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■ Abstract Modified Newtonian dynamics (MOND) is an empirically motivated
modification of Newtonian gravity or inertia suggested by Milgrom as an alternative
to cosmic dark matter. The basic idea is that at accelerations belowao≈ 10−8 cm/s2≈
cHo/6 the effective gravitational attraction approaches

√
gnao, wheregn is the usual

Newtonian acceleration. This simple algorithm yields flat rotation curves for spiral
galaxies and a mass-rotation velocity relation of the formM∝V4 that forms the basis
for the observed luminosity–rotation velocity relation—the Tully-Fisher law. We re-
view the phenomenological success of MOND on scales ranging from dwarf spheroidal
galaxies to superclusters and demonstrate that the evidence for dark matter can be
equally well interpreted as evidence for MOND. We discuss the possible physical
basis for an acceleration-based modification of Newtonian dynamics as well as the
extention of MOND to cosmology and structure formation.

INTRODUCTION

The appearance of discrepancies between the Newtonian dynamical mass and the
directly observable mass in large astronomical systems has two possible expla-
nations: either these systems contain large quantities of unseen matter, or gra-
vity (or the response of particles to gravity) on these scales is not described by
Newtonian theory. Most attention has focused on the first of these explanations.
An intricate paradigm has been developed in which nonbaryonic dark matter plays
a central role—not only in accounting for the traditional dynamical mass of bound
gravitational systems (Faber & Gallagher 1979, Blumenthal et al. 1984) but also
in promoting the formation of structure via gravitational collapse beginning in the
highly homogeneous ionized universe (Peebles 1982, Vittorio & Silk 1984). The
paradigm of cold dark matter (CDM) is widely purported to be successful in this
cosmological context, particularly in predicting the scale-dependence of density
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fluctuations. Moreover, with the development of cosmic N-body simulations of
high precision and resolution, this hypothesis has gained predictive power on the
scale of galaxies—a power that considerably restricts the freedom to arrange dark
matter as one would wish in order to explain the form and magnitude of the dis-
crepancy in any particular system (Navarro et al. 1996).

It is in this second aspect, the distribution of dark matter in galactic systems,
that the CDM paradigm encounters observational difficulties (McGaugh & de Blok
1998a, Sellwood & Kosowsky 2001). It is not the purpose of this review to discuss
the possible problems with the CDM hypothesis. We only comment that, as of the
date of this review, candidate dark matter particles have not yet been detected by
any means independent of their putative global gravitational effect. So long as this
is the only evidence for dark matter, its presumed existence is not independent of
the assumed law of gravity or inertia on astronomical scales. If a physical law,
when extended to a regime in which it has never before been tested, implies the
existence of a medium (e.g., an ether) that cannot be detected by any other means,
then it would not seem unreasonable to question that law.

Of course, if one chooses to modify Newtonian dynamics or gravity in an
ad hoc fashion, then the set of alternative possibilities is large. It is a simple matter
to claim that Newton’s law of gravity fails on galactic scales and then to cook up
a recipe that explains a particular aspect of the observations—such as flat rotation
curves of spiral galaxies. To be credible, an empirically based alternative to dark
matter should at least provide a more efficient description of the phenomenology.
Any viable alternative should account for various aspects of the observations of
astronomical systems (such as global scaling relations) with as few additional
parameters as possible. A second, but less immediate, requirement is that the
suggested alternative should have some basis in sensible physics—it should make
contact with familiar physical principles or at least a reasonable extrapolation of
those principles.

To date, the only suggestion that goes some way toward meeting these re-
quirements (particularly the former) is Milgrom’s modified Newtonian dynamics
(MOND) (Milgrom 1983a,b,c). The empirical successes of this hypothesis on
scales ranging from dwarf spheroidal galaxies to super-clusters, and its possible
physical basis and extension to a cosmological context, is the subject of this review.
It may be argued that this is a speculative topic for review in this series. In our
opinion the subject of dark matter (Trimble 1987) is, in the absence of its direct
detection, no less speculative, particularly considering that the standard model of
particle physics does not predict the existence of candidate dark matter particles
with the necessary properties. Reasonable extensions of the standard model (e.g.,
supersymmetry) can, with an appropriate adjustment of parameters, accommodate
such particles, but this also requires an extrapolation of known physics (e.g., Griest
et al. 1990). Here we demonstrate that the evidence for dark matter can be equally
well interpreted as evidence for modified dynamics.

There have been other attempts to modify gravity in order to account for as-
tronomical mass discrepancies without invoking dark matter. We mention some
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of these efforts, but it is fair to say that none of these alternatives has enjoyed the
phenomenological success of MOND or been as extensively discussed in the liter-
ature. A considerable lore on MOND has emerged in the past two decades—with
contributions not only by advocates reporting phenomenological successes but
also by critics pointing out possible problems or inconsistencies. There have also
been several contributions attempting to formulate MOND either as a covariant
theory in the spirit of General Relativity, or as a modified particle action (modified
inertia). Whereas none of these attempts has, so far, led to anything like a satisfac-
tory or complete theory, they provide some insight into the required properties of
generalized theories of gravity and inertia.

In the absence of a complete theory, MOND cannot be unambiguously extended
to problems of cosmology and structure formation. However, by making certain
reasonable assumptions, one may speculate on the form of a MOND cosmology.
We discuss the efforts that have been made in this direction. The general expectation
is that, because MOND results in effectively stronger gravity for low peculiar
accelerations, the rapid growth of structure is possible even in a low-density purely
baryonic Universe.

BASICS OF MODIFIED NEWTONIAN DYNAMICS

An Acceleration Scale

The phenomenological basis of MOND consists of two observational facts about
spiral galaxies: (a) The rotation curves of spiral galaxies are asymptotically flat
(Shostak 1973, Roberts & Whitehurst 1975, Bosma 1978, Rubin et al. 1980),
and (b) there is a well-defined relationship between the rotation velocity in spiral
galaxies and the luminosity—the Tully-Fisher (TF) law (Tully & Fisher 1977,
Aaronson et al. 1982). This latter implies a mass-velocity relationship of the form
M∝Vα, whereα is in the neighborhood of 4.

If one wishes to modify gravity in an ad hoc way to explain flat rotation curves,
an obvious first choice would be to propose that gravitational attraction becomes
more like 1/r beyond some length scale that is comparable to the scale of galaxies.
So the modified law of attraction about a point mass M would read

F = GM

r 2
f (r/ro), (1)

wherero is a new constant of length on the order of a few kpc, andf (x) is a
function with the asymptotic behavior:f (x)= 1, wherex� 1 and f (x)= x, where
x� 1. Finzi (1963), Tohline (1983), Sanders (1984), and Kuhn & Kruglyak (1987)
have proposed variants of this idea. In Sanders’ (1984) version the Newtonian
potential is modified by including a repulsive Yukawa term (e−r/ro/r), which can
yield a flat rotation velocity over some range inr. This idea keeps reemerging with
various modern justifications (e.g., Eckhardt 1993, Hadjimichef & Kokubun 1997,
Drummond 2001, Dvali et al. 2001).
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Figure 1 The global Newtonian mass-to-K′-band-luminosity ratio of Ursa Major spirals
at the last measured point of the rotation curve plotted first against the radial extent of the
rotation curve (left) and then against the centripetal acceleration at that point (right).

All of these modifications attached to a length scale have one thing in com-
mon: Equating the centripetal to the gravitational acceleration in the limitr> ro

would lead to a mass-asymptotic rotation velocity relation of the formv2=GM/ro.
Milgrom (1983a) realized that this was incompatible with the observed TF law,
L∝ v4. Moreover, any modification attached to a length scale would imply that
larger galaxies should exhibit a larger discrepancy (Sanders 1986). This is contrary
to the observations. There are very small, usually low surface brightness (LSB)
galaxies with large discrepancies, and very large high surface brightness (HSB)
spiral galaxies with very small discrepancies (McGaugh & de Blok 1998a).

