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�e high-dimensional features of defective bearings usually include redundant and irrelevant information, which will degrade
the diagnosis performance. �us, it is critical to extract the sensitive low-dimensional characteristics for improving diagnosis
performance. �is paper proposes modi	ed kernel marginal Fisher analysis (MKMFA) for feature extraction with dimensionality
reduction. Due to its outstanding performance in enhancing the intraclass compactness and interclass dispersibility, MKMFA
is capable of e
ectively extracting the sensitive low-dimensional manifold characteristics bene	cial to subsequent pattern
classi	cation even for few training samples. A MKMFA- based fault diagnosis model is presented and applied to identify di
erent
bearing faults. It 	rstly utilizes MKMFA to directly extract the low-dimensional manifold characteristics from the raw time-series
signal samples in high-dimensional ambient space. Subsequently, the sensitive low-dimensional characteristics in feature space
are inputted into�-nearest neighbor classi	er so as to distinguish various fault patterns. �e four-fault-type and ten-fault-severity
bearing fault diagnosis experiment results show the feasibility and superiority of the proposed scheme in comparison with the other
	ve methods.

1. Introduction

Rolling bearing is frequently used in rotating machinery.
�e damaged bearings are o�en the leading cause of the
catastrophic machine breakdown and big economic loss
[1, 2]. �erefore, it is signi	cant for rolling bearings to
implement fault diagnosis so as to prevent fatal malfunction
of rotating machinery and even human casualties [3, 4].
Feature extraction is signi	cant for bearing fault diagnosis.
�ere are common feature extraction approaches to bearing
fault diagnosis. �e time-domain statistical features (e.g.,
mean, root mean square, etc.) [5] are extracted from the
periodic time-series signals. �e frequency-domain statis-
tical features (e.g., mean frequency, etc.) [6] are extracted
from the frequency spectrums of faulty signals. �e classical
time–frequency analysis techniques are suitable to nonlinear
and nonstationary signals, like empirical mode decompo-
sition (EMD) [7]. �e features in the three domains are
usually high-dimensional to obtain comprehensive faulty
information. A large number of redundant and irrelevant
characteristics will degrade the diagnosis performance and

increase the computing consumption. Conversely, a few
salient features will improve the fault identi	cation accuracy
and alleviate the computation burden [8]. Consequently, it is
a great challenge for rolling bearings to extract the sensitive
low-dimensional characteristics for improving fault diagnosis
performance.

�e vibration signals of faulty machinery are weak
nonlinear or strong nonlinear due to the instantaneous
variations in friction, damping, and loads [9]. Kernel Fisher
discriminant analysis (KFDA) [10] andKernel principal com-
ponent analysis (KPCA) [11] are classical nonlinear feature
extraction methods with dimensionality reduction. Liu et
al. utilized KFDA to capture low-dimensional characteristics
of planetary gearboxes [12]. Shao et al. employed KPCA
to capture low-dimensional characteristics from the 16-
dimensional wavelet packet energy features of a gear system
[13]. However, KPCA neglects the signi	cant discriminant
information related to the subsequent pattern classi	cation.
Despite KFDA being supervised, it may perform not well
due to overlooking the non-Gaussian distribution character-
istics of faulty samples. Moreover, both KPCA and KFDA
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e
ectively discover only the global structure in Euclidean
space. �ey may not e
ectively excavate the underlying
manifold structure which is more bene	cial to classi	ca-
tion assignment compared with the global structure, if the
high-dimensional samples locate or keep close to a low-
dimensional manifold [14, 15].

Many studies reveal that manifold learning geometrically
motivated can well handle the high-dimensional nonlinear
samples and exploit the inherent low-dimensional manifold
structure [16–18]. Some recent investigations have demon-
strated that manifold learning methods can extract the
sensitive low-dimensional manifold characteristics bene	cial
to pattern classi	cation for bearing fault diagnosis [19–22].
As one of the representative manifold learning techniques,
marginal Fisher analysis (MFA) [23] algorithm was success-
fully applied to face recognition [23, 24] and gait recognition
[25]. It has also been proved to be an e
ective methodology
for bearing fault diagnosis [5]. MFA is a linear method
in essence. Hence, kernel MFA (KMFA) was proposed by
applying the kernel trick to MFA [23]. Although KMFA is
a prominent approach, it has some �aws for bearing feature
extraction. Firstly, most kernel-based algorithms, like KMFA
and KFDA, usually take advantage of Gaussian radial basis
function (RBF) as the kernel function. Nevertheless, it is an
open issue to select the best kernel parameters for improving
their feature extraction performances [26]. Secondly, the
classical KMFA algorithm (not utilizing PCA preprocessing)
may encounter the singular problem if there is no su�cient
training (or labeled) faulty sample especially for expensive
and critical machine. In such case, the classical KMFA
algorithm fails to obtain a stable solution and e
ectively
extract the sensitive low-dimensional manifold features of
mechanical equipment. �irdly, the similarities of the two
neighborhood graphs in most extended KMFA algorithm are
de	ned to be either 1 or 0, which do not simultaneously utilize
the label information and distance relationship of sample
points.

