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To solve the problems of model uncertainties, dynamic coupling, and external disturbances, a modified linear active disturbance
rejection controller (MLADRC) is proposed for the trajectory tracking control of robot manipulators. In the computer simulation,
MLADRC is compared to the proportional-derivative (PD) controller and the regular linear active disturbance rejection controller
(LADRC) for performance tests. Multiple uncertain factors such as friction, parameter perturbation, and external disturbance are
sequentially added to the system to simulate an actual robot manipulator system. Besides, a two-degree-of-freedom (2-DOF)
manipulator is constructed to verify the control performance of the MLADRC. Compared with the regular LADRC, MLADRC is
significantly characterized by the addition of feedforward control of reference angular acceleration, which helps robot ma-
nipulators keep up with target trajectories more accurately. *e simulation and experimental results demonstrate the superiority
of the MLADRC over the regular LADRC for the trajectory tracking control.

1. Introduction

Robot manipulators are well-known mechanical systems
with controllable trajectories, which are widely used in
modern industry and other fields. Trajectory tracking
control of robot manipulators requires that the end-effector
canmove precisely along the given trajectories. However, the
nonlinearity, strong coupling, and uncertainty of the system
make the trajectory tracking very complicated and difficult,
so it has always been a hot spot for researchers.

Trajectory tracking control methods of robot manipu-
lators can be divided into “motion control” and “dynamic
control.” *e motion control only carries out negative
feedback control through the deviation between target
trajectories and actual trajectories. *erefore, such methods
cannot guarantee control performance.*e dynamic control
is designed according to the dynamic characteristics of robot
manipulators, so it can make the control quality of the
system better [1, 2]. At present, the commonly used dynamic
control methods mainly include intelligent PID control
[3–5], iterative learning control [6–9], adaptive neural

network control [10–13], sliding mode control [14–16], and
active disturbance rejection control [17, 18]. Aiming at n-
degree-of-freedom rigid robots, Hernández-Guzmán and
Orrante-Sakanassi [4] proposed a control scheme for direct-
drive brushless direct-current (BLDC) motors, which solved
the position control problem of n direct-drive BLDC with
complex, nonlinear, and highly coupled mechanical loads.
Bouakrif and Zasadzinski [7] designed a high-order iterative
learning controller for the trajectory tracking of robot
manipulators subject to external disturbances and per-
forming repetitive tasks. A dual-link manipulator was taken
as the research object to prove that the closed-loop system
was asymptotically stable in the finite time interval when the
number of iterations tended to infinity. Liu et al. [11]
proposed the adaptive neural network control with the
optimal number of hidden layer nodes. *e method could
approach the uncertainty of the robot manipulator to ensure
high-precision trajectory tracking. Baek and Kwon [14]
proposed a strong and stable adaptive sliding-mode control
method by designing two adaptive laws related to switching
gain. It enhanced the robustness of the robot manipulator
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system and achieved accurate tracking performance. Chen
et al. [17] proposed a robust active disturbance rejection
controller (ADRC) based on sliding mode control tech-
nology. *e uncertainties in control gains and disturbance
estimation errors were considered in the design process of
the controller, which improved tracking accuracy and
minimized link vibrations.

*e most important feature of ADRC is the ability to
estimate and compensate for system uncertainties. Hence, it
is very suitable for the application in multiple-input and
multiple-output (MIMO) systems such as robot manipu-
lators [19]. However, ADRC has many control parameters,
and the physical meaning of some parameters is not very
clear. So, the parameter tuning is difficult. To simplify the
tuning process, Gao [20] proposed a linear ADRC, i.e.,
LADRC, and replaced nonlinear ESO with a linear ESO
(LESO). In this paper, we make some improvements to
LADRC to make it have higher control precision and better
dynamic performance compared with the regular LADRC.