Figure 1 illustrates this. At the left is a log-log plot of the dynamicalM/L K ′

vs. the radius at the last measured point of the rotation curve for a uniform sample
of spiral galaxies in the Ursa Major cluster (Tully et al. 1996, Verheijen & Sancisi
2001). The dynamical M/L is calculated simply using the Newtonian formula for
the massv2r/G(assuming a spherical mass distribution), where r is the radial extent
of the rotation curve. Population synthesis studies suggest thatM/L K ′ should be
about 1, so anything much above 1 indicates a global discrepancy—a “dark matter
problem.” It is evident that there is not much of a correlation of M/L with size. On
the other hand, the Newtonian M/L plotted against centripetal acceleration (v2/r)
at the last measured point (Figure 1,right) looks rather different. There does appear
to be a correlation in the sense thatM/L∝ 1/a for a< 10−8 cm/s2. The presence
of an acceleration scale in the observations of the discrepancy in spiral galaxies
has been pointed out before (Sanders 1990, McGaugh 1998), and as the data have
improved, it has become more evident. Any modification of gravity attached to a
length scale cannot explain such observations.
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Milgrom’s insightful deduction was that the only viable sort of modification is
one in which a deviation from Newton’s law appears at low acceleration. (Data
such as that shown in Figure 1 did not exist at the time of Milgrom’s initial papers;
an acceleration scale was indicated by the slope of the TF relation.) MOND as
initially formulated could be viewed as a modification of inertia or of gravity (this
dichotomy remains). In the first case the acceleration of a particle with massm
under the influence of an external force would be given by

maµ(a/ao) = F, (2)

whereao is a new physical parameter with units of acceleration andµ(x) is a
function that is unspecified but must have the asymptotic formµ(x)= x when
x� 1 andµ(x)= 1 whenx� 1. Viewed as a modification of gravity, the true
gravitational accelerationg is related to the Newtonian gravitational acceleration
gn as

gµ(|g|/ao) = gn. (3)

Although there are clear differences in principle and practice between these two
formulations, the consequence for test particle motion in a gravitational field in
the low acceleration regime is the same: The effective gravitational force becomes
g=√gnao. For a point mass M, if we setg equal to the centripetal acceleration
v2/r, this gives

v4 = GMao (4)

in the low acceleration regime. Thus, all rotation curves of isolated masses are
asymptotically flat, and there is a mass-luminosity relation of the formM∝ v4.
These are aspects that are built into MOND, so they cannot rightly be called
predictions. However, in the context of MOND, the aspect of an asymptotically
flat rotation curve is absolute. MOND leaves rather little room for maneuvering;
the idea is in principle falsifiable, or at least it is far more fragile than the dark
matter hypothesis. Unambiguous examples of rotation curves of isolated galaxies
that decline in a Keplerian fashion at a large distance from the visible object would
falsify the idea.

In addition, the mass-rotation velocity relation and implied TF relation is abso-
lute. The TF relation should be the same for different classes of galaxies, indepen-
dent of surface brightness, and the logarithmic slope (at least of the mass-velocity
relation) must be 4.0. Moreover, the relation is essentially one between the total
baryonic mass of a galaxy and the asymptotic flat rotational velocity—not the peak
rotation velocity but the velocity at large distance. This is the most immediate and
most obvious prediction (see McGaugh & de Blok 1998b and McGaugh et al. 2000
for a discussion of these points).

Converting the mass-velocity relation (Equation 4) to the observed luminosity-
velocity relation, we find

log(L) = 4 log(v)− log(Gao〈M/L〉). (5)
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Figure 2 The near-infrared Tully-Fisher relation of Ursa Major spirals (Sanders &
Verheijen 1998). The rotation velocity is the asymptotically constant value. The velocity
is in units of kilometer/second and luminosity in 1010 L�. The unshaded points are
galaxies with disturbed kinematics. The line is a least-square fit to the data and has a
slope of 3.9± 0.2.

Figure 2 shows the near-infrared TF relation for Verheijen’s UMa sample (Sanders
& Verheijen 1998), where the velocity, v, is that of the flat part of the rotation
curve. The scatter about the least-square fit line of slope 3.9± 0.2 is consistent
with observational uncertainties (i.e., no intrinsic scatter). Given the mean M/L in a
particular band (≈1 in the K′ band), this observed TF relation Equation 5 tells us that
ao must be on the order of 10−8 cm/s2. Milgrom immediately noticed thatao≈ cHo

to within a factor of 5 or 6. This cosmic coincidence is provocative and suggests
that MOND perhaps reflects the effect of cosmology on local particle dynamics.

General Predictions

There are several other direct observational consequences of modified dynamics—
all of which Milgrom explored in his original papers—that do fall in the category of
predictions in the sense that they are not part of the propositional basis of MOND.

1. There exists a critical value of the surface density

6m ≈ ao/G. (6)

If a system such as a spiral galaxy has a surface density of matter greater than
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6m, then the internal accelerations are greater thanao, so the system is in the
Newtonian regime. In systems with6≥6m (HSB galaxies) there should be a
small discrepancy between the visible and classical Newtonian dynamical mass
within the optical disk. In the parlance of rotation curve observers, an HSB galaxy
should be well represented by the “maximum disk” solution (van Albada & Sancisi
1986), but in LSB galaxies (6�6m) there is a low internal acceleration, so the
discrepancy between the visible and dynamical mass would be large. Milgrom
predicted, before the actual discovery of LSB galaxies, that there should be a serious
discrepancy between the observable and dynamical mass within the luminous disk
of such systems—should they exist. They do exist, and this prediction has been
verified, as is evident from the work of McGaugh & de Blok (1998a,b) and de
Blok & McGaugh (1998).

2. It is well known since the work of Ostriker & Peebles (1973) that rotation-
ally supported Newtonian systems tend to be unstable to global nonaxisymmetric
modes that lead to bar formation and rapid heating of the system. In the context
of MOND these systems would be those with6>6m, so this would suggest that
6m should appear as an upper limit on the surface density of rotationally sup-
ported systems. This critical surface density is 0.2 g/cm2 or 860 M�/pc2. A more
appropriate value of the mean surface density within an effective radius would be
6m/2π or 140 M�/pc2, and takingM/Lb≈ 2, this would correspond to a surface
brightness of about 22 mag/arc sec2. There is such an observed upper limit on
the mean surface brightness of spiral galaxies, and this is known as Freeman’s
law (Freeman 1970, Allen & Shu 1979). The point is that the existence of such a
maximum surface density (McGaugh et al. 1995, McGaugh 1996) is quite natural
in the context of MOND but must be put in by hand in dark matter theories (e.g.,
Dalcanton et al. 1997).

3. Spiral galaxies with a mean surface density near this limit—HSB galaxies—
would be, within the optical disk, in the Newtonian regime. Thus, one would
expect that the rotation curve would decline in a near Keplerian fashion to the
asymptotic constant value. In LSB galaxies, with mean surface density below6m,
the prediction is that rotation curves continuously rise to the final asymptotic flat
value. Thus, there should be a general difference in rotation curve shapes between
LSB and HSB galaxies. Figure 3 shows the rotation curves of two galaxies, an
LSB and an HSB, where we see exactly this trend. This general effect in observed
rotation curves was first noted by Casertano & van Gorkom (1991).