In view of the aforementioned de	ciencies, this paper
presents modi	ed kernel marginal Fisher analysis (MKMFA)
algorithm to make KMFA more robust for feature extrac-
tion and pattern classi	cation. MKMFA utilizes the data-
dependent kernel function [27] without the selection of
the best kernel parameters. Additionally, it introduces a
manifold regularization term to solve the singular prob-
lem and simultaneously incorporates the label information
as well as the distance relationship of sample points into
the two similarities to further enhance its classi	cation
capability. Subsequently, the MKMFA-based fault diagno-
sis model is presented and applied to identify various
bearing faults. Unlike the traditional signal processing-
based fault diagnosis techniques, it is unnecessary for the
proposed scheme to extract the high-dimensional mul-
tidomain features by signal processing approaches and
then reduce the feature dimension before pattern classi-
	cation. By implementing MKMFA algorithm, it directly
extracts the optimal low-dimensional manifold characteris-
tics from the time-series signal samples in high-dimensional
ambient space and simultaneously preserves the inher-
ent manifold structure related to fault patterns. Finally,

�-nearest neighbor (KNN) classi	er is employed to iden-
tify various fault operations of rolling bearings in category
space.

�e remainder of the paper is organized as follows. �e
principle of MKMFA algorithm is addressed in Section 2.
In Section 3, the MKMFA-based fault diagnosis model is
presented and applied to identify various bearing faults.
Finally, Section 4 gives the concluding remarks.

2. MKMFA Algorithm

KMFA is designed to capture the low-dimensional manifold
characteristics embedded in high-dimensional ambient space
based on graph embedding framework. �e outline of graph
embedding framework and KMFA algorithm are 	rst brie�y
presented. For more details on them, readers can refer to
[23]. Given a �-dimensional sample set of � samples X =[�1, �2, . . . , ��], �� ∈ ��. Suppose �(��) ∈ {1, 2, . . . , ��}
denotes the class label of the sample �� and�� is the number
of classes. �e low-dimensional representation of the high-
dimensional sample set X is denoted by a vector Y =[	1, 	2, . . . , 	�], 	� = Z

T�� (Z is a transformation matrix,	� ∈ �� and 
 ≪ �).
2.1. Outline of Graph Embedding Framework. Assume G� ={X, S�} to be an intrinsic graph with vertex set X and

similarity matrix S
�. �e similarity matrix S

� ∈ ��×� of
the intrinsic graph represents the similarities between ver-
texes. �e diagonal matrix D

� of the intrinsic graph G� is
de	ned as

D
� = (����)�×� = ∑

� ̸=�
����, ∀�. (1)

Suppose G	 = {X, S	} to be a penalty graph with vertex

set X and similarity matrix S
	. �e similarity matrix S

	 ∈��×� of the penalty graph re�ects the suppressed similarity
properties between vertexes. �e diagonal matrix D

	 of the
penalty graph G	 is de	ned as

D
	 = (�	��)�×� = ∑

� ̸=�
�	��, ∀�. (2)

�e graph embedding aims at seeking low-dimensional
representations of the vertexes in high-dimensional space and
simultaneously preserving their similarities. �e objection
function of the similarity preserving criterion in graph
embedding framework is depicted as

Z
∗ = arg min

YTAY=�
∑
� ̸=�

�����	� − 	������2 ����
= arg min

YTAY=�
∑
� ̸=�

�����ZT�� − Z
T�������2 ����,

(3)

where � is a constant andA is a constraint matrix, whichmay
be the Laplacian matrix of a penalty graph.
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Figure 1: Neighborhood graphs: (a) intrinsic graph and (b) penalty graph.

�e linear graph embedding in (3) postulates that the
low-dimensional embeddings of the vertexes are linearly
projected from the high-dimensional space. �ereby, the
kernel trick is applied to the linear graph embedding so
as to acquire the nonlinear embedding and fully excavate
the inherent geometry structure. Suppose the�-dimensional
sample set X is projected to a reproducing kernel Hilbert

space (RKHS) � by a nonlinear mapping �: X ⊂ �� →�(X) ⊂ �. �e inner product in RKHS is de	ned as⟨�(�) ⋅ �(�)⟩ = �(�, �). RBF is usually employed as the kernel
function �(�, �) and the kernel parameter is the kernel width . �e elements of the kernel Gram matrix K is ��� =�(��, ��), and thus the nonlinear graph embedding inRKHS is
expressed as

Z
∗
� = argmin
[�(X)]TZ�BZT

��(X)=�
∑
� ̸=�

�����ZT

�� (��) − Z
T

�� (��)�����2 ����. (4)

By the reproducing kernel theory, the transformation
matrix Z� is a linear combination of �(��). Accordingly, there
exists a vector � = [!1, !2, . . . , !�]T satisfying

Z� = �∑
�=1
!�� (��) = � (X)�. (5)

2.2. Outline of KMFA. On the basis of the label informa-
tion and local adjacency relationship of samples in high-
dimensional space, KMFA de	nes two neighborhood graphs
(both shown in Figure 1) to illustrate the inherent geometrical
structure. �e vertex pairs are linked in the intrinsic graph if
the sample �� and its �1 neighbors fall into the same classes.
If the data point �� and its �2 neighbors belong to di
erent
classes, the vertexes in the penalty graph are connected. �e

intraclass similarity matrix S� ∈ ��×� of the intrinsic graph
is de	ned as

���� = {{{
1, if �� is �1 intraclass neighboring point of �� or �� is �1 intraclass neighboring point of ��
0, else.

