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This paper introduces Modified Altitude- and Dive-Guidance laws for escaping a microburst with turbulence.
The goal is to develop a procedure to estimate the highest altitude at which an aircraft can fly through a
microburst without running into statl. First, a new metric is constructed that quantifies the aircraft upward
force capability in a microburst encounter. In the absence of turbulence, the metric is shown to be a
decreasing function of altitude. This suggests that descending to a low altitude may improve safety in the
sense that the aircraft will have more upward force capability to maintain its altitude. In the presence of
stochastic turbulence, the metric is treated as a random variable and its probability distribution function is
analytically approximated as a function of altitude. This approximation allows us to determine the highest
safe altitude at which the aircraft may descend, hence avoiding to descend too low. This highest safe
altitude is used as the commanded altitude in Modified Altitude- and Dive-Guidance. Monte Carlo
simulations show that these Modified Altitude- and Dive-Guidance strategies can decrease the probability
of minimum altitude being lower than a given value without significantly increasing the probability of crash.
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1 INTRODUCTION AND PROBLEM STATEMENT

Microbursts are a hazard for landing aircraft, and associated escape strategies have been
studied in the literature (see Ref. [1] for a list of related references). Among these studies,
only Refs. [5, 11, 13, 14] suggest that an initial descent may improve the safety of an escape
maneuver. However, Refs. [5, 11, 13] use point-mass aircraft models and do not consider the
effect of turbulence, stall prevention action, or air vorticity on escape performance.

A recent study [14], using a 6-DOF aircraft model and taking into account the effects of
turbulence, stall prevention and air vorticity, showed that the probability of crash decreases as
the commanded altitude decreases as long as the commanded altitude is higher than an
optimal value. However, for moderate microburst, it may be possible to safely recover with a
higher commanded altitude. On the other hand, an attempt to fly too high, with Altitude-
Guidance, causes the aircraft to stall and, with Dive-Guidance, results in an even lower
minimum altitude. This, in return, increases the risk of crash. The goal of this work is to
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improve upon [14]; specifically when a microburst is encountered, to determine the highest
altitude that an aircraft can maintain without running into stall and to fly the aircraft at that
altitude. This highest altitude, called “critical altitude”, A in this paper, will, of course,
depend on the aircraft energy state and the strength of the microburst and the turbulence.
Note that Ref. [3] provides a formula for selecting the target altitude, based on optimal
trajectory studies of a point-mass model of an aircraft flying in a vertical plane through a
microburst without turbulence.

Since the critical altitude, by definition, is the highest commanded altitude with which the
aircraft with Altitude-Guidance can fly though a microburst without running into stall, it can
be determined by using the full, non-linear, 6-DOF flight simulator developed in [14].
However, the goal here is to develop a procedure to estimate the critical altitude that can be
used onboard to decide on the commanded altitude for Altitude- or Dive-Guidance. This
paper provides a procedure to determine the critical altitude for a microburst encounter,
depending on the strength of microburst and the aircraft energy state. Thus, the aircraft is
prevented both from descending unnecessarily to an optimal altitude and from flying so high
that it runs into stail. This goal is achieved by utilizing a new quasi-static lift-capability factor
constructed in this paper.

Before presenting details, we show a comparison of the critical altitude determined by the
flight simulator and its estimation by our procedure. Figures 1 and 2 show the comparison in
different microbursts obtained by varying £, and f;, respectively. The figures show that the
estimation procedure captures the trend of the critical altitude, that is, as the microburst
becomes stronger the critical altitude decreases. Both figures suggest that the procedure
always underestimate the critical altitude. Although underestimation means the commanded
altitude will be lower, i.e. the aircraft would fly through the microburst safely with com-
manded altitude higher than the estimate of the critical altitude, there is no risk of attempting
to fly higher than the critical altitude, which would increase the probability of crash overall
[14]. Underestimation is due to the fact that a “quasi-static” lift-capability factor is used for a
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FIGURE 1 The critical altitude and its estimate vs. fj,.
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FIGURE 2 The critical altitude and its estimate vs. f,.

very dynamic problem. The main reason to use a quasi-static factor is to find a procedure
simple enough to be used onboard to estimate the critical altitude.

In this study, we first define this lift-capability factor, that quantifies the uwpward force
capability of the aircraft, and show that, in the absence of turbulence, it is a decreasing
function of altitude. Then, in the presence of stochastic turbulence, we treat the lift-capability
factor as a random variable, and its probability density function (PDF) is approximated
analytically as a function of altitude. This analytical approximation allows us to estimate the
critical altitude in the sense that the aircraft flies with minimum, or prespecified, probability
of failing to have enough vertical force capability to maintain the altitude. This critical al-
titude is used as commanded altitude in the Modified Altitude and Dive Guidance Strategies
that we propose. Our results suggest that, under the assumptions of this paper, aititude- and
dive-guidance can be improved by this modification, in that we can decrease the probability
of minimum altitude being less than a given value without compromising the probability of
crash. Hence, in a microburst encounter, the critical altitude can be computed using in-
formation on the microburst and aircraft energy state, and the aircraft can be guided to fly at
that altitude with minimum or prespecified probability of failing to have enough vertical force
capability. Like in Ref. [14], Modified Altitude-Guidance appears to perform better than the
other escape strategies.