4. With Newtonian dynamics, pressure-supported systems that are nearly isother-
mal have infinite mass. However, in the context of MOND it is straightforward to
demonstrate that such isothermal systems are of finite mass with the density at large
radii falling approximately asr−4 (Milgrom 1984). The equation of hydrostatic
equilibrium for an isotropic, isothermal system reads

σ 2
r

dρ

dr
= −ρg, (7)

where, in the limit of low accelerations,g=√GMr ao/r . σ r is the radial velocity
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Figure 3 The points show the observed 21-cm line rotation curves of a low surface
brightness galaxy, NGC 1560 (Broeils 1992), and a high surface brightness galaxy,
NGC 2903 (Begeman 1987). The dotted and dashed lines are the Newtonian rotation
curves of the visible and gaseous components of the disk, and the solid line is the
MOND rotation curve withao= 1.2× 10−8 cm/s2—the value derived from the rotation
curves of 10 nearby galaxies (Begeman et al. 1991). The only free parameter is the
mass-to-light ratio of the visible component.

dispersion,ρ is the mass density, andMr is the mass enclosed within r. It then
follows immediately that, in the outer regions, whereMr=M= constant,

σ 4
r = GMao

(
d ln(ρ)

d ln(r )

)−2

. (8)

Thus, there exists a mass-velocity dispersion relation of the form

(M/1011M�) ≈ (σr /100 km s−1)4, (9)
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which is similar to the observed Faber-Jackson relation (luminosity-velocity dis-
persion relation) for elliptical galaxies (Faber & Jackson 1976). This means that a
MOND near-isothermal sphere with a velocity dispersion of 100–300 km/s will al-
ways have a galactic mass. Moreover, the sameM− σ relation (Equation 8) should
apply to all pressure-supported, near-isothermal systems, from globular clusters
to clusters of galaxies, albeit with considerable scatter owing to deviations from a
strictly isotropic, isothermal velocity field (Sanders 2000).

The effective radius of a near-isothermal system is roughlyre≈
√

GM/ao (at
larger radii the system is in the MOND regime and is effectively truncated). This
means thatao appears as a characteristic acceleration in near-isothermal systems
and that6m appears as a characteristic surface density—at least as an upper limit
(Milgrom 1984). Fish (1964), on the basis of then-existing photometry, pointed out
that elliptical galaxies exhibit a constant surface brightness within an effective ra-
dius. Although Kormendy (1982) demonstrated that more luminous ellipticals have
a systematically lower surface brightness, when the ellipticals are considered along
with the bulges of spiral galaxies and globular clusters (Corollo et al. 1997) there
does appear to be a characteristic surface brightness on the order of that implied by
6m, i.e., the Fish law is recovered for the larger set of pressure-supported objects.

5. The “external field effect” is not a prediction but a phenomenological require-
ment on MOND that has strong implications for nonisolated systems. In his original
papers Milgrom noted that open star clusters in the Galaxy do not show evidence for
mass discrepancies, even though the internal accelerations are typically belowao.
He therefore postulated that the external acceleration field of the Galaxy must have
an effect upon the internal dynamics of a star cluster—that, in general, the dynam-
ics of any subsystem is affected by the external field in which that system is found.
This implies that the theory upon which MOND is based does not respect the equiv-
alence principle in its strong form. (This in no way implies that MOND violates the
universality of free fall—the weak version of the equivalence principle—which is
the more cherished and experimentally constrained version.) Milgrom suggested
that this effect arises owing to the nonlinearity of MOND and can be approximated
by including the external acceleration field,ge, in the MOND equation, i.e.,

µ(|ge+ gi |/ao) gi = gni , (10)

wheregi is the internal gravitational field of the subsystem andgni is the Newto-
nian field of the subsystem alone. This means that a subsystem with internal ac-
celerations belowao will exhibit Newtonian dynamics if the external acceleration
exceedsao (gi< ao< ge). If the external and internal accelerations are belowao and
gi< ge< ao, then the dynamics of the subsystem will be Newtonian but with a larger
effective constant of gravity given byG/µ(ge/ao). If ge< gi< ao the dynamics is
MONDian but with a maximum discrepancy given by [µ(ge/ao)]−1. In addition
the dynamics is anisotropic with dilation along the direction of the external field.

The external field effect would have numerous consequences: It would influence
the internal dynamics of globular clusters and the satellite dwarf companions
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of the Milky Way independently of tides. It may provide an important nontidal
mechanism for the maintenance of warps in galaxies owing to the presence of
companions. The peculiar accelerations resulting from large-scale structure would
be expected to limit the mass discrepancy in any particular galactic system (no
object is isolated), and the deceleration (or acceleration) of the Hubble flow may
influence the development of large-scale structure.

Dark Halos with an Acceleration Scale

Can the phenomenology of MOND be reproduced by dark halos, specifically the
kind of dark halos that emerge from cosmological N-body simulations with an
initial fluctuation spectrum given by CDM? This is an important question because
the phenomenological success of MOND may be telling us something about the
universal distribution of dark matter in galaxies and its relation to the visible com-
ponent rather than anything about the law of gravity or inertia at low accelerations.
This question was first considered by Begeman et al. (1991), who attempted to de-
vise disk-halo coupling rules that could yield a one-parameter fit to rotation curves
(M/L of the visible disk) similar to MOND. Without any physical justification, the
core radius and asymptotic circular velocity of an isothermal halo were adjusted
to the scale length and maximum rotation velocity of the disk to yield a charac-
teristic acceleration. With such coupling rules, the fits to galaxy rotation curves
were of lower quality than the MOND fits (particularly for the dwarf systems),
and there were numerous ambiguities (e.g., in gas-dominated galaxies what is the
proper disk length scale?). Similar ad hoc coupling rules between visible and dark
components have also been considered by Giraud (2000).

The idea that the halo might exhibit a characteristic acceleration was carried
further by Sanders & Begeman (1994) when the first cosmic N-body calculations
with high resolution (Dubinski & Carlberg 1991) indicated that CDM halos were
not at all similar to an isothermal sphere with a constant density core. The objects
emerging from the simulations exhibited a density law with ar−1 cusp that steep-
ened in the outer regions tor−4. Dubinski & Carlberg pointed out that this run of
density was well described by the model of Hernquist (1990):

ρ(r ) = 6o

r
(1+ r/ro)−3. (11)

This has been subsequently confirmed by the extensive calculations of Navarro
et al. (1997), who corrected the outer power law to−3 (this is the famous NFW
halo). The reality of the cusp, if not the exact power law, seems well established
(Moore et al. 1998) and is due to the fact that there are no phase-space constraints
upon the density of a collapsed object composed of CDM.

Sanders & Begeman (1994) pointed out that if6o were fixed with only the
characteristic length scale varying from halo to halo, this implied that a fixed
acceleration scale could be associated with any halo,ah= 2πG6o. They demon-
strated that a halo density law of this form provided a reasonable fit to rotation
curves of several HSB galaxies (comparable to that of MOND), where the length

A
nn

u.
 R

ev
. A

st
ro

. A
st

ro
ph

ys
. 2

00
2.

40
:2

63
-3

17
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 R

ut
ge

rs
 U

ni
ve

rs
ity

 L
ib

ra
ri

es
 o

n 
01

/2
8/

08
. F

or
 p

er
so

na
l u

se
 o

nl
y.



25 Jul 2002 19:29 AR AR166-AA40-08.tex AR166-AA40-08.SGM LaTeX2e(2002/01/18)P1: GJC

MODIFIED NEWTONIAN DYNAMICS 273

scale of the halo was proportional to the mass of the visible disk. This proportion-
ality would follow if the baryonic mass were a fixed fraction (about 0.03) of the
dark mass as is usually assumed, so this appeared to be a natural way to explain
MOND phenomenology in the context of CDM.

There are two problems with this idea. First, a fixed6o implies that no galaxy
could exhibit an acceleration in the inner regions less thanao; this is not true for a
number of LSB galaxies (McGaugh & de Blok 1998b). The problem was already
evident in the fits to the LSB galaxies in the sample of Sanders & Begeman in
which the one-parameter fitting scheme broke down. Second, the halos that emerge
from the cosmic N-body simulations do not have fixed6o, as is evident from the
mass-rotation velocity law ofm∝ v3 (NFW). No characteristic surface density or
acceleration is evident in these objects.

