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. The difficulty near the critical .point encountered by the Landau theory or the classical
theory of the second order phase transition is removed with the least modification of the :
‘original framework. The éssential point of our idea is to note that the temperature region
in which the Landau theory valids depends sensitively on the way of defining the local order
parameter. It is. shown that the relations among the singularities of various thermodynamic
quantities predicted by this modified form of the Landau theory are in good agreement with
those obtained by nonclassical theories such as the static scaling theory.

§ 1. Introduction

Tt is often pointed out that the Landau theory of the second order phase transi-

tion suffers from an internal inconsistency.” In fact under the assumption of small -

fluctuation this theory predicts the large fluctuation at the critical point.  The
failure of this theory in the vicinity of the ¢ritical point, especially in the system
with short range interaction, seems to be the consequence of this inconsistency.
- When we work with free energy density, there secems to be at least two possible
ways to avoid this difficulty. One way is to take into account the higher order
terms with respect to the local fluctuations and their spatial derivatives.** The
other way, which is of our main concern in this paper, is to change the defini-

tion of the local order parameter with temperature without taking into account

the higher order terms. In the next section the definition of the local order
parameter is carefully examined, and this is indispensable for our whole discus-
sion. The procedure of removing the inconsistency is then presented. In §3
the asymptotic behaviors of various thermodynamic quantities are studied and
all the independent relations among the critical ind»ice's are derived which turn
out to be indentical with those obtained by the static scaling theory.®® Through-
out the present paper the language is used appropriate for the Ising ferromagnets
though the same kind of arguments may apply to the classical gas or liquid system
as well.

* The preliminary report has been published in Prog'. Theor. Phys. 40 (1968), 688.
**) This fact was pointed out by several authors but such an approach was found too difficult to
obtain satisfactory results (see reference 2)),
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Modified Landau Theory of the Second Order Phase Transition . 605

§ 2. Elimination of the inconsistency

(a) Local order parameter

Let us start with an unambiguous definition of the local order parameter.
In the present case the local order parameter, which we denote by M(r), is
the z-component of magnetization density averaged over a semimicroscopical region
around the position r: -

M@y =1 g m(r+rydr. | 2.1
, o , ‘
Here

m(r) = 20 ml (r—ry)

‘and m; is the z-component of the magnetic moment. of the spin at r;. . The in-

tegral in (2-1) extends over a spherical region centered at r, whose volume is

denoted by w. The definition (2-1) implies that M(r).and M{G,) cannot be

regarded as independent variables if |ri—r.|<R, where R is the radius of the

sphere. Therefore it will be more convenient to work with the spatial Fourier
transform defined by

Mk:.jVSM(r)e“Wdr, o (2:2)

where V is the total volume of the system. Then the Fourier transform -of
(2-1) is '

M=t S mpe¥rdr, (2:3)
v
w‘heré my, is the Fourier trans%rm of m(@r). From (2-3) we have

M,=0  for |k|=R7,

. 2-4
=my; for |E|=R'. ( )

Therefore if |k| is considerably smaller than R~ the quantity M, has the clear
‘physical meaning unaffected by the value of R. Our idea is to change R with
temperature as will be seen later.

(b)  Landau theory and its inconsistency
Let us briefly recapitulate Landau’s idea, which underlies most of the classical
theories,” in the form convenient for our purposes. According to Landau, the
free energy density ¢(r) near the critical point is given by .
g(r) =9+ aM () + oM (r)*+c[VM ()] (2-5)

Here ¢, is independent of the local order parameter. In the presence of an
external field, an additional term —BM(r) appears in the above expression,
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606 ‘ Y. Kuramoto

where B is the external field in a suitable unit. The effect of the external field
is, however, considered separately in later part of the present paper. The total
free energy G in an fluctuating state is given by

G<{M<r>}>=§g<r>dr, | (2-6)

where {M(r)} represents a certain distribution of m'xgnctuatlon density. It is
obvious that G is minimized if

M) = M
M=0 for a>0,
/AA,A,, ! i
:N/—é% for va<0. ‘ . 2-7
In terms of M. (2-5) can be rewritten as

