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the region grouping procedure starts from the initial block bo, se- 
lects mergeable blocks from the 1st neighbors, the 2nd neighbors, 
. . .  , etc. Suppose we examine the neighboring blocks according 
to the order of NBL list, and obtain a region R, where 

max(R, )  = max(b:); 

now let R,‘ be the grouped region just before examining the kth 
neighbors; then, the image I ( x ,  y )  can be a function such that 

max(b:) - min(bi , )  > 2 e ( s o b i , E R , )  

and 

max (R,’ ) - min (bk,) < 2e 

are both true, here e is the tolerance value. Thus, if we start ex- 
amining the kth neighbors iq the order 6;,, ba, - ,  , . * . , b:, 6; to 
form another region result, R,, then 

bt E R,, bii RI; 

hence 

R, # RI. 

APPENDIX B 
Proof: Let us  express the neighboring block list NBL as 

0 

NBL = { (bo)  ( b l ,  b:, . . . , 61,) 

* ( b ? , + l ,  bI,+z, . . , b?,+!,,) . ‘ . } ,  
where bo is the initial block, { b; } are ith neighbors of bo, and k is 
numbered according to the block examining sequence of the group- 
ing algorithm. 

Since 6, is in NBL, suppose b, = b;; then 

b’, E T2, for any j 5 i, n < m ;  
thus, starting from bo, both grouping on tile T2 and on the whole 
ima e I, are just examining blocks in NBL from bf  to b:, - I ( o r  
b L - j )  and merge the block if it satisfies the same uniformity cri- 
teria. Hence, the grouped results just before examining the block 

0 
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bf = bL, are exactly the same for both cases. 
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Modified Matched Filter for Cloud Clutter 
Suppression 

WILLIAM A. C. SCHMIDT 

Abstract-Advanced surveillance sensor systems for point target de- 
tection are sometimes limited more by background clutter than by sen- 
sor noise. A significant premium is placed on the ability to develop 
clutter suppression processes that approach clear sky performance. In 
most actual infrared systems cloud clutter has been noted to have a 
nonwhite clutter spectrum. This prompted the consideration of alter- 
natives to the classical matched filter (MF). A development known as 
the least-mean-square (LMS) filter addresses the clutter spectrum is- 
sue. 

Another difficulty has surfaced and is the subject of this correspon- 
dence: the output of the MF and the LMS processes are dependent on 
the scene energy and are marginally dependent on the filter signal 
shape. An approach is presented, referred to as the modified matched 
filter (MMF). The MMF is a product of the LMS filter and a nonlinear 
operator, called the inverse Euclidean distance. The nonlinear opera- 
tor modifies the LMS filter to improve its sensitivity to signal shape. A 
comparison is presented to indicate the relative merit for including 
shape detection in the LMS clutter suppression process. 

Infrared cloud scenes from the background measurements and anal- 
ysis program (BMAP) were used to’ demonstrate the relative clutter 
suppression performance for both the LMS and the MMF processes. 

A performance metric is developed to measure cloud clutter 
suppression quantitatively. The results using the BMAP infrared cloud 
scenes indicate that the MMF approach suppresses cloud clutter while 
improving point target observability. The metric results indicate that 
on average, the MMF approach suppresses cloud clutter and improves 
point target detection by a factor of 4.4 over the conventional ap- 
proach. 

Zndex Terms-Cloud clutter suppression, Euclidean distance, in- 
frared image processing, matched filter, nonstationary clutter statis- 
tics, signal shape matching, template matching, unresolved target de- 
tection. 