(6)

�e interclass similarity matrix S	 ∈ ��×� of the penalty
graph is de	ned as

�	�� = {{{
1, if �� is �2 interclass neighboring point of �� or �� is �2 interclass neighboring point of ��
0, else.

(7)
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�e intraclass compactness of the intrinsic graph is
depicted by the term

S� = ∑
��

�����	� − 	������2 ���� = ∑
��

�����ZT

�� (��) − Z
T

�� (��)�����2 ����
= 2�TK (D� − S

�)K�.
(8)

�e interclass dispersibility of the penalty graph is illus-
trated by the term

S	 = ∑
��

�����	� − 	������2 �	�� = ∑
��

�����ZT

�� (��) − Z
T

�� (��)�����2 �	��
= 2�TK (D	 − S

	)K�.
(9)

KMFA aims to seek an optimal mapping direction which
pulls the intraclass nearest neighbors in the intrinsic graph
close and pushes the interclass nearest neighbors in the
penalty graph far.�us,marginal Fisher criterion ismaximiz-
ing the interclass dispersibility and minimizing the intraclass
compactness. �e objection function of KMFA algorithm is
de	ned as follows:

�∗ = argmax
�

S	

S�
= argmax
�

�TK (D	 − S
	)K�

�TK (D� − S�)K� . (10)

By matrix transformation theory, the objective function
in (10) can be converted to solve the following generalized
maximum eigenvalue decomposition problem:

K (D	 − S
	)K� = %K (D� − S

�)K�. (11)

If the number of features exceeds that of the training
samples, the intraclass compactness matrix S�may encounter
the singular problem. Under the circumstances, the eigen-
value decomposition problem in (11) is ill-posed and could
not obtain a stable solution. Consequently, the classical
KMFA algorithm (not utilizing PCA preprocessing) 	rstly
embeds the original high-dimensional sample set into a
PCA subspace ahead of constructing the two neighborhood
graphs. Hence, the 	nal mapping matrix of KMFA algorithm
is de	ned as

ZKMFA = ZPCA�∗, (12)

where ZPCA is the mapping matrix of the PCA subspace.

2.3. Modi�ed KMFA. In KMFA algorithm, the similarities
of the two neighborhood graphs are simultaneously de	ned
to be either 1 or 0, which ignore the label information as
well as the distance relationship of samples. Although the
intraclass similarity of supervised kernel locality preserving
projection (SKLPP) [28] algorithm between vertex pairs is
de	ned to be heat kernel related to the distances of sample
points, it involves the kernel width parameter and de	nes
the interclass similarity to be 0. Furthermore, the two kinds
of weights make the algorithms prone to be sensitive to the
noise and over	t the sample points [29]. So as to enhance
the compactness of the samples in the same classes and the
dispersibility of the samples from di
erent classes, MKMFA
algorithm incorporates the label information and the distance
relationship into the similarities of KMFA to guide the
construction of the two neighborhood graphs. Motivated
by [29], the de	nitions of the two similarities in MKMFA
algorithm are stated below. In the intrinsic graph R� ={X,H�} of MKMFA algorithm, the entries of the intraclass

similarity matrixH� ∈ ��×� are de	ned as

����

= {{{{{{{{{
1 + exp(−������� − �������2* ) , if �� is �1 intraclass neighboring point of �� or �� is �1 intraclass neighboring point of ��
0, else,

(13)

where the parameter * is a regulator, which is equal to
the square of the average Euclidean distances between all
samples.

In the penalty graphR	 = {X,H	} ofMKMFA algorithm,

the entries of the interclass similarity matrix H	 ∈ ��×� are
illustrated as

�	��

= {{{{{{{{{
1 − exp(−������� − �������2* ) , if �� is �2 interclass neighboring point of �� or �� is �2 interclass neighboring point of ��
0, else.

(14)
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Because 0 ≤ 1 − exp(−(‖�� − ��‖2/*)) ≤ 1 and 1 ≤ 1 +
exp(−(‖�� −��‖2/*)) ≤ 2, the interclass similarity of MKMFA
algorithm is smaller than that of KMFA algorithm and the
intraclass similarity of MKMFA algorithm is larger than that
of KMFA algorithm. According to marginal Fisher criterion,
the higher similarity of the two neighboring samples in the
same class will bring about the smaller distance between their
corresponding low-dimensional representations. In contrast,
the lower similarity of the two neighboring samples from
di
erent classes will lead to the larger distance between
their corresponding low-dimensional embeddings. �us,
compared to KMFA algorithm, MKMFA algorithm pulls
the neighboring sample points in the same classes closer
and pushes the neighboring sample points from di
erent
classes farther. Additionally, the similarity of the intrinsic
graph is larger than that of the penalty graph in MKMFA
algorithm. It means two sample points with the same label
will have relatively high similarity. On the contrary, two
sample points with lower similarity will havemore possibility
of having di
erent labels. On account of the two similarities
that are controlled in a certain range, it results in the
goal of the noise suppression. �ese endow that the two
similarities of MKMFA algorithm are helpful for improving
the discriminant ability and suppressing the noise.