9) =got & (M(r) = BIF + b (M(r) — M)+ e[7 (M(r) —BD) "

~for a>0, - (2-8a)
‘9<r\)=90—~~‘~4~'5]\7~-~ 2a(M<r> —M)*+2v2|alb (M) — M) |
b (M) — MY+ e[V (M) =M1 for a<0, (2-8b)

though (2-8a) is a trivial transformation. The expectation value of a certain

physical quantity A may be calculated with the aid of a probability function

PUM)}): ,
- ww={arcuen e[| Paopamey. - @)
Here | |
| POME)) :exp{_,.yc;_gigg,z},_‘;}_ - 2-10)

In the actual calculation some additional assumptions are necessary. The essential

point of the conventional theory is to neglect the higher order fluctuation in
(2-8a) and (2-8b), which amounts to approximate those e\pressmns by

g =gt a(M(r) - M)Z+6[V(M(1) -M)]

for a>0, - . (2-11a)
‘g<r>=go—i£‘-'—§‘7~’ ~2a (M () = F)+[7 (M) DT
for a<0. . (2-11b)

Then the total free energy may be written in terms of the Fourier transform of

M(r) in the form
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Modified Landau Theory of the Second Order Phase Transition ’.6'07

‘G:Gﬁw@%—VVMT+VSM+&3MMLMM
for a0, (2-12a)
G:(%—&KAA~JVTWY+V&(ﬂa%ﬂ%@ﬂhﬂﬁdk

for a<0 ,. . (2-12b)

where G=1Vg, and V(go—ia[MZ/Z)k for d>0 and a<0, reSpeCtive,ly. We shall -

see below that such an approximation leads to an apparent contradiction near

the critical point. Using (2-12a), (2-12b) and (2-8) various physical quantities

may be calculated. For instance, the spontaneous magnetization becomes identical
~with M and the density correlation function assumes Ornstein-Zernike form and
so on. Let us now inquire the condition under which the above approximation

~valids. But since M(r) is contained in ¢(r) still ‘as a variable and ‘not as an -

averaged quantity such a condition will be meaningless without presupposing

some averaging procedure taken over the possible values of M(r). Speaking

precisely, we are in fact inquiring the condition under which the nonlinear

fluctuation terms may be neglected in g(r) for such values of M(r) as to allow

. the probability function take an appreciable value. Consider first the case a>0.

We observe ‘that the probability’ functmn (2-10) may safely be replaced by a
new function P({M@)}) defined by ~

P({M(r)}):P({M(r)}) if lM(i)]<ﬂ for all r, ,

. ' (2-13)

=0 otherw1sc :

The value of u should be considerably larger than the mzignitude of the mean
fluctuation of M(r), namely ‘

p M@, (2-14)
w.hich'we write in the form .
p=AMEDE, O (2-15)

where 2,(>>1) is the minimum constant for which the replacement (2-13) remains

valid. Therefore it may be concluded that the condition for the validity of the

Landau’s assumption is equivalent to the one that the term &M (r)* may be neg-
lected as compared with aM(r)* when M(r) is of the order of x. This con-
dition may be expressed as

a=bn?
or ﬁsing (2-15) »
| A=K MY . @26
In the case a<<0 two kmds of nonlinear fluctuation terms, 2¢2|agb(M(r) — M)
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608 ‘ ' Y. Kuramoto

and b(M(r) —M)* appear. But the arguments go quite similarly as before, and
the relevant condition becomes

—a=bAX (M(r) ]\4)2>’/2 (2-17)
(2-16) and (2-17) are now combined_ to a single condition: _
|| =02 (M (r) — BT, (2:18)

Obviously the inequality (2-18) cannot be satisfied in the Landau theory near
T, because a vanishes and & as well as <M ()*> remains finite at the critical
point. Such a breakdown of the Landau’s assumption causes serious difficulties.
For instance, when a<{0, the free energy density ¢(r) is no more an even func-
tion of M(r) —M, so that M=.—4/2b will not be the spontaneous magneti-
~ zation. This in turn implies that the critical point should not be determined by
~ setting «=0. Moreover it is quite probablc that the expression (2- 5) itself be-
comes 1nsufﬁ(:1cnt

