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Abstract The Hamiltonian Monte Carlo (HMC)

method has been recognized as a powerful sampling

tool in computational statistics. We show that perfor-

mance of HMC can be significantly improved by in-

corporating importance sampling and an irreversible

part of the dynamics into a chain. This is achieved
by replacing Hamiltonians in the Metropolis test with

modified Hamiltonians, and a complete momentum up-

date with a partial momentum refreshment. We call the

resulting generalized HMC importance sampler—Mix

& Match Hamiltonian Monte Carlo (MMHMC). The
method is irreversible by construction and further ben-

efits from (i) the efficient algorithms for computation

of modified Hamiltonians; (ii) the implicit momentum

update procedure and (iii) the multi-stage splitting in-

tegrators specially derived for the methods sampling
with modified Hamiltonians. MMHMC has been imple-

mented, tested on the popular statistical models and

compared in sampling efficiency with HMC, Riemann

Manifold Hamiltonian Monte Carlo, Generalized Hybrid
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Monte Carlo, Generalized Shadow Hybrid Monte Carlo,

Metropolis Adjusted Langevin Algorithm and Random

Walk Metropolis-Hastings. To make a fair comparison,

we propose a metric that accounts for correlations among

samples and weights, and can be readily used for all

methods which generate such samples. The experiments

reveal the superiority of MMHMC over popular sam-

pling techniques, especially in solving high dimensional

problems.
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1 Introduction

Despite the complementary nature, Hamiltonian dy-

namics and Metropolis Monte Carlo had never been
considered jointly until the Hybrid Monte Carlo method

was formulated in the seminal paper by Duane et al.

(1987). It was originally applied to lattice field theory

simulations and remained unknown for statistical ap-

plications till 1994, when R. Neal used the method in

neural network models (Neal, 1994). Since then, the

common name in statistical applications is Hamiltonian
Monte Carlo (HMC). The practitioners-friendly guides

to HMC were provided by Neal (2011) and Betancourt

(2017), while comprehensive geometrical foundations

were set by Betancourt et al. (2017). The conditions
under which HMC is geometrically ergodic are also es-

tablished (Livingstone et al., 2016).

Nowadays, HMC is used in a wide range of

applications—from molecular simulations to statisti-

cal problems appearing in many fields, such as ecology,
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cosmology, social sciences, biology, pharmacometrics,

biomedicine, engineering, business. The software pack-

ages Stan (Stan Development Team, 2017) and PyMC3

(Salvatier et al., 2016) have contributed to the increased

popularity of the method through the implementation

of HMC based sampling in a probabilistic modeling
language to help statisticians writing their models in

familiar notations.

For a range of problems in computational statistics

the HMC method has proved to be a successful and

valuable technique. The efficient use of gradient informa-

tion of the posterior distribution allows it to overcome

the random walk behavior typical of the Metropolis-

Hastings Monte Carlo method.

On the other hand, the performance of HMC dete-

riorates, in terms of acceptance rates, with respect to

the system’s size and step size, due to errors introduced

by numerical approximations (Izaguirre and Hampton

2004). Many rejections induce high correlations between

samples and reduce the efficiency of the estimator. Thus,

in systems with a large number of parameters, or latent

parameters, or when the observations data set is very
big, efficient sampling might require a substantial num-

ber of evaluations of the posterior distribution and its

gradient. This may be computationally too demanding

for HMC. In order to maintain the acceptance rate for

larger systems at a high level, one could decrease a step

size or use a higher order integrator, but both solutions
are usually impractical for complex systems.

Ideally, one would like to have a sampling method

that maintains high acceptance rates, achieves fast con-

vergence, demonstrates good sampling efficiency and

requires modest computational and tuning efforts.

To achieve some of those goals, several modifications

of the HMC method have been recently developed in

computational statistics (see Figure 1).

It is worth of mentioning here the methods employ-

ing a position dependent ‘mass’ matrix (Girolami and

Calderhead, 2011; Betancourt, 2013a; Lan et al., 2015),

adaptive HMC (Hoffman and Gelman, 2014; Betancourt,

2013b; Wang and de Freitas, 2011; Wang et al., 2013),

HMC with the approximated gradients (Chen et al.,

2014; Strathmann et al., 2015; Zhang et al., 2017a,b,c;

Zou et al., 2018), tempered HMC (van de Meent et al.,

2014; Betancourt, 2014; Graham and Storkey, 2017;

Nishimura and Dunson, 2017; Luo et al., 2017), HMC

with alternative kinetic energy (Zhang et al., 2016; Lu

et al., 2017; Livingstone et al., 2017), problem related

HMC (Betancourt, 2011; Brubaker et al., 2012; Lan

et al., 2014b; Pakman and Paninski, 2013; Lan et al.,

2014a; Betancourt and Girolami, 2015; Zhang and Sut-

ton, 2014; Zhang et al., 2012; Afshar and Domke, 2015;

Nishimura et al., 2018; Dinh et al., 2017; Yi and Doshi-

Velez, 2017; Kleppe, 2018), enhanced sampling HMC

(Sohl-Dickstein and Culpepper, 2012; Sohl-Dickstein
et al., 2014; Campos and Sanz-Serna, 2015; Fu et al.,

2016; Nishimura and Dunson, 2015; Zhang et al., 2018;

Tripuraneni et al., 2017; Levy et al., 2018), and special

cases of HMC, such as, Metropolis Adjusted Langevin

Algorithm (Kennedy, 1990).

Among the modifications introduced in computa-

tional physical sciences , the most important ones are

partial momentum update and sampling with modified

energies (Figure 1).

The partial momentum update (in contrast to the

complete momentum update in HMC) was introduced

by Horowitz (1991) within Generalized guided Monte

Carlo, also known as the second order Langevin Monte

Carlo (L2MC). The purpose of this method was to retain

more dynamical information on a simulated system.

Kennedy and Pendleton (2001) formalized this

idea in the Generalized Hybrid Monte Carlo (GHMC)

method. GHMC is defined as the concatenation of two

steps: Molecular Dynamics Monte Carlo and Partial

Momentum Update.

Applications of the GHMC method to date include

mainly molecular simulations. Behavior of non-special

cases of GHMC are not well studied in statistical compu-

tations, with only a few exceptions (e.g. Sohl-Dickstein

2012; Sohl-Dickstein et al. 2014).

The idea of using the modified (shadow) Hamilto-

nian for sampling in HMC was suggested by Izaguirre

and Hampton (2004). The performance of the resulting

Shadow Hybrid Monte Carlo (SHMC) is limited by the

need for a finely tuned parameter introduced for con-

trolling the difference in the true and modified Hamilto-

nians and for the evaluation of a non-separable modified
Hamiltonian. The SHMC was modified by Sweet et al.

(2009) through replacing a non-separable shadow Hamil-

tonian with the separable 4th order shadow Hamilto-

nian to result in Separable Shadow Hybrid Monte Carlo

(S2HMC).

The first method to incorporate both, the partial

momentum update and sampling with respect to a mod-

ified density, was introduced by Akhmatskaya and Re-

ich (2006) and called Targeted Shadow Hybrid Monte

Carlo (TSHMC). However, the Generalized Shadow Hy-

brid Monte Carlo (GSHMC) method formulated by

Akhmatskaya and Reich (2008) appears the most effi-
cient (Wee et al. 2008; Akhmatskaya et al. 2009, 2011;

Akhmatskaya and Reich 2012) among the methods,
which sample with modified Hamiltonians and are of-

ten referred to as Modified Hamiltonian Monte Carlo

(MHMC) methods (Akhmatskaya et al., 2017).

The potential advantage of GSHMC compared to

HMC is the enhanced sampling resulting from: (i) higher



Hamiltonian Monte Carlo importance sampling 3

Position dependent 

mass matrix

RMHMC, RMLMC

HMC
Tempering

AMC,CT-HMC, 

GTHMC, TACT-HMC

Shadow 

Hamiltonians

SHMC, S2HMC

Partial Momentum 

Update

GHMC

Approximate 

Computation

SGHMC, KMC, HABC

Adaptive 

parameters

NUTS, A(RM)HMC

MMHMC

Problem related

(constrained, binary, 

multimodal distributions; 
discrete, hierarchical, 

combinatorial models)

GSHMC

Computational Statistics

Computational Sciences

Fig. 1: Evolution and relationships between some variants of the HMC methods.

acceptance rates, achieved due to better conservation of

modified Hamiltonians than Hamiltonians by symplectic

integrators; (ii) an access to second-order information

about the target distribution; (iii) an additional tun-

able parameter for improving performance; and (iv)

irreversibility. The latter property of the method has

never been mentioned whatsoever. Nevertheless, there is

a great evidence that irreversible samplers may provide

better mixing properties than their reversible counter-

parts do (Ottobre 2016). On the other hand, potential

disadvantages of GSHMC include an extra parameter to

tune and the computational overhead due to repetitive

evaluations of modified Hamiltonians and a momentum

update Metropolis function.

The efficiency of GSHMC method in solving sta-

tistical inference problems has never been investi-

gated although its applicability has been recognized

(Akhmatskaya and Reich 2012).

In this paper, we present the Mix & Match Hamilto-

nian Monte Carlo (MMHMC) method which is based

on the GSHMC method but modified, enriched with the

new features and adapted specially to computational

statistics. The modifications of GSHMC that led to the

MMHMC method include:

– a new formulation of the importance sampling dis-

tribution relying on the modified Hamiltonians for

splitting integrating schemes;
– numerical integration of Hamiltonian dynamics using

novel multi-stage integrators, specifically derived for
improving conservation of modified Hamiltonians in

the MHMC methods;

– an incorporation of momentum updates in the

Metropolis test for a less frequent calculation of
derivatives.

Additionally, we propose a new metric for measuring

sampling efficiency of methods which generate samples

that are both correlated and weighted.

We implemented MMHMC in our software package

HaiCS, which also offers implementation of several other

HMC based samplers as well as a range of popular

statistical models.

The paper is structured as follows. We start with

the summary of the Hamiltonian Monte Carlo method

in Section 2.1. The MMHMC method is formulated in

Section 2.2 and its essential features are reviewed in

Section 2.3. The ways of tuning and measuring perfor-

mance of MMHMC are discussed in Section 2.4. The

expected performance of the method is analyzed in Sec-

tion 2.5. The details of software implementation and

testing procedure as well as the test results obtained for

MMHMC and compared with various popular sampling
techniques are presented in Section 3. The conclusions

are summarized in Section 4.

2 Mix & Match Hamiltonian Monte Carlo

(MMHMC)

Before introducing and analyzing Mix & Match Hamil-

tonian Monte Carlo we briefly revise the Hamiltonian

Monte Carlo method.

2.1 Hamiltonian Monte Carlo: Essentials

The purpose of HMC is to sample a random variable (r.

v.) θ 2 R
D with the distribution ⇡(θ), or to estimate

integrals of the form

I =

Z

f(θ)⇡(θ)dθ. (1)

We use the same notation ⇡ for the probability density

function (p.d.f.), which can be written as

⇡(θ) =
1

Z
exp(�U(θ)),

where the variable θ corresponds to the position vector,

U(θ) to the potential function of a Hamiltonian sys-

tem and Z is the normalizing constant such that ⇡(θ)
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integrates to one. In Bayesian framework, the target

distribution ⇡(θ) is the posterior distribution ⇡(θ|y) of
unknown parameters given data y = {y1, . . . , yK }, K
is the size of the data, and the potential function can

be defined as

U(θ) = � logL(θ|y)� log p(θ),

for the likelihood function L(θ|y) and prior p.d.f. p(θ)

of model parameters.