2 MATHEMATICAL MODEL

The equations of longitudinal aircraft motion (including the effect of windshear) used in this
paper are equivalent to those given in Ref. [14]. Aircraft data and aerodynamic coefficients
used in this study are representative of a large, jet-engine commercial transport airplane in
landing configuration [15].
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The equations of translational dynamics and kinematics are written in terms of ¥, airspeed,
o, angle-of-attack, x, longitudinal distance from the runway threshold and z, vertical down-
ward direction into the ground:

V =—gsin(0 —a) + %[—D + T cos(a + 3)]
— Wy cos(0 — a) + W, sin(8 — ), (H

o'c=q+%cos(0—o¢)—alf;[L+Tsin(oc+6)]

Wy . A
- 7sm(0 — o)~ —i/—cos(() —a), 2
x =V cos(0 — a) + W,, (3
z=—V sin(0 — o) + W, “

where g is the acceleration of gravity, 0 is the angle between thrust direction and zero-lift
axis, and m is the mass of the aircraft. The equations of rotational dynamics and kinematics,
in terms of ¢, angular velocity around body y-axis, and 6, pitch angle, are

M
Iyy
0=q, (6)

where 1,,, is the moment of inertia around body y-axis. The equation for engine dynamics, in
terms of ¢, throttle response, is

1
E=—E-0. ™

where £, is the throttle setting. The above equations are based on the following assumptions:
(i) the wind flow is steady, (ii) the earth is flat and non-rotating, (iii) the aircraft weight is
constant, (iv) the flight is in a vertical plane. The thrust T is assumed to have a fixed in-
clination J relative to the zero-lift axis, but the thrust vector remains in the aircraft plane of
symimetry.

The throttle response is modeled as a first-order lag with time constant 7. The maximum
thrust, Tax, is assumed to be a function of airspeed only, i.e.

T = éTmam (8)

where

Towax = To + WV + V2. ©9)
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The aerodynamic drag and lift forces and their coefficients are

D= %szscD, (10)
L =%pVZSCL, (11)
where {15]
Cp = Cp, + Cp,4, (12)
CL=Cp +Cra+Cy, %q + Ci;, 0e, (13)

where p is air density, S is wing area and J, is the elevator deflection. The aerodynamic
pitching moment and its coefficient are

M =1pV28cCp + TAz, (14)
where [15]

C
CMszu“+CMa¢5€+CM4—27q’ (15)

where ¢ is the chord and Az is the moment arm of thrust around body y-axis. Note that the
effect of thrust on pitching moment is taken into account. In the mathematical model the
control variables are: thrust setting, &,; and elevator deflection, d,. They are constrained by

0<£t51?

(16)
- 20° < d, < 20°.

The 1-g stall speed of a large airliner jet with weight of 564,000 Ibs and 30° flap setting (gear
down) is 61 m/s [16]. If airspeed drops to the stall speed while angle-of-attack, o, is greater
than omax, (Which is 17.2° [3]), the aircraft is assumed to stall.

The microburst model [5] used herein is axisymmetric, three-dimensional, and stationary.
The induced radial and vertical deterministic wind velocities at any point in three-dimen-
sional space can be computed through the following relations

i — ( 100 B 100 ) an
" " \[(r = D/2)/200) + 10 [(r + D/2)/200200F + 10/

d_ _o [ 04r
Wi =~ ((r/400)“+10)’ (13)

where

r=y&-x)’+2 (19)

where £ is altitude, £, is intensity of the horizontal shear, f, is intensity of the downdraft, # is
the radial distance from the microburst center, D is the diameter of the peak radial
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outflow-velocity contour, and (x.,y.) is the position of the microburst center in (x,y)
coordinates, and W), is positive in vertical upward direction. Using polar coordinates, the
horizontal deterministic wind component, W¢, can be readily related to the radial wind
component, W

w4 = cosy, Wi(r), (20)

where y,, is the angle between the direction of radial wind and x-axis. Stochastic turbulence
is superimposed on the deterministic wind components of Eqs. (18) and (20). Thus,

Wy=W{ +dy We=W+d, 1)

where dj, and d, are the turbulence components in vertical and horizontal directions,
respectively. The turbulence components in inertial frame are related to those in body frame
by a rotation matrix as follows:

dy = cos 0 ug + sin O wy, (22)
dp = sin@uy — cos O wyg, (23)

where 1, and wy are turbulence components in body x- and z-axis, respectively. Turbulence is
modeled using the Dryden Power Spectral Density (PSD) functions. State variable models for
ug and wy, respectively, are [17]

g = —Auttg + VKt (24)

R MR

wg=\/1<_w[ﬁw1][x;],

(25)
X

where #, and 5, are signals from independent white noise sources. The intensity of the
w-component of turbulence in body-fixed frame (g, ) is chosen to be 4, which corresponds
to severe storm. The intensities of the other components are computed using the assumption
that the intensities of the three translational components of turbulence are isotropic. All the
coefficients in Egs. (24), (25) depend on altitude through so-called turbulence scale
lengths [17]:

Ly, =h, L, =145h"". (26)
In this microburst model with turbulence, we assume that turbulence and microburst wind-
shear can be modeled independently. Experimental evidence suggests that turbulence length
scales increase through a microburst and, in some unknown manner, depend on microburst
size and strength [18]. Such a functional dependence between turbulence and microburst
parameters will result in a nonstationary and non-Gaussian wind process description [10].
This functional dependence is neglected in this study.
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3 DETERMINISTIC ANALYSIS

3.1 Construction of a Lift-capability Metric

Upon encountering a microburst, in the absence of turbulence, descending to a lower altitude
generally results in safer recovery because of two separate reasons: (i) the special structure of
the wind field in a microburst and (ii) trading altitude for airspeed.

The first mechanism can be understood as follows. In a microburst, the air moves
downward, causing a downdraft and, near the ground, spreads outward, resulting in horizontal
windshear. The velocity of downdraft decreases with altitude due to the stagnation level on
the ground. Thus, flying at a lower altitude through the microburst will expose the aircraft to
downdraft of smaller magnitude.