(c) Impr‘ovement of the Landau theory

We have seen in the previous subsection that the validity of the Landau
theory is not assured unless the condition (2-18) is satisfied. But whether this
condition is satisfied or not at a given temperature depends on the way of de-
fining the local order parameter or, more precisely, on the value of R introduced
in (a). The reason for this may easily be seen if we note Eq. (2-4) and write
the mean square fluctuation of the magnetization density in the form

R

M) =M= | mmdale,(219)

0

where (i 'dk means the integral over the d-dimensional sphere of radius R™"'

-in the momentum space, d being the dimension of the system under consideration.
The above equation shows that when R is kept at a large value the fluctuation
remains small and the condition (2-18) is more easily satisfied at a given tem-
perature. On the contrary if R is kept small the reégion in which the Landau
theory is valid will be reduced. It should be noted that the value of R may

quite arbitrarily be chosen if we ‘do not mind losing the informations about the.

local properties of the system. Therefore in what follows we shall change R
~with temperature in such a way that the condition (2-18) may be satisfied at
all temperatures but the ratio |a|/b< (M(r) —M)® may not depend on the tem-
perature. Thus we have

lal ~ 26 (M () =<MDYy, | (2-20)

where 2 is a number larger than A’ but independent of temperature. Under
such-a procedure R tends of course to infinite as the critical point is applO'ICth
It may be asked why R should be changed and why should not be fixed at a
large value beforehand. The answer is simple: R cannot be tend to infinite
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Modified Landau Theory of the Second Order Phase Transition - 609

beforehand, which leads to the trivial result §(r) =¢,=const, while if R is kept
at large finite value the Landau theory will break down in the immediate vicinity
of the critical point. Thus the asymptotic behavior of thelmodynamlc quantities
may be clarified only by changing R with temperature.

As long as (2-18) is satisfied, no positive reason can be found why the
Landau’s free energy and his treatment should not be applied to our problem.
Therefore we shall use hereafter the expressions (2-11a) and (2-11b) and replace
M by (M. Below the critical point the expression (2:5) may also be valid
and be used if necessary. Since according to the Landau theory the contributions
of the two kinds of the fluctuation terms appearing in the right-hand side of
(2-11a) or (2-11b) are comparable in magnitude, we also assume this to be
correct in the new description. This means that

A< L () — MOy ~ed (7 (M) — (M) > eR R (M(r) <M>) >
(2-21)
The last expfession in the above equation is derivgd as follows. Fiirst'.we have

R—I

M) == | Bmm > dkn B M) — Y,

(2-22)
where

R R!

B~ g k2<mkm_k>dk/ S<mkm4k>dk. | (2-23)

[

The quantity k? is interpreted as the square of the typical wavenumber charac-
- terizing the magnetization fluctuation Wlth the wavenumber smaller than R~
Therefore if we put ‘

VE'= AR (U<D)

A will not vanish at the ecritical point and may be considered constant.® Thus
Eq. (2-22) leads to the last expression of Eq. (2-21). From. (2-21) we obtain

la|~eR™2. - .(2'.24)4 |

So far the behavior of R near the critical point has not been referred to.
It is shown in the following manner that R behaves like the correlation length.
Using (2-9), (2-10) and (2-12a) the mean square fluctuation of the %A-mode in
the paramagnetic region is calculated as

#*) The fact that .4 does not vanish at the critical point is assured except the case that the
dominant part of the integral SR"1<m/cm 7oodk comes only from an infinitesimally small region in
the Z-space (much smaller than R™¢) near the critical point, which seems to be 1mposs1ble except in
the lower dimensional systems whose transition points are absolute zero.
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610 o S Y. ,Kuramoto

