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Abstract: This paper presents a lag-1 modified K-nearest neighbor (K-NN) approach for stochastic streamflow simulation. The simula-
tion at any time 7 given the value at the time 7—1 involves two steps: (1) obtaining the conditional mean from a local polynomial fitted
to the historical values of time 7 and -1, and (2) then resampling (i.e., bootstrapping) a residual at one of the historical observations and
adding it to the conditional mean. The residuals are resampled using a probability metric that gives more weight to the nearest neighbor
and less to the farthest. The “residual resampling” step is the modification to the traditional K-NN time-series bootstrap approach, which
enables the generation of values not seen in the historical record. This model is applied to monthly streamflow at the Lees Ferry stream
gauge on the Colorado River and is compared to both a parametric periodic autoregressive and a nonparametric index sequential method
for streamflow generation, each widely used in practice. The modified K-NN approach is found to exhibit better performance in terms of

capturing the features present in the data.
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Motivation

The Colorado River Simulation System (CRSS) (Bureau of Rec-
lamation 1987) is widely used by the Bureau of Reclamation
(BOR) to evaluate the effects of various policies (both water
quantity and water quality related) that may be prescribed and
implemented in the Colorado River basin. Capturing streamflow
variability is key to such policy evaluations. To this end, one of
the main components in the CRSS model is the stochastic stream-
flow simulation module to generate synthetic flow scenarios that
reproduce the statistical properties of the observed data. The
current technique for generating streamflows in the CRSS is
the index sequential method (ISM). The ISM generates synthetic
sequences by sequentially block resampling the historical time
series. Consequently, it can only generate flow sequences
observed in the historic record, which limits variability in the
simulations. Policy analyses require a rich variety of statistically
plausible sequences in order to better capture the variability in the
flow. Clearly, ISM is limited in this requirement.
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The need to identify alternatives that will improve upon the
ISM motivated the research presented in this paper. The ISM is a
“nonparametric” method in that it makes no assumption of the
functional form of the underlying model; instead, the method is
data-driven. Keeping with the “nonparametric” spirit of ISM, we
developed the proposed modified K-nearest neighbor (K-NN)
method. The proposed approach retains all the aspects of the
traditional K-NN time series bootstrap technique developed
by Lall and Sharma (1996), but the “modification” enables simu-
lating values not seen in the historical record. We evaluate the
performance of our proposed approach by applying it to the
monthly streamflow data from U.S. Geological Survey (USGS)
stream gauge 09380000 located on the Colorado River at Lees
Ferry, Arizona. We also compare the modified K-NN method with
the ISM and a first-order periodic autoregressive model [PAR(1)],
each widely used in practice.

The paper is organized as follows: a brief background on
stochastic streamflow modeling including a description of the
ISM and the PAR models is first presented, for the benefit of
readers. Our proposed approach is then presented. A description
of the results and summary conclude the presentation.

Background

Long-term operational and planning studies in a river basin
require the ability to simulate realistic streamflow variability
(McMahon et al. 1996). This ability involves developing a
stochastic streamflow model to generate synthetic sequences of
streamflow. These models work on the premise that the flow
process is stationary. Hence the statistical characteristics of syn-
thetic flows are similar to those observed in the historical record.

Streamflow simulation can be thought of as generating
sequences from the conditional probability density function
(PDF); e.g., for a first-order model, the conditional PDF is
f,y,-1), where y, and y,_; =streamflows at two consecutive time
steps (e.g., seasons or months). Traditional stochastic streamflow
models were developed within the linear autoregressive moving
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average (ARMA) and periodic autoregressive (PAR) framework
and have extensive theoretical basis (see Yevjevich 1972;
Stedinger and Taylor 1982; Bras and Iturbe 1985; Salas 1985).