As the second mechanism, once the escape maneuver is initiated, altitude is traded for
airspeed and the aircraft flies with high airspeed through the core of the microburst, where the
downdraft is most severe. The benefit of this mechanism can be understood by considering
the effect of the microburst on aerodynamic lift, which can be reduced by windshear in two
ways. First, a wind speed change along the flight path will produce a direct initial effect on
lift in proportion to the change in airspeed. Second, a vertical windshear will change lift by
changing the angle of attack directly without affecting airspeed initially. A windshear that
acts to reduce airspeed or angle of attack will reduce aerodynamic lift and result in a dete-
riorating flight path [2]. Thus, if an aircraft enters a microburst with higher airspeed gained
by trading off altitude, the airspeed fluctuation due to windshear will be smaller relative to the
original airspeed. Additionally, angle of attack changes due to the vertical windshear will be
smaller than when flying with low airspeed. Therefore, aerodynamic lift reduction due to
the windshear and downdraft will be relatively small in the case of higher airspeed.

Now, we will define a lift-capability metric, Ly, that quantifies the aircraft maximum
capability of generating an upward force, and compare different escape trajectories using this
metric. The lift-capability metric presumes the following quasi-static scenario in the absence
of turbulence: The aircraft is flying horizontally in the microburst, i.e. the instantaneous
absolute velocity of the aircraft is horizontal, and the flight is longitudinal. Under these
conditions we compute the maximum force that would be available to initiate a climb.

Note that W), = W and W, = W¢ due to the assumption, in this section, that there is no
turbulence. As can be seen from Figure 3, the sum of the vertical forces, except the weight of
the aircraft, with the positive direction being upward, is

F, =L cos(f —a)— D sin(f —a)+ T sinb. 27

Since maximum thrust is used in microburst escape maneuvers, the only way to change the

vertical force is to change the pitch angle, 8. So, we define the lift-capability metric as the
ratio of the maximum available F, to the weight, ¥:
maxo(F,)

Lr=——F—. 28

f W (28)

To evaluate maxgy(F,) we need to write F,, as a function of 6. Using the assumptions that the

flight is longitudinal and the inertial velocity of the aircraft, V¢ is horizontal, i.e. x = V¢

and z = 0, Egs. (3) and (4) yield

v, - Tx
cos(f — o) = —f—/—g—V——W— 29)

sin(0 — o) = —V;ﬁ (30)
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FIGURE 3 Velocities and forces in inertially horizontal longitudinal flight.

Substituting L from (11) and (13), D from (10) and (12) into Eq. (27) and recalling that the
maximum thrust is used, Eq. (27) becomes

1 V - Wx
F,= EPVZS{[CLU + Cro+ CL(;e(Se] (—-—A;/C—V——)

—[Cb, +CDa°‘]"V:/7£} +(To + T\V + T, V) sin 6. 31

Note that since the analysis here is quasi-static, the velocity terms, e.g. in C;, in Eq. (13)
is neglected. The assumptions of quasi-static analysis and longitudinal flight, together with
Eq. (5) imply that

M =0. (32)
Hence

1
Je = — c
CM&,[ Mol +

DAz
WTo+ TV + ToV )Au] 33)

pScr?

From Eq. (30), the angle-of-attack for a given pitch angle, in the case of horizontal flight, is
. (W,
o=0-— ar081n(7). (34)

Thus, Eq. (31) along with Egs. (33) and (34) give F, as a function of §. Now, the problem of
maximizing F,(f) can be solved. It can numerically be shown that both F,(f) and «(6) are
increasing functions of 6. Thus, recalling that the angle-of-attack has a maximum bound, we
obtain

max(F,) = Fu(6"), (35)

such that

a(0") = omax. (36)
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Therefore, the the lift-capability factor, Ly is

VS N\ Ve — W,
=2 (CLO + Cr, %max + cwse) Al x
2W vV -
Wh (T0+T|V+T2V2) .o
f— (CD[) + CDaamax) —I/-—] + W Sln9 )
where
* a4
0" = tmax + arcsm(—l—}), (38)
* Cmotmax + (2(To+ TV + T, VZ)AZ)//)SE‘VZ
0 =— : (39)

Cums,
where 6" is the pitch angle that maximizes F, and J is the elevator deflection when F, is
maximum. The lift-capability factor L, is constructed to determine whether an aircraft, in-
itially flying horizontally, has any climb capability. Roughly speaking if Ly > 1, then the

aircraft has enough vertical force capability to climb, but if Ly < 1, the aircraft does not have
enough vertical force to maintain its altitude.

3.2 Lift-capability of Low Altitude Flight

Now, for a given specific inertial energy, we will write Ly as a function of altitude and analyze
how it changes with altitude. The specific inertial energy is defined as

E =1Vic+gh (40)
For a given inertial energy, we can write the inertial aircraft speed as a function of altitude:

Vac =+ 2(E; — gh). (41)

Since 17,4 /)c= I7Vw + 17, from Figure 3, we obtain

V= \/(VA/C — W) + W (42)

Thus, airspeed ¥ is also written as a function of position since W), is a function of x and 4,
and W,, is a function of x. Hence, substituting ¥4,c(h), V(x, h), Wi(x), and W,(x, h) into
Egs. (37), (38), and (39), L, becomes a function of position, (x, k).

In Figures 4 and 5, Ly is plotted as a function of altitude at various horizontal positions, for
the headwind and tailwind cases, respectively. Both figures show that L, is a decreasing
function of altitude for the particular airplane and microburst considered. A formal proof of
the generality of this statement is in Ref. [1]. Figure 4 shows that for a given altitude,
headwind is performance-increasing. The upper curve corresponds to the position with
maximum headwind. The lower curve corresponds to the center of the microburst, where
there is theoretically no horizontal wind. On the other hand, Figure 5 shows that for a given
altitude, the tailwind region is where the aircraft is in real danger and the most dangerous
position is where the tailwind magnitude reaches its peak.
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FIGURE 4 L as a function of altitude, plotted for various horizontal positions, in the case of headwind.
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FIGURE 5 Ly as a function of altitude, plotted for various horizontal positions, in the case of tailwind.