_ _ kT
Pr=<mrm_y 2‘(cz—|—c/e2)
L — (k<R7). (225

2c (a/c)+FE

From (2-25) and (2-24) it will turn out that ¢, has the Ornstein-Zernike form
and that R plays the role of the correlation length. Quote an analogous argument
holds for a<{0 also and, following the usual notation, we put

| R~ S (2:26)
From (2-24) and (2-26) we obtain .
N c~lalk™ (2-27)

At first sight, our theory seems to have made no progress as compared with -

- the. classical theory as.far as the correlation function is concerned. But this is
not the case because of the following two reasons. The first is that in our
framework the factor ¢! multiplying the Ornstein-Zernike type correlation func-
tion is expected to become singular at the critical point. This leads, as will be
seen in the next section, to the correct relation among the critical indices dif-
ferent from that obtained by the Landau theory or the molecular field theory.
The second reason is that in our treatment the expression (2-25) valids only
in the region #<R7'(~k), which implies that the region in which the Ornstein-
Zernike form valids becomes indefinitely small as the critical point is approached.
More detailed study of these points will be made in the next section.

- Before ending this section let us summarize the asymptotic behavior of the
quantities @, & and ¢ appearing in the Landau’s free energy. Throughout this

~ paper Fisher’s notations®

Table I, where the deviation from the critical temperature is indicated by e:

e=(T-T,)/T,.

Let us first note that |a| is proportional to the inverse susceptibility:

Table I.
Physical quantity Sign of & ~ Behavior of quaﬁtity - Critical .index
Spontaneous : : <0 - ~|el8 . B
magnetization {M) . =0 : ~ B3 )

. Correlation . . —dte- .
function ¢ (r) =0 . r 7 Ui
Inverse correlation >0 . ~e , v
length & <0 ~|&l¥ ‘ V.

. 0 ~A&g e+ B
Specific heat C \20 : A B i‘,‘
Uniform susecpti- . >0 Co~ETY T
- bility %y | ’ , <0 S e - 1’

are used for the critical indices which are listed in
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Modified Landau Theory of the Second Order Phase Transition
| la| ~x™ (2-28)
~Also note that the right-hand side of (2:20) can be express’ed as (
p »1 .
26¢ (M(r) —DP=1 S Cmm_pydk
: ,
15
~aby g Gyl 20 (229

0

where we have used (2-25), (2 -24) and the proportlonallty of <m0mo> to xo.

Then (2- 20) can be written as

for T<Tc..- Equations (2.-31)' and (2-32)lvbtogether With (2-11a) and (2-11b)

| | brod i (2-30)
Oﬁ the other hand, by definition (see Table I),
e for TST,,
Niel.”" for T<T,
“and ‘ .
Cgo~e™t for T>T.,
~le|" for T<T..
Thus (2-28), (2-30) and (2-27) reduce to
| | | arel, (2-31a)
bl lgT -, (2-31b)
v crg T .(2-810)
for T>T,, and
lal~lel”, (2-322)
brod e, (2-32b)
e~ le| (2-32¢) .

611
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(and (2-5) if necessary) form a set of basic equations to our theory.

§ 3. Asymptotic behaviors of physical quantities

(a) Pair correlatzon funclzon

. According to our treatment, the spatial correlation function ¢(r) ’of‘the

magnetization density may have different forms when 7>£™' and when »<g~

1



612 , o Y. Kuramoto

First consider the large disfance (r>kY) correlation function. . In the previous
section we have seen that the mean square fluctuation of the kmode for k<k

has the Ornstein-Zernike form multiplied by ¢! (see Eq.  (2-25)). Using Egs.

(2-31c) and (2:32¢) we obtain

8—T+2» : )
beri dor TST, ,,
- | (3-1)
~ T for T
In real spé’ce these equations can be expressed as
‘ gTHw s : : . o
¢(r >N< )(Ez‘i)/z ‘ for T>Tc >
e[ ™" e ©-2)

W fOl‘ T< Tc ) ‘-
1

which are valid only for »>g™'. For 7'</c“1 let us.assume the form of ¢(») as

— KT

B~ e

249 b ) . ) (3‘3)

where is the critical index characterizing the deviation from the Ornstein-
W : .