One of the widely used parametric models for streamflow
generation is the lag-1 PAR (Salas 1985), which linearly relates
the streamflows in a season (or month) to the previous season,
and has the form of

y«‘},‘r =Wt (I)l;r(yﬁ,'r—l - H‘T—l) + 8\‘),7 (1)

where ¥ =year, T=season (or month); p.=mean of the streamflow
process in season T, and @, =autoregressive parameter. The
error £y ; is assumed to be normally distributed with mean 0 and
variance ¢*(e,). The model parameters .., ®,, and o’(g) are
estimated for each month from the data either by using method
of moments or by approximating least-squares or Yule-Walker
equations (Bras and Iturbe 1985; Salas 1985). A monthly PAR(1)
model has 36 parameters. The model by construction preserves
the mean, standard deviation, and lag(1l) autocorrelation. By
implication,y, is also assumed to be normally distributed, and
consequently, the joint f(y,,y,_;), and conditional f(y,|y,_;) prob-
ability density functions (PDF) are also normally distributed.

In practice, more often than not, streamflows are not normally
distributed, thereby violating the assumptions of the above model.
To address this, a log or power transformation is applied to the
data to transform the data to a normal distribution, and the model
is fit to the transformed data. The synthetic sequences generated
from the model are then back-transformed into the original space.
This process of fitting the model on the transformed data and then
back-transforming it often does not guarantee the preservation of
statistics in the original space (Benjamin and Cornell 1970; Bras
and ITturbe 1985; Salas 1985; Sharma et al. 1997). Furthermore,
transforming the data to a normal distribution is often nontrivial
and involves subjectivity. Consequently, non-Gaussian features
such as heavy skew or bimodality that may be present in the data
will not be captured and reproduced effectively in the simulations.
The parametric models can simulate values and sequences not
seen in the historical record past. However, the main disadvan-
tages are (1) the data must be transformed to a Gaussian distribu-
tion to satisfy the assumptions of the model; (2) ¢ is generated
from a normal distribution, and hence, any values from — to +o
can be simulated, potentially resulting in unrealistic values; and
(3) only linear dependence between values for the order (lag) of
the model are captured. Fernandez and Salas (1986) provide a
periodic gamma autoregressive model to address the first two
disadvantages, but any such improvements will involve additional
parameter estimation and still cannot address bimodality and non-
linear features.

Nonparametric models, on the other hand, do not make any
assumptions about the underlying form of the dependence (i.e.,
linear) or the PDFs. The simplest nonparametric approach is the
ISM. It involves sequential block resampling of historic data as
a synthetic trace. For example, if there are 90 years of historic
data, the method extracts an M-year (e.g., 25-year) block from the
start of the historic record, then shifts 1 year forward and extracts
the second M-year block and so on, repeating the process
90 times. When the end of the historic record is reached, the
record is continued from the beginning of the time series. A sche-
matic of this technique is shown in Fig. 1. Since the historic data
are resampled, all the distributional (i.e., PDF) properties and
statistics present in the data are reproduced faithfully. The main
disadvantage is that only historically observed sequences can be
generated resulting in simulations that have limited variety.
Ouarda et al. (1997) and Kendall and Dracup (1991) compared
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Fig. 1. Schematic of the ISM [adapted from Ouarda et al. (1997)].
The synthetic hydrologies, each 25 years in length, are shown below
the original 90-year time series. The additional 24 years used for
wraparound are shown in shading.

ISM and AR(1) models for projecting energy demand and reser-
voir storage capacities at Lake Mead and Powell, respectively.
They found that the two methods were comparable in generating
streamflow sequences that reproduced historic statistics. How-
ever, they found that AR(1) tended to underestimate dry and wet
spells, while ISM, because of its constraints described earlier,
could not reproduce the tails of the distributions (i.e., exceedance
probabilities). The ISM is widely used by the BOR in the plan-
ning and management of the Colorado River basin.

Other nonparametric approaches that improve upon the ISM
are (1) kernel methods, and (2) nearest-neighbor bootstrap meth-
ods. These are “local” estimators, in that, for a given value y,_;, a
small number of neighbors nearest to this value are obtained, and
the conditional PDF f(y,|y, ;) is estimated based on these neigh-
bors. If the neighbors include all the observed data points and if a
normal distribution is fit, then this approach collapses to a linear
parametric model. Kernel-based methods estimate the conditional
PDF using a kernel function (or weight function) at each point of
interest, y,_;, which is then used in the simulation. A good general
overview of the nonparametric techniques and their wide-ranging
hydrologic applications can be found in Lall (1995). The kernel-
based approach for streamflow generation was first developed by
Sharma et al. (1997) and Tarboton et al. (1998). These approaches
have also been successfully applied to rainfall modeling (Lall
et al. 1996; Harrold et al. 2003b); flood frequency (Lall et al.
1993; Moon and Lall 1994); groundwater applications (Adamoski
and Feluch 1991); and streamflow forecasting (Smith 1991). The
kernel-based methods can suffer from boundary problems (Lall
1995; Lall and Sharma 1996; Rajagopalan et al. 1997) that require
appropriate kernel methods such as variable kernels (Sharma and
O’Neil 2002). However, these methods are more difficult to use in
higher dimensions.