The auxiliary momentum variable p 2 R
D, conju-

gate to and independent of the vector θ is typically

drawn from a normal distribution

p ⇠ N (0,M), (2)

with a covariance matrix M , which is positive definite
and often diagonal. The Hamiltonian function can be

defined in terms of the target p.d.f. as the sum of the

potential function U(θ) and the kinetic function K(p)

H(θ,p) = U(θ) +K(p)

= U(θ) +
1

2
pTM�1p+

1

2
log

�

(2⇡)D|M |
�

.
(3)

The joint p.d.f. is then

⇡(θ,p) =
1

Z
exp(�H(θ,p))

=
(2⇡)

D
2 |M |

Z
exp(�U(θ)) exp(�1

2
pTM�1p).

(4)

By simulating a Markov chain with the invariant distri-

bution (4) and marginalizing out momentum variables,

one recovers the target distribution ⇡(θ). The integral

(1) can then be estimated using N simulated samples as

Î =
1

N

N
X

n=1

f(θn).

HMC samples from ⇡(θ,p) by alternating a step for

a momentum refreshment and a step for a joint, position
and momentum, update, for each Monte Carlo iteration.

In the first step, momentum is replaced by a new draw

from the normal distribution (2). In the second step,

a proposal for the new state (θ0,p0) is generated by

integrating Hamiltonian dynamics

dθ

dt
= M�1p,

dp

dt
= �Uθ(θ) (5)

for L steps using a symplectic integrator  h with a

step size h. Due to the numerical approximation of

integration, Hamiltonian function, and thus the density

(4), are not preserved. In order to restore this property,

which ensures invariance of the target density, an accept-

reject step is added through a Metropolis criterion. The
acceptance probability has a simple form

↵ = min
�

1, exp
�

H(θ,p)�H(θ0,p0)
� 

,

which, due to the preservation of volume, does not in-

clude potentially difficult to compute Jacobians of the

mapping. As in any Markov chain Monte Carlo (MCMC)
method, in case of a rejection, the current state is stored
as a new sample. Once next sample is obtained, momen-

tum is replaced by a new draw, so Hamiltonians have

different values for consecutive samples. This means that

samples are drawn along different level sets of Hamilto-

nians, which actually makes HMC an efficient sampler.

For a constant matrix M , the last term in the Hamil-
tonian (3) is a constant that cancels out in the Metropo-

lis test. Therefore, the Hamiltonian can be defined as

H(θ,p) = U(θ) +
1

2
pTM�1p. (6)

The algorithmic summary of the HMC method is

given in Appendix D.

2.2 Formulation of MMHMC

As HMC, the MMHMC method aims at sampling un-

known parameters θ 2 R
D with the distribution (known

up to a normalizing constant)

⇡(θ) / exp(�U(θ)).

However, this is achieved indirectly, as shown in Figure

2.

π̃(θ,p) π(θ,p) π(θ)
marginalizationreweighting

Fig. 2: MMHMC indirect sampling of the target distribution.

More precisely, MMHMC performs HMC importance

sampling on the joint state space of positions and mo-

menta (θ,p) with respect to the modified density ⇡̃. The

target distribution on the joint state space ⇡(θ,p) /
exp(�H(θ,p)), with respect to the true Hamiltonian H ,

is recovered through importance reweighting and finally,

the desired distribution ⇡(θ) is retrieved by marginaliz-

ing momenta variables. The MMHMC algorithm consists

of three major steps: (1) Hamiltonian Dynamics Monte

Carlo (HDMC) step to generate the next state, (2) Par-

tial Momentum Monte Carlo (PMMC) step to refresh a

momentum for each state, and (3) importance reweight-

ing to recover the target distribution. The essential

constituents of the algorithm are explained below.
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2.2.1 Importance Distribution

The importance distribution in MMHMC ought to sat-

isfy two principal requirements. First, it should lead to

more favourable values of the acceptance probability

than may be achieved in the HMC algorithm. Second,

the target density and the importance density have to

be close to maintain a low variability among weights,

essential for efficient sampling. The so called modified

Hamiltonian is a promising candidate for serving these

purposes.

Given Hamiltonian dynamics with Hamiltonian func-

tion H (6) and a symplectic integrator with an integra-

tion step size h for solving consequent ODE equations

(5), the corresponding modified equations are guaran-

teed to be Hamiltonian and the modified Hamiltonian

can be determined as (Hairer et al. 2006)

H̃h = H + hH2 + h2H3 + · · · . (7)

In contrast to the Hamiltonian, the modified Hamilto-

nian is exactly preserved along the computed trajectory

by symplectic integrators (Leimkuhler and Reich 2005).

For an integrator of order m (m � 2),

H̃h = H +O(hm).

For the k-truncation of H̃h (k > m) defined as

H̃
[k]
h = H + ...+ hmHm+1 + · · ·+ hk�1Hk, (8)

one obtains

H̃
[k]
h = H +O(hk), (9)

and hence, a symplectic method preserves the k-

truncated modified Hamiltonian up to order hk. The

expectation of the increment of H̃
[k]
h in an integration

leg satisfies

Eπ̃[�H̃
[k]
h ] = O

�

Dh2k
�

, (10)

with D being the dimension, while for the Hamiltonian

it is

Eπ[�H] = O
�

Dh2m
�

(11)

(Beskos et al. 2013), and therefore the MMHMC algo-
rithm may benefit from high acceptance rates due to

better conservation of H̃ [k].
The importance canonical density in MMHMC is

then chosen as

⇡̃(θ,p) / exp(�H̃
[k]
h (θ,p)). (12)

For simplicity, we drop the subscript h and super-

script [k] in H̃
[k]
h assuming an arbitrary choice of a

truncation order. We shall return to the issue in the

discussion of the specific formulations of the modified

Hamiltonians associated with particular choices of a
numerical integrator.

We notice that randomization of a step size com-

monly applied in HMC simulations is not compatible

with the proposed importance distribution (12). On the

one hand, randomization of a step size implies that a

general modified equation does not exist, and thus the

modified Hamiltonian can be constructed locally only,

hence, the importance density has to be modified accord-

ingly. On the other hand, randomization of a step size
inevitably leads to the increased variability of weights,

meaning the ultimate performance degradation of the

importance sampling algorithm. Therefore, in MMHMC,

the priority is given to a fixed step size. The advantages
of this strategy are demonstrated in Section 2.5.

2.2.2 Hamiltonian Dynamics Monte Carlo (HDMC)

At every MC iteration, a proposal (θ0,p0) is generated

by simulating Hamiltonian dynamics (5) using a sym-
plectic and reversible numerical integrator  h with a

step size h, and is accepted with the Metropolis criterion

corresponding to the modified distribution (12) as

(θnew,pnew) =

⇢

(θ0,p0) with probability ↵

F(θ,p) otherwise,
(13)

where ↵ = min
n

1, exp(��H̃)
o

and F(θ,p) flips the

momentum in the case of rejection, i.e. F(θ,p) =

(θ,�p), and �H̃ = H̃(θ0,p0)� H̃(θ,p).

An integrator  h can be chosen arbitrarily from the
class of symplectic and reversible integration schemes,

though computationally efficient and accurate  h are
highly desirable for achieving the top performance of

MMHMC. While GSHMC was formulated with the

leapfrog integrator in mind, in MMHMC we employ

multi-stage splitting schemes, proposed by Radivojević

et al. 2018. More specifically, we consider numerical

schemes belonging to the two-stage

 h = 'B
bh � 'A

h
2
� 'B

(1�2b)h � 'A
h
2
� 'B

bh (14)

and three-stage

 h = 'B
bh �'A

ah �'B
( 1
2�b)h �'

A
(1�2a)h �'B

( 1
2�b)h �'

A
ah �'B

bh

(15)

families of splitting methods, which can offer better con-

servation properties than Verlet / leapfrog (Blanes et al.

2014). Here, the exact flows 'A
h and 'B

h are solutions to
the split systems

A :
dθ

dt
= 0,

dp

dt
= �Uθ(θ),
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and

B :
dθ

dt
= M�1p,

dp

dt
= 0,

respectively, corresponding to the Hamiltonian (6), and

a, b are parameters of an integrator  h, which will be

discussed later.

2.2.3 Partial Momentum Monte Carlo (PMMC)

Whereas in HMC momentum is completely reset at

each MC step before numerical integration, MMHMC

relies on the partial refreshment of momentum. The idea

behind the partial momentum update is to suppress the
random walk behaviour arising from the complete, and

hence independent from the current momentum, update.

The PMMC can be performed in two steps.

First, for the current momentum p and a noise vector

u ⇠ N (0,M) a proposal for the new momentum p⇤ is

generated from the mapping R : (θ,p,u) 7! (θ,p⇤,u⇤)

such that

R(θ,p,u) = (θ,
p

1� 'p+
p
'u,�p

'p+
p

1� 'u).

(16)

Here, parameter ' 2 (0, 1] controls the amount of noise

introduced in every MC iteration.

Then, to secure sampling from the modified density

(12), the proposal is accepted according to the extended

modified distribution

⇡̂ / exp(�Ĥ), (17)

with the extended Hamiltonian Ĥ defined as

Ĥ(θ,p,u) = H̃(θ,p) +
1

2
u|M�1u. (18)

Therefore, a new momentum can be determined as

p̄ =

8

<

:

p⇤ =
p
1� 'p+

p
'u with probability

P = min{1, exp(��Ĥ)}
p otherwise,

(19)

where �Ĥ = Ĥ(θ,p⇤,u⇤)� Ĥ(θ,p,u).

Formulated in such a way, the PMMC step intro-

duces two extra evaluations of the modified Hamiltonian

within the Metropolis test and thus a computational

overhead. To reduce the overhead, we incorporated a

momentum proposal in the Metropolis test and derived

the computationally tractable expressions for �Ĥ, for

the particular choices of modified Hamiltonian, which we

recommend to use in MMHMC. The details are provided

in Section 2.3 and Appendix C.

2.2.4 Reweighting

After N iterations of the MMHMC algorithm, reweight-

ing is required in order to estimate the integral (1). By

making use of the standard technique for importance

samplers, the integral is rewritten as

I = Eπ[f ] =

Z

f(θ)⇡(θ,p)dθdp

=

Z

f(θ)
⇡(θ,p)

⇡̃(θ,p)
⇡̃(θ,p)dθdp

=

Z

f(θ)w(θ,p)⇡̃(θ,p)dθdp = Eπ̃[fw],

where ⇡̃(θ,p) is the importance distribution (12) and

w(θ,p) the importance weight function. Therefore, the

integral can be approximated by a self-normalized esti-

mator as

Î =

PN

n=1 f(θ
n)wn

PN

n=1 wn

, (20)

wn = exp(H̃(θn,pn)�H(θn,pn)), (21)

where {(θn,pn)}Nn=1 is drawn from ⇡̃, and wn are the
corresponding weights.

Performance of importance sampling methods

strongly depends on the discrepancy between the tar-
get and importance sampling distributions, and thus

on weights. Bounded weights imply a bounded variance

of an estimator. The choice of the importance distribu-
tion (12) in MMHMC along with (9) guarantee that the

MMHMC weights are bounded and thus the reduction

in efficiency of the estimator (20), introduced due to im-

portance sampling, is minor in the case of the MMHMC
method.

2.3 Features of MMHMC

In this section we discuss in more detail the specific

features of the MMHMC method. The main algorithmic

differences between HMC and MMHMC are listed in
Table 1 and full algorithmic summary of MMHMC is

provided in Appendix D.