Semianalytic models for the formation of disk galaxies in the context of CDM
(van den Bosch & Dalcanton 2000) can be tuned to give rise to a characteristic
acceleration. In such models one starts with a specified dark halo density law
(NFW); allows some fraction of the halo mass, presumably baryonic, to collapse
by a factor determined by the dimensionless spin parameter of the halo; applies a
stability criterion to allow some further fraction of this dissipational component to
be converted to stars; and removes gas from the system by an appropriate number
of supernovae (feedback). In this procedure there are dimensionless parameters
that quantify the feedback mechanism. Because these parameters can be adjusted
to produce a TF law of the formL∝V4, it is not surprising that there is a fixed
acceleration connected with these models (a≈V4/GL〈M/L〉). The exercise is
essentially that of modeling complicated astrophysical processes by a set of free
parameters; these parameters are then tuned in order to achieve a desired result.
The fact that this is possible is interesting but not at all compelling.

The possibility of a characteristic acceleration arising from CDM has been re-
visited by Kaplinghat & Turner (2002), who offered an explanation for why dark
matter appears to become dominant beyond an acceleration numerically compa-
rable tocHo. They argued that halos formed from CDM possess a one-parameter
density profile that leads to a characteristic acceleration profile that is only weakly
dependent upon the mass (or comoving scale) of the halo. Then with a fixed col-
lapse factor for the baryonic material, the transition from dominance of dark over
baryonic occurs at a universal acceleration, which by numerical coincidence, is on
the order ofcHo. Milgrom (2002) responded by pointing out thatao plays several
roles in the context of MOND: It not only is a transition acceleration below which
the mass discrepancy appears, but it also defines the asymptotic rotation velocity
of spiral galaxies (via Equation 4) and thereby determines the zero point of the
TF relation (Equation 5).ao determines the upper limit on the surface density of
spirals (i.e.,6m); ao appears as an effective upper limit upon the gravitational
acceleration of a halo component in sensible disk-halo fits to observed rotation
curves (Brada & Milgrom 1999a);ao determines the magnitude of the discrepancy
within LSB galaxies (where the ratio of missing to visible mass isao/gi); ao sets the
scale of the Faber-Jackson relation via Equation 8;ao appears as an effective inter-
nal acceleration for pressure-supported, quasi-isothermal systems and determines
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the dynamics of galaxy systems—global and detailed—ranging from small groups
to super-clusters. These roles are independent in the context of dark matter and
would each require a separate explanation. The explanation of Kaplinghat & Turner
applies only to the first of these and by construction prohibits the existance of ob-
jects that are dark matter–dominated within their optical radius (such as LSB
galaxies).

The basic problem in trying to explain a fixed acceleration scale in galaxies in
terms of galaxy formation rather than underlying dynamics is that the process is
stochastic: Each galaxy has its own history of formation-evolution-interaction. One
would expect these effects to erase any intrinsic acceleration scale, not enhance it.
Dark matter may address the general trends but it cannot account for the individual
idiosyncrasies of each rotation curve. In the next section we present the evidence
that MOND can do this withao as the only additional fixed parameter.

ROTATION CURVES OF SPIRAL GALAXIES

Method and Results of Rotation-Curve Fitting

The measured rotation curves of spiral galaxies constitute the ideal body of data
to confront ideas such as MOND (Begeman et al. 1991, Sanders 1996, McGaugh
& de Blok 1998b, Sanders & Verheijen 1998). That is because in the absence
of dark matter the rotation curve is in principle predictable from the observed
distribution of stars and gas. Moreover, the rotation curve as measured in the
21-cm line of neutral hydrogen often extends well beyond the optical image of the
galaxy where the centripetal acceleration is small and the discrepancy is large. In
the particularly critical case of the LSB galaxies, 21-cm line observations can be
supplemented by Hα observations (McGaugh et al. 2001, de Blok & Bosma 2002)
and compared in detail with the rotation curve predicted from the distribution
of detectable matter. The procedure that has usually been followed is outlined
below:

1. One assumes that light traces stellar mass, i.e., M/L is constant in a given
galaxy. There are color gradients in spiral galaxies, so this cannot be generally
true—or at least one must decide which color band is the best tracer of the
mass distribution. The general opinion is that the near-infrared emission of
spiral galaxies is the optimal tracer of the underlying stellar mass distribution
because the old population of low-mass stars contributes to this emission, and
the near-infrared is less affected by dust obscuration. Thus, where available,
near-infrared surface photometry is preferable.

2. In determining the distribution of detectable matter one must include the
observed neutral hydrogen scaled up with an appropriate correction factor
(typically 1.3–1.4) to account for the contribution of primordial helium. The
gas can make a dominant contribution to the total mass surface density in
some (generally low luminosity) galaxies.
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3. Given the observed distribution of mass, the Newtonian gravitational force,
gn, is calculated via the classical Poisson equation. Here it is usually assumed
that the stellar and gaseous disks are razor thin. It may also be necessary to
add a spheroidal bulge if the light distribution indicates the presence of such
a component.

4. Given the radial distribution of the Newtonian force, the true gravitational
force,g, is calculated from the MOND formula (Equation 3) withao fixed.
Then the mass of the stellar disk is adjusted until the best fit to the observed
rotation curve is achieved. This gives M/L of the disk as the single free
parameter of the fit (unless a bulge is present).

In this procedure, one assumes that the motion of the gas is a coplaner rotation
about the center of the given galaxy. This is certainly not always the case because
there are well-known distortions to the velocity field in spiral galaxies caused
by bars and warping of the gas layer. In a fully two-dimensional velocity field
these distortions can often be modeled (Bosma 1978, Begeman 1989), but the
optimal rotation curves are those in which there is no evidence for the presence
of significant deviations from coplanar circular motion. Not all observed rotation
curves are perfect tracers of the radial distribution of force. A perfect theory will
not fit all rotation curves because of these occasional problems (the same is true of
a specified dark-matter halo). The point is that with MOND, usually, there is one
adjustable parameter per galaxy and that is the mass or M/L of the stellar disk.

The preferred value ofaohas been derived from a highly selected sample of large
galaxies with well-determined rotation curves (Begeman et al. 1991). Assuming a
distance scale,Ho= 75 km/s Mpc in this case, rotation-curve fits to all galaxies in
the sample were made allowingao to be a free parameter. The mean value for nine
of the galaxies in the sample, excluding NGC 2841 with a distance ambiguity (see
below), is 1.2± 0.27× 10−8 cm/s2. Having fixedao in this way, one is no longer
free to take this as a fitting parameter.

There is, however, a relation between the derived value ofao and the assumed
distance scale because the implied centripetal acceleration in a galaxy scales as
the inverse of the assumed distance. With respect to galaxy rotation curves, this
dependence is not straightforward because the relative contributions of the stellar
and gaseous components to the total force vary as a function of distance. For a
gas-rich sample of galaxies the derived value ofao scales asH2

o , and for a sample
of HSB galaxies dominated by the stellar componentao∝Ho. This is related to a
more general property of MOND:ao in its different roles scales differently with
Ho. This fact in itself means that MOND cannot live with any distance scale; to be
consistent with MOND,Ho must be in the range of 50–80 km/s-Mpc.

Figure 3 shows two examples of MOND fits to rotation curves. The dotted and
dashed curves are the Newtonian rotation curves of the stellar and gaseous disks,
respectively, and the solid curve is the MOND rotation curve with the standard
value ofao. Not only does MOND predict the general trend for LSB and HSB
galaxies, but it also predicts the observed rotation curves in detail from the observed

A
nn

u.
 R

ev
. A

st
ro

. A
st

ro
ph

ys
. 2

00
2.

40
:2

63
-3

17
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 R

ut
ge

rs
 U

ni
ve

rs
ity

 L
ib

ra
ri

es
 o

n 
01

/2
8/

08
. F

or
 p

er
so

na
l u

se
 o

nl
y.