It is not easy for KMFA to select the best kernel width for improving the feature extraction performance. Wang
et al. proposed manifold adaptive nonparameter kernel [30],
which can well capture the nonlinear property. However, it is
not an easy and e�cient method to calculate the kernel Gram
matrix.�us,MKMFA algorithm utilizes the data-dependent
kernel function [27] constructed by the covariance matrix
to reduce the in�uence of kernel parameter selection on the
feature extraction performance. �e data-dependent kernel
function is described as

� (��, ��) = exp {−12 (�� − ��)T J−1 (�� − ��)} , (15)

where J denotes the covariance matrix of the sample set X.
�e intraclass compactness of MKMFA algorithm is

depicted as

S̃� = ∑
��

������(Z�)T � (��) − (Z�)T � (��)������2����
= 2�TK (O� −H

�)K�,
(16)

where the diagonal matrixO� = (8���)�×� = ∑� ̸=�����.
�e interclass dispersibility of MKMFA algorithm is

expressed as

S̃	 = ∑
��

������(Z�)T � (��) − (Z�)T � (��)������2�	��
= 2�TK (O	 −H

	)K�,
(17)

where the diagonal matrixO	 = (8	��)�×� = ∑� ̸=��	�� .

�erefore, the objection function can be characterized as
follows:

�∗ = argmax
�

�TK (O	 −H
	)K�

�TK (O� −H�)K� . (18)

Just like KMFA algorithm, (18) also may su
er from
singular problem when only a small number of samples are
available. In order to obtain good generalization capability
and avoid the singular problem, a common approach is
mapping the original samples in the high-dimensional space
into a PCA subspace ahead of constructing the neighborhood
graphs [14, 23]. Although the preprocessing scheme can
suppress noise and avoid the singular problem, the unsuper-
vised PCA algorithm does not employ the label information.
�us, the features extracted by KMFA algorithm (utilizing
PCA preprocessing) may discard some useful discriminate
information in favor of pattern classi	cation. �e second
method is transforming the ratio form of marginal Fisher
criterion into the di
erence form [30, 31]. �e third method
is calculating the mapping direction in the null space of the
intraclass compactness matrix. Lin et al. proposed Kernel
Null Space MFA for face recognition [32]. �e above three
techniques disregard employing the underlying geometry of
samples. Another way is introducing a manifold regular-
ization term so as to deeply exploit the inherent manifold
structure.Wei et al. utilized Laplacian penalty function as the
regularization term [33]. Regularized KMFA (RKMFA) [34]
and semisupervised KMFA (SSKMFA) [35] were proposed to
deal with the singular problem and applied to bearing feature
extraction. Motivated by [36], marginal Fisher criterion is
modi	ed by introducing the underlying manifold structure
as the regularization term. It can be described as

�∗

= argmax
�

�TK (O	 −H
	)K�(1 − :)�TK (O� −H�)K� + :�TK (O	 −H	)K� ,

(19)

where 0 ⩽ : ⩽ 1 controls the smoothness of the regular-
ization term.

�e procedure of MKMFA algorithm is stated below.

Step 1 (constructing two neighborhood graphs). According
to the local neighborhood relationship and label information
of sample points, MKMFA algorithm constructs the intrinsic
graph R� = {X,H�} and the penalty graph R	 = {X,H	}.
�e intraclass similarity matrix H

� ∈ ��×� of the intrinsic
graph is de	ned in (13) and the interclass similarity matrix

H
	 ∈ ��×� of the penalty graph is de	ned in (14).

Step 2 (calculating the kernel Gram matrix). �e entries of

the kernel Gram matrix K ∈ ��×� are ��� = �(��, ��). �us,
the kernel Gram matrix K is acquired according to (15).

Step 3 (seeking the optimal projecting direction). �e opti-
mal projecting direction �∗ in (19) is given by solving the
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Figure 2: �e �ow chart of the proposed fault diagnosis procedure.

following generalized maximum eigenvalue decomposition
problem:

K (O	 −H
	)K�

= % ((1 − :)K (O� −H
�)K + :K (O	 −H

	)K)�, (20)

where the diagonal matrix O� ∈ ��×� of the intrinsic graph
and the diagonal matrixO	 ∈ ��×� of the penalty graph are
depicted in Section 2.3.

Step 4 (calculating the low-dimensional representations).
�e low-dimensional embedding of the original high-
dimensional signal sample �� is obtained as

	� = �∗K (:, ��) , (21)

where K(:, ��) = [K(�1, ��),K(�2, ��), . . . ,K(��, ��)]T.
�ere are three parameters to be preset forWKMFA, such

as the regularization parameter :, the intraclass neighboring
point number �1, and the interclass neighboring point num-
ber �2. �e regularization parameter : is set to be 0.01 by
experience. As recommended in [23], the intraclass neighbor-
ing point number �1 is selected as 5. Fivefold cross-validation
is employed to select the best interclass neighboring point
number �2, which ranges from 5 to 70 with a step size of 5
[35].

3. Bearing Fault Diagnosis Based on MKMFA

So as to verify the e
ectiveness of MKMFA algorithm for
feature extraction and pattern classi	cation, the MKMFA-
based fault diagnosis model is presented and applied to
identify various bearing faults.

