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1:he difficulty near the critical.point encountered by the Landau theory or the classical 

theory of the second order phase transition is removed with the least modification of the 

original framework. The essential point of our idea is to note that the temperature region 

in which the Landau theoryvalids depends sensitively on the way of defining the local order 

parameter. It is shown that the relations among the singularities of various thermodynamic 

quantities predicted by this modified form of the Landau theory are in good agreement with 

those obtained by nonclassical theories such as the static scaling theory. 

§ 1. Introduction 

It is often pointed out that the Landau theory of the second order phase transi­

tion suffers from an internal inconsistency.1) In fact under the assumption of small ' 

fluctuation this theory predicts the large fluctuation at the critical point. The 

failure of this theory in the vicinity of the critical point, especially in the system 

with short range interaction, seems to be the consequence of this inconsistency. 

When we work with free energy density, there seems to be at least two possible 

ways to avoid this difficulty. One way is to take into account the higher order 

terms with respect to the local fluctuations and their spatial derivatives. **) The 

other way, which is of our main concern in this paper, is to change the defini­

tion of the local order parameter with temperature without taking into account 

the higher order terms. In the next section the definition of the local order 

parameter is carefully examIned, and this is indispensable for our whole discus­

sion. The procedure of removing the inconsistency is then presented. In § 3 

the asymptotic behaviors of various thermodynamic quantities are studied and 

all the independent relations among the critical indices are derived which turn 

out to be indentical with those obtain~d by the static scaling theory.3),4) Through­

out the p:resent paper the language is used appropriate for the Ising ferromagnets 

though the same kind of arguments may apply to the classical gas or liquid system 

as well. 

*) The preliminary report has been published in Prog. Theor. Phys. 40 (1968), 688. 

**) This fact was pointed out by several authors but such an approach was found too difficult to 

obtain satisfactory results (see reference 2». 
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Modified Landau Theory of the Second Order Phase Transition 605 

§ 2. Elimination of the inconsistency 

(a) Local order parameter 

Let us start with an unambiguous definition of the local order parameter. 

In the present case the local order parameter, which we denote by M(r),' is 

the z-component of magnetization density averaged over a semimicroscopical region 

around the position r: 

M(r) ~}( m(r+r')dr'. 
. v ) 

(2 ·1) 
I) 

Here 

mer) = ~ m/J(r-ri) 
i 

and mi is the z-component of the magnetic moment of the spin at rio The in­

tegral in (2 ·1) extends over a spherical region centered at r, whose volume is 

denoted by v. The definition (2 ·1) implies that M(rl) "and M(r2) cannot be 

regarded as independent variables if Irl - r21 <R, where R is the radius of the 

sphere. Therefore it will be more convenient to work with the spatial Fourier 

transform defined by 

(2 ·2) 

where V IS the total volume of the system. 

(2·1) is 

Then the Fourier transform' of 

(2 ·3) 

where 111.k IS the Fourier transform of mer). From (2·3) we have 

Mk~O for Ikl ?:,R-I, 

~ml£ for Ikl.<R-l. 
(2 ·4) 

Therefore if Ikl is considerably smaller than R- 1 the quantity Mk has the clear 

physical meaning unaffected by the value of R. Our idea is to ehange R with 

temperature as vvill be seen later. 

(b) . Landau theory and its inconsistency 

Let us briefly reeapitulate Landau's idea, which underlies most of the classieal 

theories,5), in the form convenient for our purposes. According to Landau, the 

free' energy density g (r) near the eritieal point is given by 

g(r) =go+ aM(rY+ bM(rY+ c[f7M(r) ] 2. (2·.5) 

Here go IS independent of theloeal order parameter. In the presence of an 

external field, an additional term - BM(r) appears in the above expression, 
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606 . Y. Kuramoto 

where B is the external field in a suitable unit. The effect of the external field 

is, however, considered separately in later part of the present paper. The total 

free energy G in an fluctuatilig state is given by 

G({M(r)}) = )g(r)dr, (2·6) 

where {M (r)} represents a certain distribution of magnetization density. It is 

obvious that G is minimized if 

M(r) =M,' 

M=O for a>O, 

(2-7) 

In terms of M (2·5) can be rewritten as 

g(r) =go+a(M(r) _M)2+b(M(r) -M)4+ c [f7(M(r) -M)r 
\ 

for a>O, (2·8a) 

g(r') =go-10IAf~---2a(M(r) _M)2+2v'21~lb(M(r) -M)3 
2 . 