I. BACKGROUND 
Considerable attention has been given to the problem of extract- 

ing information from sensor video data to determine the presence 
or absence of target type signals. The extraction or  detection of a 
deterministic signal in white, Gaussian noise has been studied by 
a number of authors (e.g., North [ l ]  and Van Vleck and Middleton 
[2]). These authors found that optimum response (on a signal-to- 
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noise ratio (SNR) basis) occurs with the cross-correlation of the 
input data and the desired signal waveform. The signal waveform 
is an amplitude function in a given coordinate system (called signal 
shape). The cross-correlation process is often referred to as a 
matched filter (MF). The MF process has been applied for clutter 
suppression in infrared (IR) scenes. Assume a two-dimensional IR 
scene with scene intensity D (  I ,  J ) located in the I ,  J coordinate 
system. Assume a two-dimensional filter kernel with an amplitude 
F (  I ,  J ). The discrete MF in two dimensions is represented by: 

MF(M, A’) = Z: C D ( I  - M ,  J - N ) F ( I ,  J )  ( I )  
where1  = 1, 2 ,  3, . . . , n a n d  J = I .  2 ,  3 ,  . . . , m and M ,  Nare  
locations in  the I ,  J coordinate system. 

In most actual infrared sensor systems. cloud clutter has been 
noted to have a nonwhite clutter spectrum. This prompted the con- 
sideration of alternatives to the classical matched filter approach 
for suppressing cloud clutter and to improve target type signal de- 
tection. A development known as the least-mean-square filter 
(LMS) (Longmire er al. [ 3 ] )  addresses the clutter spectrum issue. 
The LMS filter (also known as the zero-mean matched filter) is 
represented by: 

LMS(M, N )  = c D ( I  - M, J - N ) [ F ( I ,  J )  - F,] 

= C C D ( I  - M, J - N ) F ’ ( I ,  J )  

w h e r e F ‘ ( I , J ) ,  i sLMSfi l tershapesuchthatCC F ’ ( 1 , J )  = 0.0. 
The LMS approach was designed to suppress cloud clutter as- 

suming the clutter statistics to be globally stationary processes, with 
a one over frequency squared ( 1 / f 2 )  power spectrum. From this 
perspective the LMS processing represents an optimal approach. 
However, the LMS performance degrades against severe cloud 
clutter backgrounds. Since the early 1980’s, LMS spatial filters 
were used to suppress background clutter. Today the LMS process 
serves as a baseline for comparing clutter suppression improve- 
ments. 

Another difficulty has surfaced and is the subject of this paper: 
the output of both the MF and the LMS are dependent on scene 
energy and is marginally dependent on signal shape. This effect 
has been reported by others as, “The maximum SNR for the MF 
is independent of the signal shape and depends only on the ratio of 
signal energy to noise spectral density” [4]. The question arises: 
Can anything be done to improve the clutter suppression by mod- 
ifying the MF with a signal shape related operator? 

We are interested in detecting distant objects. They are often 
called point targets because they appear as impulses to the imaging 
system. The imaging system impulse response is often called the 
point spread function (PSF) for that system. Distant objects trans- 
fer to the image with a radiant intensity amplitude that is propor- 
tional to the PSF. Point spread functions (typically 3-10 pixels on 
a side) then represent the signal shape for a point target. The PSF 
i s  used to form the MF kernel F (  I, J ) when a point target is sus- 
pected to be in the image. We will attempt to improve the clutter 
suppression performance by modifying the MF with a signal shape 
related operator. 

11. MODIFIED MATCHED FILTER 
It is interesting that another branch of technology, namely, im- 

age processing, uses a cross-correlation approach known as “tem- 
plate matching” [5] to determine the presence of an object within 
an image. Template matching is typically used for matching areas 
of the scene with a given area-type template. Some similarity mea- 
sures or metrics for template matching have been suggested (such 
as the sum of the absolute differences, invariant moments, and the 
cross-correlation coefficient), to determine the presence of an ob- 
ject within an image. The point of interest is that both the MF 
approach and template matching approach use the cross-correlation 
type process to extract the desired information. It seems that the 
next logical step is to transform the template matching technology 
into a target shape detection technology. 

RES1 DUE 

F ( I 1  

t 
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Fig. I .  Modified matched filter graphic representation 

From this point on, we consider only a one-dimensional filter 
kemel F (  I ). This kernel is correlated across the image along one 
row at a time. A modifier is suggested that takes the difference 
between the filter F (  I ) and the image amplitude D ( I  - M ) at the 
row coordinate M. We call this difference the residue. The smaller 
the residue the better the fit between the filter (or template) and the 
image. Fig. 1 graphically illustrates how a residue type operator 
could be used to improve the ubiquitous MF or the LMS filter. 