2.3.1 Irreversibility

Until recently, the significant attention in the literature

has been paid to the theoretical analysis of reversible

Markov chains rather than the study of irreversible

MCMC methods. However, numerous latest theoreti-

cal and numerical results demonstrate the advantage

of irreversible MCMC over reversible algorithms both

in terms of variance of an estimator and rates of con-

vergence to the target distribution (Neal 2004; Suwa
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Table 1: Algorithmic differences between HMC and MMHMC.

HMC MMHMC

Momentum update complete partial
Momentum Metropolis test 7 3

Metropolis test H H̃
Momentum flips 7 3

Re-weighting 7 3

Reversibility 3 7

and Todo 2012; Ohzeki and Ichiki 2015; Bouchard-Côté

et al. 2018; Ottobre 2016; Duncan et al. 2016, 2017).

These well documented facts have induced a design of

new algorithms which break the detailed balance condi-

tion (DBC)—a commonly used criterion to demonstrate

the invariance of the chain. Some recent examples of

irreversible methods based on Hamiltonian dynamics

can be found in papers by Ottobre (2016); Ottobre et al.

(2016); Ma et al. (2016).

The core of the MMHMC algorithm consists of two

steps, PMMC and HDMC, which both leave the target

distribution ⇡̃ invariant. However, the resulting chain is

not reversible.

Apart from being invariant with respect to the target

distribution, the HDMC step satisfies the modified DBC.

The proof for the GHMC method can be found elsewhere

(e.g. Fang et al. 2014), and the only difference in the

case of MMHMC is that the target distribution, and
thus the acceptance probability, is defined with respect

to the modified Hamiltonian.

As the PMMC step is specific only to MMHMC and
GSHMC, we provide a direct proof of invariance of this

step (Appendix A). Furthermore, in an analogous way

to HDMC, it can be proved that PMMC satisfies the

modified DBC. The key observation is that the proposal

mapping R for momenta (16) is reversible w.r.t. the

extended target ⇡̂, R�1 = F̂�1�R�F̂ , and the reversing

mapping F̂(θ,p,u) := (θ,p,�u) is an involution.

The irreversibility of MMHMC arises from an impor-

tant property—a non-symmetric composition of steps

satisfying DBC does not preserve DBC. Therefore, al-

though both steps of MMHMC do satisfy the (modified)

DBC, their compositon is not symmetric and hence,

the chain generated by MMHMC is not reversible by

construction.

2.3.2 Numerical Integrators

The detailed discussion on efficiency of various numer-

ical integrators in the MHMC methods can be found

elsewhere (Radivojević et al. 2018). Here we review the

most promising integration schemes for the MMHMC

method and provide some practical recommendations.

The Verlet/leapfrog integrator, considered as the

integrator of choice for MHMC methods until recently,

still can be seen as a perfect option for MMHMC in

sampling small sized problems, where comparatively

long step sizes are allowed. For such problems, Verlet
is expected to demonstrate the highest conservation of

modified Hamiltonians due to its best stability among

splitting integrators. For bigger dimensions and thus for

smaller optimal step sizes, the multi-stage integrators

(14)–(15) designed specifically for MHMC and referred

to as modified splitting integrators (Radivojević et al.

2018) should provide better conservation of modified

Hamiltonian than the Verlet integrator, resulting in
enhanced accuracy and sampling performance of MHMC

methods.

Modified splitting integrators are characterized by

values of parameters a and b in (14)–(15) obtained

through minimization of the (expected) modified Hamil-

tonian error introduced by integration. Following the

ideas of McLachlan (1995) and Blanes et al. (2014) for

improving HMC performance by minimizing (expected)

energy error through the appropriate choice of parame-

ters of the integrator, the modified splitting integrators

have been derived (Radivojević et al., 2018) by consid-

ering either the error in the modified Hamiltonians for

splitting integrators, H̃ [l], of order l = 4, 6

� = H̃ [l]( h,L(θ,p))� H̃ [l](θ,p),

to yield the integrators M-ME2 and M-ME3, or the

expected values of such errors Eπ̃(�) taken with respect

to the modified canonical density ⇡̃ (12) to give rise to

the integrators M-BCSS2 and M-BCSS3. Here  h,L(θ,p)

is the hL-time map of the integrator.

In Table 2 we provide important characteristics of

the integrators which can be recommended for the use in

modified Hamiltonian Monte Carlo methods in general,

and in MMHMC in particular, for a broad range of

problems and methods’ parameters.

Table 2: The splitting integrators for sampling with modified
Hamiltonian Monte Carlo methods using 4th order modified
Hamiltonians. Stability limit hmax is presented in terms of
the three-stage family (Radivojević et al. 2018).

Integrator N. of stages Coefficients hmax

Verlet 1 – 6.000
M-BCSS2 2 b = 0.238016 4.144
M-ME2 2 b = 0.230907 4.089

M-BCSS3 3
a = (1� 2b)/4(1� 3b)

4.902
b = 0.144115

M-ME3 3
a = (1� 2b)/4(1� 3b)

4.887
b = 0.142757
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2.3.3 Modified Hamiltonians

As in any modified Hamiltonian Monte Carlo (MHMC)

method, in MMHMC, the importance distribution ⇡̃

is ultimately defined through a modified Hamiltonian

associated with a particular numerical integrator. In
the early MHMC methods, various implementations of

modified Hamiltonians for the Verlet/leapfrog integrator

have been proposed and used. The idea to employ multi-

stage integration splitting schemes in MHMC methods

has been explored for the first time in the context of

Mix & Match Hamiltonian Monte Carlo. Nevertheless,

the derived formulations of modified Hamiltonians and

parameters for corresponding integration schemes can

be successfully used with other MHMC methods, as it

has been discussed and demonstrated by Radivojević
et al. (2018). In the following, we briefly review the

formulations of the modified Hamiltonian for splitting

integrators (Radivojević et al., 2018), which we rec-

ommend to use along with Mix & Match Hamiltonian

Monte Carlo.

Two alternative formulations of the 4th and 6th
order modified Hamiltonians corresponding to the Verlet

integrator and multi-stage integrators (14)–(15) with

arbitrary coefficients, have been proposed (Radivojević

et al., 2018).

For problems in which analytical derivatives of the

potential functions are available and inexpensive to

compute, the 4th and 6th order modified Hamiltonians

for splitting integrators can be calculated as

H̃ [4](θ,p) = H(θ,p) + h2c21p
TM�1Uθθ(θ)M

�1p

+ h2c22Uθ(θ)
T
M�1Uθ(θ), (22)

H̃ [6](θ,p) = H̃ [4](θ,p)

+ h4c41Uθθθθ(θ)M
�1pM�1pM�1pM�1p

+ h4c42Uθ(θ)
T
M�1Uθθθ(θ)M

�1pM�1p

+ h4c43Uθ(θ)
T
M�1Uθθ(θ)M

�1Uθ(θ)

+ h4c44p
TM�1Uθθ(θ)M

�1Uθθ(θ)M
�1p.

(23)

If the potential function is quadratic, i.e. correspond-
ing to problems of sampling from Gaussian distributions,

the 6th order modified Hamiltonian (23) simplifies to

H̃ [6](θ,p) = H̃ [4](θ,p)

+ h4c43Uθ(θ)
T
M�1Uθθ(θ)M

�1Uθ(θ)

+ h4c44p
TM�1Uθθ(θ)M

�1Uθθ(θ)M
�1p.

(24)

The values of the coefficients cij in (22)–(24) for

Verlet, two- and three-stage integrators are provided in

Appendix B.

The alternative formulations of modified Hamiltoni-

ans address to problems with a dense Hessian matrix

(and higher derivatives) and mainly rely on quantities

that are available during a simulation (Radivojević et al.,

2018). In this case, the 4th and 6th order modified Hamil-

tonians, respectively, are given as

H̃ [4](θ,p) = H(θ,p) + hk21p
TM�1P1

+ h2k22Uθ(θ)
T
M�1Uθ(θ) (25)

H̃ [6](θ,p) = H̃ [4](θ,p)

+ hk41p
TM�1P3 + h2k42Uθ(θ)

T
M�1P2

+ h2k43P
T
1 M�1P1

+ h4k44Uθ(θ)
TM�1Uθθ(θ)M

�1Uθ(θ), (26)

where the coefficients kij are provided in Appendix B.

Here Pi = U(i) · hi, i = 1, 2, 3, and U(i) are centered

finite difference approximations of time derivatives of

the gradient of the potential function (see Appendix B

for further details).

We note that the expression (25) allows for computa-

tion of H̃ [4] using quantities available from a simulation.

Nevertheless, this is not the case for the resulting 6th

order Hamiltonian. The last term in (26), arising from

an expansion of the Poisson bracket {B,B,A,A,B},
cannot be computed using time derivatives of avail-
able quantities and requires explicit calculation of the

Hessian matrix of the potential function. Only for the

Verlet integrator does this term vanish and the resulting

coefficients are

k21 =
1

12
, k22 = � 1

24
,

k41 = � 1

720
, k42 =

1

240
, k43 =

11

720
, k44 = 0.

Finally, we remark that the presented formulations

of modified Hamiltonians (22)–(24) and (25)–(26) were

used to derive the computationally tractable expressions
for the Metropolis function of the modified PMMC step

proposed in MMHMC (see Appendix C).

2.4 Tuning and Measuring Performance of MMHMC

In this section, we first discuss the impact of the pa-

rameters of the MMHMC method on its performance.

Secondly, we present the metrics for assessing the per-

formance, which are specifically designed for the class

of MHMC methods.

2.4.1 Choice of Parameters

MMHMC has five tunable parameters that affect the

performance of the method—the integration step size
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h, number of integration steps L, mass matrix M , noise

parameter ', and order k of the modified Hamiltonian.

In principle, these parameters may be chosen arbitrarily

within allowed-by-the-algorithm ranges, except for some

special cases when they might affect the ergodicity of

the chain (e.g. combinations leading to a value that is a
multiple of the period of a mode of the system). However,

the choice of parameters may have a dramatic impact on

the overall performance of MMHMC, and thus tuning

free parameters in order to maximize sampling efficiency

and minimize computational costs is one of the most
important but challenging tasks.

We notice that the first three parameters of

MMHMC are the same as in HMC, and like for HMC,

the optimal choice of these parameters in MMHMC
is still an unresolved issue, though some recommenda-

tions and observations for both methods are available

(Mackenzie 1989; Liu 2008; Neal 2011; Hoffman and
Gelman 2014; Akhmatskaya and Reich 2008; Wee et al.

2008). Below we briefly discuss considerations and obser-

vations which are essential for choosing free parameters

in MMHMC, while not necessarily relevant to HMC.

For example, the experiments revealed that the pa-

rameter L found to be the best for HMC is not neces-

sarily the best for MMHMC. Actually, too long values

of L may result in poorer overall efficiency of MMHMC

at particular choices of ', although the computational
overhead is smaller with larger L, due to a less frequent

calculation of modified Hamiltonians. In contrast, longer

trajectories are needed for HMC to achieve its full po-

tential, especially for larger dimensions. Intuitively, such

a difference can be explained by the presence of a par-

tial momentum update and high acceptance rates in
MMHMC, which together, for small L, mimic as long or
even longer, but more variative than in the case of large

L, trajectory. On the contrary, a complete momentum

update and short trajectories in HMC may initiate too

frequent switches to not necessarily preferable directions.