25 Jul 2002 19:29 AR AR166-AA40-08.tex AR166-AA40-08.SGM LaTeX2e(2002/01/18)P1: GJC

276 SANDERS ¥ McGAUGH

distribution of matter. This procedure has been carried out for about 100 galaxies,
76 of which are listed in Table 1; the results are given in terms of the fitted mass
of the stellar disk (in most cases, the only free parameter) and the implied M/Ls.

Rotation curves for the entire UMa sample of Sanders & Verheijen (1998)
are shown in Figure 4, where the curves and points have the same meaning as in
Figure 3. As noted above, this is a complete and unbiased sample of spiral galaxies
all at about the same distance (here taken to be 15.5 Mpc). The sample includes both
HSB galaxies (e.g., NGC 3992) and LSB galaxies (e.g., UGC 7089) and covers
a factor of 10 in centripetal acceleration at the outermost observed point (Table 1
and Figure 1). The objects denoted by the asterisk in Figure 4 are galaxies pre-
viously designated by Verheijen (1997) as being kinematically disturbed (e.g.,

TABLE 1 Rotation-curve fits

Galaxy Type LB Lr MHI V∞ M∗ M∗/LB M∗/Lr Ref
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

UGC 2885 Sbc 21.0 — 5.0 300 30.8 1.5 — 1

NGC 2841a Sb 8.5 17.9 1.7 287 32.3 3.8 1.8 2

NGC 5533 Sab 5.6 — 3.0 250 19.0 3.4 — 1

NGC 6674 SBb 6.8 — 3.9 242 18.0 2.6 — 1

NGC 3992 SBbc 3.1 7.0 0.92 242 15.3 4.9 2.2 3

NGC 7331 Sb 5.4 18.0 1.1 232 13.3 2.5 0.7 2

NGC 3953 SBbc 2.9 8.5 0.27 223 7.9 2.7 0.9 3

NGC 5907 Sc 2.4 4.9 1.1 214 9.7 3.9 2.0 1

NGC 2998 SBc 9.0 — 3.0 213 8.3 1.2 — 1

NGC 801 Sc 7.4 — 2.9 208 10.0 1.4 — 1

NGC 5371 S(B)b 7.4 — 1.0 208 11.5 1.6 — 1

NGC 5033 Sc 1.90 3.90 0.93 195 8.8 4.6 2.3 1

NGC 3893b Sc 2.14 3.98 0.56 188 4.20 2.0 1.1 3

NGC 4157 Sb 2.00 5.75 0.79 185 4.83 2.4 0.8 3

NGC 2903 Sc 1.53 2.15 0.31 185 5.5 3.6 2.6 2

NGC 4217 Sb 1.90 5.29 0.25 178 4.25 2.2 0.8 3

NGC 4013 Sb 1.45 4.96 0.29 177 4.55 3.1 0.9 3

NGC 3521 Sbc 2.40 — 0.63 175 6.5 2.7 — 1

NGC 4088b Sbc 2.83 5.75 0.79 173 3.30 1.1 0.6 3

UGC 6973b Sab 0.62 2.85 0.17 173 1.69 2.7 0.6 3

NGC 3877 Sc 1.94 4.52 0.14 167 3.35 1.7 0.7 3

NGC 4100 Sbc 1.77 3.50 0.30 164 4.32 2.4 1.2 3

(Continued)
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TABLE 1 (Continued)

Galaxy Type LB Lr MHI V∞ M∗ M∗/LB M∗/Lr Ref
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

NGC 3949 Sbc 1.65 2.33 0.33 164 1.39 0.8 0.6 3

NGC 3726 SBc 2.65 3.56 0.62 162 2.62 1.0 0.7 3

NGC 6946 SABcd 5.30 — 2.7 160 2.7 0.5 — 1

NGC 4051b SBbc 2.58 3.91 0.26 159 3.03 1.2 0.8 3

NGC 3198c Sc 0.90 0.80 0.63 156 2.3 2.6 2.9 2

NGC 2683 Sb 0.60 — 0.05 155 3.5 5.8 — 1

UGC 5999e Im — 0.13 0.25 155 0.09 — 0.7 4

NGC 4138 Sa 0.82 2.88 0.14 147 2.87 3.5 1.0 3

NGC 3917 Scd 1.12 1.35 0.18 135 1.40 1.3 1.0 3

NGC 4085 Sc 0.81 1.22 0.13 134 1.00 1.2 0.8 3

NGC 2403 Sc 0.79 0.98 0.47 134 1.1 1.4 1.1 2

NGC 3972 Sbc 0.68 1.00 0.12 134 1.00 1.5 1.0 3

UGC 128 Sdm 0.52 0.41 0.91 131 0.57 1.1 1.4 4

NGC 4010 SBd 0.63 1.20 0.27 128 0.86 1.4 0.7 3

F568-V1 Sd 0.22 0.17 0.34 124 0.66 3.0 3.8 4

NGC 3769b SBb 0.68 1.27 0.53 122 0.80 1.2 0.6 3

NGC 6503 Sc 0.48 0.47 0.24 121 0.83 1.7 1.8 2

F568-3 Sd 0.33 0.27 0.39 120 0.44 1.3 1.6 4

F568-1 Sc 0.28 0.21 0.56 119 0.83 3.0 4.0 4

NGC 4183 Scd 0.90 0.73 0.34 112 0.59 0.7 0.8 3

F563-V2 Irr 0.30 — 0.32 111 0.55 1.8 — 4

F563-1 Sm 0.14 0.10 0.39 111 0.40 3.0 4.0 4

NGC 4389b SBbc 0.61 1.22 0.05 110 0.23 0.4 0.2 3

NGC 1003 Scd 1.50 0.45 0.82 110 0.30 0.2 0.7 1

UGC 6917 SBd 0.38 0.42 0.20 110 0.54 1.4 1.3 3

UGC 6930 SBd 0.50 0.40 0.31 110 0.42 0.8 1.0 3

M 33 Sc 0.74 0.43 0.13 107 0.48 0.6 1.1 1

UGC 6983 SBcd 0.34 0.34 0.29 107 0.57 1.7 1.7 3

NGC 247 SBc 0.35 0.22 0.13 107 0.40 1.1 1.8 1

UGC 1230e Sm 0.32 0.22 0.81 102 0.38 1.2 1.7 4

F574-1d Sd — 0.37 0.49 100 0.26 — 0.7 4

NGC 7793 Scd 0.34 0.17 0.10 100 0.41 1.2 2.4 1

UGC 5005e Im — 0.15 0.41 99 0.74 — 4.8 4

(Continued)
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TABLE 1 (Continued)

Galaxy Type LB Lr MHI V∞ M∗ M∗/LB M∗/Lr Ref
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

