.

1 Introduction

We know two strongly nonlinear physical theories: quan-
tum chromodynamics and gravity. The nonlinearities in the
two theories are different: in quantum chromodynamics, the
nonlinearity is connected with potential terms but in gravity
the nonlinearity appears in kinetic terms. The quantization
of both theories has severe problems, because we only have
quantization techniques for weakly interacting fields. In the
1950s, Heisenberg [1] has investigated a nonlinear spinor
field theory and worked out a nonperturbative technique for
such a kind of quantization. The essence of his method is to
write an infinite set of equations for all Green’s functions.
Such a set of equations probably cannot be solved analyti-
cally and a way to solve such a set is to cut it off to obtain
a finite set, taking into account some physical arguments for
the cutoff. This situation is similar to turbulence modeling,
where there exists a similar set of equations for all cuamulants
(see Ref. [2] for details).

The idea presented here is as follows: we consider a phys-
ical system in quantum gravity where the quantum metric G
can be represented as a sum of a classical part, g, and a quan-
tum part g. In doing so, we here assume that the expectation
value of the quantum part, (g), is not equal to zero. This gives
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rise to a modification of Einstein gravity that results in the
appearance of a nonminimal interaction between gravity and
matter. To calculate the modified gravitational Lagrangian,
we also assume that the expectation value of the quantum part
of the metric can be approximately presented as an expression
which depends on the classical part of the metric. Taking into
account the aforementioned decomposition of the metric and
retaining only terms up to first order in (g), we find the corre-
sponding matter Lagrangian. As a result, we obtain modified
gravity with a nonminimal interaction between gravity and
matter.

Modified gravity theories are used both in modeling the
evolution of the early Universe and in describing its present
accelerated expansion.

In particular, in recent years much success has been
achieved in models where dark energy is described on the
basis of modified gravity (for a review, see Refs. [3,4]).

2 Nonperturbative quantization technique

When quantizing gravity, there are several stages for per-
forming this procedure. In the first step, the metric is con-
sidered as an ordinary (tensor) field. In the next step, one
considers changes of topology, metric signature, etc. Here
we consider only the first stage of the quantizing procedure,
using Heisenberg’s nonperturbative technique. According to
this technique, one has to use either the Einstein equations
for operators of the metric and connections or (equivalently)
an infinite set of equations for all Green’s functions.
The operator Einstein equations are

R;,w - _g,uvR = X1y, (D
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where all geometrical quantities are defined in the usual man-
ner from the corresponding operators

R;,w - Rpp,pw (2)
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Heisenberg’s technique offers to use an infinite set of equa-
tions for all Green’s functions, which can be written as fol-
lows:

(Qlg(x1) - (Eq. )|Q) =0, (%)
(Qlg(x1&(x2) - (Eq. D|Q) =0, (6)
...=0, (7
(Q] the product of g at different points (xq, ..., x,)
-(Eq.D]Q) =0, (3)

where |Q) is a quantum state (see Ref. [5] for details).

In all likelihood the set of Eqs. (5)—(8) cannot be solved
analytically. But there are two possibilities to find an approx-
imate solution to these equations. The first way consists in
cutting off the set of equations by using some decomposition
of the form G, 4, = G,,,G, (here G; is an i-point Green’s
function) and taking into account only the first p < m +n
equations. The second way is to take some functional (for
example, an action) and to average it using some assump-
tions about expectation values of metric operators.

Here we use the second way, decomposing the metric oper-
ator g, into classical and quantum parts and considering the
expectation value of the quantum part as being non-zero. We
then calculate the expectation value of the Lagrangian to first
order in (8g). These calculations are performed in the man-
ner similar to the ones used in Ref. [6] when considering
quantum torsion.

3 Decomposition of the quantum metric
The key idea we are dealing with here is that the quantum

metric G, can be decomposed into two parts: the classical
metric g,,, and the quantum metric g,

gu.l) = 8uv +§uv 9

together with the assumption that

(8uv) # 0. (10)
In order to derive the modification of the Lagrangian

induced by the quantum corrections (g,..,), we have to expand
the Lagrangian to first order in (g},,,). To do this, we start from
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the Einstein—Hilbert Lagrangian

2
Lg=-J=Gr, an
2x
where » = 87w G/c?. Next, to find corrections to this
Lagrangian induced by the quantum corrections (g,,), we
assume that the Lagrangian can be expanded in the follow-
ing manner:

8L
- ?w = Eg(g) +v—8 le?w’

Lg(g+3) ~ Lg(g) + 5
(12)

where G, is the Einstein tensor, and

2
c
L(g) = —5-v/ R

denotes the classical (nonquantum) Lagrangian. In turn, the

expectation value of aiﬁv g™ can be represented as follows:

SCe o\ 0L ,
<8g—;§“ >= sgn @) = V=8 G @), (13)

Now we have to make some physically reasonable
assumptions about the expectation value (g*"). We assume
the following.

e The expectation value (g"") is non-zero:

(8uv) # 0. (14)

e As a starting approximation, (g,,) can be expressed in
terms of some tensor of rank two constructed from the

metric g,:
(8uv) = Kuv. (15)

e The tensor K, should have the same symmetry as the
metric g:

K,y =Ky,. (16)

e Taking into account the symmetry properties mentioned
above, one can see that there exist the following possi-
bilities of choosing the tensor K ,,:

- K,y is proportional to the metric tensor:
Ky o gpuv. amn
- K, is proportional to the Ricci tensor:

R
Ky o ;”. (18)
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e The proportionality coefficient in the expressions (17)
and (18) should be some invariant. Consequently, it must
have the form F (R, R;, R"", ...). This yields

() = Kjw = F(R, Ry R™Y, ) g (19)
_~ I R;w
(g/w> =K[,LU=F(R7 R/wR ’”.)T; (20)

— oralinear combination of (19) and (20). For example,
it could be the Einstein or Schouten tensor.