+b(M(r) -M)4+ c [f7(M(r) -M)r for a<O, (2·8b) 

though (2· 8a) is a trivial transformation.' The expectation value of a certain 

physical quantity A may be calculated with the aid of a probability function 

P({M(r)}): 

<A) = ) AP( {M(r)} ) d {M(r)} /) P( {M(r)})d {M(r)}. (2·9) 

Here 

P( {M(r)}) =exp{- .. _9_LiM~~)})}. 
kBl . 

(2·10) 

In the actual calculation some additional assumptions are necessary. The essential 

point of the conventional theory is to neglect the higher order fluctuation in 

(2·8a) and (2· 8b), which amounts to approximate those expressions by 

g(r) =go+a(M(r) -M)2+ c [f7(M(r) -M)J2 

for a>O,. 

for a<O. 

(2·lla) 

(2 ·llb) 

Then the total free energy may be written in terms of the .. Fourier transform of 

M (r) in the form 
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Modified Landau Theory of the Second Order Phase Transition 607 

G==Go+a-(J.ld~-VV MY+ V) (a+ck2)Mk M_ k cfk 

for a>O, 

for a<O, 

(2 ·12a) 

(2·12b) 

where G= Vgo and V(go-laIM2/2) for a>O and a<O, respectively. We shall 

see below that such an approximation leads to an apparent, contradiction near 

the critical point. Using (2 . 12a) , (2 ·12b) and (2·8) various' physical quantities 

maybe calculated. For instance, the spontaneous magnetization becomes identical 

with M and the density correlation function assumes Ornsteln-Zernike form and 

so on. Let ,us now inquire the condition under which the above approximation 

valids. But since M (r) is contained in g (r) still as a variable and not as an 

averaged quantity such a condition will be meaningless without presupposing 

some averaging procedure taken over the pos$ible values of M (r) . Speaking 

precisely, we are in fact inquiring the condition under which the nonlinear 

fluctuation terms may be neglected in g(r) for such, values of M(r) as to allow 

the probability function take an appreciable value. Consider first the case a>O. 

We observe that the probability function (2 ·10) may safely be replaced by a 

new function P( {M(r)}) defined by 

P( {M(r)}) =P( {M(r)}) if IM(r) I <fl for all r, 

=0 otherwise. 
(2 ·13) 

The value of fl should be considerably larger than the magnitude of the mean 

fluctuation of M (r), namely 

(2 ·14) 

which we write 111 the form 

(2 ·15) 

where Ao (>-1) is the minimum constant for whiGh the replacemellt (:2 ·13) remains 

valid. Therefore it may be concluded that the condition for the validity of the 

Landau's assumption is equivalent to the one that the term bM(rYmay be neg­

lected as compared with aMerY when M(r) is of the order of flO' This con­

dition may be expressed as 

or using (2 ·15) 

(2 ·16) 

In the case a<O two kinds of nonlinear fluctuation terms, 2.J2T~b(M(r) -MY 
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608 Y. I(urmnoto 

and b(M(r) -11{)4 appear. But the arguments go quite similarly as before, and 

the relevant condition becomes 

-a'2bAo2< (M(r) _My)1/2. 

(2 ·16) and (2 ·17) are now combined to a single condition: 

lal '2bAo2< (M(r) - M)2//2. 

(2 ·17) 

(2 ·18) 

Obviously the inequality (2 ·18) cannot be satisfied in the Landau theory near 

T c, because a vanishes and b as well as <M (r )2) remains. finite at the critical 

point. Such a breakdown of the Landau's assumption causes serious difficulties. 

For instance, when a<O, the free energy density g(r) is no more an even func­

tion of M(r) -M, so that M=J~(;7Xb will not be the spontaneous magneti­

zation. This in turn implies that the critical point should not be determined by 

setting a = o. . Moreover it is qUIte probable that the expression (2·5) itself be­

comes insufficient. 