Zernike form. For »<k™, ¢™ may approximately replaced by unity. Therefore,

integrating (3-3) over the ddlmensmnal region satlsfymg r<g~' and dividing

by its volume v we obtain

: S ¢(7”)dr~/c“ B g (@) for T>T.,

v - 3-4)

~le|” @ for T<T,,

where we have assumed that 72¢2. On the other hand, noting Egs. (2-3) and

 (3-1), we obtain another equation

S¢(r)dr~~—g<m(ro r)m'(};)>dr

'}—_ <mkm k>dkf\/8 -7 for T>Tc,'

a

T , (3-5)
Nleldp/_.}‘/ ’ ‘vaI' T<7‘c ’

- Comparing Eqgs. (3-4) an& (3-5), we obtain the relations®

L:p and l_f:y’. (36) '
2= 2—7y ,

It will be instructive to test the validity of our theory by applying it to the
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Modified Landau Theory of the Second Order Phase Transition 613

two-dimensional Ising spin system. Using 7=7"=7/4, y=y’=1 and 77=1/4‘,8)
which are known to be exact in this case, Eq. (3-2) is reduced to ‘

¢( 7y~ e ([‘ell )1/26 —lelr | for 7‘>Ii'1 . - _ (37)

both above and below the critical point. On the other hand it was shown by

Kadanoff”® that ¢(r) coincides with (3- 7) for r>/c and T>T..  But below
T., qﬁ(r) was found to behave like ‘ :

¢<7’>N(IT€]]‘3;3~2[6” for r>;c‘1, ; (3-8)

which is different from (3:7). Therefore our theory seems to be insufficient

for T<T, though the reason for it is not clear.

- (b) Specific heat

The thermodynamic potential of the total system is given by
G
keT
where G is given by (2-12a) and (2-12b) for T>7T. and T<T., respectively.
In those equations the effective range of k-integration is of the order- of £ on

account of (2-4) and (2-26). First consider the case of 7>7,. Inserting
(2-11a) .into (3:9) ¥ can be expressed as.

?z—kBTln Sexp<~ )d{M(r)}, : ' (39)

r-v,- S[ln g exp{— (a+ck) MpM_s} dM;] dk,  (3-10)
T

where ,
V= Go=V9,.

Noting that a+ck® is proportional to the inverse of the k-dependent susceptibility
and that the integral in the logarithm is estimated to be 7% (3-10) becomes

| wmwo—fggln wrdk. (3-11)
(4 _
Since xk may approicimateiy replaced by %, for |k|<t, the above expression be-
comes ‘ ‘
T, Vglnxlﬂdk v- e, (3-12)
i 27* o

In (3-12) the first term on the right-hand side represents the contribution from
the short wavelength magnetization density and is expected not to exhibit a singular
behavior near the critical point; The singularity in the specific heat will come
from the second term. Therefore, leaving only the dommant part, the specific
~heat C will be expressed as
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wpr 0 " : .
C=— ; -2—7%— ;%f?wed“zlne o (3-13)

The critical index associated with the specific heat (see Table I) is thcn given
by?)) ,4),10) .
a=dv—2. : ; (3-14)

In particular if dv=2 C diverges logarithmically. For 7'<7T', quite an analogous
argument leads to , ,
o' =dy —2. (3-15)

(c) Contznuatzon of one j)hase to the other

So far our study has been based on (2-11a) and (2 11b) together with
(2-31) and (2-32), which are valid if the cell radius R is properly changed
with temperature. But such a treatment is useful only when a single - phase
(e.g. the paramagnetic phase) is under consideration. In order to relate the
critical indices associated with one phase to those of the other a slightly differc;nt

procedure seems to be necessary. In the present and the next subsection we

introduce an argument which goes as follows: Down to the temperature e=¢
R is changed as before, but below &, R is kept at the value ~g&~":
, _ R~¢™ for "280
and (3-16)
‘ ' ' for C‘<8()