We have to stress that the choice of a step size h

critically affects the accuracy and sampling efficiency of

MMHMC not only through its influence on acceptance

rates (like in HMC) but also on importance weights

(see Section 2.5). Indeed, the reduction in efficiency

due to use of importance sampling is expected to be

negligible for small values of h. The reason is a choice

of the importance density ⇡̃ in MMHMC, which stays

closer to the true density ⇡ when h tends to 0. The

larger values of step size may lead to a high variability

in the importance weights and thus to a performance

degradation. As a result, given a sampling problem, the

best performance of MMHMC (often superior to the

one accessible with HMC) may be achieved at step sizes

smaller than the optimal ones for HMC.

Similarly to conventional HMC, the current imple-

mentation of MMHMC uses the identity mass matrix

and offers different randomization schedules for a num-

ber of integration steps. In addition, a randomization of

a noise parameter is provided in the algorithm. However,

in contrast to HMC, in MMHMC a step size stays fixed
on the reasons explained in Section 2.2.1.

The parameters ' and k are specific to MMHMC

and are not used in HMC.

Noise parameter '. Too small values of ' may reduce

sampling efficiency by producing almost deterministic

proposals, whereas too large ' may introduce a random
walk effect or increase momenta rejection rates and thus

lessen a potentially positive role of ' in tuning sampling

performance.

In Figure 3, we report position and momenta accep-
tance rates (top) and sampling efficiency, in terms of

time-normalized minimum ESS (bottom) in the problem

of sampling from the 100-dimensional Gaussian distribu-
tion for different choices of the trajectory length hL and

noise parameter '. Two different schemes for treating

the noise parameter ' are considered, namely (i) using

a fixed value ' at every MC iteration, and (ii) choosing

a random value uniformly from the interval (0,').

The figure provides a good illustration of an effect of

different parameters of MMHMC on the overall perfor-

mance of the method. One immediately sees a positive

influence of smaller values of the step size h and noise

parameter ' on the sampling performance of MMHMC.

The parameter L seems to play a less important role in

the performance tuning. This also applies to the ran-

domization of ' once the optimal value of ' is chosen

(' = 0.1). The situation changes when ' is far from its

optimal value. In this case the randomization mitigates

the effect of those unfavorable choices. We summarize

the observations specific to a role of ' in the MMHMC

performance below.

Position acceptance rate is not affected by ', unless
' = 1 at which it slightly drops, whereas the acceptance

rate of the PMMC step is visibly higher for smaller

values of '. Bigger values of ', meaning more random

noise introduced in momenta, might stimulate a better

space exploration; however, those values lead to more

frequent momenta rejections. In general, smaller values

of ' result in better sampling efficiency, though this

trend is more obvious for smaller trajectory lengths hL.

A noticeable drop in efficiency appears for a fixed value

' = 1, however, randomization around 1 reduces the

negative effect of complete momentum update.

The various numerical tests suggest that a random

value from (0, 0.5) drawn for every MC iteration is a

safe initial guess for a good choice of the parameter '. A
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Fig. 3: Position and momenta acceptance rates (top) and time-
normalized minimum ESS (bottom) obtained in sampling from
the 100-dimensional Gaussian distribution using MMHMC
with different choices of the trajectory length hL and noise
parameter ϕ. For each MC iteration, the noise parameter is
chosen to be either fixed (dashed line) or random, uniformly
drawn from the interval (0,ϕ) (solid line).

more theoretically grounded choice of a noise parameter

is proposed by Akhmatskaya et al. (2017).

Finally, we note that different values of ' can be

assigned to different variates—those that require longer

trajectories to decorrelate could have bigger values of '

and those that do not, can use smaller values.

Eventually, an automatic choice of the above free

parameters for optimal efficiency can be achieved by

adapting the techniques from Wang et al. (2013) to

MMHMC (Radivojević, 2016).

Order of modified Hamiltonian k. The decision on the

order of modified Hamiltonian is not a problematic one.

Our experiments indicate that the 4th order modified

Hamiltonian combined with the multi-stage integrators

performs just well. For more complex models, if the

acceptance rate is low with the 4th order, the 6th or-

der modified Hamiltonian might be needed. This comes

at a higher computational cost; however, such complex

models might require large values of L for which the com-

putational overhead due to the calculation of modified

Hamiltonian becomes negligible.

For more detailed discussion on the effect of free

parameters on the MMHMC performance and accuracy,
we refer the reader to (Radivojević, 2016).

2.4.2 Performance Metrics

To assess performance of the MMHMC method we use

the following metrics:

– Acceptance rate (AR);

– Effective Sample Size (ESS) and ESS normalized by

the computational time in seconds (ESS/T);

– Monte Carlo Standard Error (MCSE) and MCSE

normalized by the computational time in seconds
(MCSE·T);

– Efficiency Factor (EF)—relative ESS/T (MCSE·T)
of MMHMC with respect to another algorithm.

– Total distance from the mean, defined as ||θ�µ|| =
PD

d=1 |✓̂d � µd| for the true mean µ, and time-

normalized total distance from the mean.

Effective Sample Size is a commonly used measure

for sampling efficiency of an MCMC method. It indicates

the number of effectively uncorrelated samples out of N
collected samples and is defined as

ESSMCMC =
N

1 + 2
P

k �̂k
,

where �̂k is the k-lag sample autocorrelation (Geyer

1992).

Monte Carlo Standard Error of an estimator specifies

how much error is in the estimate due to the use of a

Monte Carlo method. It is related to ESS and is defined

as

MCSEMCMC =

s

�̂2

ESSMCMC
,

where �̂2 is the sample variance.

For general importance sampling methods, high vari-

ability in the importance weights might occur if the
importance density is not close enough to the target

density. In this case ESS is calculated as

ESSIS =

⇣

PN

n=1 wn

⌘2

PN

n=1 w
2
n

,

where wn, n = 1, . . . , N are weights associated to all

samples, as first introduced by Kong et al. (1994).

For importance sampling methods such as GSHMC

and MMHMC, one should use a metric for sampling effi-

ciency that takes into account both correlations among

samples and weights. To the best of our knowledge, a
metric for samplers that generate correlated weighted

samples has not been introduced, though the impor-
tance of such an objective criterion was discussed e.g.

by Neal (2001); Gramacy et al. (2010).

Here we propose a new metric that addresses these

issues and is based on calculation of ESS for MCMC

and importance samplers jointly. More specifically, we

first find the number of uncorrelated samples in the

modified ensemble M := ESSMCMC using all N poste-

rior samples collected. We estimate ESSMCMC using the

CODA package (Plummer et al. 2006). Then, we choose

M samples out of N by thinning, i.e. at a distance of

dN/Me. Finally, we calculate MCSE of the importance
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sampling estimator Î =
P

wnf(θ
n)/

P

wn for those M

uncorrelated samples as

MCSEMCMC-IS =

s

�̂2
w

ESSMCMC-IS
,

where �̂2
w is the unbiased weighted sample variance

(Rimoldini 2014)

�̂2
w =

PM

n=1 wn

(
PM

n=1 wn)2 �
PM

n=1 w
2
n

M
X

n=1

wn

⇣

f(θn)� Î
⌘2

and

ESSMCMC-IS =

⇣

PM

n=1 wn

⌘2

PM

n=1 w
2
n

(27)

is the effective sample size for samplers that generate

weighted correlated samples. Note that the effective sam-

ple size depends directly on variability in the normalized

importance weights.

Although in the numerical experiments through the

paper for MCMC (HMC, GHMC, MALA, RMHMC)

and MCMC importance sampling (GSHMC, MMHMC)

methods we use the corresponding equations to
compute ESSMCMC, ESSMCMC-IS and MCSEMCMC,

MCSEMCMC-IS, we simplify their notation to ESS and

MCSE, respectively, in the remainder of the paper.

2.5 Expected Performance of MMHMC

By design, MMHMC incorporates the features and meth-

ods, known as potentially favourable for performance

enhancement. Among them are irreversibility, impor-

tance sampling with modified Hamiltonians (implying
high acceptance rates, bounded weights), integration of

Hamiltonian dynamics using modified multi-stage split-

ting integrators (assuring high accuracy and acceptance

rates), partial momentum refreshment (resulting in ef-

ficient sampling). On the other hand, implementation

of such techniques in MMHMC introduces a computa-

tional overhead, and using importance sampling may

potentially reduce the efficiency of the estimator. Con-

tributions of those factors, positive or negative, into the

overall performance of MMHMC are not equivalent, and
in this section, we analyze potential performance gains
and losses provoked by the most significant factors.

The main advantage of using an importance distri-

bution defined through modified Hamiltonians comes

from the fact that modified Hamiltonians are better pre-

served by symplectic integrators than true Hamiltonian

(Leimkuhler and Reich 2005). A better conservation of

modified Hamiltonians leads to a smaller error after

numerical integration, which directly takes part in the

Metropolis test (13) and results in higher acceptance
rates. For illustration, in Figure 4 we compare the re-

sulting numerical integration error � observed in the

true Hamiltonian H and the 4th and 6th order modified

Hamiltonians given by (22) and (24), respectively, for
the 100-dimensional Gaussian problem. H̃ [4] is signifi-

cantly better conserved than H. Conservation of H̃ [6]

is even better, as expected. However in practice this

must be weighted up against the computational cost of

the calculation of the 6th order modified Hamiltonian
(23) for general non-Gaussian problems, which includes

higher order derivatives. In Section 3, we show that

the combination of the computationally inexpensive 4th

order modified Hamiltonians with accurate multi-stage

splitting integrators makes a perfect choice in all numer-

ical experiments, with no need for appealing to higher

order expensive modified Hamiltonians.

Iterations

500 1000 1500 2000

∆
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H̃
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Fig. 4: Observed error in (modified) Hamiltonians after nu-
merical integration with two-stage integrator in MMHMC
sampling of a 100-dimensional Gaussian problem.

Another advantage of using modified Hamiltoni-

ans for importance sampling are bounded importance

weights ensuring the efficiency of an estimator. Further-

more, avoiding randomization of a step size in MMHMC
helps to maintain a low variability of importance weights.

Figure 5 demonstrates the superiority of the fixed step
strategy over randomization of a step size in MMHMC

on the example of the D-dimensional Gaussian model.

It may be interesting to compare theoretical per-

formance of HMC and MMHMC for high-dimensional

problems. As follows from analysis in Eq. (10), in order

to keep acceptance rates in HMC high, an increase in
system size D can be counterbalanced by a decrease
of a step size h or/and increase in the order m of the

symplectic integrator used (m � 2, m = 2 for the

Verlet integrator). However, smaller step sizes mean

poorer space exploration. This can be partially over-

come by increasing a length of the HD trajectory but at

the price of reduced computational efficiency. We recall

that longer trajectories in HMC imply more frequent



12 Radivojević and Akhmatskaya

0.02 0.04 0.06 0.08

h

0

2

4

6

8

E
F

D = 100

minESS

maxMCSE

‖θ‖

6 7 8 9 10 11 12

h ×10
−3

D = 1000

3 4 5 6 7 8

h ×10
−3

D = 2000

Fig. 5: Relative efficiency (EF) of MMHMC with fixed step
size w.r.t. MMHMC with randomized step size in terms of
minimum ESS, maximum MCSE and total distance from the
mean, for a range of step size h and D-dimenasional Gaussian
model.

time-consuming evaluations of gradients of the potential
function. Using high-order symplectic numerical integra-

tors is a possible but rather expensive way of keeping

acceptance rates high as such integrators introduce a

significant computational overhead.

For MMHMC (Eq. 11) the order of the modified
Hamiltonian k � 4 ensures although shorter than for

low-dimensional problems but longer than in HMC, step

sizes for high dimensional systems. Moreover, the vari-

ability of weights, being a potential threat for MMHMC

performance, is lower for smaller time steps, as follows

from the definition of the truncated modified Hamilto-

nian (8).