The Euclidean distance (in one dimension) is square root of the 
sum of the squares of the residues. It is represented by: 

I 

E ( M )  = c [ D ( I  - M )  - F ( 1 ) I 2  zi (3)  

where D ( I  - M ) is the input scene and F (  I ) is the desired one- 
dimensional filter shape. 

The filter is translated within the image position by M .  An op- 
erator is proposed, that is related to the inverse Euclidean distance 
(IED). It serves as a multiplier to improve the shape sensitivity of 
the LMS filter. IED is represented by 

1 

C [ D ( I  - M )  - F ( 1 )  - ( D ( n / 2 )  - F ( n / 2 ) ) ]  
IED = 2 (4) 

where n is number of elements in the filter ( n  is odd).  The central 
D - F value is subtracted to offset the filter in the vertical direction 
and causes the filter to fit perfectly at the central pixel of the data 
window. 

We form a product called the modified matched filter (MMF). 

MMF = (LMS)(IED)  ( 5 )  
c D ( I  - M ) ( F ( I )  - F,) 

MMF = c [ D ( I  - M )  - F ( I )  - ( D ( n / 2 )  - F ( n / 2 ) ) I 2  

( 6 )  
The MMF processor output for the signal-plus-noise case (see Ap- 
pendix A) is 

F ( S K ,  + K , )  
MMF(S  + N )  = ’ (7 )  

(S  - F ) ’ K 3  + 2(S - F ) K 4  + K5 

The MMF processor output for noise only (See Appendix A) is: 

FK,  
F2K3 - 2FK4 + K5 

M M F ( N )  = 

where K i  are constants for a given signal and noise case (see Ap- 
pendix A). Also, S is the peak signal strength and F is the peak 
filter value. 
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111. IR CLUTTER SUPPRESSION 

Consider the problem of suppressing the clutter in order to detect 
a ( 1  X n )  point target signal (produced by a distant object). In this 
case, we process a two-dimensional image one row at a time. We 
wish to formulate a metric for comparing the clutter suppression 
performance of both the LMS and the MMF processes using the 
same signal and noise basis. The MMF approach operates on the 
image pixels in a nonlinear fashion. Therefore we will not use the 
classic SNR metric. Instead, we consider the signal detection per- 
formancc in terms of signal plus noise. We define a clutter suppres- 
sion metric “performance ratio” (PR) as  follows: 

Process Output (Signal + Noise) 

Process Output (Noise) 
PR (Process) = . ( 9 )  

In general, higher PR values indicate better clutter suppression by 
a given process. 

The performance ratio for the LMS process is (see Appendix B) 

PR(LMS)  = 1 + SK,,/K,.  ( 10) 
The PR for the MMF process is (see Appendix B) 

K2 (SK” + K ,  ) 
P R ( M M F )  = 

K , [ ( S  - F)’K? + 2 ( S  - F ) K 4  + K 5 ] ’  

Notice the P R ( L M S )  is a linear function of the peak signal strength 
S. On the other hand, the PR ( M M F )  contains the inverse quadratic 
function in (S  - F ) .  This functional behavior indicates that the 
MMF is sensitive to the selection of the peak filter value F. Ideally, 
we would select F = S to maximize the PR ( M M F ) .  The expected 
S values are on the order of 1 - 100 counts. Count is a unit of radiant 
intensity measure. Normally, we d o  not have the information for 
the precise value of S for a particular scene a priori. Therefore, it 
is important to  indicate the relative merit of the MMF process even 
without the knowledge of the precise value of S. The relative PR 
values under various clutter conditions in the following example 
will provide some insight into this question. 