(c) Improvement of the Landau theory 

We have seen in the previous subsection that the validity of the Landau 

theory is not assured unless the condition (2 ·18) is satisfied. But whether this 

condition is satisfied or not at a given temperatun~ depends ori the way of de­

fining the local order parameter or, more precisely, on the value of R introduced 

in (a). The reason for this may easily be seen if we note Eq. (2·4) and write 

the mean square fluctuation of the magnetization density in the form 

H.-I 

«(M(r) _<M»)2) !d ~ <m,.m_,)dk, (2 ·19) 

o 

where ~ ~l-Idk means the integral over the d-dimensional sphere of radius R- 1 

. in the momentum space, d being the dimension of the system under consideration. 

The above equation shows that when R is kept at a large value the fluctuation 

remains small and the condition (2 ·18) is more easily satisfied at a given tem­

perature. On the contrary if R is kept small the region in which the Landau 

theory is valid will be reduced. It should be noted that the value of Rmay 

quite arbitrarily be chosen if we do not mind losing the informations about the. 

local properties of the system. Therefore in what follows we shall change R 

with temperature in such a way that the condition (2 ·18) may be satisfied at 

all temperatures but the ratio lal/b< (M(r) -MY) may not depend on the tem­

perature. Thus we have 

lal "-/Ab< (M(r) - <M) Y) , (2·20) 

where A is a number larger than }l02 but independent of temperature. Under 

such·a procedure R tends of course to infinite as the critical point is approached. 

It may be asked why R should be changed and why should not be fixed at a 

large value beforehand. The answer is simple: R cannot be tend to infinite 
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Modifted Landau Theory of the Second Order Phase Transition 609 

beforehand, which leads to the trivial result g (r) = go = const, while if R IS kept 

at large finite value the Landau theory will break down in the immediate vicinity 

of the critical point. Thus the asymptotic behavior of thermodynamic quantities 

may be clarified only by changing R with temperature. 

As long as (2 ·18) is satisfied, no positive reason can be found why the 

Landau's free energy and his treatment should not be applied to our problem. 

Therefore we shall use hereafter the expressions (2 ·lla) and (2 ·llb) and replace 

M by <M). Below the critical point the expression (2·5) may also be valid 

and be used if necessary. Since according to the Landau theory the eontributions 

of the two kinds of the fluctuation terms appearing in the right-hand side of 

(2 ·lla) or (2 ·llb) are comparable in magnitude, we also assume this to be 

correct in the new description. This means that 

lal«M(r) -<M)y)r-Jc<(V (lVJ(r) -<M»Y>"'-'cR-2«M(r) _<M»2). 

(2·21) 

The last expreSSlOn 111 ,the above equation is derived as follows. First we have 

e.-I 

«V(M(r) -<M»y)~l~£ ( k2<mkm _k)dkr-J"fi2«M(r) _<M»2) , 
n J ' 

o 

(2 ·22) 

where 

e.-I R- l 

Ji2 = ~ P<mkm_k)dk I ~ <mkm-k)dk . (2·23) 

(j 0 

The quantity "fi2 IS interpreted as the square of the typical wavenumber charac­

terizing the magnetization fluctuation with the wavenumber smaller than R-1
• 

Therefore if we put 

A will not vanish at the critical poi~t and may be considered constant. *) Thus 

Eq. (2·22) leads to the last expression of Eq. (2·21). From (2·21) we obtain 

(2·24) 

So far the behavior of R near the eritical point has not been referred to. 

It is shown in the following manner that R behaves like the correlation length. 

Using (2·9), (2 ·10) and (2 . 12a) the mean square fluctuation of the k-mode in 

the paramagnetic region is calculated as 

*) The fact that A does not vanish at the critical point is assured except the case that the 

dominant part of the integral ~ fl-l<mkm_k)dk comes only from an infinitesimally small region in 

the k-space (much smaller than R-d) near the critical point, which seems to be impossible except in 

the lower dimensional systems whose transition points are absolute zero. 
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Eq. (2·22) leads to the last expression of Eq. (2·21). From (2·21) we obtain 

(2·24) 

So far the behavior of R near the eritical point has not been referred to. 

It is shown in the following manner that R behaves like the correlation length. 