4 PROBABILISTIC ANALYSIS

4.1 Construction of a Probabilistic Lift-capability Factor

In the previous section, we have shown that in the absence of turbulence, the lift-capability
factor is a decreasing function of altitude. This implies that the lower the aircraft flies the
safer the escape maneuver will be in terms of vertical force capability. In this section, we will
investigate the lift capability of low altitude flight in the presence of turbulence through the
lift-capability factor, L;. In the previous section, Ly was a deterministic function since tur-
bulence was not taken into account. However, in this section, we will reconstruct L, as a
random variable to study the effect of turbulence on the lift-capability of low altitude flight.

Equations (37)-(39) imply that Ly is a function of the wind components, W, and ;. Also
note from Eq. (21) that, in the presence of turbulence, the wind components are random
processes due to the turbulence components, given in Egs. (24) and (25). However, recall that
Ly has been constructed under the assumption of a quasi-static analysis. Consistent with this
assumption, we replace the stationary random processes u,(f), w,(f) of Egs. (24), (25) by
random variables u,, w, with same mean and variance. Specifically we have (see Appendix A
for detail)

Elug] =0, (43)
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Elwg] =0, (44)
145 6% 6% |
var(ug) = ——-n—-—g—m, (45)
o2
var(wg) = —7—{03,. (46)

Additionally, Ref. [14] showed that the effect of high frequency components of wind is not
seen on the pitch angle of the aircraft. Thus, unlike Eq. (38), we assume, for simplicity, that
the pitch angle is only function of deterministic components of wind, i.e.

d
0% = Olax + arcsin(—?’—), 47)
where, from Eq. (42)
v = Ve - Wi+ (W), (48)

Hence we have constructed the lift-capability factor as a random variable: Ly is given in
Eq. (37) as a function of ¥V, 87, V4,c, Wy, Wy, and 6*. V is given in Eq. (42); 8, in Eq. (39);

Vi/c in (41); W and W, in (21); and 6 in (47).

4.2 Statistical Properties of the Lift-capability Factor

The lift-capability factor Ly is now treated as a random variable because it is a function of two
Gaussian random variables, 4, and w,. Specifically, for given microburst parameters, inertial
specific energy, and spatial position, we have

Lf = Lf(ug, Wg). (49)

Thus, a logical next step is to find the probability density function (PDF) of L in terms of the
PDF’s of u, and w,. Unfortunately, the function, L,(ug, wg), is nonlinear and it would be
difficult to analytically determine its exact PDE. Instead, we will find an analytical approx-
imation as follows.

The Taylor series expansion of Ly(u,, wg) is

oLy
ug + o
(0.0) g

oL
Ly(ug, wg) = Ly (0,0) + =~

S wg + HO.T. (50)

0.0

Since the turbulent components of wind are high-frequency fluctuations and small relative to
the deterministic components, u, and w, are assumed to be small. Hence, in Eq. (50), the
higher order terms are neglected. The partial derivatives OLs/Oug | o) and OLs/Owg),g) are
given in Appendix B. With this linear approximation, L is also a Gaussian random variable
with [20]

ElLs] = Ls(0,0), (51)
2
oL oL
var(Ly) = 6—1 var(ug) + 6@1 var(wg) (52)
"2 0.0 £ 10.0)
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where Ly (0,0) is the lift-capability factor in the absence of turbulence in Eq. (37) and was
shown to be a function of altitude for given specific inertial energy and horizontal position. It
can be shown that var(Ly) is also a function of altitude for given specific inertial energy and
horizontal position.

To see how accurate the linear approximation of L, is, we compare the mean (51) and
variance (52) of the linear approximation with the minimum variance unbiased estimates [20]
of the mean and variance of Ly in Eq. (49) under the assumption that L, is a Gaussian random
variable. Figure 6 shows that the linear approximation almost exactly matches the estimates
for the whole altitude range of interest. For different microburst cases a similar consistency
was obtained but not shown here. Therefore, in the remainder of the paper, we will use the
linear approximation instead of the fully nonlinear Ly.

Since Ly can be approximated as a Gaussian random variable with known mean (51) and
variance (52), its PDF is known. Thus, the probability of L, being less than or equal to a

given value, py,, is
1 — E[L
Plly <pi) =75 [1 + erf(“—[’]” (53)

V2 var(Ly)

where erf(-) is the “error function” [20],

2 _p
tf(x) =— | e "dt. 4
erf(x) NG Jo e dt 54)
Recall that E{Z] and var(Ly) are functions of altitude. Thus, P[L; < p, ] is also a function of
altitude for given specific inertial energy and horizontal position in a microburst.

Figure 7 shows P[L; < p,,] as a function of altitude for various horizontal positions in a
microburst. The figure suggests that the most dangerous horizontal position in a microburst is
where the mean of the tailwind reaches its peak. This is because the probability of L, being
less than 1 is higher at this position than at any other position for any altitude. Recall that in
Subsection 3.2, the deterministic analysis of L, in the absence of turbulence yielded the same

thw2 5, fr=2.5, xc=0, D=2000, x=1000, st the max. tail wind

~— linaar approximation
13 — = estimats

o 10 20 30 40 S0 60 70 80 80 100

FIGURE 6 Mean and variance of the linear approximation and estimate of L in a microburst for various altitudes
at the horizontal location where tail wind is maximum.
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FIGURE 7 Probability of Ly being less than 1 vs. altitude for various horizontal positions.
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FIGURE 8 Probability of L; being less than 1 vs. altitude for various microburst cases.

conclusion. Thus, in the remainder of the paper, by P[L; < p; ] we will mean the probability
of L; being less than p;, at the horizontal location where the tailwind is maximum, unless
otherwise stated.

Figure 8 shows the effect of microburst strength parameters on the probability of Ly being
less than 1. As the microburst becomes stronger, the flight at any altitude becomes less safe in
the sense that the probability of Ly being less than 1 increases.