A. Clutter Suppression Example 
Assume an imaging system with an optical point spread function 

that can be represented by seven pixels ( n  = 7) .  Assume a 
Gaussian shaped PSF, (mean = 4,  sigma = 1 ) .  Then the a ( I )  
values are: 

0.01, 0.14, 0.61. 1.0, 0.61, 0.14, 0.01 

Assume a noise function to represent cloud clutter as follows: 

N ( I )  = N ,  + R + A * I ,  I = 1 ,  2, 3, . . . , n (counts) (12)  

where No is constant, No = 100 for clear sky and 1200 for clouds, 
R is uniformly distributed random noise (counts), A is the ramp 
rate (represents transition between clear sky and cloud regions) 
(counts/pixel). 

Also let 

O ( I )  = N ( I ) / N ( 4 ) .  (13) 

Table I illustrates the PR values for the LMS and the MMF pro- 
cesses at S = F for various simulated cloud conditions (using the 
signal and noise conditions prescribed above). The PR values in 
Table I are averages taken over 100 samples (using positive 
P R (  LMS)  values only). Notice, that P R (  M M F )  is sensitive to the 
magnitude of the ramp, because the MMF approach is sensitive to 
the signal shape. Steep ramps tend to distort the signal shape. How- 
ever, the PR ( M M F )  values exceed the PR (LMS ) values by a con- 
siderable factor, for all of the cases tested. 

Additional PR values where compiled for S not equal to F cases. 
The results are illustrated in Figs. 2-4. The PR values for the 
PR ( LMS ) and PR ( MMF ) are plotted on a common signal strength 
S abscissa axis. Notice, the quadratic nature for P R (  M M F ) ,  with 
a peak values in the S = F neighborhood. Figs. 2 and 3 illustrate 

TABLE I 
AVERAGE PERFORMANCE RATIO** 

MAX CONSTANT RAMP RhTE 

PR(LMS) PR(MMF) A REMARKS 

S=40 S=F=40 (Counts) 

79 29446 200 CI Clear Sky 

79 719 ZOO 5 Low Ramp R a t e  

79  240 ZOO 1 0 Mid Value 

79 119 zoo 20 Mid Value 

79 89 200 40 HlOh Value 

79 29446 12YO 0 Renian Cloud 

** A v e r a g e  using 100 samples u s i n g  uniformly distributed 

Random number times 5 

Same initial kernel f o r  each trial 

the effect of different F values at a low cloud transition ramp value 
( A  = I ) .  Fig. 4 uses the same parameters as Fig. 3 except for a 
steeper ramp value ( A  = 5 ) .  These figures illustrate the F depen- 
dence and the noise ramp dependence of the M M F  process. The 
point of this simulated clutter suppression example is to illustrate 
that it is not necessary to prescribe the precise value of F in order 
for the MMF process to show a significant improvement over the 
original LMS process. In fact, these examples indicate that the 
MMF is better than the LMS provided the selected Fvalue  is within 
plus or minus 50% of the actual S value. In the next section, we 
consider a more realistic demonstration of the relative value of the 
LMS and the MMF processes using actual flight recorded infrared 
imagery. 

1V. IR CLUTTER SUPPRESSION 
IR cloud scenes from the background measurements and analysis 

program (BMAP) are used for algorithm evaluation purposes. The 
BMAP data set consists airborne collected cloud scenes using a 
dual-band radiometer with a field of view 2.2 degree in azimuth 
and 0.31 degree in elevation. The data set contains cloud and sky 
scenes from the Lake Erie area and the Gulf of Mexico area. The 
scenes used for this study are exclusively from the long wave IR 
band (8-12 microns). A BMAP cloud scene (15 X 346 pixels) 
known as the “cumulus cloud edge” was selected for this one sam- 
ple demonstration. This scene is well suited for comparing the LMS 
and MMF clutter suppression algorithms because it contains many 
different cloud clutter regions. Two different test conditions were 
imposed: 1) original BMAP scene without point targets and 2) 
BMAP scene with five point targets ( S  = 43 counts) parametrically 
inserted into the original scene. These two conditions were neces- 
sary in order to calculate the respective PR values. Figs. 5 and 6 
are “carpet plots” illustrating the clutter suppression test results. 
These figures consist of three different plots: the top plot represents 
the original BMAP scene, the middle plot represents the MMF out- 
put ( F  = 5 6 ) ,  and the bottom plot represents the LMS output. The 
F value was deliberately selected to  be 53 % different than the best 
F = S value to illustrate the effectiveness of MMF despite this 
obvious mismatch. Notice that for the most part the MMF and LMS 
plots are similar, except at the point target locations. The M M F  
values at the point target locations are considerably larger than 
MMF values in the neighboring noise regions. These MMF prom- 
inences indicate regions where the signal shape matching is most 
effective. On the other hand, the LMS plot (baseline approach) does 
not have these target prominences. This indicates potential point 
target detection improvements offered by M M F  clutter suppres- 
sion. Table I1 presents the relative PR values for these target lo- 
cations. The P R ( M M F )  values are higher on average than the 
PR ( L M S )  values by a factor of 4 .4  