Using (2·9), (2 ·10) and (2 . 12a) the mean square fluctuation of the k-mode in 

the paramagnetic region is calculated as 

*) The fact that A does not vanish at the critical point is assured except the case that the 

dominant part of the integral ~ fl-l<mkm_k)dk comes only from an infinitesimally small region in 

the k-space (much smaller than R-d) near the critical point, which seems to be impossible except in 

the lower dimensional systems whose transition points are absolute zero. 
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¢k-<mk m-k) = ~_3B7~ _____ _ 
. 2 (a + ck

2
) 

kBT 1 

2c (a/c) +P 
(2·25) 

From (2·25) and (2·24) it will turn out that ¢k has the Ornstein-Zen:iike form 

and that R plays the role of the correlation length. Quote an analogous argument 

holds for a<O also and, following the usual notation, we put 

From (2·24) and (2·26) we obtain 

cr:vlaltc- 2
• 

(2·26) 

(2·27) 

At first sight, our theory seems to have made no progress a,s compared with 

. the. classical theory as., far as the correlation function is concerned. But this is 

not the case because of the following two reasons. The first is that in our 

framework the factor c- 1
' multiplying the Ornstein-Zernike type correlation func­

tion is expected to become singular at the critical point. This leads, as will be 

seen in the next section, to the correct relation among the critical indices dif­

ferent from that obtained by the Landau theory or the molecular field theory. 

The second reason is that in our treatment the expression (2·25) vaJids only 

in the region k<'R- 1
( rJtc), which implies that the region in which the 'Ornstein­

Zernike form validsbecomes indefinitely small as the critical point is approached. 

More detailed study of these points will be made in the next section. 

Before ending this section let. us summarize the asymptotic behavior of the 

quantities a, band c appearing in the Landau's free energy. Throughout this 

paper Fisher's notations6
) are used for· the critical indices which are listed 111 

Table I, where the deviation from the critical temperature is indicated by 8: 

Let us fir~t note that lal IS proportional to the inverse susceptibility: 

Table 1. 

Physical quantity Sign of s 
I· 

Behavior of quantity Critical. index 

Spontaneous <0 "'-lsl,8 f1 

magnetization <M) =0 ",-BlIS 0 

Correlation =0 "'-r-rJ,+2-r; 
"IJ function ifJ (r) 

Inverse correlation >0 ",-sv v 
length K, <0 "'-Islv' v' 

Specific heat C >0 ",-Aca+B a: 
'<0 ",-A'lsl-a' + B' 0/ 

Uniform susecpti- >0 "'-S-7 r 
bility Xo . <0 "'-Isl-'l' rl 
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Modified Landau Theory of the Second 'Order· Phase Transition 611 

lal ~Xa-l. (2·28) 

Also note that the right-hand side of . (2·20) can be expressed as 

a-I 

l,b«M(r) -<M)Y)~Ab:d ~ <mkm-k)dk 
• 0 

a-I 

~Ab Ii ( <mama)dkrJl,btcdXa, 
n) . 

(2: 29) 
a 

where we have used (2·25), (2·24) and the proportionality oJ <mama) to Xo. 

Then (2·20) can be written as 

brJ A-II aI/Cd Xo-l. 

On the other hand, by definition (see Table I), 

and 

"--'Isl-r
' for T<Tc • 

Thus (2·28), (2·30) and (2·27) reduce to 

(2·30) 

(2·31a) 

(2·31b) 

(2·31c) 

(2 ·32a) 

(2·32b) 

c,,--,lsl r '-2"-' (2·32c) 

for T<Tc• Equations (2·31) and (2·32) together with (2·I1a) and (2·11b) 

(and (2·5) if necessary) form a set of basic equations to our theory. 

§ 3. Asymptotic behaviors of physical quantities 

(a) Pah- correlation function 

According to our treatment, the spatial correlation function ¢ (r) ,of the 

magnetization density may have different forms when r";?>tc- 1 and whenr<tc- 1
• 
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612 Y. Kuramoto 

First consider the large distance (r'>te- 1
) correlation function .. In the previous 

section we have seen that the mean square fluctuation of the k-mode for k<.te 

has the Ornstein-Zernike form multiplied by c-1 (see Eq. (2·25». Using Eqs. 