Ameliorating the boundary problems of the kernel-based
approach, Lall and Sharma (1996) developed a K-NN bootstrap
method for time series resampling and applied it for streamflow
simulation. In this method, first the K-NN of y,_; from the historic
data are found, and then the neighbors are resampled via a weight
function that assigns large weight to the nearest neighbors and
small to the farthest (Lall and Sharma 1996). This method is akin
to estimating the conditional PDF, f(y,|y,_;), and simulating
from it. Furthermore, while obtaining the K-NN relevant external
information, such as large-scale climate features [e.g., El Nino
Southern Oscillation (ENSO)], can be easily included. This ap-
proach has also been used in multivariate stochastic daily weather
simulation (Rajagopalan and Lall 1999; Yates et al. 2003) and
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Fig. 2. Nonlinear local regression fit to May flows dependent
on April flows are depicted by the solid line

placed in a Markovian framework to improve representation of
longer-term variability in a daily model (Harrold et al. 2003a).
The only slight drawback is that at any given time point values
not seen in the historic record cannot be simulated; however,
unlike ISM, a rich variety in the sequences can be obtained.

Hybrid models combining parametric and nonparametric
methods have also been developed (Srinivas and Srinivasan
2001). In these models, the streamflow time series is partially
prewhitened with a periodic autoregressive model (i.e., para-
metric model) to remove the dependence in the historic flow
sequence; then, a moving block bootstrap (i.e., nonparametric
model) is used to resample the residuals from the partially
prewhitened streamflow. The hybrid models perform well but still
involve extensive steps in fitting and generating the streamflows.

We propose a modification to the traditional K-NN time
series bootstrap that addresses this drawback, as described in the
following section.

Modified K-NN Method

As mentioned earlier, one of the drawbacks of the K-NN time
series bootstrap technique is that values not seen in the historic
record cannot be simulated. To address this, Lall and Sharma
(1996) briefly mentioned a modification in their conclusion
section. Here we formally develop and demonstrate the modifica-
tion’s utility.

The steps involved in the modification can be described
using Fig. 2. This figure shows the scatter plot of April and May
streamflows from the Lees Ferry stream gauge. The solid line
shows a local (or nonparametric) fit through the scatter. The
nonparametric fit is a locally weighted regression scheme (Loader
1999; Rajagopalan and Lall 1998) in that, at any point yf_l, a local
polynomial is fit to the K-NN. The size of the neighborhood
(i.e., K) and the order of the polynomial (p) are obtained using an
objective criteria called generalized cross validation [see the
above references and Prairie (2002); Grantz et al. (2006); and
Prairie et al. (2005)]. This estimation is repeated at all data
points to obtain the solid line contained in Fig. 2. We used the

package LOCFIT (http://cm.belllabs.com/cm/ms/departments/sia/
project/locfit/y developed by Loader (1999) for fitting the local
polynomials.
The modified K-NN algorithm proceeds as follows:
1. A local polynomial is fit for each month dependent on the
previous month (as in Fig. 2):

V=81 +e (2)

where g(y,_;)=local polynomial fitted as described above.

2. The residuals (e,) from the fit are saved.

3. Once we have the simulated value of the flow for the current
month y;], we estimate the mean flow of the next month )7:
from Eq. (2) not including the residual.

4. K-NN of y, | (these are highlighted in Fig. 2) are obtained.

5. The neighbors are weighted using the weight function

W(i) = LU (3)

(X, 1)

This weight function gives more weight to the nearest neigh-
bor and less weight to the farthest neighbor. The weights are
normalized to create a probability mass function or “weight
metric.” Other weight functions with the same philosophy
(i.e., more weights to nearest neighbors and lesser weights to
farther neighbors) can be used as well. We found little or no
sensitivity to the choice of the weight function.

