MODIFIED LU-LEE CRYPTOSYSTEM

Indexing terms: Codes, Information theory

A modified Lu-Lee cryptosystem is proposed which appears to be resistant to the cryptanalytic attacks on the original Lu-Lee scheme. The data expansion due to encryption is moderate, and the size of the public key is also quite small.

Introduction: We begin with the basic principles of the Lu-Lee cryptosystem. Let $r = p_1 p_2$ be a number around 320 bits long, with p_1 , p_2 each around 160 bits long, a_{ij} , i, j = 1, 2, are four numbers, each around 16 bits long, satisfying $a_{11} a_{22} - a_{12} a_{21} \neq 0$. Let $C_j = a_{ij} \pmod{p_i}$, i = 1, 2, j = 1, 2. The messages to be encrypted consist of pairs of numbers (m_1, m_2) satisfying the condition $a_{i1} m_1 + a_{i2} m_2 < p_i$ for i = 1, 2. The public encryption key consists of (r, C_1, C_2) and the bounds M_1 and M_2 on m_1 and m_2 , respectively, whereas the secret decryption key consists of the parameters $(p_1, p_2, a_{11}, a_{12}, a_{21}, a_{22})$.

A message (m_1, m_2) is encrypted as

$$x \equiv C_1 m_1 + C_2 m_2 \pmod{r}$$

Decryption is performed as follows. First, the residues

$$x_i \equiv x \pmod{p_i}$$
 $i = 1, 2$

are computed. Then the pair (m_1, m_2) is determined by solving the two linear equations

$$a_{i1}m_1 + a_{i2}m_2 = x_i$$
 $i = 1, 2$

which, by the condition imposed above, have the original message as the solution.

Algorithms have been devised^{2,3} which enable a cryptanalyst to obtain (m_1, m_2) without a knowledge of p_1, p_2 . The fact that to every cryptogram there corresponds a unique message is the basis of these schemes. Another attack⁴ uses the fact that C_i , i = 1, 2, have small residues a_{ij} modulo the unknown factors, and succeeds in finding p_1, p_2 and hence a_{ij} . In the following Section we propose a modification of the Lu-Lee scheme which appears resistant to both these types of attack.

Modified Lu-Lee cryptosystem: As in the Lu-Lee scheme, the secret decryption key is a set of numbers $(p_1, p_2, a_{ij}, i = 1, 2, j = 1, 2)$ and the encryption key is the set (r, C_1, C_2) . The a_{ij} satisfy

(a)
$$a_{12} > a_{22}$$

(b)
$$a_{21} > a_{11}$$
 (1)

(c) the a_{ij} , i = 1, 2, j = 1, 2 are at least 200 bits long.

Furthermore, the numbers r, p_1 , p_2 are chosen such that limit $M_1 = \text{limit } M_2 = 2^{50}$. Thus one possible choice may fix p_1 and p_2 at 252 bits each, and thus r at 504 bits.

Encryption: Message encryption is performed in the following manner:

- (1) Represent the message m as an integer less than 2199.
- (2) Randomly choose a pair of integers (m_1, m_2) with $m_i < M_i$, i = 1, 2, and compute $m_e = m + C_1 m_1 + C_2 m_2 \pmod{r}$ as the encrypted message.

$$m_e = C_1 m_1 + C_2 m_2 + m \pmod{r}$$

= \{(C_1 m_1 + C_2 m_2) \text{(mod } r\) + m \text{(mod } r\)\}(\text{mod } r\)
= (x_e + m) \text{(mod } r\)

Similarly

$$m'_e = (x'_e + m') \pmod{r}$$

 $m_e \pmod{p_1} = \{x_e \pmod{p_1} + m \pmod{p_1}\} \pmod{p_1}$
 $= x_1 + m \pmod{p_1}$

