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Modified Integrator for Voltage Model Flux

Estimation of Induction Motors

Marko Hinkkanen and Jorma Luomi, Member, IEEE

Abstract— This paper deals with voltage model flux estimators
for sensorless induction motor drives. In order to eliminate
the drift problems, the pure integrator of the voltage model is
replaced with a first-order low-pass filter, and the error due to
this replacement is compensated in a very simple way.

Index Terms— Induction machines, AC motor drives, flux
estimation.

I. INTRODUCTION

The voltage model is a convenient flux estimator for sensor-

less induction motor drives because of its simplicity, and since

the only crucial parameter of the model is the stator resistance.

The voltage model is often used in stator flux oriented control

[1], but it can also be used for rotor flux oriented control

[2]. However, there are two well-known problems when the

voltage model is used: even a small dc offset in measured

currents causes drift problems if a pure integrator is used and,

at low speeds, the model is extremely sensitive to errors in

the stator resistance value and to measurement errors. This

paper concentrates on the problems of integration, which can

be overcome by modifying the integrator.

Various modifications of the integrator have been proposed

in the literature [2]–[6]. The simplest way to eliminate the

drift problems is to replace the pure integrator with a low-

pass filter [2]. However, this method causes the output to be

erroneous even in steady state. The error can be compensated,

as presented in [5], by turning the angle and changing the mag-

nitude of the output vector of the low-pass filter according to

the calculated error. However, speed reversals are problematic.

The method proposed in this paper is inspired by the

method presented in [5]. Problems in speed reversals are

avoided by carrying out the compensation before low-pass

filtering, and a computationally more effective way to calculate

the compensation is presented. The proposed flux estimation

method is suitable for applications where a low-cost drive is

required but field orientation control is preferred due to the

dynamic performance needed.

II. INDUCTION MOTOR MODEL

The dynamic model corresponding to the inverse-Γ equiv-

alent circuit of the induction motor will be used below. The

voltage equations are in a general reference frame

us = Rsis +
dψ

s

dt
+ jωkψs

(1)

uR = RRiR +
dψ

R

dt
+ j (ωk − ωm)ψ

R
= 0 (2)

The conference version of this work was presented in the 27th Annual
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CO, Nov./Dec. 2001, vol. 2, pp. 1339–1343. This work was financed in part
by ABB Oy and in part by the Foundation of Technology, Finland.

Fig. 2. Experimental setup (a). The PM servo motor was used as the loading
machine. The rotor flux oriented controller (b). The electrical variables shown
on the left-hand side of the coordinate transformations are in the estimated
flux reference frame and the variables on the right-hand side are in the stator
reference frame.

where ωk is the angular speed of the reference frame, ωm the

electrical angular speed of the rotor, us the stator voltage, is
the stator current, and Rs the stator resistance. For the rotor,

uR, iR, and RR are defined similarly. The stator and rotor flux

linkage equations are

ψ
s
= (L′

s + LM ) is + LM iR (3)

ψ
R
= LM (is + iR) (4)

where LM and L′

s are the magnetizing inductance and the

stator transient inductance, respectively.

III. VOLTAGE MODEL AND MODIFIED INTEGRATORS

A. Voltage Model

The voltage model for the stator flux estimate can be written

from (1) in the stator reference frame, i.e., ωk = 0, as

ψ̂
s
=

∫

(

us − R̂sis

)

dt (5)

where R̂s is the stator resistance estimate. Based on (3) and

(4), the rotor flux estimate is obtained from the stator flux
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Fig. 1. Voltage model for the rotor flux (a), two structures for the compensated low-pass filter with the constant time constant τ0 (b), (c), and the proposed
algorithm (d).

estimate as ψ̂
R
= ψ̂

s
− L̂′

sis. The voltage model for the rotor

flux is shown in Fig. 1(a).

B. Proposed Modified Integrator

In the following, the input signal is denoted by u = us −
R̂sis and the output signal by y = ψ̂

s
. The pure integrator is

thus y =
∫

u dt. The goal is to modify the integrator in such

a way that the frequency response function of the modified

integrator remains the same as that of the pure integrator, i.e.,

y(jω)

u(jω)
=

1

jω
=

1

|ω|
e−j π

2
sign(ω) (6)

where ω is the angular frequency of the output signal y. In the

following, the proposed algorithm is derived by using inter-

mediate steps presented in Figs. 1(b)–(d). A short discussion

of the differences between the proposed algorithm and the one

presented in [5] is given at the end of this section.

A first-order high-pass filter with the time constant τ0, i.e.,

τ0s/ (τ0s+ 1), can be added in series to the pure integrator to

remove the drift problems [2]. The steady-state error caused

by the high-pass filter can be compensated by multiplying

the input signal of the integrator by the inverse of the high-

pass filter frequency response (Fig. 1(b)). The combination of

the first-order high-pass filter and the integrator is equal to

a first-order low-pass filter amplified by the time constant τ0
(Fig. 1(c)). The next step is to choose the time constant to be

dependent on the angular frequency ω by taking τ0 = 1/α0 =
1/(λ |ω|), where α0 is the corner angular frequency and λ is

a positive constant [5].