6. One of the neighbors is resampled using the “weight metric”
obtained from Eq. (3), above. Consequently, its residual (ef)
is added to the mean estimate y,. Thus the simulated value
for the next time step becomes yf: yA:+ef.

7. Steps 1-6 are repeated for other months to obtain an
ensemble of simulations. The output from steps 1 and 2 can
be saved for each month and used for successive years.

Lall and Sharma (1996) suggested both an objective criteria
based on generalized cross validation and a heuristic scheme to
select a K, the number of nearest neighbors. They stated that the

heuristic scheme of (K=+vN) does not appreciably change K,

compared with the GCV. We adopted the same scheme here,

where N=number of sample data points.
This approach has three clear features distinct from traditional

K-NN:

1.  Values not seen in the historic record can be simulated;

2. Residual resampling captures the local uncertainty more
effectively; and

3. The local regression fit has the ability to capture any
arbitrary (linear or nonlinear) relationship among the stream-
flows and extrapolate beyond the range of the observations.

Model Evaluation

We compared the three models [ISM, PAR(1), and modified
K-NN] by applying them to the natural streamflows at USGS
stream gauge 09380000 (Colorado River at Lees Ferry, Ariz.).
The monthly natural streamflow data calculated by the BOR from
historic gauge records by removing anthropogenic effects such as
consumptive use, reservoir regulation, etc., were available for the
90-year period from 1906 to 1995 (James Prairie, personal data
compilation, March 14, 2005).

JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / JULY/AUGUST 2006 / 373

Downloaded 27 Oct 2009 to 128.138.64.183. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



lag-1 autocorrelation
-02 02 06

Jan — Jan —
Feb — Fet—
Mar — Mar —
l\:\pr i = Apr: =
ay o May o
Jun = 2 Jun — =
Jul = 2 Jul — 2
Aug — T Aug — T
Sep Z Sep— Z
Cct — Oct—
Nov — Nov —
Dec Dec—
Ann e sed-[]] ome Ann —|
lag-1 autocorrelation
-02 02 0.6
1 1 1 1 1 1
Jan Jan —
Feb — Fet —
Mar — Mar —
Apr = Apr—
May — May —
Jun — R Jun— Ry
i FEE 5
Aug = Aug = =
Sep Sep —
Cct — Oct—
Nov — Nov —
Dec — Dec—
Ann —| oo []] o= Ann —
lag-1 autocorrelation
-02 02 0.6
1 1 1 1 1 1
Jan - Jan—
Feb — Feb—
Mar = Mar —
Apr— Apr—
May — May —
Jun — _ Jun— -
Jul — 2 Jul— 2
Aug =1 Aug —
Sep Sep —
Oct - Oct —
Nov — Nov —
Dec — Dec—
Ann — Ann —

Fig. 3. Boxplots of coefficient of skew (upper plots) and lag-1
autocorrelation (lower plots) from simulations from the three models.
The historic values are shown as solid circles and joined by the solid
line.

We generated 250 simulations from these models each of
the same length as the historic data; for the ISM, we could
generate only 90 simulations, each of 25 years in length. For the
PAR(1) model we used the semiautomated software package
SAMS (stochastic analysis, modeling, and simulation) developed
by Salas et al. (2000) which performs transformations, model
fitting, and simulation. This package allows the user to perform
transformation to normal distribution with the assistance of log
probability plots and a skewness test.

A suite of basic and higher-order statistics are computed from
the simulations and compared with those of the historic data.
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Fig. 4. Boxplots of maximum (upper plots) and minimum
(lower plots) flow values

These are

1. Monthly mean flows, standard deviation, lag-1 correlation
(i.e., month-to-month correlation), coefficient of skewness,
and maximum and minimum flows;

2. Marginal, bivariate, and conditional PDFs. The probability
density functions are estimated using the nonparametric
kernel density estimators (Bowman and Azzalini 1997); and

3. Drought (longest and maximum drought) and surplus (long-
est and maximum surplus) statistics. The longest drought
statistic is the maximum number of consecutive years of
flows below a threshold value; the maximum drought
statistic is the maximum volume of water during a drought.
The computation is vice versa for surplus statistics.
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Fig. 5. Boxplots of maximum (upper plot) and minimum (lower plot)
flow values from traditional K-NN

A sampling of these statistics is presented and described in the
following section.