NGC 300 Sc 0.30 — 0.13 90 0.22 0.7 — 1

NGC 5585 SBcd 0.24 0.14 0.25 90 0.12 0.5 0.9 1

NGC 2915f BCD 0.04 — 0.10 90 0.25 6.9 — 1

UGC 6399 Sm 0.20 0.21 0.07 88 0.21 1.0 1.0 3

NGC 55 SBm 0.43 — 0.13 86 0.10 0.2 — 1

UGC 6667 Scd 0.26 0.28 0.08 86 0.25 1.0 0.9 3

UGC 2259 SBcd 0.10 — 0.05 86 0.22 2.1 — 2

F583-1 Sm 0.06 0.06 0.24 85 0.11 1.7 2.0 4

UGC 6446 Sd 0.25 0.14 0.30 82 0.12 0.5 0.9 3

UGC 6923 Sdm 0.22 0.21 0.08 81 0.16 0.8 0.8 3

UGC 7089 Sdm 0.44 0.21 0.12 79 0.09 0.2 0.4 3

UGC 5750e SBdm — 0.36 0.14 75 0.32 — 0.9 4

UGC 6818b Sd 0.18 0.12 0.10 73 0.04 0.2 0.3 3

F571-V1e Sdm 0.10 0.80 0.164 73 0.67 0.7 0.8 4

NGC 1560 Sd 0.035 0.063 0.098 72 0.034 1.0 0.5 2

F583-4 Sc — 0.071 0.077 67 0.022 — 0.3 4

IC 2574 SBm 0.080 0.022 0.067 66 0.010 0.1 0.5 1

DDO 170 Im 0.016 — 0.061 64 0.024 1.5 — 2

NGC 3109 SBm 0.005 — 0.068 62 0.005 0.1 — 2

DDO 154 IB 0.005 — 0.045 56 0.004 0.1 — 2

DDO 168 Irr 0.022 — 0.032 54 0.005 0.2 — 1

F565-V2e Im 0.023 0.019 0.084 51 0.050 2.2 2.7 4

Explanation of columns of Table 1: (1) Galaxy name. (2) Morphological Type. (3)B-band luminosity in units of 1010 L�.
(4) Red band luminosity in units of 1010 L�. The precise band used depends on the reference: Refs. 1 & 2: H-band. Ref. 3:
K′-band. Ref. 4:R-band. (5) Mass of neutral hydrogen in units of 1010 M� assumingMgas=MHI. (6) Asymptotic flat rotation
velocity in km s−1. (7) Stellar mass from MOND fit in units of 1010 M�. (8) B-band stellar mass-to-light ratio in units of
M�/L�. (9) R-band stellar mass-to-light ratio in units ofM�/L�. Both B- and R-band mass-to-light ratios refer only to
the stars (the gas is not included in the mass) and average over disk and bulge where both components are significant. See
original references for further details. (10) References: 1. Sanders (1996). 2. Begeman, Broeils, & Sanders (1991). 3. Sanders
& Verheijen (1998). 4. de Blok & McGaugh (1998).

Notes for Table 1:aThe MOND fit for this galaxy is sensitive to its distance, preferingD ≈ 19 Mpc (Sanders 1996) to the
Hubble flow value of≈9 Mpc. Macri et al. (2001) give a Cepheid distance of 14 Mpc, which is marginally tolerable given
the uncertainties in this galaxy’s warp (R. Bottema, J.L.G. Pestan˜a, B. Rothberg, R.H. Sanders, unpublished manuscript).
bNoted as having disturbed kinematics by Verheijen (1997).
cThe MOND fit for this galaxy is sensitive to its distance, prefering a smaller value than the Cepheid distance of 13.8 Mpc
(R. Bottema, J.L.G. Pestan˜a, B. Rothberg, R.H. Sanders, unpublished manuscript).
dThe original MOND fit for this galaxy (de Blok & McGaugh 1998) was not very good. The 21-cm observations of this
galaxy were severely affected by beam smearing.
eInclination uncertain (de Blok & McGaugh 1998).
fDistance uncertain.
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nonaxisymmetric velocity field caused by bars or interactions); the derived rota-
tion curves are less secure for these galaxies. (Note that fits to the UMa rotation
curves using a revised cluster distance of 18.5 Mpc from the Cepheid-based recal-
ibrated TF relation of Sakai et al. (2000) would imply thatao should be reduced
to 1× 10−8 cm/s2.)

This is a fair selection of MOND fits to rotation curves in which the only free
parameter is the M/L of the visible disk (no separate bulge components were
fitted in these cases). In HSB objects in which the centripetal acceleration remains
large out to the last measure point of the rotation curve, such as NGC 3954,
there is a very small difference between the Newtonian curve and the predicted

Figure 4 (Continued)
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Figure 4 MOND fits to the rotation curves of the Ursa Major galaxies (Sanders & Verheijen
1998). The radius (horizontal axis) is given in kiloparsecs, and in all cases the rotation velocity
is in kilometers/second. The points and curves have the same meaning as in Figure 3. The
distance to all galaxies is assumed to be 15.5 Mpc, andao is the Begeman et al. (1991) value
of 1.2× 10−8 cm/s2. The free parameter of the fitted curve is the mass of the stellar disk. If
the distance to UMa is taken to be 18.6 Mpc, as suggested by the Cepheid-based recalibration
of the Tully-Fisher relation (Sakai et al. 2000), thenao must be reduced to 10−8 cm/s2.
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curve; i.e., the observed rotation curve is reasonably well described by Newtonian
theory, as expected when accelerations are high. In lower acceleration systems, the
discrepancy is larger (e.g., UGC 6667). In gas-rich galaxies, such as UGC 7089,
the shape of the rotation curve in the outer regions essentially follows from the
shape of the Newtonian rotation curve of the gaseous component, as though the gas
surface density were only scaled up by some factor on the order of 10—a property
that has been noticed for spiral galaxies (Carignan & Beaulieu 1989, Hoekstra et al.
2001). Empirically, MOND gives the rule that determines the precise scaling.

In general the MOND curves agree well with the observed curves, but there are
some cases in which the agreement is less than perfect. Usually these cases have an
identifiable problem with the observed curve or its interpretation as a tracer of the
radial force distribution. For example NGC 4389 is strongly barred, and the neutral
hydrogen is contiguous with the visible disk and bar. Another example is UGC
6818, which is probably interacting with a faint companion at its western edge.

Figure 5 shows a less homogeneous sample of rotation curves. These are curves
from the literature based upon observations carried out either at the Westerbork
Radio Synthesis Telescope or the Very Large Array (VLA) from Sanders (1996)
and McGaugh & de Blok (1998b) and ranked here in order of decreasing circular
velocity. These are mostly galaxies with a large angular size, so there are many
independent points along the rotation curve. The selection includes HSB and LSB
galaxies such as NGC 2403 and UGC 128—two objects with the same asymptotic
rotation velocity (≈130 km/s). Here the general trend, predicted by MOND, is
evident: The LSB exhibits a large discrepancy throughout the galaxy in contrast to
the HSB, where the discrepancy becomes apparent in the outer regions. In several
objects, such as NGC 2403, NGC 6503, and M33, the quality of the MOND fit
is such that, given the density of points, the fitted curve cannot be distinguished
beneath the observations.

The most striking aspect of these studies is the fact that not only general trends
but also the details of individual curves are well reproduced by Milgrom’s sim-
ple formula applied to the observed distribution of matter. In only about 10% of
the roughly 100 galaxies considered in the context of MOND does the predicted
rotation curve differ significantly from the observed curve.

We have emphasized that the only free parameter in these fits is the M/L of the
visible disk, so one may well ask if the inferred values are reasonable. It is useful
to consider again the UMa sample because all galaxies are at the same distance and
there is K′-band (near infrared) surface photometry of the entire sample. Figure 6
shows the M/L in the B-band required by the MOND fits plotted against B-V color
index (top) and the same for the K′-band (bottom). We see that in the K′-band
M/L≈ 0.8 with a 30% scatter. In other words if one were to assume a K′-band
M/L of about 1 at the outset, most rotation curves would be quite reasonably
predicted from the observed light and gas distribution with no free parameters.
In the B-band, on the other hand, the MOND M/L does appear to be a function
of color in the sense that redder objects have larger M/L values. This is exactly
what is expected from population synthesis models, as is shown by the solid lines
in both panels (Bell & de Jong 2001). This is quite interesting because there is
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Figure 5 MOND fits to the rotation curves of spiral galaxies with published data, from
Sanders (1996) and McGaugh & de Blok (1998). The symbols and curves are as in Figure 4.

nothing built into MOND that would require that redder galaxies should have a
higherM/Lb; this simply follows from the rotation-curve fits.

Falsification of Modified Newtonian
Dynamics with Rotation Curves

It is sometimes said that MOND is designed to fit rotation curves, so it is not
surprising that it does so. This is not only a trivialization of a remarkable phe-
nomenological success, but it is also grossly incorrect. MOND was designed to
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Figure 6 Inferred mass-to-light ratios for the UMa spirals (Sanders & Verheijen)
in the B-band (top) and the K′-band (bottom) plotted against blue-visual (B-V) color
index. The solid lines show predictions from population synthesis models by Bell &
de Jong (2001).

produce asymptotically flat rotation curves with a given mass-velocity relation (or
TF law). It was not designed to fit the details of all rotation curves with a single
adjustable parameter—the M/L of the stellar disk (MOND also performs well on
galaxies that are gas dominated and have no adjustable parameter). It was certainly
not designed to provide a reasonable dependence of fitted M/L on color. Indeed,

A
nn

u.
 R

ev
. A

st
ro

. A
st

ro
ph

ys
. 2

00
2.