2. Modeling of a 2-DOF Manipulator System

2.1. A Dynamic Model of the 2-DOF Manipulator. A sim-
plified model of the 2-DOF manipulator is depicted in
Figure 1, which has two rotary joints. Ignoring gravity,
friction, and external disturbances, the robot manipulator
can be modeled as

D(q)€q + C(q, _q) _q � τ, (1)

where q � q1 q2[ ]T is the joint angle vector, τ � τ1 τ2[ ]T
is the joint control torque vector, D(q) is the inertia matrix,
and C(q, _q) is the Coriolis matrix. *e expressions of D(q)
and C(q, _q) are as follows:

D(q) �
p1 + p2 + 2p3 cos q2 p2 + p3 cos q2

p2 + p3 cos q2 p2

[ ],
C(q, _q) �

−p3 _q2 sin q2 −p3 _q1 + _q2( )sin q2
p3 _q1 sin q2 0

[ ],
(2)

where

p1 � m1 +m2( )l21,
p2 � m2l

2
2,

p3 � m2l1l2,

(3)

where l1 and l2 represent the lengths of the two rods and m1

and m2 represent the masses of the two rods. *e values of
l1 , l2 , m1 , and m2 are

l1 � 0.2m , l2 � 0.17m,

m1 � 0.48kg , m2 � 0.16kg.
(4)

2.2. A Mathematical Model of the BLDC Reduction Motor.
*e robot manipulator is driven by the BLDC reduction
motor on each joint. According to the working principle of

BLDC reduction motors, the mathematical model of the
motor can be described as

_i � −
ke
L
α _qm −

R

L
i +

1

L
u,

τm � αkti,

 (5)

where u, i, R, and L represent the voltage, current, resistance,
and inductance of the motor, respectively. qm and τm are the
rotation angle and output torque of the motor. kt and ke are
the torque coefficient and the back electromotive force
(EMF) coefficient. α represents the reduction ratio. *e
parameter values of the BLDC reduction motor are listed in
Table 1.

3. Design of the Trajectory Tracking
Control System

3.1. Modified LADRCDesign. Since the inertial matrix D(q)
is symmetric and positive definite, equation (1) can be
converted into

€q � −D(q)−1C(q, _q) _q +D(q)
−1
τ. (6)

Considering the influence of friction, parameter per-
turbation, and external disturbances, we add these uncer-
tainties to equation (6) and take them together with the
coupling term as total disturbances applied to the joint. *e
total disturbances can be expressed as

−D(q)
−1C(q, _q) _q + F( _q) + τd �

f1 q1, q2, _q1, _q2, τd1(t), t( )
f2 q1, q2, _q1, _q2, τd2(t), t( )[ ],

(7)
where τd � τd1 τd2[ ]T is the disturbance torque vector,
F( _q) � F1( _q1) F2( _q2)[ ]T is the friction torque vector,
f1(·) is treated as the total disturbances of joint 1, and f2(·)

is the total disturbances of joint 2. Furthermore, assuming

D(q)
−1
� b �

b11 b12

b21 b22
[ ]. (8)

Equation (6) can be rewritten as

q1

q2

2l

Rod 1

Rod 2
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Figure 1: A simplified model of the 2-DOF manipulator.
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€q1 � f1 q1, q2, _q1, _q2, τd1(t), t( ) + b11τ1 + +b12τ2, €q2 � f2 q1, q2, _q1, _q2, τd2(t), t( ) + b21τ1 + +b22τ2.{ (9)

According to the application of LADRC in MIMO
systems [21–23], a “virtual control torque” vector T is in-
troduced to the control system. Let

T �
T1

T2

[ ] � b
τ1

τ2
[ ], (10)

and equation (9) can be represented by

€q1 � f1 q1, q2, _q1, _q2, τd1(t), t( ) + T1,{
€q2 � f2 q1, q2, _q1, _q2, τd2(t), t( ) + T2. (11)

We can observe from equation (11) that the two joints of
the 2-DOF manipulator are decoupled; each joint becomes
an independent second-order system with the total distur-
bances. So MLADRC can be designed to control them
separately.

For the sake of simplicity, only the MLADRC algorithm
for controlling joint 1 is presented. MLADRC is mainly
composed of a third-order LESO, disturbance compensa-
tion, a PD controller, and reference angular acceleration
feedforward. *e controller design of joint 2 is the same as
that of joint 1.

(1) LESO: the third-order LESO is used to dynamically
estimate the total disturbances f1(·), which is
characterized as

_z1r � z2r − β1r z1r − q1( ),
_z2r � z3r − β2r z1r − q1( ) + T1,

_z3r � −β3r z1r − q1( ),
 (12)

where z1r and z2r are the estimates of q1 and _q1,
respectively, and z3r is the estimate of f1(·), i.e., the
extended state. β1r, β2r, and β3r are the control gains.