NEO_v

For ¢=¢, the free energy dcnsny (2-11a) is expected to give satisfactory results.

as has already been seen. But in the region e<(¢, the expression (2-11a) be-
“comes insufficient and cannot describe the phase transition even in an approxi-
mate way. Therefore we supplement (2-11a) by the term &M (r)* and follow
Landau’s procedure for solving the problem. The results thus obtained are
admittedly incorrect in some temperature region below &. But as we shall see
‘below it is sufficient for our purpose only to ask whether these résults are valid
again at ¢= —¢g,. We observe that as the temperature is lowered passing through
the critical point the fluctuation M(r) —<{M) becomes smaller and the condition

(2-18) may again be satisfied below a certain temperature. In the following
it is proved that this temperature is proportional to —e&, the proportionality

constant being independent of ¢.* For this purpose it should first be noted
that @ may quite naturally be assumed to be an analytic and monotoneously in-
creasing function of ¢ since a is a local quantity 1nsensmve to’ the crltlcal an-
omally :*% '

* Implicit in this statement, we are’ presupposing numerous times of the procedure of
changing R for different &’s. ‘Therefore & may be regarded as a variable.

##) The assumption of the analyticity of @ of course breaks down when the free energy G is
expressed only in terms’ of the long range order parameter: G=G,+aM?+bM!+---. The nonana-
lyticity of @ in this case reflects the fact that when R is changed as before a is no more analytic
- even when it is in the expression of g(r), : :
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Modified Landau Theory of.-tke Second Order Phase Transition 615

a= —ay+ ae+ ag’+ -

~—aytae (eL£1). 31D

Here the difference of the two transition temperature obtained by the present:

and earlier procedures of changing R is taken into account, and- this gives rise
to the term —a, The true critical point is of course the one obtained by the
earlier procedure Put this temperature difference divided by the true 7T, as dJe.
Then 4e is detéermined by setting

a(de) = —ay+ ade =0
or : , _ o
de=ay/a; . (3-18)
On the other hand, as is easily seen from Fig. l,l de satisfies the inequality

alé) : o o<se=s(1-1). @9
o | T

Since a; should be positive a, should also
be positive, which is obvious from (3-18)
and (3-19). From (3-17), (3 18) and
(3-19) we obtain.

Cae>ae) >a1'{e— e<1 ——71;>} (3-20)

0 A€ P ¢
Fig. 1. Dotted curve behaves like the inverse ~ where we have taken into account that
“of the true susceptibility. Solid curve cor- ap, a;>0. In effect, it may be put that
responds to the second procedure of chang- ' ’
ing R(below &, R is kept constant). The a (8o) ~ a8, (3-21a)
part of the solid curve in the neighborho- ‘ '

pd' of e=4e is a ~straight line. ‘ a( - €0) ~ — Ay - (3-21b) - -

On the other hand & and ¢ will not drastically change near the critical point if

R is fixed. In other words, & and ¢ will have the zeroth order term in e.

Therefore we may put (see (2-31)) » |
b(—co) ~b (o) ~A T, (3-22a)
| c(—eo) ~c(ey) ~e' ¥, _ , (3-22b)
(3-21b) and (3-22) show that the condition (2-18) is just satisfied at &= — g%

This implies that the present procedure gives correct results at g~ —g, though

not in the intermediate region between g and —eo.
On taking account that :

o Rigo\rously speaking, the condition (2:18) is statisfied at e~—g&y/, where &//& is independent
of &y, ’ ’ o : ’
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a (o) ~ 10" (80) ~e, . (3- 23)
we have from (3-21) ' _
—a(— ) e C(3-24)

Indlcatmg the smgularlty of the susceptlblhty below 7. by 7’ (see Table I),
we have from (3 24)

r=7. | (3-25)%
If we put as usual g~|¢|” below 7%, the relation

y=y’ S (3260
is directly obtained. This is because the cell radius at e= —¢g, in the'vpr‘esentk

treatment is equal to that at ¢=¢, and this cell radius should be proportional
to the correlation length at ¢ = —¢, since whenever the condition. (2-18) is satisfied
the cell radius is proportional to the correlation length (see (2-26)).