There are two important reasons for using modified

splitting integrators in the MMHMC method. One is

their potential to achieve, for a range of step sizes, at a

given computational cost, a higher accuracy than Verlet
and thus higher acceptance rates and better space explo-

ration. (We have to emphasize that for fair comparison,

different integrators have to be applied with the same

computational effort, rather than with the same step

length; an r-stage integrator requires r gradient evalua-

tions per time step and to be compared with Verlet has

to be used with a step length correspondingly longer.)

A second possible benefit of the integrators of this

class is that, due to the extra accuracy, they may avoid

the need for computationally expensive, higher order

modified Hamiltonians.

Numerical experiments confirm that the Verlet inte-

grator currently used within HMC and MHMC methods

can be advantageously replaced in MMHMC with mod-

ified multi-stage integrators whose implementation is

essentially that of Verlet (Radivojević et al., 2018). The

modified two- and three-stage integrators lead to an

outstanding improvement (up to 8 times) over Verlet

in terms of acceptance rate and sampling efficiency,

for a range of step sizes, for high dimensional prob-

lems in which the potential function is (approximately)

quadratic.

number of integration steps
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Fig. 6: Savings in computational time observed in MMHMC
sampling of a model with dense Hessian matrix after replacing
the original PMMC step with the newly proposed PMMC
step. The 4th order modified Hamiltonian (22) with analytical
derivatives was used.

An introduction of the modified partial momentum

update in MMHMC intends to reduce a computational

overhead caused by the evaluation of modified Hamil-

tonians within the Metropolis test in the PMMC step.

The proposed PMMC step is at least as efficient as the

original momentum update implemented in GSHMC,
whereas for specific choices of models and parameters

it may demonstrate a far better computational perfor-

mance that can be achieved with the original algorithm.

In Figure 6 we show the savings in computational

time observed in MMHMC sampling of a model with a

dense Hessian matrix after replacing the original PMMC

step with the newly proposed one. The modified Hamilto-

nian (22) and the range of HD trajectories lengths have

been considered in this case. Clearly, the new PMMC

step improves the efficiency of MMHMC in sampling

such models (up to 60%), especially if moderately short

HD trajectories, favoured in MMHMC, are chosen.

The computational effort required for calculation

of modified Hamiltonians in MMHMC is the crucial

issue for the overall performance efficiency of MMHMC.

In general, the higher orders modified Hamiltonians
are more computationally demanding than the ones

of the low orders. For models with a tridiagonal Hes-

sian matrix, the modified Hamiltonians with analytical

derivatives (22)–(24) introduce less computational over-

head than those expressed in terms of numerical time

derivatives (25)-(26), whereas for models with a dense

Hessian matrix, the modified Hamiltonians (25)-(26) are

less expensive than (22)–(24). As stated before, avoiding

modified Hamiltonians of orders higher than 4 became

possible with the introduction in MMHMC of accurate

modified splitting integrators specifically tuned for the

MHMC methods. Figure 7 shows computational over-

heads of MMHMC, compared to the HMC method, for

models with tridiagonal and dense Hessian matrices

when MMHMC uses the 4th order modified Hamilto-

nian with derivatives calculated analytically (22) (left
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panel), and the 4th order modified Hamiltonian with

numerical approximation of the time derivatives (25)

(right panel). Figure 7 (left) illustrates that models with

dense Hessian matrices imply non-negligible overhead.

In all other cases, the overheads are minor unless the

number of integration steps becomes very small.
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Fig. 7: Computational overhead of MMHMC compared to
HMC for models with a tridiagonal and a dense Hessian ma-
trix using the 4th order modified Hamiltonian (22) with all
required derivatives calculated analytically (left), and the 4th
order modified Hamiltonian (25) with numerical approxima-
tion of the time derivatives (right).

Dependence of MMHMC performance on a choice

of tunable parameters is yet another factor which may

deteriorate MMHMC efficiency. This is a well-known

drawback common to all HMC-based methods. The
advantage of vanilla HMC over other HMC methods

discussed in this section comes from a fewer number
of parameters to tune, due to an absence of partial

momentum update in its algorithm.

In the final analysis, in Table 3 we summarize the
differences between four somewhat similar methods,

MMHMC, HMC, GHMC, GSHMC, in terms of how

the presence or absence of various MMHMC features

affects their capacity to sample efficiently.

We excluded randomization of methods’ parameters

from Table 3 since its impact on performance is incon-

sistent. While randomization of parameters normally

improves performance in HMC, a randomized step size

in MMHMC leads to an opposite effect, as was dis-

cussed above. Moreover, the GSHMC method has been

formulated for physical applications where parameters

have physical meaning and are assumed to be fixed by

default.

3 Numerical Experiments

In this section we examine the performance of MMHMC

on various benchmark models and compare it against

other popular sampling techniques in computational
statistics to answer the question of whether MMHMC

emerges as a competitor to the most successful methods

like HMC and RMHMC.

Table 3: Presence of performance impacting factors in HMC-
based algorithms. (Bold symbols imply higher impacts)

Performance Enhancement

MMHMCHMCGHMCGSHMC
Irreversibility yes no yes yes

Modified Hamiltonians yes no no yes
PMMC yes no yes yes

Splitting Integrators yes no no no

Performance Degradation

Computation of High Order
yes no no yes

Derivatives
Variability of Weights yes no no yes
Ambiguous Choice

yes yes yes yes
of Parameters

3.1 Implementation

The MMHMCmethod has been implemented in the user-

friendly in-house software package HaiCS (Hamiltonians
in Computational Statistics), written in C and targeted

to computers running UNIX certified operating systems.

The code is intended for statistical sampling of high

dimensional and complex distributions and parameter

estimation in different models through Bayesian infer-

ence using Hamiltonian Monte Carlo based methods.

The currently available sampling techniques include the

Metropolis algorithm, Hamiltonian Monte Carlo (HMC),

Generalized Hybrid Monte Carlo (GHMC), Metropolis

Adjusted Langevin Algorithm (MALA), second order

Langevin Monte Carlo (L2MC), Generalized Shadow

Hybrid Monte Carlo (GSHMC) and Mix & Match Hamil-

tonian Monte Carlo (MMHMC), the method presented

in this paper. The package benefits from efficient im-

plementation of modified Hamiltonians, the accurate
multi-stage splitting integration schemes, the analysis

tools compatible with CODA toolkit for MCMC diag-

nostics as well as an interface for implementing alterna-

tive splitting integrators and complex statistical models.

The popular statistical models, such as, multivariate

Gaussian distribution, Bayesian Logistic Regression and

Stochastic Volatility are implemented in HaiCS.

The complete description of HaiCS package can be

found in (Radivojević, 2016).

3.2 Experimental Results

We evaluate the performance of the MMHMC method

and compare it with the Random Walk Metropolis-

Hastings (RWMH), Hamiltonian Monte Carlo (HMC),

Generalized Hybrid Monte Carlo (GHMC), Metropolis

Adjusted Langevin Algorithm (MALA), Riemann Man-
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ifold HMC (RMHMC) and Generalized Shadow Hybrid

Monte Carlo (GSHMC) methods on a set of standard

benchmark models used in the literature. Space explo-

ration and/or sampling efficiency are examined on the

banana-shaped distribution, multivariate Gaussian dis-

tribution, Bayesian logistic regression model, and the

stochastic volatility model.

The choice of the optimal parameters of the algo-
rithms remains an open question (Neal 2011) and not

the subject of this paper. To make the comparison with
other methods fair, we chose the following strategy. Since

the stochastic volatility benchmark is studied well in

literature, and HMC and RMHMC were tuned previ-

ously for a particular dimension of this benchmark, we
took the found sets of optimal parameters as an initial

guess and tuned them further. For Bayesian logistic

regression and Gaussian model, especially for some data

sets, such information is not available. In this case, we

have located a range of reasonable parameters L, h and

' and performed the comparison for these sets.

For each MC iteration we draw the number of inte-

gration steps uniformly from {1, . . . , L} for HMC and

GHMC, and step size uniformly from (0.8h, 1.2h) for
HMC, GHMC and MALA methods. For GSHMC, we

hold all parameters fixed as originally proposed in the

method. Naturally, for r-stage integrators, a step size is

set to rh and a number of integration steps to L/r. We
observed that bigger values of L yield higher efficiency

for HMC and GHMC for all tested step sizes, whereas

for GSHMC and MMHMC this is not the case. Addition-
ally, we tested MMHMC for a range of noise parameters

' being fixed as well as drawn uniformly from (0,').
Smaller values of ' tend to perform better for smaller
values of the product hL and vice versa. Nevertheless,

here we report only results obtained with the best '

and L among tested for each step size h. Complete ex-

perimental setup for each method and model tested is

given in Appendix E. All our experiments are carried

out with the identity mass matrix for HMC, GHMC,

MALA, GSHMC and MMHMC.

In the results presented here, we compute ESS

(MCSE) of the mean estimator for each variate, as pro-

posed in 2.4.2, and report minimum, median, and maxi-

mum ESS (MCSE) across variates or just minimum ESS

(maximum MCSE), as the most restrictive measures,

calculated using the collected posterior samples. Com-

putational time used for normalization of ESS, MCSE

and efficiency comparison is measured as CPU time that

each method takes to collect posterior samples. Except

for the case of the banana-shaped distribution, for which

we investigate a typical trajectory of a single Markov

chain, all results are averaged over ten independent runs.

We examine the banana-shaped model with the Mat-
lab code provided along with the paper by Lan et al.

(2015), in which we implemented the MMHMC method.

The rest of experiments are carried out with the in-house

software package HaiCS, outlined in Section 3.1.

Each test model has been prepared to sampling with
MMHMC, which in the first instance involved computa-

tion of derivatives of a model potential function.

3.2.1 Banana-shaped Distribution

We begin with a comparison of a space exploration

achieved by MMHMC, RWMH, HMC and RMHMC in

sampling of a 2-dimensional, non-linear target. The idea

is to illustrate a representative mechanism of exploring

a space for each tested method by generating a typical

trajectory of a single Markov chain. Given data y =

{yk}
K
k=1 we sample from the banana-shaped posterior

distribution of the parameter θ = (✓1, ✓2) (Bornn and

Cornebise, 2011) for which the likelihood and prior

distributions are given as

yk|θ ⇠ N (✓1 + ✓22,�
2
y), k = 1, . . . ,K,

✓1, ✓2 ⇠ N (0,�2
θ),

respectively. Due to independency in the data and pa-

rameters, the posterior distribution ⇡(θ|y) is propor-

tional to
K
Y

k=1

p(yk|θ)p(✓1)p(✓2).

Experimental setting. Data {yk}
K
k=1, K = 100 are gen-

erated with ✓1 + ✓22 = 1, �y = 2 and �θ = 1. Sampling

with the MMHMC method is performed using the Verlet
integrator and the modified Hamiltonian (22), a fixed

number of integration steps, a step size and a noise

parameter with values L = 7, h = 1/9,' = 0.5, respec-

tively. MMHMC is compared with RWMH, HMC and

RMHMC for which simulation parameters are chosen

as suggested by Lan et al. (2015).

Results. The dynamics of the four samplers is illustrated

in Figure 8, in which sampling paths (lines) of the first

15 accepted proposals (dots) are shown. RWMH just

has started to explore the parameter space and is still lo-
cated in the low-density tail. In contrast, other methods

already have visited high-density regions. As expected,

RMHMC efficiently tracks a local curvature of the pa-

rameter space and is able to move along the ridge to

its full extent. On the other hand, HMC and MMHMC

tend to move across rather than along the ridge, with

MMHMC sampling visibly broader than does HMC.