Now the equation for the modified integrator can be written

in the low-pass filter form

1

λ |ω|

dy

dt
+ y =

1− jλ sign(ω)

λ |ω|
u (7)

or in the integral form y = ∫
{

[1−jλ sign(ω)]u−λ |ω| y
}

dt,
which is illustrated in Fig. 1(d). The constant λ is typically

chosen λ = 0.1 . . . 0.5. The transient behavior is good if λ is

small, but a higher value of λ allows more dc offset in the

measurements. The pure integration is achieved by choosing

λ = 0.

In the ideal case when no dc offset exists and the parameter

R̂s is exactly correct, the response of the proposed algorithm

corresponds very well to that of the pure integrator. Even

though the derivation of the algorithm was based on the

assumption of steady state, practically no deterioration of the

flux estimation can be observed during transients. The angular

frequency ω is not low-pass filtered at all, which is one reason

for good dynamic behavior. When a small dc offset in the

measurements or a moderate parameter error in R̂s is present,

the algorithm remains stable and no drift problems exist. This

is due to shifting the poles of the pure integration from the

origin to −λ |ω|.
It is important to note that the proposed algorithm (7) is

extremely simple. The simple complex-valued compensation

gain 1 − jλ sign(ω) is used instead of calculating the phase

error and the gain error as in [5]. Furthermore, the dynamics of

(7) differ from [5, Fig. 2] because the compensation is carried

out before the low-pass filter. Therefore, problems after speed

reversals are avoided and a smoother output is obtained. The

steady-state responses of both methods correspond to the ideal

integrator.

IV. CONTROL SYSTEM

The proposed algorithm was investigated by means of simu-

lations and experiments. The MATLAB/Simulink environment

was used for the simulations. The experimental setup is shown

in Fig. 2(a). A 2.2-kW four-pole 400-V 50-Hz induction motor

was fed by a frequency converter controlled by a dSpace

DS1103 PPC/DSP board.

The control system shown in Fig. 2(b) was based on the

direct rotor flux orientation and synchronous-frame current
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Fig. 3. Simulation (a) and experimental (b) results for the proposed algorithm.
The value of λ was 0.33. The first subplot shows the actual speed (solid), the
speed reference (dashed), and the estimated speed (dotted). The second subplot
shows the actual q-component of the stator current in the estimated flux
reference frame. The third subplot presents the components of the estimated
rotor flux in the stator reference frame.

control. The angular speed of the rotor was estimated by using

the slip relation ω̂m = ω̂s − R̂Risq/ψ̂R, where ω̂s is the

angular speed of the estimated rotor flux, isq is the torque

producing current component, and ψ̂R is the magnitude of the

estimated rotor flux. The calculated rotor speed was filtered

by a first-order low-pass filter. The bandwidths of the current

controller, filtering of the speed estimate, speed controller, and

flux controller were 8 p.u., 1 p.u., 0.1 p.u., and 0.01 p.u.,

respectively (the base value being 2π·50 s−1).

For simplicity, the rotor flux speed estimate was used in the

proposed integrator (7) instead of the more correct stator flux

speed estimate. This approximation has no effect in the steady

state and only a marginal effect on the dynamic performance.

The sampling was synchronized to the modulation and both the

switching frequency and the sampling frequency were 5 kHz.

The dc-link voltage was measured, and the reference stator

voltage obtained from the current controller was used for

the voltage model. A simple current feedforward dead-time

compensation was applied [7].

V. RESULTS

An example of simulation results for the proposed algorithm

is shown in Fig. 3(a). The speed reference was initially

set to 0.04 p.u. and a speed reversal to −0.2 p.u. was ap-

plied (t = 1 s). The speed reference was changed to 0.2 p.u.

(t = 2 s) and a rated-load torque step was applied (t = 3 s).

Finally, the speed reference was lowered to 0.04 p.u. (t = 4 s)

while the rated torque was still applied. Both the steady-state

and dynamic performance are good.

Fig. 3(b) shows experimental results corresponding to the

simulation of Fig. 3(a). It can be seen that the experimental

results correspond very well to the simulation. If a more ac-

curate dead-time compensation scheme utilizing the measured

voltages [8] were used, the results would be still better.

As a comparison, the system using the pure integrator

became unstable after t = 2 s in the corresponding experiment

due to dc components in the measured currents. Compared

with the method in [5, Fig. 2], a serious transient phenomenon

in the flux estimate is eliminated after speed reversals. To ob-

tain satisfactory behavior after speed reversals, careful filtering

of ω̂s or some other means is needed in the method in [5].

VI. CONCLUSIONS

A new version of the modified integration algorithm was

presented in this paper. The properties of the algorithm are:

(a) the poles of the pure integration are shifted from the origin

to −λ |ω|, (b) the drift and the marginal stability problem of

the pure integration are eliminated, (c) neither the steady-state

nor the dynamic response of the integration is deteriorated due

to modifications of the pure integrator, and (d) the algorithm

is very simple. It is, however, to be noted that the inherent

parameter sensitivity properties of the voltage model still

remain. The accuracy of the stator resistance estimate thus

affects the accuracy of the estimated flux.
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