3.1. 	e Structure of the Diagnosis System. Rolling bearing
fault classi	cation is essentially multiple-manifolds learning
problem [37]. From the viewpoint of geometry, the high-
dimensional signal samples in the same fault state have
the same topology or space distribution, and their low-
dimensional embeddings reside on or near a submanifold
[38]. On the other hand, the high-dimensional signal samples
in di
erent classes have di
erent geometric property, and
their low-dimensional representatives are located on di
erent
submanifolds. Owing to the fact that MKMFA algorithm
simultaneously considers the same submanifold compactness
and di
erent submanifolds dispersibility, the MKMFA-based
bearing fault diagnosis model was presented. Figure 2 shows
the entire process of the proposed scheme.

Induction
Motor dynamometer

Torque 
Sensor

Accelerator 

Figure 3: �e test rig.

�e time-series vibration signal series �(�) are collected
from the vibration monitoring equipment by sensors. Sub-
sequently, the signal samples �� = [�(�), �(� + 1), . . . , �(� +� − 1)] are normalized to zero mean and unit variance,
where � denotes the feature dimension of signal samples
and is equal to the sampling point number of each signal
sample. �us, the signal sample set X = [�1, �2, . . . , ��] is
acquired in high-dimensional pattern space. Via MKMFA
algorithm learning the underlying manifold structures of
high-dimensional signal samples and excavating the inher-
ent fault information of di
erent submanifolds, the signal
samples in high-dimensional pattern space are mapped to
a low-dimensional feature space, in which the intraclass
nearest neighbors become closer while the interclass nearest
neighbors get farther. �us, the sensitive low-dimensional
manifold characteristics related to the fault patterns are
extracted from the high-dimensional pattern space and
	nally inputted into a category space. �ereby, the various
fault patterns of rolling bearings are identi	ed by KNN
classi	er in the category space.

3.2. Vibration Data Acquisition. �e experimental data of
the rolling bearings are available from the Bearing Data
Center [39]. It has been validated in several researches [19,
22, 35, 37, 40] and become a standard data set of bearings.
�e detailed descriptions of the experimental system are
illustrated in [40]. Figure 3 shows the experimental setup,
which is composed of a motor, a torque sensor, and a
dynamometer controlled to gain di
erent torque load levels.
�e rotational speed of the motor was ranged from 1730 to
1797 r/min according to di
erent loads (0, 1, 2 and 3 hp).
�e deep groove ball bearings at the drive end were tested
under four kinds of single point faults (normal, ball fault,
inner, and outer race fault). Each fault type covers three
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Table 1: Description of the data sets.

Data set
Training sample

size
Testing sample size Defect size (inches) Load (hp) Fault type Classi	cation label

A

10 90 0.021 1 I 1

10 90 0.021 2 B 2

10 90 0.021 3 O 3

10 90 0 0 N 4

B
Varied from 10 to
90 each class

�e remaining samples

0.021 1 I 1

0.021 2 B 2

0.021 3 O 3

0 0 N 4

C

50 50 0.007 1 I 1

50 50 0.007 1 B 2

50 50 0.007 1 O 3

50 50 0.014 2 I 4

50 50 0.014 2 B 5

50 50 0.014 2 O 6

50 50 0.021 3 I 7

50 50 0.021 3 B 8

50 50 0.021 3 O 9

50 50 0 0 N 10

I: inner race fault, B: ball fault, O: outer race fault, and N: normal.

kinds of damage sizes (fault diameter: 0.007, 0.014, and 0.021
inches) with defect depth of 0.011 inches. An accelerometer
is installed on the 12 o’clock direction of the motor shell. �e
data acquisition system contains a high bandwidth ampli	er
and a 16 channel DAT recorder with low-pass antialiasing
	lters at the input stage.�e vibration signals of the defective
bearings were collected at 12000 sampling points per second.
One hundred signal samples were acquired for each fault
state. Each signal sample consists of 1024 sampling points. So
as to evaluate the proposed bearing fault diagnosis scheme,
we conducted several experiments over three data subsets (A–
C) acquired from the experimental system. Table 1 gives a
detailed description of the experimental data sets.

Data set A comprises 400 signal samples covering four
kinds of loads (0, 1, 2, and 3 hp) and fault types (normal
condition, ball fault, inner, and outer race fault) with the
damage size of 0.021 inches. Each operating condition con-
sists of 100 signal samples, which are divided into 10 training
samples and 90 testing samples. It is a four-submanifold
learning problem corresponding to four kinds of bearing
fault categories. �e experiments were conducted on data set
A to evaluate the feature extraction and fault classi	cation
performance of MKMFA algorithm.

Data set B is similar to data set A. Data set B also
consists of 400 signal samples, whose operating conditions
are identical with those of data set A. But data set B varies
the training sample sizes of each class. It increases with a step
size of 20 from 10 to 90. Hence, the corresponding remaining
samples are used for testing. It is also a four-submanifold
learning problem corresponding to four kinds of bearing fault
categories. �e experiments over data set B were aimed at

assessing the e
ect of the training sample size on the fault
recognition ability of MKMFA algorithm.

Data set C comprises 1000 signal samples involving four
kinds of loads (0, 1, 2, and 3 hp) and fault types (normal
condition, ball fault, inner, and outer race fault). Each fault
type contains three kinds of damage sizes (0.007, 0.014, and
0.021 inches). Each operating condition consists of 100 signal
samples, which are split into 50 training samples and 50
testing samples. It is a ten-submanifold learning problem
corresponding to ten kinds of bearing fault severities. �e
purpose of performing the experiment on data set C is
to further investigate the fault classi	cation performance
of the proposed fault diagnosis scheme under complicated
operating conditions.