Fig. 7 further illustrates the relative clutter suppression perfor- 
mance using a different BMAP scene with five targets at a lower 
signal strength ( S  = 20 counts). The F value was the same as for 
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Fig. 2 .  Performance ratio ( F  = 12.5, A = 1 )  
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Fig. 3 .  Performance ratio ( F  = 19.5, A = I )  

the previous figures ( F  = 5 6 ) .  In this case, the F and S values 
differ by 180%. The MMF clutter suppression performance re- 
mains better than the original LMS process. 

V.  CLOSING REMARKS 
These results illustrate that it is possible to achieve greater clut- 

ter suppression performance than provided by the conventional 
LMS filter. The key to this success appears to be the advantage 
offered by the signal shape detection factor given by the IED op- 
erator. 

A .  MMF Sensitivity 
The F value sensitivity did not appear to be detrimental for the 

MMF clutter suppression performance in this data set. If the Fvalue 
selection does cause some difficulty with a different data set, then 

one possible solution is to apply multiple MMF processes in par- 
allel (each at a different F value). In this way the entire range of 
potential S values can be processed. 

B. Computational Cost 
Additional computation is required to implement the MMF pro- 

cess in place of the LMS process. In high level computer language 
this represents four additional lines of computer code over the ex- 
isting LMS computer code. Continued investigation will determine 
the “cost-benefit’’ ratio of the required additional processing. 

C. Further Applications 

The results presented here are for one dimensional filters only. 
The MMF approach could be extended to include two-dimensional 
filters. Of course, any improvement by a two-dimensional MMF 

I- - I -  __ 
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POINT TARGETS 

Fig. 5.  Cumulus cloud edge ( 5  targets). 

INFRARED CLOUD SCENE 
LMS 6 MflF PROCESSING IF1561 

ORlClNlL SCENE 

Rrr 
F *  56 

LRS 

Fig. 6 .  Cumulus cloud edge (no targets) 

TABLE 11 
PERFORMANCE RATIO (CUMULUS CLOUD EDGE) 

RITTIO TGT CENTER PR(MPIF) PR(Lf lS )  

( P i x e l )  MflF I LMS 

124 

174 

z1u 
261 

295 

105.8 16.1 6.6 

36.8 9.8 3.7 

28.4 5 .7  4.9 

32.8 7 . 1  4.6 

8 .1  3.3 2.4 

AVERAGE = 4.4 

INFRARED C L O U D  SCENES 
LMS 6 MnF PROCESSING [5=20  Counrs. F-561 

DRICINAL SCENE 

J 
"F 

F= 56 

t t t t t  
P O l l t l  TARGETS 

Lns 

Fig. 7 .  Cumulus and cirrus cloud ( 5  targets). 

filter must be large enough to warrant the additional computation 
load. The approach taken and the results achieved suggest that the 
MMF approach is applicable to other clutter suppression applica- 
tions where the clutter statistics are nonstationary and the target 
signal has shape (i.e.,  not an impulse). Also, it is possible that the 
MMF approach may be extended to other conventional M F  appli- 
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cations were signal shape rather than signal energy is the desired 
discriminate. 