Results

The results are presented as boxplots, with the box representing
the interquartile range and the whiskers extending to the 5th and
95th percentile of the simulations; the statistics from the historic
record are linked by a solid line. Wider boxes are indicative of
increased variability; the historic values falling within the box
suggest a good reproduction of that statistic.

As expected, all the models preserved the mean and standard
deviation (figures not shown). Boxplots of skew coefficient (Fig.
3, right side) and lag-1 autocorrelation (Fig. 3, left side) indicate
that the modified K-NN captures these two statistics very well.
The PAR(1) model captures the skew in all months except
in February, August, and November. This suggests that the trans-
formations in these months were not fully effective. The lag-1
autocorrelations are very well captured, as to be expected given
that it is a lag-1 model. The ISM simulations have a larger box-
plot, indicative of increased variability. This is due to the fact that
each simulation’s length is 25 years, while the simulations from
modified K-NN and PAR(1) are of the same length as the historic
record (i.e., 90 years) and consequently, tighter boxes. If the ISM
simulations are also made to be 90 years in length, then each
simulation’s statistics will be exactly the same.

Boxplots of maximum (Fig. 4, right side) and minimum (Fig.
4, left side) values show that the ISM model does not simulate
values not seen in historic record, so the observed values and
the top of the boxplot are the same. The PAR(1) model captures
these two statistics well, but notice the negative values that are
generated in the minimum values, especially in the high-flow
months of May and June. These values result because the
error term in Eq. (1) is simulated from a normal distribution.
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Fig. 6. Boxplots of PDFs of May (upper plots) and December (lower plots) flows
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Fig. 7. Boxplots of conditional PDF of June flows, conditioned on May flow of 467 cm

The modified K-NN preserves both the maximum and minimum
values, and it generates values not seen in the historic record,
which is a result of the proposed modification (versus the tradi-
tional K-NN time series bootstrap). The range of extrapolation
depends on the nature of the scatterplot (e.g., Fig. 2) and the
magnitude of the residuals in the neighborhood. For example,
simulation of a value in May outside the range of observation will
depend on the simulated value in April.

As stated in the motivation section, the modified K-NN
approach retains all aspects of the traditional K-NN approach
but provides the capability to generate values not seen in the
historical record and also limited extrapolation to generate
extreme values. The traditional K-NN is constrained to the range
of the observed streamflows in simulating the extremes, as can be
seen in Fig. 5. Except for the maximum and minimum statistic,
the traditional K-NN and modified K-NN reproduce all the statis-
tics in a similar manner (figures not shown).

One of the key statistics that indicates the performance
of these models is the PDF. Boxplots of PDFs for May and
December streamflows are shown in Fig. 6, top and bottom rows,
respectively. A clear bimodality can be seen in the PDF of the
May streamflows that is well captured by the Modified K-NN and
ISM but not by PAR(1); in fact, the PAR(1) simulations resemble
a Gaussian distribution. The boxes are wider for ISM simulations,
as expected and described earlier. The modified K-NN reproduces
the true shape of the historical PDF very well in both months.
Reproduction of the PDF has significant implications in terms
of the threshold exceedance probabilities and, consequently, in
policy analyses.

We computed the conditional PDF of June flows given a May
flow of 467 cubic meters per second (cms), and the boxplots of
the same are shown in Fig. 7. Here too, the modified K-NN
method does well in capturing the true form of the underlying
PDF, which is slightly non-Gaussian. The PAR(1) tends to simu-
late a normal-looking PDF since it assumes normal distributions
for the joint and conditional probabilities. The ISM captures the
feature but with large variability.

Last, we compared these models on the ability to reproduce
the drought and surplus statistics, as shown in Fig. 8. The box-
plots are shown as the ratio of the values from the simulations to
the historical values. The modified K-NN preserves the surplus
statistics but the PAR(1) tends to overestimate the maximum sur-
plus. Both PAR(1) and modified K-NN tend to underestimate the
drought statistics. The drought statistics are long memory vari-
ables that are not guaranteed to be captured with a lag(1) model.