Both Figures 7 and 8 show the superiority of the statistical analysis over the deterministic
analysis. While the deterministic analysis showed the advantage of descending in a
microburst encounter, it completely failed to show that descending too low may increase the
risk of failing to have enough vertical force capability to maintain the altitude. However,
Figures 7 and 8 clearly show that flying lower increases lift capability up to an optimal
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altitude, and that flying lower than this optimal value dramatically decreases the lift cap-
ability. This is because L, being less than 1 means that the aircraft does not have enough
vertical force capability to maintain its altitude. Thus, we have analytically corroborated the
results of the Monte Carlo simulation in [14]: the probability of crash decreases as the
commanded altitude decreases as long as the commanded altitude is higher than an
optimal value.

5 CRITICAL ALTITUDE IN A MICROBURST ESCAPE

In a microburst escape maneuver, it has been shown that descending may improve safety.
We have, in our previous work [14], shown that, in any microburst encounter, the
probability of crash is minimized if the aircraft descends to an optimal altitude. However,
in the case of moderate microbursts, it is possible to safely recover with commanded
altitudes that are higher than the optimal commanded altitude. On the other hand, flying
too high has been shown [14] to be dangerous as well. Hence, it is important to de-
termine the critical altitude, which depends on the microburst strength and aircraft energy
capacity. Thus, the goal of this section is to develop an algorithm that, using available
information on the microburst and aircraft state variables, gives the critical altitude in a
microburst encounter.

5.1 Determining a Critical Altitude

The lift-capability factor, developed in the previous sections, can show whether the aircraft
has enough vertical force capacity to maintain flight at a given altitude. In the probabilistic
analysis, it also took into account the effect of turbulence on the escape performance. In the
deterministic approach, the lift-capability factor can be written explicitly as a function of
altitude. In the probabilistic approach, its probability of being less than a given value can also
be formulated as a function of altitude. Having these facts in mind, in the section, we develop
techniques to determine how high an aircraft can fly in a microburst encounter.

Figure 9 shows the general profile of P[L; < p, ] as a function of altitude. As seen in the
figure, #* denotes the altitude that minimizes the probability that L, is less than p;,, and
denotes the maximum altitude of which P[L; < p;,] is less than the sum of the minimum
probability of L, being less than p;, and an increment, A,. Using #* as the recovery altitude

ZELN

i A “altitude

FIGURE 9 Graphical definition of h* and .
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will guarantee that the aircraft, in a microburst escape maneuver, flies with the minimum
probability of failing to have enough vertical force capability to maintain its altitude, with a
safety margin depending on the value of p;,. However, note that there will always be a
positive probability of failing to have enough capability to maintain the altitude, unless Pry,
is zero. Flying at & means that the probability of L being less than pi, will always be smaller
than Proim + A,.

The probability P[L; < p;,] is given in Eq. (53), and its dependence on altitude can be
made explicit through Egs. (37), (51), (52). These equations are then solved for 4* and .
Details are given in Appendix C.

5.2 Microburst Escape Guidance Using the Lift-capability Factor

Ref. [14] compares three different escape strategies, pitch-guidance, altitude-guidance and
dive-guidance, in the following scenario. As the aircraft, guided by the landing controller,
is descending, the F-factor [14] is monitored using data obtained from a reactive or for-
ward-looking detection system. Once the F-factor exceeds the threshold value [14], the
landing is aborted and an escape maneuver is immediately initiated. The sensitivity of the
performances of the escape strategies with respect to variations in microburst size, strength
and location, in the presence of turbulence, is analyzed using the Monte Carlo Method.
The only data is assumed to be the statistical distribution of the microburst parameters and
the comparison between different strategies is based on scalar performance measures: the
probability of descending lower than a given altitude, and the probability of crash. The
probability of descending lower than a given altitude is obtained from the PDF (Probability
Distribution Function) of the minimum altitude, A, reached in a microburst encounter.
The probability of crash is the probability that the aircraft either runs into stall or has a
ground contact during an escape maneuver. In the Monte Carlo Simulation, stall and
ground contact are deemed equally dangerous and we assume that stall results in ground
contact. Thus, the probability of crash is the PDF of minimum altitude evaluated at zero
altitude.
The escape strategies analyzed in Ref. [14] are:

(i) Pitch-guidance: a 15° target pitch angle is commanded and maintained throughout
the microburst. This strategy is recommended in the Windshear Training Aid [2] by
the FAA.

(ii) Dive-guidance: a 0° target pitch angle is commanded until the altitude drops to the
commanded altitude, %.. Once the altitude becomes lower than /., a 15° pitch angle is
commanded for the remainder of the escape maneuver.

(i) Altitude-guidance (#-guidance): This guidance strategy flies the aircraft at a constant
recovery altitude in the high shear region of the microburst. It has two consecutive
modes. In the altitude-guidance mode, it directs the aircraft to a given commanded al-
titude and keeps it there. Then, in the climbing mode, it commands a 15° pitch angle to
move the aircraft up from its recovery altitude.

The Monte Carlo simulation in Ref. [14] shows that, with respect to the probability of
crash, altitude- and dive-guidance may be better than pitch-guidance, and that the probability
of crash is minimum if the commanded altitude is chosen at an optimal value in both altitude-
and dive-guidance. However, as stated before, the aircraft may recover with higher com-
manded altitude than the optimal value in a less severe microburst.
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If the altitude 4* or % is chosen as the commanded altitude in altitude- or dive-guidance,
the commanded altitude will increase as the strength of the microburst decreases, as seen in
Figure 8. Thus, we define the following modified altitude- and dive-guidance strategies:

(iv) Dive-guidance with 4* (Lf-guidance-dive-star): Dive-guidance with commanded alti-
tude computed using A* for each microburst encountered.

(v) Altitude-guidance with A* (Lf-guidance-star): Altitude-guidance whose commanded
altitude is computed using #* for each microburst encountered.
In (iv) and (v), the commanded altitude is

A _{h*, when A* > 25

25, otherwise. (53)

The safety margin, p;,, in #* computation is 1. Since Ref. [14] suggests that descending
lower than 25 m increases the probability of crash, even when we obtain A* less than
25 m, the aircraft is not directed lower than 25 m.