Similarly

$$m_e(\text{mod } p_2) = x_2 + m(\text{mod } p_2)$$

and

$$m'_e \pmod{p_i} = x'_i + m' \pmod{p_i}$$
 $i = 1, 2$

 $m_{\rho} = m'_{\rho}$ implies that

$$x_1 - x_1' = x_2 - x_2' = m - m' \tag{2}$$

since m, m', x_i , $x_i' < p_i$, i = 1, 2. Furthermore, $\lfloor (m - m') \rfloor$ is less than a_{ij} , i = 1, 2, j = 1, 2. However, by definition

$$x_1 = a_{11}m_1 + a_{12}m_2$$

$$x_2 = a_{21}m_1 + a_{22}m_2$$
(3)

and

$$x'_1 = a_{11}m'_1 + a_{12}m'_2 x'_2 = a_{21}m'_1 + a_{22}m'_2$$
 (4)

Therefore, from eqns. 2, 3 and 4 we obtain

$$a_{11}(m_1 - m_1') + a_{12}(m_2 - m_2') = a_{21}(m_1 - m_1') + a_{22}(m_2 - m_2')$$

Therefore

$$(a_{11} - a_{21})(m_1 - m_1') = (a_{22} - a_{12})(m_2 - m_2')$$
 (5)

From eqn. 5 and noting that both sides must have same sign, we find that $(m_1 - m_1')$ and $(m_2 - m_2')$ are both positive or negative. Assuming that both $m_1 - m_1'$ and $m_2 - m_2'$ are positive integers, then

$$a_{11}(m_1 - m_1') + a_{12}(m_2 - m_2') > a_{11} + a_{12}$$
 (6)

From eqn. 2 the left-hand side of eqn. 6 is m - m', and thus the condition on the magnitude of m - m' is violated. A similar condition can be obtained when both $m_1 - m'_1$ and $m_2 - m'_2$ are negative. Hence $m_e \neq m'_e$.

Decryption: To decrypt the cryptogram, the following steps are needed:

- (1) Compute $m_{ei} = m_e \pmod{p_i}$, i = 1, 2.
- (2) Solve the following pair of linear simultaneous equations in two unknowns t_1 and t_2 (which are rational numbers):

$$a_{11}t_1 + a_{12}t_2 = m_{e1}$$

$$a_{21}t_1 + a_{22}t_2 = m_{e2}$$
(7)

(3) Form

$$k_1 = \lfloor t_1 \rfloor$$
$$k_2 = \lfloor t_2 \rfloor$$

(4) Compute

$$a_{i1} k_1 + a_{i2} k_2 = m'_{ei}$$
 $i = 1, 2$

(5) Form
$$m_{ei} - m'_{ei} = m$$

To justify the decryption algorithm, we observe that

$$t_i = \lfloor t_i \rfloor + \gamma_i / \Delta$$
 $i = 1, 2$

where

$$\Delta = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

and γ_i/Δ is the proper fraction. Rewrite eqn. 7 as

$$a_{11}t_1 + a_{12}t_2 = x_1 + m$$

$$a_{21}t_1 + a_{22}t_2 = x_2 + m$$

$$t_1 = (a_{22}x_1 - a_{12}x_2)/\Delta + m(a_{22} - a_{12})/\Delta$$

$$t_2 = (a_{21}x_1 - a_{11}x_2)/-\Delta + m(a_{21} - a_{11})/-\Delta$$

But, from eqn. 3,

$$m_1 \Delta = a_{22} x_1 - a_{12} x_2 m_2 \Delta = -a_{21} x_1 + a_{11} x_2$$
(9)

Hence, from eqns. 3, 8 and 9, we have

$$t_1 = m_1 + m(a_{22} - a_{12})/\Delta$$

$$t_2 = m_2 + m(a_{21} - a_{11})/-\Delta$$

NEW FABRICATION TECHNIQUE FOR SINGLE-PHASE UNIDIRECTIONAL SAW FILTER (EMUDT) IN UHF RANGE

Indexing terms: Ultrasonics, Surface-acoustic-wave devices, Directional couplers, Transducers

New fabrication techniques for single-phase unidirectional SAW filters (EMUDT) utilising the self-aligned angle-evaporation technique are described. The experimental results show a directivity of 10-0 dB/transducer at 483 MHz.