The IED value for the signal-plus-noise case is 

IED(S + N )  

('47) 
APPENDIX A 1 - - LMS A N D  MMF FILTER OUTPUT 

Assume a symmetrical signal sequence can be represented by 
c [Sa(Z) + N @ ( I )  - F a ( I )  - ( S  + N - F ) ] "  

Notice the midvalue ( a t  I = n / 2 )  of S + N - F is subtracted to 
offset the filter in  the vertical direction and cause the filter to fit 
perfectly at the central pixel of the data window. Equation (A7) 
expands to 

( * I )  S ( I )  = Sa(Z), I = I ,  2, 3, . . . , n, 

( '48)  
1 

( a ( [ )  - l ) ( @ ( I )  - 1 )  + N' 2; ( O ( 1 )  - I ) "  
IED(S  + N )  = 

( S  - F) '  c ( a ( I )  - I ) ?  + 2 N ( S  - F )  

The IED value for the noise case is 

1 
I E D ( N )  = 2 '  

[ N @ ( I )  - F ( a ( I )  - 1 )  - N ]  

1 
I E D ( N )  = 

N 2  c ( @ ( I )  - 1 ) '  - 2FN c ( a ( I )  - l)(O(I) - I )  + F 2  2; ( a ( Z )  - 

where n is odd, 

0 5 a ( 1 )  < I 

and 

a ( 1 )  = a(.) 

a ( 2 )  = a(fl - 1 )  

a ( 3 )  = a( .  - 2 ) ,  etc. 

Also, a ( n / 2 )  = 1.0 and a(1) < a ( 2 )  < a ( 3 )  < s . 3  < 
a ( n / 2 ) .  We represent a symmetrical filter function by 

F ( I )  = F a ( [ ) .  ( '42) 

N ( I )  = i v e ( I ) ,  (A3)  

Assume the noise sequence can be represented by 

whereO(n /2 )  = l , a n d N = N ( n / 2 ) . A I s o O ( I ) a r e n o i s e f a c t o r s  
at I .  

A special case of the matched filter is the LMS (also called the 
suppressed-mean matched filter). In this case the filter function be- 
comes 

F ' ( I )  = F a ( I )  - F,, 

where 

F 
FO = - a([). 

Assume noise is additive; then the LMS output for the signal- 
plus-noise case is 

The LMS output for the noise-only case is 
r i  \ l  

LMS(N)  = L F ( a ( I )  - %)j N O ( [ ) .  (A6)  

The values N ,  CY (I  ), O ( I  ) are constant for any one given signal 
shape and any one given noise sequence. 

Let 

K2 = c [ N ( @ ( I )  - 1 )  - F ( a ( I )  - I ) ] '  

K1 = c ( a ( [ )  - 

K4 = N 

Ks = N 2  c (@(I) - 1)'. 

( ~ ( 1 )  - I ) (@(,)  - I )  

The MMF processor output for the signal-plus-noise case is 

M M F ( S  + N )  = LMS(S  + N ) I E D ( S  + N ) .  

In terms of the above constants it becomes 

. ( A l l )  
F(SKO + K , )  

M M F ( S  + N )  = 
(S - F) 'K3  + 2 ( S  - F ) K 4  + K5 

The MMF processor output for the noise only case is 

FKI M M F ( N )  = F2K3 - 2FK4 f K5 

APPENDIX B 
LMS A N D  MMF PERFORMANCE RATIOS 

We define a clutter suppression metric, performance ratio PR: 

Process Output (Signal + Noise) 

Process Output (Noise) 
PR (Process) = ' (B1) 

The performance ratio for the LMS process is 

LMS(Signa1 + Noise) 

LMS (Noise) 
PR(LMS) = (B2) 

where 
c a ( I )  

LMS(S + N )  = F [  ( a ( 1 )  - -)1 
. [Sa(I) + N O ( I ) ]  (B3) 
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and 

L M S ( N )  = F [ a ( I )  - +] N ( I ) .  (B4) 

Rewrite these equations in terms of the process constants K ,  (see 
Appendix A): 