Hamiltonian Monte Carlo importance sampling 15

Fig. 8: The first 15 Monte Carlo iterations with sampling paths
(lines) and accepted proposals (dots) in sampling from the
banana-shaped distribution with Random Walk Metropolis-
Hastings (RWMH), Hamiltonian Monte Carlo (HMC), Mix
& Match HMC (MMHMC) and Riemann Manifold HMC
(RMHMC).

3.2.2 Multivariate Gaussian Distribution

This benchmark has been proposed by Hoffman and

Gelman (2014). The task is to sample from the D-

dimensional Gaussian N (0,⌃), where the precision ma-

trix ⌃�1 is generated from a Wishart distribution with

D degrees of freedom and the D-dimensional identity

scale matrix.

Experimental setting. The tests are performed for three

different dimensions, D = 100, 1000, 2000, using the

HMC, GHMC, GSHMC and MMHMC methods. For
the identity mass matrix, all four methods are invariant

under rotations. Therefore, due to limited computa-

tional resources, for cases D = 1000, 2000 we choose the

covariance matrix ⌃ to be diagonal with

⌃ii = �2
i ,

where �2
i is the ith smallest eigenvalue of the original co-

variance matrix. Sampling with MMHMC is performed

using the modified Hamiltonian (22), and the M-BCSS3

and M-ME3 integrators forD = 100 andD = 1000, 2000,

respectively. For simplicity, we use the same formula-

tion and implementation of the modified Hamiltonian in

GSHMC as in MMHMC. However, we notice that in the
original GSHMC algorithm the less efficient implemen-

tation of the modified Hamiltonian is proposed and thus

the GSHMC performance in the following tests is likely

overestimated. 10000, 20000, 30000 samples are collected

with each method with first 2000, 5000, 5000 being dis-

carded as a warm-up for dimensionsD = 100, 1000, 2000,

respectively.

Results. Figure 9 compares the obtained acceptance

rates (top) and corresponding time-normalized mini-
mum ESS (bottom). While acceptance rates for HMC

and GHMC drop considerably with increasing step size,

especially for higher dimensions, MMHMC, in particu-

lar, and GSHMC maintain very high acceptance. For

D = 100 acceptance rates for MMHMC and GSHMC

start to drop visibly but still stay reasonably high for

longest step sizes. In addition, Figure 10 presents the
comparison in terms of time-normalized total distance

from the mean kθk (top), and maximal MCSE (bottom)

obtained with the four methods, where lower values cor-

respond to better performance. As can be seen from the
inspection of time-normalized ESS, MCSE and kθk, for
all tests, MMHMC outperforms in sampling efficiency

all considered methods.
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Fig. 9: D-dimensional Gaussian distribution. Acceptance rate
(top) and time-normalized minimum ESS (bottom) for a range
of step sizes h, obtained in sampling with Hamiltonian Monte
Carlo (HMC), Generalized Hybrid Monte Carlo (GHMC),
Generalized Shadow Hybrid Monte Carlo (GSHMC) and Mix
& Match HMC (MMHMC).

The results on sampling efficiency are summarized

in Figure 11, from which one can appreciate the amount

of improvement achieved with MMHMC compared to

HMC. For a range of step sizes h the efficiency factor

(EF) in terms of time-normalized minimum ESS, maxi-

mum MCSE and total distance, relative with respect to

HMC, is shown in such a way that values above 1 indi-

cate superior performance of MMHMC. The improve-

ment factor slowly increases with dimension. Depending

on the choice of h, starting from at least a comparable

performance (for the lowest dimension), the maximal
improvement goes up to 29 times (for the highest di-

mension).

Finally, Figure 12 summarizes the improvements ob-

tained with MMHMC compared to HMC in terms of

the same metrics, when considering the results achieved

with the best set of parameters for each method and

each dimension found among the tested ones. Clearly,
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Fig. 10: D-dimensional Gaussian distribution. Time-
normalized total distance from the mean (top) and maximal
MCSE (bottom) for a range of step sizes h, obtained in sam-
pling with Hamiltonian Monte Carlo (HMC), Generalized
Hybrid Monte Carlo (GHMC), Generalized Shadow Hybrid
Monte Carlo (GSHMC) and Mix & Match HMC (MMHMC).
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Fig. 11: D-dimensional Gaussian distribution. Relative ef-
ficiency (EF) of MMHMC w.r.t. HMC in terms of time-
normalized minimum ESS, maximum MCSE and total dis-
tance from the mean, for a range of step sizes h.

the MMHMC method demonstrates superiority for all

the three metrics considered, especially in terms of ESS.

However, in a general case, the optimal parameters are

not known a priori for either of the sampling method-

ologies.

ESS MCSE ‖θ‖
0

5

10

15

20

E
F

D = 100

ESS MCSE ‖θ‖

D = 1000

ESS MCSE ‖θ‖

D = 2000

Fig. 12: D-dimensional Gaussian distribution. Relative ef-
ficiency (EF) of MMHMC w.r.t. HMC in terms of time-
normalized minimum ESS, maximum MCSE and total dis-
tance from the mean, achieved using the best set of parameters
for each method.

3.2.3 Bayesian Logistic Regression Model

The Bayesian logistic regression (BLR) model is used for

solving binary classification problems appearing across

various fields such as medical and social sciences, engi-

neering, insurance, ecology, sports, etc.

Let consider K instances of data {xk, yk}
K
k=1, where

xk are vectors of D � 1 covariates and yk 2 {0, 1} are

binary responses. In the BLR model, response variable

y = (y1, . . . , yK) is governed by a Bernoulli distribution

with a parameter p = (p1, . . . , pK). The unobserved

probability pk of a particular outcome is linked to the

linear predictor function through the logit function, i.e.

logit(pk) = ✓0 + ✓1x1,k + · · ·+ ✓D�1xD�1,k,

where θ 2 R
D is the regression coefficient vector. The

prior of the regression coefficient can be chosen e.g. as

θ ⇠ N (0,↵I), with a known ↵.

If we construct the design matrix X 2 R
K,D of input

data as

X =

2

6

4

1 x11 · · · x1,D�1

...
...

...

1 xK1 · · · xK,D�1

3

7

5
,

the likelihood function is given as

p(y|X,θ) =

K
Y

k=1

p(yk|Xk,θ)

=

K
Y

k=1

✓

eXkθ

1 + eXkθ

◆yk
✓

1

1 + eXkθ

◆1�yk

,

where Xk is the kth row of the matrix X. The cor-

responding posterior distribution over the regression

coefficients is

⇡(θ|y,x) /
K
Y

k=1

p(yk|Xk,θ)p(θ)

with the prior

p(θ) / exp

(

�θ
T
θ

2↵

)

.

Experimental setting. We use four different real data

sets available from the University of California Irvine

Machine Learning Repository Lichman (2013). The data

set characteristics, such as names, numbers of regression

parameters (D) and observations (K) are summarized

in Table 4.

By following a common procedure, we normalize

input data such that each covariate has zero mean and

standard deviation of one. For each data set, a diffuse

Gaussian prior is imposed by setting ↵ = 100.

For the German and Sonar data sets, N = 5000

posterior samples were generated after discarding the

first 1000 samples as a warm-up, while for the bigger

data sets (Musk and Secom) twice as much samples were
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Table 4: Data sets used for the BLR model with correspond-
ing numbers of regression parameters (D) and numbers of
observations (K).

Data set D K

German 25 1000
Sonar 61 208
Musk 167 476
Secom 444 1567

collected. Apart from the comparison of MMHMC with

HMC over the range of data sets, we also tested it against

MALA on German data set. We do not investigate

the performance of RMHMC since, as it was stated by

Girolami and Calderhead (2011), RMHMC does not

outperform HMC for dimensions as high as for the

German data set (D = 25), which in our case is the

data set of the smallest dimension.

In these experiments, MMHMC is used with the

modified Hamiltonian (25) and the Verlet integrator.

Results. Acceptance rate (top), time-normalized min-

imum ESS (middle) and maximum MCSE (bottom)

across variates obtained for BLR are presented in Fig-
ures 13 and 14. For all data sets, acceptance rate is

the highest for MMHMC, as expected. For the smallest

data set, while MALA exhibits visibly poor performance,

both HMC and MMHMC demonstrate high and com-

parable efficiency. The trend changes for HMC method

with increasing size of a problem. The superiority of
MMHMC over HMC becomes more noticeable when a

bigger data set is considered, resulting in the perfor-

mance improvement by a factor of over 3 for the Secom

data set (D = 444).

Figure 15 summarizes results on efficiency in terms

of relative improvement of MMHMC compared to HMC,

measured in terms of time-normalized minimum ESS

and maximum MCSE across variates, obtained using

the best set of simulation parameters among the tested

ones for each method. Based on these results we can

conclude that for the BLR model and tested data sets,

MMHMC demonstrates improvement over HMC of up

to 2.5 times.

3.2.4 Stochastic Volatility Model

Stochastic volatility (SV) models are a useful tool for

modeling time-varying volatility with significant poten-

tial for applications (e.g. risk management/risk predic-

tion, pricing of financial derivatives).

We consider the standard SV model defined with

the latent, log-volatilities following autoregressive AR(1)

process. The model, as described by Kim et al. (1998),
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Fig. 13: Bayesian logistic regression. Acceptance rate (top),
time-normalized minimum ESS (middle) and maximum MCSE
(bottom) across variates obtained using Hamiltonian Monte
Carlo (HMC), Mix & Match HMC (MMHMC) and Metropolis
Adjusted Langevin Algorithm (MALA), for a range of step
sizes h, for the German and Sonar data sets.
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takes the following form

yt = � exp(xt/2)✏t, ✏t ⇠ N (0, 1)

xt = �xt�1 + �⌘t, ⌘t ⇠ N (0, 1)

x1 ⇠ N

✓

0,
�2

1� �2

◆

,

where yt are observed data of mean corrected log-returns,

equidistantly spaced in time for t = 1, . . . , T , and xt



18 Radivojević and Akhmatskaya

ESS MCSE

0

0.5

1

1.5

2

2.5

E
F

German

ESS MCSE

Sonar

ESS MCSE

Musk

ESS MCSE

Secom

Fig. 15: Bayesian logistic regression. Relative efficiency (EF) of
MMHMC w.r.t. HMC in terms of time-normalized minimum
ESS and maximum MCSE across variates achieved using the
best set of simulation parameters for each method.

are latent variables of log-volatility assumed to follow

a stationary process. This assumption leads to the con-

straint |�| < 1. The error terms ✏t and ⌘t are serially and

mutually uncorrelated white noise sequences with the

standard normal distribution. The parameter � of the

model can be interpreted as the modal instantaneous

volatility, � as the persistence in the volatility and � as

the volatility of the log-volatility, leading to the second

constraint � > 0.

Let denote the vector of model parameters as θ =

(�,�,�). Its priors are chosen as p(�) / 1/�,�2 ⇠
Scale-inv-�2(10, 0.05), (�+1)/2 ⇠ Beta(20, 1.5), leading

to

p(�) / 1

�

p(�) / ��11 exp{�1/4�2}

p(�) / (�+ 1)
19

(1� �)
1
2 .

Instead of sampling jointly model parameters and

latent volatilities from ⇡(θ,x|y), we follow a common

procedure of cycling through the two full conditional
distributions ⇡(θ|y,x) and ⇡(x|y,θ) (see e.g. Jacquier

et al. 1994; Chen et al. 2000; Liu 2008).