3.3. Feature Extraction and Pattern Classi�cation. So as to
evaluate the e
ectiveness and exhibit the superiority of
MKMFA algorithm for bearing feature extraction and fault
identi	cation, we conducted several experiments on the three
data sets in Table 1 and made a comparison with KPCA,
KFDA, KMFA, SKLPP, RKMFA, and SSKMFA. �e feature
dimension of each signal sample in the three data sets is 1024,
which is larger than their training sample sizes.

3.3.1. Bearing Fault Categories Identi�cation. An investiga-
tion was performed on data set A to evaluate the feature
extraction performance of MKMFA algorithm. �e low-
dimensional features are directly extracted from the high-
dimensional pattern space by utilizing the six feature extrac-
tionmethods.�e 	rst twomapping results of these methods
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Figure 4: Feature extraction with KMFA: (a) training set and (b) testing set.
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Figure 5: Feature extraction with KPCA: (a) training set and (b) testing set.

are plotted for intuitional display. Figure 4 reveals that the
clustering result of the training set with KMFA is much
dispersed for inner race fault, so that it brings about the
crossing area between normal condition and inner race fault.
Except outer race fault, KMFA could not clearly separate the
other three faults for the testing set. Figure 5 exhibits that
the clustering and separate performances of KPCA features
are not so good because of the mixed inner and outer race
fault. Figures 6 and 7 show that both KFDA and SKLPP can
distinguish each type of fault and have a good clustering result
for the training set. Nevertheless, KFDA could not completely

recognize two types of faults for the testing set because of
the overlap region between normal condition and outer race
fault. Additionally, the testing set of normal condition with
SKLPP is not well clustered. Figure 8 demonstrates that the
classi	cation boundary of normal condition and ball fault
is not very clear for the RKMFA features of the testing set.
Additionally, the two types of faults overlap together for the
RKMFA features of the training set. Figure 9 displays that
MKMFA has better feature extraction performance over the
above 	ve methods, as it yields better clustering e
ect and
more clear separation boundaries. In comparisonwithKMFA
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Figure 6: Feature extraction with KFDA: (a) training set and (b) testing set.
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Figure 7: Feature extraction with SKLPP: (a) training set and (b) testing set.

and RKMFA algorithm, MKMFA pulls the neighboring
sample points in the same classes closer and pushes the
neighboring sample points from di
erent classes farther. �e
reason is that the two similarities of MKMFA algorithm are
weighted. On the grounds of the above experimental results,
it is demonstrated that MKMFA is able to enhance the intr-
aclass compactness and interclass dispersibility. Compared
with the other 	ve feature extraction techniques, MKMFA
is more e
ective to capture the sensitive low-dimensional
manifold characteristics related to the nature of di
erent
bearing faults.

For objectively assessing the fault classi	cation perfor-
mance of the six feature extraction approaches, the low-
dimensional mapping results of them are fed into KNN
classi	er as the 	nal evaluation criteria. Table 2 displays their
recognition accuracies and the corresponding parameter
settings. It can be seen fromTable 2 that the feature dimension
of MKMFA (
 = 5) is lower than that of KPCA (
 = 20).
Nevertheless, the classi	cation performances of the former
(100% for ball fault, normal condition, and inner race fault)
surpass those of the latter (6.67%, 13.34% and 80%, resp.). It
results from the fact that KPCA does not take advantage of
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Figure 8: Feature extraction with RKMFA: (a) training set and (b) testing set.
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Figure 9: Feature extraction with MKMFA: (a) training set and (b) testing set.

Table 2: �e recognition rates (%) of KNN classi	er based on six feature extraction approaches.

Fault type
Methods

KMFA
( = 5, 
 = 6) KPCA

(
 = 20,  = 5) KFDA
(
 = 3,  = 3) SKLPP

(
 = 5,  = 3) RKMFA
( = 3, 
 = 10) MKMFA

(
 = 5)
Inner race fault 98.89 80.00 100 100 100 100

Ball fault 6.67 6.67 97.78 100 100 100

Outer race fault 100 100 100 100 100 100

Normal 100 13.34 15.56 13.34 88.89 100
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Table 3: �e average recognition rates (%) of KNN for various training sample sizes each class.

Training sample size
KPCA

(
 = 20,  = 5) KFDA
(
 = 3,  = 3) SKLPP

(
 = 5,  = 3) KMFA ( = 5)
(�1, �2, 
) RKMFA

( , 
) MKMFA
(
)

10 56.11 78.33 81.11 63.61 (5, 10, 6) 97.22 (3, 10) 98.93 (5)
30 82.14 79.29 89.17 75 (10, 20, 7) 97.86 (3, 6) 99.29 (4)
50 87.00 81.00 91.50 88.5 (5, 40, 11) 99.64 (8, 5) 100.00 (4)
70 96.67 87.50 100.00 100 (10, 40, 15) 100.00 (5, 6) 100.00 (5)
90 100.00 100.00 100.00 100 (5, 10, 5) 100.00 (5, 6) 100.00 (4)