(vi) Dive-guidance with % (Lf-guidance-dive-bar): Dive-guidance with commanded altitude
computed using % for each microburst encountered.

(vii) Altitude-guidance with % (Lf-guidance-bar): Altitude-guidance with commanded alti-
tude computed using % for each microburst encountered.

In (vi) and (vii), the commanded altitude is

h‘z{il, when & > 25

25, otherwise. (36)

The lower limit on the commanded altitude is imposed for the same reason as for 4* in (55).
In h computation, A, is chosen as 0.01 and p;, is

As
1.14+-—=, whenAr>0
Py = 10 !

1.1, otherwise.

(57)

where
Ar = fo — S (58)

Simulation experiments has shown that increasing p;,, the safety margin, when fj is greater
than f., improves the escape performance in the sense that the probability of having
minimum altitude less than a given value is decreased without increasing the probability
of crash.

The controllers [14], used for the strategies (i)—(iii), are also used for the modified stra-
tegies (iv)-(vii). As in Ref. [14], the performances of the escape strategies are compared
using Monte Carlo simulations that produce estimates of the PDF of the minimum altitude
and the probability of crash in a microburst whose statistical properties are known. The
problem formulation for the Monte Carlo simulation and the statistical properties of the
microburst parameters can be found in Ref. [14]. Although the Egs. (1)7), for the long-
itudinal aircraft motion are used in the derivation of Ly, a full 6-DOF aircraft model, given in
Ref. [14], is used in the Monte Carlo simulation so as to make a fair comparison between the
strategies (i)—(iii), with a constant /4, for every microburst encountered, and their modified
versions, (iv)-(vii), which utilize the lift-capability factor to determine the commanded
altitude for each microburst encountered.

The scenario for the modified escape strategies is as follows: As the aircraft is approaching
on the glide path, the wind velocity components are measured using reactive and/or forward-
looking sensors. With these measurements and the microburst model with unknown
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parameters, the microburst parameters are computed. Then, using the microburst model with
the estimated parameters, the deterministic wind components at the position where the tail
wind would reach its maximum are computed. Simultaneously, altitude and aircraft inertial
speed (y/x2 + 32 + £2) are measured and the specific inertial energy of the aircraft is com-
puted. Using the measurement of wind, a sample of vertical wind component is obtained.
With this sample, the variance is estimated. Then, using the methods developed in the
previous subsection, #* or 4 is computed. The above estimation should be continuously
performed on-line and #* or & should be updated as the aircraft is approaching on the glide
path. When the F-factor exceeds the threshold, the last update of #* or % is used to decide the
commanded altitude in altitude- or dive-guidance.

In any practical application of this procedure, the underlying assumptions should be borne
in mind:

o The microburst encountered has a wind distribution similar to that of the microburst model
used here.

e The accompanying turbulence has statistical properties similar to those of the turbulence

model used.

The aircraft model and data are accurate enough.

The wind velocity components are measured on-board.

The variance of the vertical component of turbulence is estimated on-board.

Aircraft altitude and inertial speed are measured.

5.3 Monte Carlo Simulation Results

As stated above, the goal of the modified escape strategies is to avoid descending lower than
necessary, but to fly at the highest safe altitude in a microburst encounter. Comparison of the
PDFs of hn;, for various escape strategies can reveal whether the goal has been achieved. Of
course such comparisons are conclusive only when the associated confidence intervals are
disjoint. We have performed such conclusive comparisons, but for the sake of clarity, we will
only show confidence intervals at altitudes that are multiples of 20 m.

Figure 10 shows the PDF of Ay, of pitch-guidance, h-guidance with 25 m commanded
altitude, and the modified altitude guidance strategies, together with 95% confidence. Pitch
guidance is used as the baseline strategy since it is recommended by the FAA [2]. Since
Ref. [14] shows that altitude-guidance with 25 m commanded altitude yields the minimum
probability of crash, the modified strategies are compared with altitude-guidance with %, of
25m, Regarding the probability of crash, both Lf-guidance-star and Lf-guidance-bar are as
good as A-guidance with A, of 25 m since the PDFs at zero altitude are almost the same. It is
also obvious that all the three are much better than pitch-guidance. Regarding the probability
of minimum altitude being less than a given value, among the three, Lf-guidance-bar is the
best because its PDF is either about the same as, or smaller than, those of the other two for
any given altitude. For example, at # = 40 m, the PDF of Ay, of A-guidance is 1, that of
Lf-guidance-star is 0.8, and that of Lf-guidance-bar is about 0.55. In other words, with
Lf-guidance-bar, it is much less likely to have minimum altitude less than 40 m. Moreover,
the probability of crash of Lf-guidance-bar is about the same as those of A-guidance and
Lf-guidance-star.

Another interpretation of the PDFs is as follows: The aircraft with A-guidance has des-
cended lower than 40 m in all cases; with Lf-guidance-star, 80 times out of 100 microburst
encounter; and with Lf-guidance-bar, just 55 times. Also note that, with all the three,
the aircraft has crashed or run into stall about 15 times. Thus, we can conclude that, with
h-guidance, the aircraft has unnecessarily descended lower than 40m 45 times
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FIGURE 10 Probability distribution function (PDF) of hyn, i.e. Pr(hmin < h) of pitch-, altitude- and modified-
altitude-guidance, with 95% confidence intervals.
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FIGURE 11 Probability distribution function (PDF) of huin, i.e. Pr(fimin < I) of pitch-, dive- and modified-dive-
guidance, with 95% confidence intervals.

(100 — 55 = 45); with Lf-guidance-star, 25 times (80 — 55 = 25). We say “unnecessarily
descended” because descending did not decrease the probability of crash. Thus, Lf-guidance-
bar has better escape performance than that of both s-guidance and Lf-guidance-star.