Since HMC methods sample real valued parameters,

we handle the constraints �2 > 0 and �1  �  1 by

making use of the transformation T : θ ! θ̄ to the real

line, defined as

θ̄ = T (θ) = (�, ln(�), artanh(�)) = (�, �,↵)

with the Jacobian

JT =

2

6

4

dβ
dβ 0 0

0 dγ
dσ 0

0 0 dα
dφ

3

7

5
=

2

6

4

1 0 0

0 ��1 0

0 0 (1� �2)�1

3

7

5
,

which accounts for the change of variables within the

Hamiltonian dynamics and Metropolis test.

Experimental setting. We examine sampling of the stan-

dard SV model on simulated data with values � =

0.65,� = 0.15,� = 0.98, for T = 2000, 5000, 10000 time

points. This results in three experiments of dimensions

D = 2003, 5003, 10003, which include three model pa-

rameters and T latent volatility variables to sample.

We run 10000 iterations as a warm-up and generate

100000 posterior samples collecting every 5th sample.
We compare MMHMC with HMC, and for D = 2003 we

additionally run the RMHMC and GSHMC methods.

The simulation parameters of the four methods are sum-

marized in Appendix E. The results presented in this

section for MMHMC are obtained with the M-ME3 and

M-ME2 integrators for D = 2003 and D = 5003, 10003,

respectively, and the modified Hamiltonian (22). As pro-

posed in the original paper, we run GSHMC with modi-

fied Hamiltonians calculated using numerical derivatives.
However, we notice that the original implementation

of derivatives in GSHMC is less efficient than the one
in HaiCS and thus the GSHMC performance in the

following comparison is likely overestimated.

Results. Figures 16 and 17 provide efficiency in terms

of time-normalized ESS and MCSE relative to HMC

for experiments with D = 2003 and D = 5003, 10003,

respectively. Acceptance rates (shown in inset figures)

are rather high for all methods. However, there is no

clear connection between obtained acceptance rates and

ESS/MCSE. Results for D = 2003 demonstrate that

RMHMC, GSHMC and MMHMC, outperform HMC in

terms of time-normalized ESS for � and latent variables.

However, all tested methods sample � and � comparably.

For all sampled parameters, MMHMC shows comparable

or superior performance to RMHMC.

Fig. 16: Stochastic volatility. Sampling efficiency of RMHMC
and MMHMC relative to HMC in terms of time-normalized
ESS (top) and MCSE (bottom) for SV model parameters (left)
and latent variables (right) and corresponding acceptance rates
(inset) for dimension D = 2003.

We recall here that in contrast to the RMHMC

method, HMC and MMHMC use the identity mass
matrix. One way to improve the performance of these

methods compared to RMHMC would be to define the

mass matrix from an estimate of global covariances in
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the warm-up phase and use it for obtaining the posterior

samples.

We do not have an access to the optimal parameters

for RMHMC for the dimensions higher than D = 2003.

For D = 5003, 10003 we compare only MMHMC and

HMC and observe that the superiority of MMHMC for

sampling of model parameters and latent variables is

maintained for higher dimensions.

Fig. 17: Stochastic volatility. Sampling efficiency of MMHMC
relative to HMC in terms of time-normalized ESS and MCSE
for SV model parameters (left) and latent variables (right)
and corresponding acceptance rates (inset) for dimensions
D = 5003 (top) and D = 10003 (bottom).

4 Conclusions

We developed the irreversible MCMC method for en-
hanced statistical sampling, which offers higher sam-

pling efficiency than the state-of-the-art MCMC method,

Hamiltonian Monte Carlo. Our new approach, called

Mix & Match HMC (MMHMC) arose as an extension

of Generalized Shadow Hybrid Monte Carlo (GSHMC),

earlier proposed for molecular simulation, published,
patented and successfully tested on complex physi-
cal systems (Akhmatskaya and Reich 2008; Wee et al.

2008; Akhmatskaya et al. 2009, 2011; Escribano et al.
2017; Bonilla et al. 2018; Garćıa Daza et al. 2019).

The MMHMC introduces a number of modifications

in GSHMC needed for efficient sampling in computa-

tional statistics. It can be viewed as a generalized HMC

importance sampler—momentum is updated in a gen-

eral form and sampling is performed with respect to an

importance distribution that is defined through mod-
ified Hamiltonian. To the best of our knowledge, this
is the first time that the method sampling with modi-

fied Hamiltonians has been implemented and applied to
Bayesian inference problems in computational statistics.

Being a method that generates both correlated and

weighted samples, MMHMC requires a metric for sam-

pling efficiency different from the one commonly used

for MCMC. Here we suggested such a metric suitable

for MCMC importance sampling based methods.

The method has been carefully tested and com-

pared with the traditional and advanced sampling

techniques such as Random Walk Metropolis-Hastings,

Metropolis Adjusted Langevin Algorithm, Hamiltonian

Monte Carlo, Riemann Manifold Hamiltonian Monte

Carlo, Generalized Hybrid Monte Carlo and Generalized

Shadow Hybrid Monte Carlo.

When compared to HMC, RWMH, MALA, GHMC

and GSHMC, the MMHMC method demonstrates su-

perior performance, in terms of higher acceptance rate,

bigger time-normalized ESS and smaller MCSE, for a

range of applications, range of dimensions and choice of

parameters of the methods. The improvements are big-

ger for high-dimensional problems—for the multivariate

Gaussian problem MMHMC demonstrated an improve-

ment over HMC of up to 29 times. When comparing

only for the best set of parameters among the tested

ones for each method, MMHMC shows around 17 times

better performance than HMC for the Gaussian problem

and around 2.5 times improvement for the BLR model.

MMHMC and RMHMC demonstrate comparable,

with a slight advantage of MMHMC, performance for
the tested SV model. However, in contrast to the origi-

nal RMHMC, MMHMC does not rely on higher order
derivatives or inverse of the metric, and thus requires

less implementation and computational effort. This is-

sue becomes particularly important for high-dimensional

problems with dense Hessian matrix. In addition, choices

of integrators for RMHMC are limited due to the use of

non-separable Hamiltonians, whereas MMHMC is well

compatible with advanced splitting integration schemes.
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A Invariance of the PMMC step

The Partial Momentum Monte Carlo step of the MMHMC
method leaves the importance target distribution π̃ (Eq. 12)
invariant if for a transition kernel T (·|·) the following condition
is satisfied

π̃(θ0,p0) =

Z

π̃(θ,p)T ((θ0,p0)|(θ,p)) dθdp

for all n = 1, . . . , N .

The PMMC step is sampling on a space augmented with
a noise vector u ⇠ N (0,M) with the extended density π̂

(defined in Eq. 17), for which

π̃(θ,p) =

Z

π̂(θ,p,u)du.

Therefore, we want to show that

π̂(θ0,p0,u0) =

Z

π̂(θ,p,u)T ((θ0,p0,u0)|(θ,p,u)) dθdpdu,

(28)

for the transition kernel defined as

T ((θ0,p0,u0)|(θ,p,u)) = P · δ ((θ0,p0,u0)�R(θ,p,u))

+ (1� P) · δ
⇣

(θ0,p0,u0)� F̂(θ,p,u)
⌘

,

where P = min {1, π̂(R(θ,p,u))/π̂(θ,p,u)} is the Metropo-
lis probability, δ is the Delta function, R is the proposal
function (Eq. 16) and F̂(θ,p,u) = (θ,p,�u) is the flipping
function. Note that the map R is volume preserving, hence,
the Metropolis probability P does not inlcude the Jacobian
factor. For the sake of clarity, we denote x = (θ,p,u) and
write the right-hand side of the expression (28) as

Z

T (x0|x)π̂(x)dx =

Z

min {π̂(x), π̂(R(x))} · δ (x0 �R(x)) dx

| {z }
1st term

+

Z

π̂(x) · δ
⇣

x0 � F̂(x)
⌘

dx

| {z }

2nd term

�
Z

min {π̂(x), π̂(R(x))} · δ
⇣

x0 � F̂(x)
⌘

dx

| {z }

3rd term

.

Applying change of variables x = F̂ �R(x̄), which is volume
preserving, to the 1st term in the sum, omitting the bars, and
using the fact that F̂ = R � F̂ �R, one obtains

1st term =

Z

min
n

π̂(F̂ �R(x)), π̂(F̂(x))
o

·δ
⇣

x0 � F̂(x)
⌘

dx.

Since π̂ � F̂ = π̂, the 1st and 3rd terms cancel out. Employing
change of variables x = F̂(x̄) to the 2nd term and again
omitting the bars, leads to

2nd term =

Z

π̂(x) · δ (x0 � x) dx = π̂(x0),

which proves the equality (28).

B Modified Hamiltonians for Splitting

Integrators

The coefficients for the two-stage integrator family (14) and
modified Hamiltonians (22)–(24) are the following

c21 =
1

24

⇣

6b� 1
⌘

c22 =
1

12

⇣

6b2 � 6b+ 1
⌘

c41 =
1

5760

⇣

7� 30b
⌘

c42 =
1

240

⇣

� 10b2 + 15b� 3
⌘

c43 =
1

120

⇣

� 30b3 + 35b2 � 15b+ 2
⌘

c44 =
1

240
(20b2 � 1).

(29)

Using (29) one can also obtain the modified Hamiltonian
for the Verlet integrator, since two steps of Verlet integration
are equivalent to one step of the two-stage integrator with
b = 1/4. The coefficients are therefore

c21 =
1

12
, c22 = �

1

24

c41 = �
1

720
, c42 =

1

120
, c43 = �

1

240
, c44 =

1

60
.

For three-stage integrators (15) (a two-parameter family)
the coefficients are

c21 =
1

12

⇣

1� 6a(1� a)(1� 2b)
⌘

c22 =
1

24

⇣

6a(1� 2b)2 � 1
⌘

c41 =
1

720

⇣

1 + 2(a� 1)a(8 + 31(a� 1)a)(1� 2b)� 4b
⌘

c42 =
1

240

⇣

6a3(1� 2b)2 � a2(19� 116b+ 36b2 + 240b3)

+ a(27� 208b+ 308b2)� 48b2 + 48b� 7
⌘

c43 =
1

180

⇣

1 + 15a(1� 2b)(�1 + 2a(2� 3b+ a(4b� 2)))
⌘

c44 =
1

240

⇣

� 1 + 20a(1� 2b)(b+ a(1 + 6(b� 1)b))
⌘

.

The coefficients for the modified Hamiltonians (25)–(26)
are calculated as

k21 = c21, k22 = c22,
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k41 = c41, k42 = 3c41 + c42,

k43 = c41 + c44, k44 = 3c41 + c42 + c43.

For the 4th order modified Hamiltonian (25) we use the
second order centered finite difference approximations of time
derivatives of the gradient of the potential function

U(1) =
U(tn+1)�U(tn�1)

2ε
, (30)

with ε = h for the Verlet, ε = h/2 for two-stage and ε = ah for
three-stage integrators with a being the integrator’s coefficient
advancing position variables. The 6th order modified Hamil-
tonian (26), here considered only for the Verlet and two-stage
integrators, is calculated using fourth order approximation for
the first derivative and second order approximations for the
second and third derivatives

U(1) =
U(tn�2)� 8U(tn�1) + 8U(tn+1)�U(tn+2)

12ε

U(2) =
U(tn�1)� 2U(tn) +U(tn+1)

ε2

U(3) =
�U(tn�2) + 2U(tn�1)� 2U(tn+1) +U(tn+2)

2ε3
,

where ε depends on the integrator as before. The interpolating
polynomial in terms of the gradient of the potential function
U(ti) = Uθ(θi), i = n � k, . . . , n, . . . , n + k, n 2 {0, L} is

constructed from a numerical trajectory {Uθ(θi}L+k
i=�k where

k = 1 and k = 2 for the 4th and 6th order modified Hamilto-
nians, respectively.