LMS(S + N )  = F ( S K o  + K , )  

and 

LMS(N) = FK,  

Then the performance ratio for the LMS process is 

PR(LMS) = 1 + S K o / K ,  

and the performance ratio for the MMF process is 

MMF(Signa1 + Noise) 

MMF( Noise) 
PR(MMF) = 

From ( A l l )  and (A12) we have 

F(SK0 + Kl 1 
(s - F ) ’ K ~  + 2 ( s  - F ) K ~  + K, 

MMF(S  + N )  = 

FKI 
F2K3 + 2FK4 + K 5 ‘  

M M F ( N )  = 

Then 

K 2 [ % l  + KII 

K , [ ( s  - F)’K, + 2 ( s  - F ) K ,  + ~ ~ 1 ‘  PR(MMF) = 
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Character Scaling by Contour Method 
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Abstract-The advancement in digital image processing hardware has 
provided the printing industry with new facilities for capturing fonts. 

Manuscript received May 23, 1988; revised November 23, 1989. Rec- 

The authors are with the Department of Electrical Engineering, Univer- 

IEEE Log Number 9034375. 

ommended for acceptance by C. Y.  Suen. 
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This has provided new grounds for character scaling which is an im- 
portant issue in typesetting and graphical text. 

An algorithm for digital character scaling by a contour method is 
developed and implemented. The algorithm is based on scaling the con- 
tour of the character through a transformation. Cubic splines are used 
to interpolate the discrete samples of the contour character. Final re- 
sults are excellent, showing no “jaggies.” 

The algorithm is applied to Arabic fonts and compared to two other 
algorithms. 

Index Terms-Border following, interpolation, magnification, mini- 
fication, template, thresholding. 

I. INTRODUCTION 
Scaling in general is the process performed on the digital image 

input, which results in a digital image output of a different size, 
using magnification or minification. 

A well known method for font scaling is that of replication [ 11. 
This, however, results in pronounced jagged edges when the char- 
acter is magnified. 

The work done by Ulichney and Troxel [ 2 ] ,  [3] utilized the 
telescoping template for scaling binary images of characters. The 
templates could be of any size, and the quality of the scaled font 
is dependent on the size of the template. The larger the size, the 
better the quality. Results for up to third order window scaling are 
presented in this correspondence. These results are reasonably 
good, except that for large enlargements there are some appear- 
ances of jaggies. 

Casey, Friedman, and Wong [4] developed a scaling method 
which makes use of attributes associated with print character qual- 
ity in order to suppress distortion and maintain essential features 
of the character. The smoothing step is carried out by a simple edge 
filter. The enlarged fonts exhibit some appearance of jaggies. 

In the commercial world a number of page description languages 
are available [5]. Three languages have emerged as the leading 
standards: PostScript, T,X, and Interpress. Of the three, Post- 
Script seems to be taking a clear leadership. PostScript describes 
pages by using mathematical formulas (cubic splines, line seg- 
ments, etc.) that represent shapes rather than by specifying indi- 
vidual pixels in a bit-mapped graphic image. PostScript encodes 
type faces into outlines that can be reconstructed at the proper size 
and than filled in to solidify the outline. This unique system of type 
face definition is used to generate fonts of virtually any size through 
spline interpolation, and is designed in PostScript for a wide vari- 
ety of font styles. 

For multilevel images a number of algorithms for scaling have 
been investigated (e .g . ,  [6]-[8]). These algorithms are based on 
interpolation techniques, and they are aimed at increasing or de- 
creasing the dimensionality of the whole image rather than a par- 
ticular object. These algorithms do not readily lend themselves to 
scaling of binary images, since the sczled image will not necessar- 
ily remain binary. 

Our investigation is to develop a character scaling algorithm 
based totally on the contours of the character (see Fig. 1) for the 
purpose of scaling camera captured fonts. Thus, border detection 
is needed in this work, and a mapping transformation will be de- 
veloped. 

11. ALGORITHM 
A general block diagram of the various steps in the algorithm is 

shown in Fig. 1 .  The steps required to scale a character are as 
follow. 
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