(2) Disturbance compensation: z3r is dynamically
compensated by

T1 � T01 − z3r, (13)

where T01 is an intermediate control quantity. Ig-
noring the estimation error of z3r to f1(·), joint 1 is
reduced to a unit-gain double integrator:

€q1 � f1 q1, q2, _q1, _q2, τd1(t), t( ) − z3r(( ) + T01 � T01.

(14)

(3) State error feedback control: the PD controller is
designed to control the double integrator, and its
control algorithm is as follows:

T01 � kpr qd1 − z1r( ) − kdrz2r, (15)

where qd1 is the reference input trajectory of joint 1
and kpr and kdr are the PD controller parameters.

(4) Reference angular acceleration feedforward: in the
case that the reference trajectory qd1 is known, the
reference angular acceleration, i.e., the second de-
rivative of qd1, can be solved first. *e calculation
result is then assigned to T01; that is,

€q1 � T01 � €qd1⇒ q1 � qd1. (16)

It can be seen from equation (16) that the joint trajectory
can track the reference input trajectory very well. *erefore,
we call the LADRC that incorporates the reference angular
acceleration feedforward control as “modified linear active
disturbance rejection control,” i.e., MLADRC.

3.2. BLDC Motor Control. Since the output torque of the
BLDC reductionmotor is proportional to the current and i is
relatively easy to be collected in experiments, a first-order
LADRC is designed to control the current [24]. Considering
the design process of LADRC, equation (5) is simplified as

_i � fm i, _qm( ) + bmu,
τm � αkti,

 (17)

where

fm i, _qm( ) � −ke
L
α _qm −

R

L
i,

bm � 1/L,

(18)

where fm(i, _qm) is regarded as the total disturbances of the
motor and bm is the control input gain.

*e first-order LADRC is designed as

_z1m � z2m − β1m z1m − i( ) + b0u,
_z2m � −β2m z1m − i( ),
u0 � kpm id − z1m( ),
u �

u0 − z2m
b0

,



(19)

where z1m is the estimate of i and z2m is the estimate of
fm(i, _qm), i.e., the extended state; β1m and β2m are the
second-order LESO control gains; kpm is the P controller
parameter; b0 is the compensation coefficient, and its value is
selected as

Table 1: Technical parameters of the BLDC reduction motor.

R(Ω) L(mH) ke(v · s/rad) kt(Nm/A) α m(kg)

0.7 0.4 0.032 0.032 90 0.15
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b0 � bm �
1

L
. (20)

Based on the above design and analysis of the con-
troller, we adopt a double closed-loop control structure
for the trajectory tracking system of the 2-DOF manip-
ulator, as shown in Figure 2. *e position loop controls
the joint angle and the current loop controls motor
torque. In the current loop, the proportional (P1) con-
troller acts as the state error feedback control law of the
first-order LADRC. *e controller structure of joint 2 is
consistent with that of joint 1.

3.3. Stability Analysis of the Control System. LESO is a key
component of MLADRC. Whether the total disturbances
and other system states can be accurately observed by LESO
will directly affect the dynamic performance and quality of
the entire control system. *erefore, we should first analyze
the estimation ability of LESO in the control system, and
then the stability of the manipulator trajectory tracking
system is analyzed and verified.

3.3.1. LESO Observation Performance Analysis.
Considering the joint 1 system of

€q1 � f1 q1, q2, _q1, _q2, τd1(t), t( ) + T1 , (21)

assuming _f1(·) � h(·), the state equation of plant (21) can be
expressed as

_x1 � x2,

_x2 � x3 + T1,

_x3 � h X, τd1( ),
q1 � x1,


(22)

where x1, x2, and x3 are system state variables and

X � x1 x2 x3[ ]T. Let A �

0 1 0
0 0 1
0 0 0

 , B1 �

0
1
0

 , and

B2 �

0
0
1

 ; we have

_X � AX + B1T1 + B2h X, τd1( ). (23)

Meanwhile, equation (12) can also be expressed inmatrix
form as

_Zr � AZr + B1T1 + βr X − Zr( ) , (24)

where Zr �

z1r
z2r
z3r

 , βr � β1r 0 0
β2r 0 0
β3r 0 0

 , and then subtracting

equation (24) from equation (23), we obtain

_X − _Zr � A − βr( ) X − Zr( ) + B2h X, τd1( ). (25)

Let ẽ � X − Zr and A2 � A − βr, and it follows that

_̃e � A2ẽ + B2h X, τd1( ). (26)

Assuming

β1r �
a1
c
,

β2r �
a2

c
2,

β3r �
a3

c
3,

(27)

where c ∈ R+, a1, a2, and a3 are LESO coefficients, and
a1, a2, a3 ∈ R+, the stability condition of LESO can be
expressed as

PD 1
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P 1 Motor 1 
2-DOF
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Figure 2: Trajectory tracking control structure based on the MLADRC of joint 1.
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a1 > 0,
a3 > 0,
a1a2 − a3 > 0.