The coefficient F should be very small as g,., — 1,
where 7,,, is the Minkowski metric.

Thus the Lagrangian (12) with the aforementioned assump-
tions about the expectation value of the quantum part g,,, of
the metric G,,, has the form

2

(Lo(s+8) ~ —5-V=8(R + G k™). 1)
Hence we see that the quantum corrections coming from a
non-zero expectation value of the nonperturbatively quan-
tized metric give rise to modified gravity theories.

Let us now perform similar calculations for the matter
Lagrangian, applying the decomposition (9). For simplicity,
we consider a scalar field for which the Lagrange density is

1
£9=V=g [Evmpvm - v<¢>} =V=GLn(®), (@2

with the classical Lagrangian

1
Lm(g) = EV“QWM — V(o).

To begin with, we expand the quantum Lagrange density £§1
from Eq. (22) as follows:

8 /—gL
L8 +8) ~ /=g Ln(e) + =5 (23)
The first variation of L,, is well known:
SV=8n 78 Ve
5ghv 2= > [Vu¢vv¢_guv£m] = TT/,LV’ (24)

where T}, is the energy-momentum tensor. Consequently,
we have

1 1
(L +2) = «/_[ VEGVd = V(@) + 5 T,WK’”}
(25)

Thus we have obtained a scalar field nonminimally coupled
to gravity.
Let us now consider a few cases with various tensors K ;.

3.1 The case K, = g,nu

Substituting (19) into (21) and (25), we obtain
c2

(Lg(g +8) ~ —5- (1 —)RV=g.

(LI +8) ~ /=8 [Lm + aTl].

It is seen that Eq. (26) assumes the redefinition of the gravi-
tational constant x.

(26)
27

3.2 The case K, = —A 5L

Again, substituting (19) in (21) and (25), we obtain

2
(Lg(g +73) ~ —g—% (R + A) /=3,

28)
A
(95 +) ~ V=g [zm - ET;‘] . 29)

Hence we see from (28) that we have obtained Einstein grav-
ity with a cosmological A-term and matter nonminimally
coupled to gravity [see Eq. (29)]. If A/R < 1 then the cou-
pling between matter and gravity becomes minimal, and we
have

(L(g+72) = Eg(g+A)+£g(g+“)

N8 [_ﬂ (R+A) + EV”¢VM¢ - V(¢>)] - (30

3.3 The case K, = aRy,

Substituting (20) into (21) and (25), we obtain

2
(Lo(g+ D)~ —g— (R—%Rz—i—aR,wR’“’) J=z. (D
(L5 (8 + D) ~ V= (Ln+ 5 TwR™). (32)

where the dimensions of « is cm?.

3.4 The case K, = aGy,

Representing the linear combination of (19) and (20) as the
Einstein tensor and substituting it into (21) and (25), we
obtain

2
(Lo(g+2) ~ —C—(R + aG,wG'”)J_— ,

<£2<g+§>>w¢_(c +35 G ).

(33)

(34)
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4 Discussion and conclusions

Thus we have shown that if a metric in quantum gravity can
be represented as a sum of classical and quantum parts then
such a gravitating physical system looks approximately as
being described by modified gravity, in which a nonminimal
interaction between matter and gravity is present. The mod-
ification of gravity occurs as a consequence of the presence
of a non-zero expectation value of the quantum part of the
metric.

In particular, proceeding along these lines, by a specific
choice for the expectation value of the quantum metric, we
can obtain a A-term as a consequence of the fluctuating part
of the metric. Such a model then explains qualitatively the
smallness of the cosmological term: it is just the expectation
value of quantum fluctuations of the metric. At the present
epoch these fluctuations should be very small. Following this
way, we have also shown that quantum fluctuations lead to a
nonminimal interaction between gravity and matter.

We note here that attempts to obtain the cosmological con-
stant from quantum effects are not new. In curved space-
time the regularization of quantum fields gives rise to a
one-loop effective Lagrangian for the gravitational field,
which (for example, for an FRW universe) becomes L7y =
Aoo + R/167G oo + asoR* + Boo Ry R*Y (for details, see
e.g. Refs. [7-9]). Unfortunately, such calculations do not
give good values for the induced cosmological constant. For
example, for the best QCD estimation the vacuum energy
density is pgocp ~ 103GeV*, which is considerably larger
than the observed value py,c ~ 1047 GeV*. In contrast,
in our approach employed here quantum corrections arise
from the nonperturbative quantization of the metric, and not
from the perturbative quantization of various types of fields
(scalar, electromagnetic, QCD).

It must be emphasized that the model under considera-
tion assumes that for each quantum state |Q) there exists a
unique function F (R, R, R"”,...). Thus, one can say that
F-gravities are dynamical ones in the sense that for different
quantum states we have different functions F.
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