40
:2

63
-3

17
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 R

ut
ge

rs
 U

ni
ve

rs
ity

 L
ib

ra
ri

es
 o

n 
01

/2
8/

08
. F

or
 p

er
so

na
l u

se
 o

nl
y.



25 Jul 2002 19:29 AR AR166-AA40-08.tex AR166-AA40-08.SGM LaTeX2e(2002/01/18)P1: GJC

284 SANDERS ¥ McGAUGH

none of the rotation curves listed in Table 1 were available in 1983; designing a
theory to fit data that are not yet taken is called “prediction.”

However, MOND is particularly vulnerable to falsification by rotation-curve
data. Although there are problems, mentioned above, in the measurement and
interpretation of velocity field and photometric data, MOND should not “fail” too
often; especially damaging would be a systematic failure for a particular class of
objects. In this regard Lake (1989) has claimed that the value ofao required to
fit rotation curves varies with the maximum rotation velocity of the galaxy in the
sense that objects with lower rotation velocities (and therefore lower luminosity
galaxies) require a systematically lower value ofao. He supported this claim by
rotation-curve fits to six dwarf galaxies with low internal accelerations. If this
were true, then it would be quite problematic for MOND, implying at the very
least a modification of Milgrom’s simple formula. Milgrom (1991) responded to
this criticism by pointing out inadequacies in the data used by Lake: uncertainties
in the adopted distances and/or inclinations. Much of the rotation-curve data is
also of lower quality than the larger galaxies considered in the context of MOND.

R.A. Swaters & R.H. Sanders (2002, unpublished manuscript) reconsidered this
issue on the basis of extensive 21-cm line observations of a sample of 35 dwarf
galaxies (Swaters 1999). Whenao is taken as an additional free parameter, the
effect pointed out by Lake is not seen: There is no systematic variation ofao with
the maximum rotation velocity of a galaxy. There is a large scatter in the fittedao,
but this is due to the fact that many dwarf galaxies contain large asymmetries or an
irregular distribution of neutral hydrogen. Moreover, the galaxies in this sample
have large distance uncertainties, the distances in many cases being determined by
group membership. The meanao determined from the entire sample (≈10−8 cm/s2)
is consistent with that implied by the revised Cepheid-based distance scale.

Given the well-known uncertainties in the interpretation of astronomical data,
it is difficult to claim that MOND is falsified on the basis of a single rotation
curve. However, it should generally be possible to identify the cause of failures
(i.e., poor resolution, bars, interactions, warps, etc.). An additional uncertainty is
the precise distance to a galaxy because, as noted above, the estimated internal
acceleration in a galaxy depends upon its assumed distance. For nearby galaxies,
such as those of the Begeman et al. (1991) sample, the distances are certainly
not known to an accuracy of better than 25%. When the MOND rotation curve
is less than a perfect match to the observed curve, it is often possible to adjust
the distance, within reasonable limits (i.e., the distance appears as a second free
parameter). In principle, precise independent distance determinations place more
severe restrictions on this extra degree of freedom and are therefore relevant to
rotation-curve tests of MOND.

There are now four galaxies from the original sample of Begeman et al. (1991)
with Cepheid-based distances. Three of these (NGC 2403, NGC 3198, and NGC
7331) have been observed as part of the HST Key Project on the extragalactic
distance scale (Sakai et al. 2000). For NGC 2403 and NGC 7331 the MOND
rotation curve fits precisely the observed curve at the Cepheid-based distances.
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For NGC 3198 MOND clearly prefers a distance at least 10% smaller than the
Cepheid-based distance of 13.8 Mpc (R. Bottema, J.L.G. Pestan˜a, B. Rothberg,
R.H. Sanders, unpublished manuscript), even with the lower value ofao implied
by the revised distance scale. Given the likely uncertainties in the Cepheid method,
and in the conversion of a 21-cm line velocity field to a rotation curve, this cannot
be interpreted as problematic for MOND.

A more difficult case is presented by NGC 2841, a large spiral galaxy with a
Hubble distance of about 10 Mpc (Begeman et al. 1991). The rotation curve of
the galaxy cannot be fit using MOND if the distance is only 10 Mpc; MOND, as
well as the TF law, prefers a distance of 19 Mpc (Begeman et al. 1991, Sanders
1996). A Cepheid distance to this galaxy has been determined (Macri et al. 2001)
at 14.1± 1.5 Mpc. At a distance of 15.6 Mpc the MOND rotation curve of the
galaxy still systematically deviates from the observed curve, and the implied M/L
is 8.5; thus, this galaxy remains the most difficult case for MOND. It is nonetheless
interesting that the Cepheid-calibrated T-F relation (Sakai et al. 2001) implies a
distance of about 23 Mpc for NGC 2841, and supernova 1999 by, if a normal type
Ia, would imply a distance of 24 Mpc.

Overall, the ability of MOND, as an ad hoc algorithm, to predict galaxy rotation
curves with only one free parameter (the M/L of the visible disk) is striking. This
implies that galaxy rotation curves are entirely determined by the distribution of
observable matter. Regardless of whether or not MOND is correct as a theory,
it does constitute an observed phenomenology that demands explanation. Herein
lies a real conundrum for the dark matter picture. The natural expectations of
dark matter theories for rotation curves do not look like MOND, and hence fail to
reproduce a whole set of essential observational facts. The best a dark matter theory
can hope to do is contrive to look like MOND and hence reproduce a posteriori
the many phenomena that MOND successfully predicts. This gives one genuine
pause to consider how science is supposed to proceed.

PRESSURE-SUPPORTED SYSTEMS

General Properties

Figure 7 is a log-log plot of the velocity dispersion versus size for pressure-
supported, nearly isothermal astronomical systems. At the bottom left the star-
shaped points are globular clusters (Pryor & Meylen 1993, Trager et al. 1993) and
the solid points are giant molecular clouds in the Galaxy (Solomon et al. 1987).
The group of points (crosses) near the center are high–surface brightness elliptical
galaxies (Jørgensen et al. 1995a,b, Jørgensen 1999). At the upper right the squares
indicate X-ray-emitting clusters of galaxies from the compilation by White et al.
(1997). The triangle-shaped points are the dwarf spheroidal systems surrounding
the Milky Way (Mateo 1998), and the dashes are compact dwarf ellipticals (Bender
et al. 1992). The plotted parameters are taken directly from the relevant observa-
tional papers. The measure of size is not homogeneous: For ellipticals and globular
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Figure 7 The line-of-sight velocity dispersion vs. characteristic radius for pressure-
supported astronomical systems. The star-shaped points are globular clusters (Pryor & Meylen
1993, Trager et al. 1993), the points are massive molecular clouds in the Galaxy (Solomon
et al. 1987), the triangles are the dwarf spheroidal satellites of the Galaxy (Mateo 1998), the
dashes are compact elliptical galaxies (Bender et al. 1992), the crosses are massive ellipti-
cal galaxies (Jørgensen et al. 1995a,b; Jørgensen 1999), and the squares are X-ray-emitting
clusters of galaxies (White et al. 1997). The solid line shows the relationσ 2

l /r =ao, and the
dashed lines a factor of 5 variation about this relation.

clusters it is the well-known effective radius; for the X-ray clusters it is an X-ray
intensity isophotal radius; and for the molecular clouds it is an isophotal radius of
CO emission. The velocity dispersion refers to the central velocity dispersion for
ellipticals and globulars; for the clusters it is the thermal velocity dispersion of the
hot gas; for the molecular clouds it is just the typical line width of the CO emission.