Summary and Discussion

This work was motivated by the need to develop a robust alter-
native to ISM in the CRSS model. To this end, we developed
a modified K-NN method of lag-1 for stochastic streamflow
simulation. Our proposed approach retains all the features (i.e.,
ability to capture any arbitrary PDF and dependence structure
present in the data) of the traditional K-NN time series bootstrap
technique developed by Lall and Sharma (1996), but the “modi-
fication” enables simulating values not seen in the historic record.
The modification was discussed briefly in Lall and Sharma (1996)
in their summary section, which we developed and implemented
in this paper. In this model, first, a local polynomial (a nonpara-
metric function) is fitted to estimate the mean of the conditional
probability density function. The simulation at any time ¢ given
the value at the time 7—1, then, involves two steps: (1) obtaining
the conditional mean from the local polynomial fit, and (2) then
resampling (i.e., bootstrapping) a residual at one of the historic
observations and adding it to the conditional mean. The residuals
are resampled using a probability metric that gives more weight
to the nearest neighbor, less to the farthest. This model was ap-
plied to monthly natural streamflows at the USGS Lees Ferry
stream gauge on the Colorado River and was compared to PAR(1)
and ISM models, each widely used in practice. We found the
modified K-NN approach to exhibit better performance in terms
of faithfully capturing all the features present in the data, espe-
cially the non-Gaussian PDFs.

One of the drawbacks of this model is that it does not capture
the interannual variability very well (as seen from the simulation
of drought statistics). This requires incorporation of long-term
dependence structure. Sharma and O’Neil (2002) included the
sum of the previous 12 monthly flows as a conditioning variable
in addition to the previous month’s flows in a kernel-based non-
parametric streamflow generation model and showed that such an
inclusion better captures the interannual variability. We plan to
adopt a similar strategy in the modified K-NN model, in future
research.

Another disadvantage of the modified K-NN approach is when
the sample size is small. In such situations, the number of neigh-
bors to bootstrap the residuals will be small and consequently will
limit variety in the ensembles. To address this, there are two pos-
sible approaches: (1) subjectively change (increase) the number
of neighbors to obtain a good variety in the ensembles, or (2) use
the local standard error from the local polynomial (Loader 1999)
to generate random normal deviates and then add these to the
mean estimates to generate the ensembles. In an application for
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Fig. 8. Boxplots of drought and surplus statistics for simulations from the three models. The statistics longest drought (LD), maximum drought
(MD), longest surplus (LS), and maximum surplus (MS) are described in the model evaluation section.

forecasting Thailand summer rainfall (Singhrattna et al. 2005)
with a small sample size (N=25), the latter approach was imple-
mented with good results.

One of the significant advantages of the K-NN (or modified
K-NN) framework is that variables can be easily added to the
conditioning vector. For instance, if large-scale climate features
such as ENSO are known to modulate the variability of stream-
flows at a location, an index of ENSO can be included into
the conditioning vector, thus incorporating relevant climate
information in the simulation. This would be computationally
intensive and unwieldy in a parametric approach such as PAR or
similar frameworks. We applied this modified K-NN approach
with good success to Truckee-Carson River basin streamflow
forecasting (Grantz et al. 2006), Thailand summer rainfall fore-
casting (Singhrattna et al. 2005), and salinity modeling on the
Colorado River basin (Prairie et al. 2005). A variant of this
approach has been applied for improved streamflow forecasts in
north-eastern Brazil (DeSouza and Lall 2003).

The K-NN framework with the proposed modification pro-
vides an attractive and robust alternative to the parametric
approaches. Extensions to include large-scale climate information
or space-time disaggregation of streamflows are relatively easy
and parsimonious.
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Notation

The following symbols are used in this paper:
= error term at time f;

= index term;

= number of neighbors;

= sample size;

= order of the polynomial;

= time index;

weight function;

= dependent variable;

= dependent variable plus an error term;
= error term;

= year index;

= estimate of the mean;

Il

T season index; and
® = autoregressive parameter.
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