Now, we compare the PDF of Lf-guidance-bar with that of pitch-guidance at 40 m. The
PDF of pitch-guidance at 40 m is 0.45. Hence, the aircraft with pitch-guidance has descended
lower than 40 m only 45 times out of 100 microburst encounters. But in these 45 times the
aircraft has crashed about 30 times. On the other hand, in 55 times when the aircraft with
Lf-guidance-bar has descended lower than 40 m, ground contact or stall has occurred only 15
times. Thus, with pitch-guidance, if the altitude dropped lower than 40 m, the aircraft safely
recovered only 15 times (45 — 30), but with Lf-guidance-bar, 40 times (55 — 15).
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Similar arguments can be carried out for different altitudes. Hence, Figure 10 clearly
shows that using 4#* or & has improved the performance of altitude-guidance, and that the best
performance can be obtained with 7 in terms of both probability of crash and probability of
minimum altitude being less than a given value.

From Figure 11, the same analysis can be carried out for Lf-guidance-dive-star and Lf-
guidance-dive-bar. It appears that Lf-guidance-dive-bar, that is, dive-guidance with &, gives
the best performance among the strategies compared in Figure 11. When we compare Lf-
guidance-bar and Lf-guidance-dive-bar, we can see that Lf-guidance-bar has better perfor-
mance than that of Lf-guidance-dive-bar. Thus, among all the escape strategies studied within
the assumptions of this paper, Lf-guidance-bar appears to be the best when we consider both
probability of crash and probability of minimum altitude being less than a given value.

6 CONCLUSIONS

We have defined a lift-capability metric, Ly, that quantifies the aircraft maximum capability of
generating an upward force during a microburst encounter. This was done under quasi-static
assumptions of longitudinal horizontal flight. In the absence of turbulence, the lift-capability
metric has been shown to be a decreasing function of altitude. In the presence of stochastic
turbulence, the Lift-capability Factor has been treated as a random variable and its PDF was
analytically approximated as a function of altitude. This allowed us to determine the critical
altitude that is, the highest altitude where the aircraft can fly with minimum or prespecified
probability of danger. Then, altitude-guidance and dive-guidance escape strategies, analyzed
in Ref. [14], were modified by using this critical altitude as commanded altitude. Finally,
Monte Carlo simulations were conducted to estimate the probability distribution function of
minimum altitude reached in a microburst encounter. Using this probability density func-
tions, various escape strategies were comparatively analyzed. In the Monte Carlo simulation,
a 6-DOF aircraft model given in Ref. [14] was used.

The deterministic analysis of the Lift-capability Factor has shown that descending to a low
altitude in a microburst encounter may improve safety in the sense that the aircraft will have
more vertical force capability to maintain its altitude or to climb if necessary. The fact that the
lower the recovery altitude the higher the vertical force capability in the absence of turbu-
lence suggests that low altitude flight is more robust in the sense that it is more likely to
maintain the altitude despite changes in wind direction and magnitude. Although this con-
clusion is the same as in Refs. [5, 11], the analytical method used in this paper allows us to
prove that the lift-capability factor is a decreasing function of altitude and can be used to
estimate the critical altitude.

The Probabilistic Analysis Section is used to see whether the conclusion drawn in the
Deterministic Analysis Section is valid in the presence of stochastic turbulence. In this
section, the Lift-capability Factor is treated as a random variable because it is a function of
random variables due to the presence of turbulence. Then, the PDF of the Lift-capability
Factor is analytically approximated as a function of altitude. While the Deterministic Ana-
lysis Section shows the advantage of descending in a microburst encounter, it completely
fails to show that descending too low may increase the risk of failing to have enough vertical
force capability to maintain the altitude. However, the probabilistic analysis shows that flying
lower increases lift capability up to an optimal altitude, and that flying lower than this optimal
value dramatically decreases the lift capability. Thus, the probabilistic analysis has helped
analytically corroborate the results of the Monte Carlo simulation in Ref. [14]: the probability
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of crash decreases as the commanded altitude decreases as long as the commanded altitude is
higher than an optimal value.

The PDF of the Lift-capability Factor, as a function of altitude, is used to find the critical
altitude in a microburst encounter. Critical altitude, in the probabilistic sense, means that the
probability of Lift-capability Factor being less than a given value is minimum or less than
prespecified value. In other words, using that critical altitude will guarantee that the aircraft
flies with minimum or prespecified probability of failing to have enough vertical force cap-
ability to maintain altitude. The purpose of flying at the so-called critical altitude is to prevent
the aircraft from descending unnecessarily to a fixed altitude in every microburst encounter,
but to adjust the recovery altitude depending on the strength of the microburst encountered.

Monte Carlo simulations have shown this purpose can be achieved: specifically, we can
decrease the probability of minimum altitude being less than a given value without sig-
nificantly increasing the probability of crash. That is, in a microburst encounter, a pilot, given
the critical altitude, can fly the aircraft at that altitude with minimum or prespecified prob-
ability that the aircraft cannot maintain that altitude. This paper provides an analytical
method to compute such critical altitudes.

Monte Carlo simulations have also shown that modified altitude guidance, using the cri-
tical altitude as the commanded altitude, has better escape performance than both dive-
guidance with the same procedure and pitch-guidance. Thus, the results of the paper suggests
that, during the landing phase of a flight, the critical altitude be monitored, and upon an
encounter with a microburst, the aircraft be directed to the last update of the critical altitude
and kept there in the high shear region of the microburst.

Besides the conclusion drawn above, the analysis of the PDF of the minimum altitude
provides a very simple and decisive criterion to make a comparison between different escape
strategies, and shows clearly how to improve the performance of an escape strategy. For ex-
ample, if the PDF of Ay, at an altitude for escape strategy A is smaller than that for escape
strategy B for any altitude, then it can be directly concluded that strategy A has better escape
performance than that of strategy B. Moreover, if we are to improve the performance of an
escape strategy, the PDF analysis suggests that for a given altitude we should reduce the value
of the PDF at that altitude without increasing the PDF at zero altitude. Thus, it appears that the
PDF analysis is a very promising tool in microburst studies to develop better escape strategies.