(2·31c) and (2·32c) we obtain 

for T>Tc , 

(3 ·1) 

In real space these equations can be expressed as 

8-r+2
" 

¢ (r) "-' (ter)<d~i)j2e-ICr for 

1 I
-r' + 2"' 

"-' 8 e- ICr for T <Tc , 
(ter)(d-l)/2 

(3 ·2) 

which are valid only for r'>te- 1
• For r<te- 1 let us· assume the form of ¢ (r) as 

(3 ·3) 

where r; is the critical index characterizing the deviation from the Ornsteil1-

Zernike form. For r<te-1
, e- ICr may approximately replaced by unity. Therefore, 

integrating (3·3) over the d-dimensional region satisfying r<te- 1 and dividing 

by its volume v we obtain 

~ ~ ¢ (r) dr"-'ted
-2+ 1J "-'8"(d-2+1J) 

v 

for T>Tc , 

(3 ·4) 

j j"'(d-2+1J.) "-'8 for 

where we have assumed that r;~2. On the other hand, noting· Eqs. (2·3) and 

(3 ·1), we obtain another equation 

~ ~ ¢(r)dr= ~ ~ <m(ro+r)m(ro»dr 
v . v 

Ie 

:=:::d .~ <mkm _k)dk"-'8
d
"-r for T>Tc , 

o 

,,-,j8jd"'-J"' for T<Tc • 

Coml?aring Eqs. (3·4) and .(3·5), we obtain the relations7
) 

_r_=v and 
2-r;. 

~=v'. 
2-r; 

. (3·5) 

(3·6) 

It will be instructive to test the validity of our theory by applying it to the 
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Modified'Landau Theory of the Second Order Phase Transition 613 

two-dimensional Ising spin system. Using y ='y' = 7/4, V = v' = 1 and 1) = 1/4,8) 

which are known to be exact in this case, Eq. (3·2) is reduced to 

(3 ·7) 

both above and below the critical point. On the other hand it was shown by 

Kadanoff9) that ¢ (r) coincides with (3·7) for r';?> Je-1 and T> Te . . But below 

T e, ¢ (r) was found to behave like 

(3-8) 

which is different from (3·7). Therefore our theory seems to be insufficient· 

for T<Te though the reason for it is not clear. 

(b) Specific heat 

The thermodynamic potential of the total system is given by 

P'= -kBTln ~exp(- k~T)d{M(r)}, (3·9) 

where G is given by (2 . 12a) and (2 ·12b) forT> Te and T <Te, respectively. 

In those equations the effective range of k-integration is of the order- of Jed on 

account of (2·4) and (2·26). First. consider the case of T>Te• Inserting 

(2 ·lla) into (3·9) P' can be expressed as 

(3 ·10) 

where 

P'o=Go= VUo-

Noting that a + ck2 is proportional to the inverse of the k-dependent susceptibility 

and that the integral in the logarithm is estimated to be %,//2, (3 ·10) becomes 

P' rvP'o- ; ~ In %,//2dk. (3 -II) 

Since %k may approximately replaced by %0 for Ikl <Je, the above expression be­

comes 

(3 ·12) 

In (3 ·12) the first term on the right-hand side represents the contribution from 

the short wavelength magnetization density and is expected not to exhibit a singular 

behavior near the critical point; The singularity in the specific heat will come 

from the second term. Therefore~ leaving only the dominant part, the specific 

. heat C will be expressed as 
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614 Y. Kuramoto 

(3 ·13) 

The critical index associated with thc specific heat (see Table I) IS then given 
b

y
3),4),10) 

a=dv-2. (3·14) 

In particular if dv = 2 C diverges logarithmically. ForT <Tc quite an analogous 

argument leads to 

a' =dv' - 2. ' (3 ·15) 

(c) Continuation of one jJhase to the other 

So far our study has been based on (2 ·lla) and (2· 11 b) together with 

(2·31) and (2·32), which are valid if the cell radius R is properly changed 

with temperature. But such a treatment is useful only when a single' phase 

(e.g. the paramagnetic phase) is under consideration. In ord~r to relate the 

critical indices associated with one phase to those of the other a slightly different 

procedure seems to be necessary. In the present and the next subsection we 

introduce an argument which goes as follows: Down to the temperature e = eo 

R is changed as before, but below eo,' R is kept at the value I""'--'eo- v
: 

Rr-Je- v for e>eo 

and (3 ·16) 

r-Jeo- V for e<eo. 