Introduction: A surface-acoustic-wave (SAW) filter employing the conventional interdigital transducer (IDT) shows an inherent minimum insertion loss of 6 dB, because of bidirectionality and strong passband ripple due to triple-transit echo and secondary effects. To avoid these flaws, the three-transducer arrangement has been proposed. The unidirectional transducer, however, represents a much more advantageous method of overcoming the above-mentioned defects, and, among others, the following suggestions have already been made: (i) 3-phase unidirectional transducer, 1 (ii) group type of unidirectional transducer with $\lambda_0/4$ -phase shifter, 2 and (iii) single-phase unidirectional transducer (SPUDT) using internal reflection, 3 a reflection bank, 4 reflection due to the change of the electromechanical coupling coefficient (EMUDT) and floating electrode reflection.

In this letter we describe a new fabrication technique for a new EMUDT utilising self-aligned angle evaporation. The techniques use only one photomask and no mask alignment for the interdigital fingers of EMUDT.

Description of new EMUDT: The basic arrangement of the new EMUDT is shown schematically in Fig. 1. Some parts of electrodes (Al) are fabricated direct on 128° y-x LiNbO₃, while other parts of the electrodes are fabricated on the strips of the very thin dielectric film (SiO₂). The electromechanical coupling coefficient (K^2) of the electrodes on SiO₂ strips is less than that of the electrodes on LiNbO₃. Furthermore, the SiO₂

That $m(a_{22} - a_{12})/\Delta$ and $m(a_{21} - a_{11})/-\Delta$ are proper fractions can be verified using eqns. 1 and 2. Therefore the decomposition above is unique.

Thus

$$\lfloor t_1 \rfloor = m_1 \qquad |t_2| = m_2$$

Hence in decryption step 4 the computed values are actually x_i , as given in eqn. 3. Step 5 is therefore justified.

Conclusions: The data expansion due to encryption is around 1:2.5 and is therefore moderate. The public key is about 1.5 kbit long, and the storage requirement is therefore quite low when compared to other knapsack-like public key cryptosystems. Finally, the scheme appears to be resistant to the cryptanalytic attacts on the original Lu-Lee scheme.

B. S. ADIGA

14th June 1985

Systems Engineering Division National Aeronautical Laboratory Bangalore 17, India

P. SHANKAR

(8)

School of Automation Indian Institute of Science Bangalore 12, India

References

1 LU, S. C., and LEE, L. N.: 'A simple and effective public-key cryptosystem', COMSAT Tech. Rev., 1979, 9, pp. 15-24

2 ADLEMAN, L. M., and RIVEST, R. L.: 'How to break the Lu-Lee (COMSAT) public-key cryptosystem'. MIT Laboratory for Computer Science, July 1979

3 KOCHANSKI, M. J.: 'Remarks on Lu and Lee's proposals', Cryptologia, 1980

4 GOETHALS, J. M., and COUVREUR, C.: 'A cryptanalytic attack on the Lu-Lee public-key cryptosystem', *Philips J. Res.*, 1980, 35, pp. 301-306

strips operate as the reflector, owing to the mass loading effects. The reflection coefficient of the new EMUDT is larger. We can thus obtain a larger directivity than for the older one.⁵

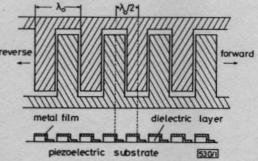


Fig. 1 Configuration of new EMUDT with strips of very thin dielectric film (SiO₂)

The analysis of the device is performed using the equivalent circuit model. The IDT is divided in four sections per half-wavelength. The transfer ratios of the equivalent circuit model are varied to correspond to the value of K^2 . In addition, the reflection effects due to mass loading of the thin SiO_2 strips are taken into account.

Calculated results for new EMUDT are shown in Fig. 2, where the number of pairs of electrode is 30 and the thickness ratio of SiO_2 (H/λ_0) is 0-02 (H is the thickness of the dielectric film and λ_0 is the SAW wavelength). The minimum insertion loss is about 1-0 dB and the bandwidth is about 3% for sending and receiving transducers.

Experimental results: To verify these principles, a few sample patterns have been fabricated on 128° y-x LiNbO₃. The design details are as follows: a three-transducer system is employed, the centre transducer being a unidirectional EMUDT with a pair number of 30 and a film thickness of $0.24 \ \mu m \ (H/\lambda_0 = 0.02)$, and the other two being conventional IDTs with pair numbers of 4.