 (28)

*us, as long as we can select the appropriate gains, the
LESO estimation error will be bounded; that is, there exists
constant M> 0, such that ‖ẽ‖≤M.

3.3.2. Closed-Loop System Stability Analysis. Assuming that
the reference input trajectory is bounded and according to
the state estimates of LESO, the system error feedback
control law of joint 1 can be described as

T1 � kpr qd1 − z1r( ) + kdr _qd1 − z2r( ) + €qd1 − z3r. (29)

Equation (21) is then rewritten as

€q1 � f1 q1, q2, _q1, _q2, τd1(t), t( ) + kpr qd1 − z1r( )
+kdr _qd1 − z2r( ) + qd1 − z3r. (30)

Let r1 � qd1, r2 � _qd1, r3 � €qd1, and εi � ri − xi, i � 1, 2;
we have

_ε1 � _r1 − _x1 � r2 − x2 � ε2,

_ε2 � _r2 − _x2 � r3 − €q1 � −kprε1 − kdrε2 − kprẽ1 − kdrẽ2 − ẽ3,


(31)

where ẽi is the estimation error of LESO and

ẽi � xi − zir, i � 1, 2, 3. Let ε �
ε1
ε2
[ ], A3 �

0 1
−kpr −kdr
[ ],

and A4 �
0 0 0
−kpr −kdr −1
[ ]; the matrix form of equation

(31) can then be expressed as

_ε � A3ε + A4ẽ. (32)

Since the estimation error of LESO has been proved to be
bounded, there exists kpr > 0, kdr > 0 to make the tracking
error of system (32) bounded [25, 26]. *us, for bounded
input, the plant (21) output is bounded; that is, the system is
bounded-input bounded-output (BIBO) stable.

4. Simulation Research

InMatlab/Simulink, PD, LADRC, andMLADRC are applied
for controlling plant (11). By comparing the simulation
results of the three, the rationality of MLADRC design is
verified. *e dynamic control performance of MLADRC is
analyzed according to the simulation results under different
disturbances.

4.1. Controller Parameters’ Tuning

(1) PD controller: because PD is simple and easy to be
realized in practical engineering, it is often used in
robot manipulator control. *e trajectory tracking
system based on PD of joint 1 is plotted in Figure 3.
*e current loop adopts a proportional-integral (PI)
controller.

*e controller parameters of the PD and PI are tuned
based on the Ziegler–Nichols method, and the final
tuning results are listed in Table 2. kp and kd are the
proportional coefficient and differential coefficient of
PD, and kp′ and ki are the proportional coefficient
and integral coefficient of PI.

(2) MLADRC: MLADRC, i.e., “modified LADRC.” *e
structure of the trajectory tracking control system
composed of MLADRC is plotted in Figure 2.
According to the method of parameter bandwidth-
ization proposed in [20], the MLADRC parameters
are configured as

β1r, β2r, β3r[ ] � 3ω0r, 3ω
2
0r,ω

3
0r[ ],

kpr, kdr[ ] � ω2
cr, 2ωcr[ ],

β1m, β2m[ ] � 2ω0m,ω
2
0m[ ],

 (33)

where ω0r is denoted as the third-order LESO
bandwidth, ωcr represents the bandwidth of the
PD controller in MLADRC, and ω0m is the second-
order LESO bandwidth. As a result, the parame-
ters that need to be tuned are greatly reduced and
the physical meaning of each parameter is very
clear.

In MLADRC, b0, ω0r, ωcr, and ω0m determine the
various performances of the system, such as sta-
bility, transient performance, anti-interference,
and noise suppression. Each performance needs to
be weighed when adjusting the controller pa-
rameters. For the controlled plant (11) and plant
(17), b0 is known, and ω0r, ωcr, and ω0m need to be
tuned. *e specific configuration process is as
follows [27]:

Step 1: first, determine the initial value of ωcr
according to the adjustment time of the system, and
then let ω0r � (2 ∼ 10)ωcr.
Step 2: keep ω0r constant, and adjust ωcr in a small
range until the system is stable. If adjustment of ωcr
fails to stabilize the system, decrease or increase
both ωcr and ω0r in the same proportion, and then
adjust ωcr individually to make the system stable.