C Modified PMMC Step

In the modified PMMC step proposed for MMHMC, a partial
momentum update is integrated into the modified Metropolis
test, i.e. it is implicitly present in the algorithm. This reduces
the frequency of derivative calculations in the Metropolis
function. To implement this idea, one should recall that the
momentum update probability

P = min

(

1,
exp

�
� Ĥ(θ,p⇤,u⇤)

exp
�
� Ĥ(θ,p,u)

�

)

(31)

depends on the error in the extended Hamiltonian (18). Let
us first consider the 4th order modified Hamiltonian (22) with
analytical derivatives of the potential function. It is easy to
show that the difference in the extended Hamiltonian (18)
between a current state and a state with partially updated
momentum is

∆Ĥ = U(θ) +
1

2
(p⇤)TM�1p⇤

+ h2c21(p
⇤)TM�1Uθθ(θ)M

�1p⇤

+ h2c22Uθ(θ)M
�1Uθ(θ) +

1

2
(u⇤)TM�1u⇤

� U(θ)�
1

2
pTM�1p� h2c21p

TM�1Uθθ(θ)M
�1p

� h2c22Uθ(θ)M
�1Uθ(θ)�

1

2
uTM�1u

= h2c21
⇣

ϕA+ 2
p

ϕ(1� ϕ)B
⌘

(32)

with

A = (u� p)TUθθ(θ)(u+ p)

B = uTUθθ(θ)p.
(33)

For the 6th order modified Hamiltonian (24) for Gaussian
problems, the error in the extended Hamiltonian (18) can be
calculated in a similar manner

∆Ĥ = h2c21
⇣

ϕ(A�B) + 2
p

ϕ(1� ϕ)C
⌘

+ h4c44
⇣

ϕ(D � E) + 2
p

ϕ(1� ϕ)F
⌘

,
(34)

with

A = uTUθθ(θ)u

B = pTUθθ(θ)p

C = uTUθθ(θ)p

D = (Uθθ(θ)u)
TUθθ(θ)u

E = (Uθθ(θ)p)
TUθθ(θ)p

F = (Uθθ(θ)u)
TUθθ(θ)p.

Therefore, if the modified Hamiltonians (22)–(24) with analyt-
ical derivatives are used, a new momentum can be determined
as

p̄ =

8

<

:

p
1� ϕp+

p
ϕu with probability

P = min{1, exp(�∆Ĥ)}
p otherwise,

(35)

where u ⇠ N (0,M) is the noise vector, ϕ 2 (0, 1] and ∆Ĥ is
defined as in (32) or (34).

Consequently, for models with no hierarchical structure,
there is no need to calculate gradients within the PMMC step,
second derivatives can be taken from the previous Metropolis
test within the HDMC step, and there is no need to generate
u⇤.

If the modified Hamiltonians are calculated using numeri-
cal time derivatives of the gradient of the potential function,
for the Verlet, two- and three-stage integrators as in (25)–(26),
the difference in the 4th order extended Hamiltonian becomes

∆Ĥ = hk21
⇣

(p⇤)TP⇤

1 � pTP1

⌘

, (36)

whereas for the 6th order extended Hamiltonian it is

∆Ĥ = hk21
⇣

(p⇤)TP⇤

1 � pTP1

⌘

+ hk41
⇣

(p⇤)TP⇤

3 � pTP3

⌘

+ h2k42
⇣

UT
x
P⇤

2 � UT
x
P2

⌘

+ h2k43
⇣

(P⇤

1 )TP⇤

1 � PT
1 P1

⌘

.

Here P⇤

1 , P⇤

2 , P⇤

3 , are the first, second and third order scaled
time derivatives of the gradient, respectively (see Section
2.3.3), calculated from the trajectory with updated momen-
tum p⇤. The computational gain of the new PMMC step,
in this case, results from skipping a calculation of the terms
multiplying k22 in (25) and k44 in (26). It has to be admitted
that the term multiplying k22 in (25) is of negligible cost,
and thus the gain from using the new momentum update
is not as significant as in the case of modified Hamiltonians
with analytical derivatives. On the contrary, the saving in
computation arising from the absence of the term multiplying
k44 in the 6th order modified Hamiltonian (26), is essential.

In summary, in the case of the 6th order modified Hamilto-
nian, with derivatives calculated either analytically or numer-
ically, the proposed momentum refreshment enhances compu-
tational performance of MMHMC. This also applies to the



22 Radivojević and Akhmatskaya

cases when the 4th order modified Hamiltonian with ana-
lytical derivatives is used. In this situation, however, if the
Hessian matrix of the potential function is dense, instead of
using the modified Hamiltonian with analytical derivatives, we
recommend using numerical derivatives, for which the saving
is negligible. On the other hand, if the computation of the
Hessian matrix is not very costly (e.g. being block-diagonal,
sparse, close to constant), it might be more efficient to use
analytical derivatives, for which the new formulation of the
Metropolis test leads to computational saving.

D Algorithmic Summary

Algorithm 1 Hamiltonian Monte Carlo
1: Input: N : number of Monte Carlo samples

Input: h: step size
Input: L: number of integration steps
Input: M : mass matrix
Input: Ψh,L: numerical integrator

2: Initialize θ0

3: for n = 1, . . . , N do

4: θ = θn�1

5: Draw momentum from Gaussian distribution: p ⇠
N (0,M)

6: Generate a proposal by integrating Hamiltonian dynam-
ics: (θ0,p0) = Ψh,L(θ,p)

7: Set θn = θ0 with probability α = min{1, exp(H(θ,p)�
H(θ0,p0))}, otherwise set θn = θ

8: Discard momentum p0

9: end for

We provide two alternative algorithms for the MMHMC
method. One (Algorithm 2) uses the modified Hamiltonians
defined through analytical derivatives of the potential function
and is recommended for the problems with sparse Hessian
matrices. The other algorithm (Algorithm 3) relies on the mod-
ified Hamiltonians expressed through numerical time deriva-
tives of the gradient of the potential function. This algorithm,
although including additional integration step, is beneficial
for cases where higher order derivatives are computationally
demanding.

E Experimental setup
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Table 5: Parameter values used for the multivariate Gaussian model experiments. The Verlet integrator was employed in
HMC, GHMC and GSHMC methods, whereas for MMHMC the M-BCSS3 integrator was used for D = 100 and M-ME3 for
D = 1000, 2000. For HMC and GHMC step size is drawn from U(0.8h, 1.2h). For HMC, GHMC and MMHMC trajectory length
is drawn from U{1, . . . , L}. For GHMC, MMHMC noise parameter is drawn from U(0,ϕ). For GSHMC all parameters are fixed.

D Method Parameter value

h 0.02 0.03 0.04 0.05 0.06 0.07 0.08

100

HMC L 500 500 500 500 500 500 400

GHMC
L 500 500 500 500 500 500 400

ϕ 0.1 0.1 0.1 0.1 0.9 0.9 0.9

GSHMC
L 150 100 100 100 100 100 100

ϕ 0.1 0.1 0.1 0.1 0.1 0.1 0.1

MMHMC

h 0.06 0.09 0.12 0.15 0.18 0.21 0.24

L 100 67 67 67 67 67 67

ϕ 0.1 0.1 0.1 0.1 0.1 0.1 0.1

1000

h 0.006 0.007 0.008 0.009 0.01 0.011 0.012

HMC L 5000 5000 5000 5000 5000 5000 5000

GHMC
L 5000 5000 5000 5000 5000 5000 5000

ϕ 0.1 0.1 0.1 0.1 0.1 0.1 0.1

GSHMC
L 2000 1500 1000 1000 1000 1000 1000

ϕ 0.1 0.1 0.1 0.1 0.1 0.1 0.1

MMHMC

h 0.018 0.021 0.024 0.027 0.03 0.033 0.036

L 1333 1000 667 667 667 667 667

ϕ 0.1 0.1 0.1 0.1 0.1 0.1 0.1

2000

h 0.003 0.004 0.005 0.006 0.007 0.008

HMC L 10000 10000 10000 10000 10000 10000

GHMC
L 10000 10000 10000 10000 10000 10000

ϕ 0.1 0.1 0.1 0.1 0.1 0.1

GSHMC
L 3000 2000 2000 2000 2000 2000

ϕ 0.1 0.1 0.1 0.1 0.1 0.1

MMHMC

h 0.009 0.012 0.015 0.018 0.021 0.024

L 2000 1333 1333 1333 1333 1333

ϕ 0.1 0.1 0.1 0.1 0.1 0.1

Table 6: Parameter values used for the Bayesian logistic regression model experiments. The Verlet integrator was employed on
all methods. For HMC and MALA step size is drawn from U(0.8h, 1.2h). For HMC trajectory length is drawn from U{1, . . . , L}.

.

D Method h 0.02 0.03 0.04 0.05

German

HMC L 25 25 25 25

MALA L 1 1 1 1

MMHMC
L U{1, . . . , 25} U{1, . . . , 25} U{1, . . . , 25} U{1, . . . , 25}

ϕ U(0, 0.5) U(0, 0.5) U(0, 0.9) U(0, 0.9)

h 0.08 0.1 0.12 0.14

Sonar

HMC L 200 200 200 200

MMHMC
L 50 50 50 50

ϕ 0.25 0.5 0.5 0.5

h 0.05 0.055 0.06 0.065

Musk

HMC L 400 400 400 400

MMHMC
L 100 100 100 100

ϕ 0.25 0.25 0.25 0.25

h 0.01 0.015 0.02 0.025

Secom

HMC L 900 900 900 900

MMHMC
L 150 150 150 150

ϕ 0.25 0.25 0.25 0.25
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Table 7: Parameter values used for the Stochastic Volatility model experiments. For HMC step size is drawn from U(0.8h, 1.2h)
and trajectory length from U{1, . . . , L}. For MMHMC noise parameter is drawn from U(0,ϕ). For all other cases, parameters
are fixed.

D Method Integrator hθ hx Lθ Lx ϕθ ϕx

2003

HMC Verlet 0.01 0.03 6 76

RMHMC Verlet 0.5 0.1 6 50

GSHMC Verlet 0.008 0.023 3 38 0.25 0.4

MMHMC M-ME3 0.024 0.069 2 25 0.5 0.8

5003
HMC Verlet 0.006 0.02 6 76

MMHMC M-ME2 0.012 0.032 3 38 0.5 0.5

10003
HMC Verlet 0.004 0.02 6 76

MMHMC M-ME2 0.008 0.022 3 38 0.8 0.8
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Algorithm 3 MMHMC using numerical derivatives of

the gradient of the potential
1: Input: N : number of Monte Carlo samples

h: step size
p(L): number-of-integration-steps randomization

policy
p(ϕ): noise-parameter randomization policy
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r: number of stages in the numerical integrator
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Eq. (30)
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1� ϕnp+
p
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ward, Ψh,1(θ,p⇤)

10: Calculate the resulting scaled time derivative of the
gradient P⇤

1

11: Update momenta

p̄ =
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<

:

p⇤ with probability P = min{1, exp(�∆Ĥ)},

∆Ĥ defined in Eq. (36)
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12: Calculate modified Hamiltonian H̃[4](θ, p̄) defined in
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15: Calculate modified Hamiltonian H̃[4](θ0,p0)
16: Metropolis test {as in Algorithm 2, line 11}
17: end for

18: Compute weights and estimate integral (1) {as in Algo-
rithm 2, line 14}
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