any class information related to fault classi	cation. Compared
with KFDA, the identi	cation accuracies of MKMFA (100%
for normal condition and ball fault) increase by 84.44% and
2.22%, respectively. Although KFDA is supervised, it cannot
excavate the underlying manifold structure. �ese results
also indicate that the local structure information extracted
by MKMFA could be more e
ective than the global feature
information of the Euclidean space extracted by KPCA
and KFDA. �e classi	cation performance of the proposed
approach outperforms those of KMFA-based and SKLPP-
based fault diagnosis methods. �e reason is that KMFA
and SKLPP lose some useful discriminant information by
using PCA as preprocessing although they are able to capture
the manifold structure. Compared with RKMFA, MKMFA
employs fewer features to achieve better diagnosis results.
Hence, the proposed approach is e
ective to extract the most
sensitive low-dimensional manifold characteristics bene	-
cial to fault classi	cation. �e reason is that the proposed
approach e
ectively makes use of the class information and
the underlying geometric structure of faulty samples. On the
other hand, the modi	ed intraclass and interclass similarities
are helpful for deeply exploiting the underlying manifold
structure.

We used data set B to assess the in�uence of the
training sample sizes on the recognition rates of di
erent
feature extractionmethods.�e training samples are selected
randomly. Each experiment is conducted by ten trials in
the following experiments. Table 3 and Figure 10 display
the average recognition rates of the six feature extraction
methods with di
erent training sample sizes per class. �e
neighboring parameters of MKMFA are set to �1 = 5 and�2 = 10; those of RKMFA are set to �1 = 5 and �2 =
20. It is indicated that the recognition performances are
improved as the training samples increase. �is is because
over	tting is less likely to occur when more training samples
are available for KPCA, KFDA, and KMFA.�e classi	cation
accuracies of KPCA, KFDA, KMFA, and SKLPP are much
lower than that of MKMFA as the training sample number
is equal to 10. By comparison, the classi	cation rates based
on RKMFA and MKMFA hold the least �uctuation when
varying the training sample number. It results from the fact
that RKMFA andMKMFA introduce the regularization term
incorporating the intrinsic manifold structure to reduce the
e
ect of the insu�cient training samples. In comparison with
RKMFA, MKMFA utilizes few features to achieve higher
diagnosis accuracies.�erefore,MKMFAhas the best classi	-
cation performance even though the training sample number
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Figure 10: �e comparison of the average accuracies for various
training sample sizes.

is small compared with the other 	ve feature extraction
methods.

For KMFA, RKMFA, and MKMFA algorithm, �1 neigh-
boring points dominate the intraclass compactness and�2 neighboring points govern the interclass dispersibility.
Hence, the two neighboring points number roles are critical
for the construction of the two neighborhood graphs and the
subsequent diagnosis assignment. Several experiments were
implemented by changing the number of the two neighboring
points.�e training and testing sample sizes per class are both
set to be 50. As illustrated in Figure 11(a), the classi	cation
accuracies based onKMFA�uctuate below90%when the val-
ues of �2 are small. Figure 11(b) reveals that the identi	cation
accuracies of RKMFA have the relatively small �uctuations.
Figure 11(c) shows that the classi	cation rates of MKMFA
are stable and maintained at a high level while varying the
two neighboring points number. Compared with KMFA and
RKMFA, MKMFA-based bearing fault diagnosis approach is
robust and convenient in virtue ofwithoutmaking great e
ort
to tune the two nearest neighbors’ number.
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Figure 11: �e classi	cation accuracies of (a) KMFA, (b) RKMFA, and (c) MKMFA.

�e parameter : controls the smoothness of the regular-
ization term in MKMFA algorithm. As the training sample
sizes in each class are 10, 50, and 90, the e
ect of the parameter: on the recognition rates is illustrated in Figure 12. As can be
seen, the classi	cation performances of KMFA are superior
to those of MKMFA and RKMFA with : as zero. It stems
from the fact that under the circumstances, MKMFA and
RKMFA are exactly the classical KMFA without mapping
the original samples to a PCA subspace beforehand. Except
the parameter : which is equal to zero, the recognition
rates of MKMFA are higher than those of KMFA for di
er-
ent training sample sizes. �us, the regularization term of
MKMFA can improve the diagnosis performance of KMFA.
Compared with RKMFA, the classi	cation accuracies of
MKMFA hold the relatively smaller �uctuations for di
erent:. It reveals that it is not very di�cult for MKMFA to

select the best parameter : for enhancing its classi	cation
capability.

3.3.2. Bearing Fault Severities Identi�cation. �e experiments
were conducted on data set C to recognize ten types of
bearing fault severity conditions. So as to quantitatively
describe the superiority of the six feature extractionmethods,
the de	nition ofwithin-class scatter and between-class scatter
is [9]

S = ��∑
�=1

∑
��∈�

(D� − E��) (D� − E��)T

S� = ��∑
�=1

(E�� − E�) (E�� − E�)T ,
(22)
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Figure 12: �e average recognition rate as the training sample sizes are (a) 10, (b) 50, and (c) 90.