2-DOF

robot

Current loop 

PD

–

–

eM1

eR1qd1

u1
q1i1

Motor 1PI 1

PD 1 1/αkt
τ1

αkt

Figure 3: Trajectory tracking control structure based on PD of joint 1.
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Step 3: keep ωcr constant, and gradually decrease
ω0r. On the premise of ensuring the stability of the
system, weigh the transient performance and noise
suppression ability, and select the appropriate value
for ω0r.
Step 4: weigh the stability, transient performance,
anti-interference, and noise suppression of the
system, and determine the optimal values of ω0r

and ωcr.

After multiple tests and adjustments, the ideal pa-
rameter values are obtained as shown in Table 3.

(3) LADRC: LADRC, i.e., “regular LADRC.” *e
LADRC-based trajectory tracking control system is
obtained by removing the reference angular accel-
eration feedforward from Figure 2. All parameter
values of LADRC are in line with those of MLADRC.
Since the derivative of cosine is continuous, it is often
used as the reference input trajectory in simulation
research. So the target trajectories of the two joints of
the robot manipulator are set as

qd1 �
π

6
(1 − cos(0.5πt))(rad),

qd2 �
π

4
(1 − cos(0.5πt))(rad).

 (34)

4.2. Simulation Results

4.2.1. Research on Joint Friction. In working processes, the
robot manipulator will be hindered by the friction at the
joint, so the influence of friction cannot be ignored when
designing the controller. Assuming the frictional force at
each joint is

F1 _q1( ) � 0.1sgn _q1( ),
F2 _q2( ) � 0.02sgn _q2( ),{ (35)

the tracking curves and tracking errors among PD, LADRC,
and MLADRC are compared in Figure 4.

As is seen from Figure 4, the trajectory tracking accuracy
of MLADRC is the highest. *e maximum tracking error of
joint 1 is limited to ±5 × 10− 4 rad and that of joint 2 is
limited to ±2 × 10− 4 rad. Joint friction in actual systems is
very complex; especially at the moment when the velocity
direction changes, there will be a spiking error, as shown in
Figures 4(b) and 4(d). *e friction needs to be observed by
LESO before it is compensated, which leads to a lag in
compensation.

4.2.2. Research on System Robustness. In addition to the
friction, the preidentified parameter values of the system
model will change with the variety of working states. For
example, in actual work, the end of robot manipulators will
clamp different loads. Assuming the model perturbation
caused by varying loads is
Δp1 � 30%p1,Δp2 � 20%p2,Δp3 � 20%p3, the tracking
errors with the friction and parameter perturbation are
depicted in Figure 5.

From Figure 5, we can observe that the tracking error of
MLADRC is still the smallest. Comparing Figures 4 and 5,
the error curves are very close. So it illustrates that MLADRC
is strongly robust against the system parameter perturbation.

4.2.3. Research on Disturbance Rejection.
High-performance controllers must be able to reject external
disturbances. To test the disturbance rejection property of
MLADRC, a disturbance of τd2 � 0.2 is applied to joint 2
between 4.5 and 5.5 seconds. *e tracking errors of the two
joints are shown in Figure 6, and the total disturbances (the
friction, parameter perturbation, external disturbances, and
dynamic coupling) and their estimates are described in
Figure 7.

It can be observed from Figure 6 that MLADRC can
respond quickly and make timely adjustments when joint 2
is subjected to the external disturbance. *e convergence
time of the tracking error caused by the external disturbance
is very short, which is mainly thanks to LESO’s excellent
disturbance observation ability (see Figure 7). Figure 8
shows the input torques of the two joints, where the in-
creased torque in joint 2 between 4.5 and 5.5 seconds is used
to compensate for the external disturbance. *e torque
curves are relatively smooth and there is no violent
chattering.

According to Figures 4–8, we can conclude that the
trajectory tracking system based on MLADRC can keep up
with the target trajectory rapidly and has a strong robustness
to the total disturbances. Under the same conditions, the
tracking accuracy of MLADRC is enhanced compared with
the regular LADRC.