For e>eo the free energy density (2 ·lla) is expected to give satisfactory results. 

as has already been seen. But in ,the region e<eo the expression (2 ·lla) be­

comes insufficient and cannot describe the phase transition even in an approxi­

mate way. Therefore we supplement (2 ·lla) by the term bM(r)4 and follow 

Landau's procedure for' solving the problem. The results thus obtained are 

admittedly incorrect in some temperature region below eo. But as we shall see 

below it is sufficient for our purpose only to ask whether these results are valid 

again at e = - eo. We observe that as 'the temperature is lowered passing through 

the critical point the fluctuation M(r) -<M) becomes smaller and the condition 

(2 ·18) may again be satisfied below a certain temperature. In the following 

it is proved that this temperature is proportional to - eo, the proportionality 

constant being independent of eo. *) For this purpose it should first be noted 

that a may quite naturally be assumed to be an analytic and monotoneously in­

creasing function of e since a is a local quantity insensitive to the critical an­

omally:**) 

*) Implicit in this statement, we are presupposing numerous times of the procedure of 

changing R for different' Eo's. Therefore Eo may be regarded as a variable. 

**) The assumption of the analyticity of a of course breaks down when the free energy G is 

expressed only in terms of the long range order parameter: G=Go+aM2+bM4+ .... The nonana­

lyticity of a in this case reflects the fact that when R is changed as before a is no more analytic 

, even when it is in the expression of f! (r). 
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Modified Landau Theory of -the Second Order Phase Transi'tion 615 

(3 ·17) 

Here the difference of the two transition temperature obtained by the present 

and earlier procedures of changing R is taken into account, and, this give's rise 

to the term - ao. The true critical point is of course the one obtained by the 

earlier procedure. Put this temperatur~ difference divided by the true Tc as Js. 

Then Js is determined by setting 

a(Js) = -ao+a1Js=O 

or 

(3 ·18) 

On the other hand, as IS easily seen from Fig. 1, Js satisfies the inequality 

o 

Fig.~. Dotted curve behaves like the inverse 

of the true susceptibility. Solid curve cor­

responds to the second procedure of chang­

ing R(belaw Eo, R is kept constant). The 

part of the solid curve in the neighborho­

odaf E=.dE is a straight line. 

(3 ·19) 

Since al should be positive ao should also 

be positive, which is obvious from (3 ·18) 

and (3 ·19). From (3 ·17)!, (3 ·18) and 

(3 ·19) we obtain. 

where we have taken into account that 

ao, al>O. In effect, it may be put that 

a (so) /"'JalSO', 

a ( - so) "-./ - al~O . 

(3·21a) 

(3·21b) 

On the other hand band c will not drastically change near the critical point if 

R is fixed. In other ~ords, band c will have the zeroth order term in s. 

Therefore we n:ay put (see. (2·31» 

b ( - so) /"'J b (so) "-./). -ls02r -d" , 

c( -so) /"'Jc(So) r-vs/- 2
". 

(3·22a) 

(3·22b) 

(3· 21 b) and (3·22) show that the condition (2 ·18) is just satisfied at s = - so. *) 

This· implies that the present procedure gives correct results at Sr'-/ - so, though. 

not in the intermediate region between So and - so. 

On taking account that 
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(3·21a) 

(3·21b) 

On the other hand band c will not drastically change near the critical point if 

R is fixed. In other ~ords, band c will have the zeroth order term in s. 

Therefore we n:ay put (see. (2·31» 

b ( - so) /"'J b (so) "-./). -ls02r -d" , 

c( -so) /"'Jc(So) r-vs/- 2
". 

(3·22a) 

(3·22b) 

(3· 21 b) and (3·22) show that the condition (2 ·18) is just satisfied at s = - so. *) 

This· implies that the present procedure gives correct results at Sr'-/ - so, though. 

not in the intermediate region between So and - so. 

On taking account that 
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616 Y. Kuramoto 

( "" ) X -1 ("" ) C' r a co "--" ,0 co ~co, (3·23) 

we have from (3·21) 

( )
. r 

-a -eo "--"eo. (3 ·24) 

Indicating the singularity' of the susceptibility below Tc by r' (see Table 1), 

weha've from (3·24) 

r=r'. (3·25)*) 

If we put as usual IC"--"Iel v
/ below T c, the relation 

V=V' 

IS directly obtained. This is because the cell radius' at e = - eo in the present 

treatment is equal to that' at e = eo and this cell radius should be proportional 

to the correlation length at e = - eo since whenever the condition. (2 ·18) is satisfied 

the cell radius is proportional to the correlation length (see (2· 26». 