where D� (� = 1, 2, . . . , 
) is the feature vector, E�� is the mean

of the feature vectors in the Fth class, and E� is the mean of all

feature vectors.
�e within-class scatter S describes the compactness

of the samples in the same classes and the between-class
scatter S� characterizes the dispersibility of the samples from
di
erent classes. �us, it is bene	cial to fault classi	cation
for smaller S values and bigger S� values. Table 4 shows the
two parameter values and the classi	cation accuracies of the
six feature extraction methods based on KNN classi	er. �e
parameters of KMFA, SSKMFA, and MKMFA are set as �1
= 5 and �2 = 10. As can be seen, MKMFA features have the
smallest S value and the biggest S� value compared with the

other 	ve feature extraction schemes. It reveals that MKMFA
has the best clustering property and classi	cation capability
in comparison with KPCA, KFDA, KMFA, SSKMFA, and
SKLPP. Compared with the other 	ve supervised feature
extraction techniques, KPCA has the lowest recognition
rate due to discarding some useful discriminate information
in favor of pattern classi	cation. Additionally, MKMFA
algorithm based on KNN classi	er achieves the highest
identi	cation rate in all the six feature extraction techniques.
�e reason is that MKMFA algorithm employs the class
label information and the distances relationship of sample
points to guide the construction of local neighborhood
graphs. Consequently, the discrimination performance of
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Table 4: Performance comparisons for various feature extraction approaches.

Methods S� S Average accuracy (%)

KMFA (
 = 12,  = 3) 1.455 3.11 × 10−3 85.36

KPCA (
 = 20,  = 5) 0.4329 0.7747 73.20

KFDA (
 = 9,  = 1) 2.238 3.50 × 10−3 89.63

SKLPP (
 = 10,  = 5) 3.086 1.24 × 10−3 91.27

MKMFA (
 = 11, : = 0.01) 6.501 8.71 × 10−5 97.45

SSKMFA (
 = 11,  = 1, : = 0.1) 3.473 4.59 × 10−4 95.39

Table 5: �e average recognition rates (%) of the simple features based on KNN.

Case 1: fault categories identi	cation

Case 2: fault severities identi	cationTraining sample size of each class

10 30 50 70 90

68.89 94.29 98.33 99.67 99.95 53.25

the obtained low-dimensional manifold features extracted by
MKMFA algorithm can be further improved when focusing
on classi	cation assignment.

3.4. Discussions. Compared to KPCA, KFDA, KMFA,
RKMFA, SSKMFA, and SKLPP, the above experimental
results demonstrate that MKMFA algorithm has remarkable
superiority.�emain reasons are as follows. Firstly, MKMFA
algorithm employs the discriminant information and local
neighborhood relationship of signal samples to construct
the two neighborhood graphs. Secondly, it incorporates the
class label information and distance relationship of signal
samples into the two similarities and thus further enhances
the intraclass compactness and interclass dispersibility.
�irdly, it introduces a manifold regularization term to cope
with the singular problem and employs the nonparametric
kernel function to reduce the in�uence of kernel parameter
selection on feature extraction performance. As a result,
the advanced low-dimensional manifold characteristics
extracted by MKMFA algorithm are related to the nature of
bearing fault patterns by excavating the inherent manifold
structures of di
erent submanifolds.

Some simple feature extraction methods are widely
applied to bearing fault diagnosis. Hence, we employed
the simple features, including ten time-domain statistical
features and six EMD energy entropies as illustrated in [35],
to analyze the above two cases for comparison. Table 5
shows the average recognition rates of the 16 simple features
based on KNN classi	er. In comparison with Figure 10 and
Tables 3 and 4, the simple features have lower recognition
rates than MKMFA features for the two cases. �e rea-
son is that the MKMFA algorithm extracts the sensitive
low-dimensional manifold characteristics related to fault
patterns by learning the underlying manifold structures
of high-dimensional signal samples. However, the simple
feature extraction methods only give attention to some
speci	c contents of faulty signals. �us, it is necessary
to explore the advanced feature extraction methods to

improve fault classi	cation performance, which is the goal of
our study.

4. Conclusions

�is paper presents improved kernel marginal Fisher analysis
(MKMFA) algorithm for feature extraction with dimension-
ality reduction, which employs the label information and
distances relationship of faulty samples, introduces a man-
ifold regularization term, and utilizes the data-dependent
kernel function. MKMFA e
ectively extracts the optimal
low-dimensional manifold characteristics from the time-
series signal samples in high-dimensional ambient space. It
is e�cient to transform the complicated two-stage (feature
extraction and dimensionality reduction) procedure into a
relatively simple one-step process, which boils down to the
generalized maximum eigenvalue decomposition problem.
Compared with KPCA, KFDA, KMFA, RKMFA, and SKLPP,
the feature extraction experiments on four categories of bear-
ing faults reveal that our proposed feature extraction scheme
is more e
ective to capture the sensitive low-dimensional
manifold characteristics bene	cial to pattern classi	cation
due to its good clustering and separation properties. �e
feature evaluation experiments on ten types of bearing fault
severities show its superiority in comparison with KPCA,
KFDA, KMFA, SSKMFA, and SKLPP. Based on MKMFA
algorithm, a fault diagnosis model is presented and applied
to identify di
erent bearing faults.When varying the training
sample sizes in the four-fault-type comparison experiments,
it is demonstrated that the classi	cation performances of
MKMFA are signi	cantly improved even for insu�cient
training samples. �e ten-fault-severity comparison exper-
iments of rolling bearings exhibit its outstanding fault
recognition capability compared with the other 	ve feature
extraction methods. It is robust and easily applied to bearing
fault classi	cation without great e
ort to tune the parameters
in MKMFA. �e proposed diagnosis scheme has con	rmed
its e
ectiveness of recognizing bearing faults and can be easily
applied to fault diagnosis of other components as well.
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