5. Experiment

5.1. Experimental Platform. A self-developed horizontal 2-
DOF manipulator is used as the controlled object to conduct
experimental researches on PD, LADRC, and MLADRC.
*e experimental platform includes a horizontal 2-DOF
manipulator, an STM32 microcontroller, a host computer,
two Hall current sensors, two DC motor drivers, and a

Table 3: Parameter values of the control system based on
MLADRC.

Parameter Value (joint 1) Value (joint 2)

ω0r 240 300
ωcr 100 80
ω0m 200 200
kpm 800 800
b0 2.5 2.5

Table 2: Parameter values of the control system based on PD.

Parameter Value (joint 1) Value (joint 2)

kp 150 60
kd 15 5
kp′ 300 300
ki 50 50

6 Mathematical Problems in Engineering



switching power supply, which is shown in Figure 9. An
angle sensor with dual-channel pulse output is mounted at
the tail of the BLDC reductionmotor tomeasure the rotation
angle and angular velocity of the joint. *e linearity of the
current sensor is 0.1% and the resolution of the angle sensor
is 1024p/r. A smart power chip of BTS7960 is adopted to
drive the BLDC motor.

STM32 receives the position and control instructions
from the host computer and collects the feedback signals
such as joint angles and motor currents. *e PD, LADRC,
andMLADRC control algorithms run in STM32 to complete
the calculation and output of the control quantity. *e
current sensor sends the current signal to the A/D con-
version module in the STM32, and then the conversion
result is sent to the current loop. *e host control system is
developed through Microsoft Foundation Classes (MFC) in
Visual Studio 2015 and is responsible for such tasks as

kinematics calculation, trajectory planning, data processing,
and human-computer interaction.

5.2. Trajectory Planning and Motion Control. *e experi-
ment requires the end tip of the 2-DOFmanipulator to track
a circular trajectory with a diameter of 0.17m. *e circular
trajectory is preset in the host control system, and its
mathematical equation is expressed as

xd � 0.285 + 0.085 sin(0.25π(t + 2))(m),

yd � 0.085 cos(0.25π(t + 2))(m),
{ (36)

where xd and yd are the rectangular coordinates of the end
tip. According to the structure and coordinate definition of
the 2-DOF manipulator, the kinematic relationship between
the end tip and the joints is described as
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Figure 4: Comparison of the tracking performance among PD, LADRC, and MLADRC with the friction. (a) Trajectory tracking of joint 1.
(b) Tracking errors of joint 1. (c) Trajectory tracking of joint 2. (d) Tracking errors of joint 2.
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xd � l1 cos qd1 + l2 cos qd1 + qd2( ),
yd � l1 sin qd1 + l2 sin qd1 + qd2( ).{ (37)

From equation (37), the desired motion equations of the
two joints can be obtained as

qd1 � arctan
yd
xd
− arccos

x2d + y
2
d + l

2
1 − l

2
2

2l1

�������
x2d + y

2
d

√ ,

qd2 � π − arccos
l21 + l

2
2 − x

2
d − y

2
d

2l1l2
.


(38)

(1) Joint trajectory planning: when the robot manipu-
lator is running, the target trajectories of the two
joints are calculated and generated in real time by
equations (36) and (38). To explain how the tra-
jectories are produced, a detailed trajectory planning
procedure is given as follows:

Step 1: give time t an increment: t � t + Δt
Step 2: solve equation (36) to get the position co-
ordinate (xd, yd)
Step 3: substitute xd and yd into equation (38) to
solve for qd1 and qd2
Step 4: send qd1 and qd2 to STM32 for tracking
control
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Figure 5: Comparison of the tracking errors among PD, LADRC, andMLADRC with the parameter perturbation and friction. (a) Tracking
errors of joint 1. (b) Tracking errors of joint 2.
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Figure 6: Comparison of the tracking errors among PD, LADRC, and MLADRC with the total disturbances. (a) Tracking errors of joint 1.
(b) Tracking errors of joint 2.
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Step 5: go back to the beginning of the loop

(2) Motion control: control algorithms are loaded into
STM32 before the system is powered on. *e sam-
pling period is set to 2ms. When receiving the
running command sent by the host computer, the
end tip of the robot manipulator will be driven to
move along target trajectories. *e lower computer
control system is designed by the modularization
method, which includes function modules such as
system initialization, data acquisition, algorithm
design, and serial communication. *e control
program flow is shown in Figure 10.