(d) Magnetization 

Let us now turn to the spontaneous magnetization. Since the use of the 

Landau theory at e = - eo has been justified, the magnetization at this temper'!lture 

is given by 

<M)s=-so = J=-;ir~-::~, (3·27) 

which becomes on usmg (3· 22a) and (3·24) as 

<M) /'"'JC' -(r-dv)j2 
S=-So "'0 • (3·28) 

From (3·28) and Table 1. we obtain3
),4),12) 

2{3=dv-r· (3·29) 

(e) Effect of the external field 

Returning now to the earlier procedure of changing R, let us investigate 

the effect of the uniform external field B on the magnetization. Consider below 

Tc the free energy density of the form 

[fer) =[fo+ aM(r)2+ bM(r)4+ c[P'M(r) ] 2-BM(r), (3 ·30) 

which in the absence of the last term i,s expected to be valid up to the critical 

point with a, band c given by (2· 32a) /'"'J (2· 32c). Let us now estimate the 

value of the additional magnetization near the critical point produced by the 

external field. . The relation between the external field and the field-induced 

magnetization thus obtained may also hold just at the critical point, because 

*) The relations r=r', )1='=)1' and a:=a:' are not convincing in the scaling theory (see references 

3) and A) ). In the scaling theory one of these is assumed, then the others are derived automati­

cally. Griffiths argued that the unequal values for critical indic~s ~bov~ ~md. below the critical point 

is thermodynamically.inconsistent (see rderence 11)!, 
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the induced part of magnetization is considered to be approximately constant 

near the critical point. Therefore for a given B the temperature at which the 

induced rrmgnetization is calculated may suitably be chosen so that the Landau's 

treatment may be applied at that temperature. At such a temperature the in­

duced magnetization should be much smaller than the spontaneous one: 

(3·31) 

Her'e <M)ind and <M)o represents respectively the field-induced and the spon­

taneous magnetization, and we change e and B simultaneously so that A may be 

kept constant. The total magnetization <M) is the sum of these two parts: 

(3 ·32) 

For the condition (3·31) to be satisfied, the induced magnetization for different 

values of B should be calculated at different temperatures. <M)ind can be ob­

tained by minimizing g(r) with respect to <M): 

On the other hand, <M)o satisfies 

_~i~_ (a<M)o2 + b<M)04) ~ 0 . 
d<M)o 

From (3·32),. (3·33) and (3·34) and noting (3·31) we have 

B~ - 4a<M)incl . 

Recalling that 

<M)o~ lei fJ "--' I al fJ;r, 

(3·35) becomes 

B,,--,<M)/If3<M)incl , 

rv},rlf3<M)t-::clCrIS) : 

(3·33) 

(3 ·34) 

(3 ·35) 

(3·36) 

This is the relation between the applied field and the induced magnetization 

near the critical point, and this relation may hold at the critical point becaus'e 

of the, reason mentioned previously. Thus we obtain3
),4) (see Table I) 

(3 ·37) 

§ 4. Discussion 

On the basis of the natural assumptions, we have succeeded in modifying 

the classical treatment of the second order phase transition and in deriving the 

relations among the critical indices (Eqs. (3·6), (3 ·14) ,(3·15), (3·25), (3·26), 
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618 Y. Kuramoto 

(3·29) and (3·37». All these relations are equivalent to those derived from 

the st,atie scaling law. 3
),4) Through the process of the modification, the connec­

tion has considerably been clarified between the classic.al picture and the more 

realisti'c mechanism of the second order phase transition. It shou;ld be remarke~ 

that ,our most important assumption is (2·21). At some points this assumption 

seems to be connected with the similarity assumption in the static scaling theory. 

One serious discrepancy between our conclusion and the expected feature 

is the functional form of the pair correlation below the critical point (see § 3 

(a». Although the reason for this is not quite clear, it is. probable that the 

form of g (r) given by (2·5) is no more sufficient below the critical point even 

if a, band' c behave like (2·32). If this is true, it is remarkable that the critical 

indices derived from such an insufficient free energy are related to each other 

in a correct way. Since our purpose in this paper was only to remo~e the ap­

parent inconsistency involved in the Landau theory, there seems to be no .reason 

why the additional terms should be put in g (r) . But a further study seems to 

be necessary to clarify this point. 
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