Before practical implementation of this escape procedure, the sensitivity of the procedure
with respect to the assumptions should be studied. If the critical altitude is very sensitive to
the microburst model, the procedure should be modified with the most accurate model
available or additional features should be added to the procedure so that the microburst
model can be identified on-board. Similarly, the sensitivity with respect to the turbulence
model should be investigated. Also algorithms to estimate wind velocity components and
turbulent component of wind should be used. The effect of human factors on the performance
of the escape procedure should be studied as well.
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A APPENDIX

The following is a well-known property of linear-stochastic systems [19]. Consider the
following linear time-invariant system

% = Ax + Bn, (59)
y==0Cx, (60)

where # is a Gaussian white-noise process vector such that

E[n(n] =0, (61)
ETn(d) 0" (1)] = Ryd(r — 1), (62)

where Ry, is a constant matrix. If the linear system is asymptotically stable, then at steady-
state the state, x, is a Gaussian random process with

E[x(] =0, (63)
E[x() x" ()] = Ry, (64)

where the covariance matrix of x, R, satisfies the following Lypunov equation
AR, + R,A" + BR,B" = 0. (65)

Moreover, at steady-state

Ep®)] =0, (66)
El(0y" (0] = CR.C. (67)
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From this property, it follows that ug(f), whose dynamics is given in Eq. (24), is a Gaussian
random process with zero mean and variance

oK,
var(uy,) = 5 /{u" , (68)
where K, = 2Va2/(L,n) and A, = V/L,. Thus
2
var(u,) = %6‘2" (69)
The assumption of isotropic turbulence implies [17] that
2 2
o.ll 0'",
A= 70
Lll LW ( )

This equation along with Eqs. (69) and (26) yields Eq. (45). Similarly for w,, whose dy-
namics is given in Eq. (25),

K.o? /B2
var(wg) = a7 (i—;-i—l), (71)

where K,, = 303, V/(Lym), Aw =V /Ly, and B, = V/(\/§Lw). Substituting these parameters
into Eq. (71) yields Eq. (46).

B APPENDIX

From Egs. (52), (42), (39), (21), (22), and (23), we have

Ly = LV, 8%, W, W), (72)
V= V(W W), (73)

5t =X, (74)

Wy = Wi(dy), (75)

Wy = Wi(dn), (76)

di = di(ug, W), (77)

dy = di(ug, wg), (78)

where only functional dependence on random variables is shown.
Using the above functional dependence, the partial derivatives are taken and evaluated at
(g, wg) = (0, 0). Thus, we obtain

Ay Gy ) Uy

Qug 0.0y OV l(0.0)Oug l0.0) ~ 05 10.0) Quug l0.0)
0L oW OLry Wk (79)
oW, 10.0) Dug l0.0) ~ OW, 0.0 Duty 100.0)
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C APPENDIX

Let X(#) be a Gaussian random variable with mean py(h) and variance o%(h). The
probability of X(h) being less than or equal to x is

1 X = iy
PriX <x]=—|1 terf R 94
[ ! 2 I: (V 20% >} oy
(i) Finding A*
By definition, &* is
h* = arg mhin Pr[X < x}. 95)

To find A* from Eq. (94), we need to solve the following equation for A

OPrlX <x] 0

o (96)

Substituting Eq. (94) into Eq. (96) and taking the partial derivative with respect to &, we have
; % MX) }
—lef|——=]1 =0. 7
oh { (,/26)(2
Since piy and 6% are functions of 4, the above equation is equivalent to
Gl x—ueY| Oy O x—uy )| 0c%
—{erf —— 4+ jerf — =0, 98
a/lX l ( /20’})] oh aﬂ'/z\; /20‘/2\, Oh ( )

where, recall that

2
x — ﬂX 2 j(x*l’,\’)/v 2”,\' 2
erf = exp(—y~)dy. 99)
(,/20)(7) N P
By Leibnitz’s Rule, the partial derivatives in Eq. (98) are
Gl X — Uy 1 ( (x— llx)z)
— {erf =— exp| ——5—], (100)
Opy [ (,/203( )] 20, P\ 20}
0 X — Uy X — Py (x— .Ux)z
—Jerf[ LX)V = — — . 101
da% {er (,/2(7}(> } (20%)*? exp 20% (o)
Substituting (100) and (101) into (98) and rearranging, we obtain
I (x— uX)Z Oy | (x — py)do%
—_—— S AL SO B huler 6 XY = 102
20272 P ( 2 New T2 ] = (102)
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where yty and 67 are assumed to be positive finite. Thus, the above equation is equivalent to

Oug(h) | (x — pux()0o3(h)
oh T 202y oh O (103)

The altitude / that solves this equation is #*. Although it is not easy to obtain explicitly an
analytic expression for 4*, it can be solved numerically.

(i) Finding 7 _
By definition, 4 is, for a given Pr, such that
Pr{X(h) < x] = Pr. (104)

From Eq. (94), we have

% | terf| B _pp (105)
v 205 (%)
which implies
erf| D oy, (106)
205
which implies
=l 1 pr— 1y, (107)

V205 (h)
where erf ~!(-) is the inverse error function. This equation also can be solved numerically
for A.



Advances in Advances in . Journal of Journal of
Operations Research Decision Sciences Applied Mathematics Probability and Statistics

The Scientific
\(\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

ces In

matical Physics

Journal of

, Journal of Mathematical Problems Abstract and ' Discrete Dynamics in
Complex Analysis

Mathematics in Engineering Applied Analysis Nature and Society

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

Disrefe Mathemalcs

Journal of International Journal of Journal of

Function Spaces Stochastic Analysis [l Optimization