5.3. Experimental Results and Discussion. According to the
above experimental design process, a comparative experi-
ment is carried out on LADRC and MLADRC. Two kinds of
experimental results are given: undisturbed experiment and
disturbed experiment. During the operation of the robot
manipulator, joint angles are read in real time by STM32 and

then transmitted to the host computer. Without external
disturbances, the tracking performances of the two joints are
shown in Figure 11. Figure 12(a) describes the tracking
curves of the end tip without disturbance. A step disturbance
is applied to joint 1 at 4 seconds, and then the tracking curves
are depicted in Figure 12(b).

From Figure 11, we observed that joints 1 and 2 can track
target trajectories very well, but the tracking error of
MLADRC is less than that of LADRC. When the robot
manipulator is just started, the system will be disturbed by
sudden coupling and friction. *e initial tracking error of
each joint is large because of the lag of dynamic coupling and
friction compensation.

As can be seen from Figure 12, the motion trajectory of
the end tip is very close to the preset circular trajectory.
When the robot manipulator is just started or is subject to
the step disturbance, both MLADRC and LADRC can
quickly adjust the motion state of the system. *e tracking
accuracy of MLADRC is higher than that of LADRC, and the
MLADRC system responds faster.
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Figure 7: Observations of the total disturbances of the MLADRC. (a) *e total disturbances of joint 1. (b) *e total disturbances of joint 2.
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Figure 8: Control torques of the two joints based on the MLADRC. (a) Control torque of joint 1. (b) Control torque of joint 2.
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LESO output: z1r, z2r, z3r

PD output: T0 = kpre1r + kdre2r

Disturbance compensation
T = (T0 – z3r)/b0r

Deviation calculation
e1r = qd – z1r, e2r = –z2r

Start

Initialization

Read the joint trajectory

Matrix decoupling

Read the motor current

Calculate the motor current

Calculate the joint trajectory

MLADRC

LADRC

Stop

End

P controller output: u0 = kpmem

Disturbance compensation
u = (u0 – z2m)/b0

Deviation calculation
em = id – z1m

Feedforward compensation
q1 = T01 = qd1

LESO output: z1m, z2m

....

Figure 10: Control program flowchart of the real-time motion control system.

Host computer

Power supply

2-DOF manipulator

STM32F103ZET6 Current sensor

Motor
Driver

Figure 9: 2-DOF manipulator control experiment platform.

–0.15

–0.1

–0.05

0

0.05

0.1 0.2 0.30

2 4 6 80

Time (s)

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

T
ra

je
ct

o
ry

 t
ra

ck
in

g 
o

f 
jo

in
t 

1 
(r

ad
)

Target trajectory

LADRC

MLADRC

(a)

2 4 6 80

Time (s)

–0.04

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

0.04

T
ra

ck
in

g 
er

ro
r 

o
f 

jo
in

t 
1 

(r
ad

)

MLADRC

LADRC

(b)

Figure 11: Continued.
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In the experiment, the measurement accuracy of the
sensor will affect the observation performance of LESO, so
the tracking accuracy is not as high as that in the simulation.
In future research, high-precision current sensors and angle
sensors can be selected to further enhance the trajectory
tracking accuracy.

6. Conclusions

Aiming at the trajectory tracking control problem of robot
manipulators, a more in-depth study is carried out based on

the regular LADRC. *e control quality of the system is
improved by adding the reference angular acceleration feed-
forward control, and the stability of the proposed MLADRC
closed-loop system is analyzed. In the control system design,
LESO is used to estimate and compensate for the total dis-
turbances composed of internal uncertainties, external dis-
turbances, and dynamic coupling. *e feedforward control is
used to improve the trajectory tracking accuracy. *e double
closed-loop control structure enhances the robustness of the
system. In addition, according to the proposed control
method, the error convergence, robustness, and external
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Figure 11: *e tracking responses of the two joints. (a) Trajectory tracking of joint 1. (b) Tracking error of joint 1. (c) Trajectory tracking of
joint 2. (d) Tracking error of joint 2.
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Figure 12: *e trajectory tracking curves of the end tip. (a) Trajectory tracking without external disturbances. (b) Trajectory tracking with
the external disturbance.

Mathematical Problems in Engineering 11



disturbance suppression of the system are studied, respec-
tively.*e comparative simulations and experiments verify the
excellent control performance of MLADRC.
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