(d) Magnetization

Let us now turn to the spontancous magnetization. Since the use of the

Landau theory at e= —¢, has been justified, the magnetization at this temperature
is given by , ; ’
Memey= ] — Zgg_gg g 3-27)
which bccomes on using (3-22a) and (3- 24) as
| (M ity TP, - (3-28)
From (3- 28) and Table I we obtain® 9!
 28=dv—y. : (3-29)

(e) Eﬁ’ecf of the external field

" Returning now to the earlier procedure of changing R, let us investigate
the effect of the uniform external field B on the magnetization. Consider below
T. the free energy density of the form

g(r) =Yt aM () +bM (r) +c[VM @)1~ BM @), (3-30)

which in the absence of the last term is expected to be valid up to the critical
point with @, & and ¢ given by (2-32a)~(2-32¢). Let us now estimate the

value of the additional magnetization near the critical point produced by the

external field. The relation between the external field and the field-induced
magnetization thus obtained may also hold just at the critical point, because

*) The relations y=y/, v=y/ and a=a’ are not convincing in the scaling theory (see references
3) and-4)). In the scaling theory one of these is assumed, then the others are derived automati-
cally. Griffiths argued that the unequal values for critical indices above and below the critical pomt
is thermodynamlcally inconsistent (see reference 11)), :
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the induced part of magnetization is considered to be approximately constant
near the critical point. Therefore for a given B the temperature at which the

induced magnetization is calculated may suitably be chosen so that the Landau’s
‘treatment may be applied at that temperature. At such a temperature the in-
duced magnetization should be much smaller than the spontaneous one:

M S (M e (A1) (3-31)

Here (M >mq and (M, represents respectively the field-induced and the spon-
taneous magnetization, and we,'change ¢ and B simultaneously so that 4 may be
kept constant. The total magnetization (M) is the sum of these two parts:

(MY =M o+ M Pina - ' (3-32)

For the condition (3-31) to be satisfied;, the induced magnetization for different
values of B should be calculated at different temperatures. <{M);,a can be ob-
tained by minimizing g(r) with respect to (M ): '

d<M> (M b<M>4 B(MS) =0 (3-33)

On the other hand, <M>0 satlsﬁes

s, (@D B =0 o (3-30)
From (3-32),. (3-33) and (3~34) and noting (3-:31) we have

| B~ —4al{Mpin. ' (3-35)
Recalling that - . S
(M S0~ |e|P ~al P,
(3-35) becomes V‘
| Bl M6 M s s
~ATIBL ML) (3-36)

This is the relation between the applied field and the induced magnetization

near the critical point, and this relation may hold at the critical point because

of the reason mentioned previously. Thus we obtain®* (see Table I)

d= 1+£ o (3-37)

§ 4. Discussion

On the basis of the natural assumptioné, we have succeeded in modifying
the classical treatment of the second order phase transition and in deriving the
relations among the critical indices (Egs. (3-6), (3-14), (3-15), (3-25), (3-26),
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(3-29) and (3-37)). All these relations are cquivalent. to those derived from

9 Through the process of the mod1ﬁcat10n the connec-

the static scaling law.
tion has Con51derably been clarified between the classical picture and the more
realistic mechanism of the second order phase transition. It should be remarked
that .our most important assumption is (2-21). At some points this assumption
seems to be connected with the similarity assumption in the static scaling theory.
One serious discrepancy between our conclusion and the expected feature
is the functional form of the pair correlation below the eritical point (see §3
(a)). Although the reason for this is not quite clear, it is probable that the
form of g(r) given by (2-5) is no more sufficient below the critical point even
if @, b and ¢ behave like (2-32). If this is true, it is remarkable that the critical
indices derived from such an insufficient free energy are related to each other
in a correct way. Since our purpose in this paper was only to remove the ap-
parent inconsistency involved in the Landau theory, there seems to be no reason
why the additional terms should be put in g(r). But a further study seems to
be necessary to clarify this point. : '
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