The parallel lines represent fixed internal accelerations. The solid line corre-
sponds toσ 2

l /r = 10−8 cm/s2, and the parallel dashed lines to accelerations five
times larger or smaller than this particular value. It is clear from this diagram that
the internal accelerations in most of these systems are within a factor of a fewao.
This also implies that the surface densities in these systems are near the MOND
surface density6m.

A
nn

u.
 R

ev
. A

st
ro

. A
st

ro
ph

ys
. 2

00
2.

40
:2

63
-3

17
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 R

ut
ge

rs
 U

ni
ve

rs
ity

 L
ib

ra
ri

es
 o

n 
01

/2
8/

08
. F

or
 p

er
so

na
l u

se
 o

nl
y.



25 Jul 2002 19:29 AR AR166-AA40-08.tex AR166-AA40-08.SGM LaTeX2e(2002/01/18)P1: GJC

MODIFIED NEWTONIAN DYNAMICS 287

It is easy to over-interpret such a log-log plot containing different classes of
objects covering many orders of magnitude in each coordinate. We do not wish to
claim a velocity–dispersion size correlation, although such a relationship has been
previously noticed for individual classes of objects—in particular, for molecular
clouds (Solomon et al. 1987) and clusters of galaxies (Mohr & Evrard 1997).
Probable pressure-supported systems such as super-clusters of galaxies (Eisenstein
et al. 1996) and Lyα forest clouds (Schaye 2001) are clearly not on this relation,
but there are low-density solutions for MOND isothermal objects (Milgrom 1984)
that have internal accelerations far belowao.

It has been noted above that, with MOND, if certain very general conditions
are met, self-gravitating, pressure-supported systems would be expected to have
internal accelerations comparable to or less thanao. The essential condition is
that these objects should be approximately isothermal. It is not at all evident how
Newtonian theory with dark matter can account for the fact that these different
classes of astronomical objects, covering a large range in size and located in very
different environments, all appear to have comparable internal accelerations. In the
context of MOND the location of an object in this diagram, above or below the
σ 2

l /r =ao line, is an indicator of the internal dynamics and the extent to which
these dynamics deviate from Newtonian theory.

Now we consider individual classes of objects on Figure 7.

Luminous Elliptical Galaxies

Systems above the solid line in Figure 7, e.g., the luminous elliptical galaxies,
are high–surface brightness objects and, in the context of MOND, would not be
expected to show a large mass discrepancy within the bright optical object. In
other words, if interpreted in terms of Newtonian dynamics, these objects should
not exhibit much need for dark matter within an effective radius; this is indicated
by analysis of the stellar kinematics in several individual galaxies (e.g., Saglia
et al. 1992). MOND isotropic, isothermal spheres have a lower mean internal
acceleration withinre (about one-quarterao); i.e., these theoretical objects lie
significantly below the solid line in Figure 7. This was noted by Sanders (2000),
who pointed out that, to be consistent with their observed distribution in ther− σ l

plane, elliptical galaxies cannot be represented by MOND isothermal spheres;
these objects must deviate both from being perfectly isothermal (in the sense that
the velocity dispersion decreases outward) and from perfect isotropy of the velocity
distribution (in the sense that stellar orbits become radial in the outer regions).

The general properties of ellipticals can be matched by representing these ob-
jects as high-order, anisotropic polytropic spheres; i.e., objects having a radial
velocity dispersion-density relation of the form

σ 2
r = Aρ1/n, (12)

where A is a constant depending upon n, the polytropic index. In these models the
deviation from isotropy toward more radial orbits appears beyond an anisotropy
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radius,ra. To reproduce the distribution of ellipticals in there− σ l plane, it must
be the case that 12≤ n≤ 16 and thatra> re (i.e., the radial orbit anisotropy does
not extend within an effective radius). However, the strict homology of models is
broken and the mass-velocity relation given above for isotropic, isothermal spheres
(Equation 8) is replaced by a more general relation of the form

σ 4
l = q(6/6m) GaoM. (13)

That is to say, for these mixed Newtonian-MOND objects, the mean surface density
enters as an additional parameter; actual elliptical galaxies would comprise a two-
parameter family and not a one-parameter family, as suggested by the simple
MOND M− σ l relation for a homologous class of objects.

This is consistent with the fact that elliptical galaxies do seem to comprise a two-
parameter family, as indicated by the small scatter about the “fundamental plane”—
a relation between the luminosity, effective radius, and central line-of-sight velocity
dispersion of the formL ∝ σ ar b

e , wherea≈ 1.5 andb≈ 0.8 (Dressler et al. 1987,
Djorgovsky & Davis 1987). This has generally been attributed to the traditional
virial theorem combined with a systematic dependence of M/L upon luminosity
(e.g., van Albada et al. 1995). With MOND high-order polytropes are Newtonian in
the inner region and MONDian beyond an effective radius. MOND imposes bound-
ary conditions upon the inner Newtonian solution that restrict these solutions to a
dynamical fundamental plane, i.e.,M∝ σαr γe , where the exponents may differ from
the Newtonian expectations. The breaking of homology leads to a considerable
dispersion in theM− σ relation owing to a factor of 10 dispersion inq in Equation
13. This is shown in Figure 8a, which is theM− σ relation for the anisotropic
polytropes covering the required range inn andra. A least-square fit yields

M/(1011M�) = 2× 10−8[σd(km/s)]3.47, (14)

whereσ d is the velocity dispersion measured within a circular aperture of fixed
linear size as defined by Jørgensen et al. (1995a). The fact thatq in Equation 13 is
a well-defined function of mean surface brightness (roughly a power-law) results
in a tighter fundamental plane relation (Figure 8b) of the form

M/(1011M�) = 3× 10−5[σd(km s−1)]1.76[re(kpc)]0.98 (15)

(see Figure 8b). With M/L∝M0.17, the fundamental plane in its observed form is
reproduced.

The existence of a fundamental plane, in itself, is not a critical test for MOND
because Newtonian theory also predicts such a relation via the virial theorem.
However, for MOND a single relation of the form of Equation 15 applies for range
of nonhomologous models; this is due to the underlying dynamics and not to the
details of galaxy formation or subsequent dynamical evolution. A curious aspect of
the Newtonian basis for the fundamental plane is the small scatter in the observed
relation given the likely deviations from homology—particularly considering a dy-
namical history that presumably involves multiple mergers. Moreover, Newtonian
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Figure 8 (a) The mass-velocity dispersion relation for an ensemble of anisotropic
polytropes covering the range necessary to produce the observed properties of elliptical
galaxies. Mass is in units of 1011 M� and velocity in kilometers/second. (b) The result
of entering a third parameter; i.e., this is the best-fitting fundamental plane relation.
log(σ d)+ γ ′ log(re) is plotted against log(M) andγ ′ is chosen to give the lowest scatter
(re is in kiloparsecs). The resulting slope is about 1.76 withγ ′ = 0.56. From Sanders
(2000).

theory offers no explanation for the existence of a mass-velocity dispersion re-
lation (even one with large scatter). As noted above, in the context of MOND,
a near-isothermal object with a velocity dispersion of a few hundred km/s will
always have a galactic mass.

The compact dwarf ellipticals (the dashes in Figure 7) have internal accel-
erations considerably greater thanao and a mean surface brightness larger than
6m. In the context of MOND this can only be understood if these objects deviate
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considerably from isothermality. If approximated by polytropic spheres, these ob-
jects would have a polytropic index,n, less than about 10 (forn≤ 5 Newtonian
polytropes no longer have infinite extent and are not necessarily MONDian ob-
jects; thus, there are no restrictions upon the internal accelerations or mean surface
densities). This leads to a prediction: For such high surface brightness objects the
line-of-sight stellar velocity dispersion should fall more dramatically with pro-
jected radius than in those systems with〈6〉≈6m. We might also expect the
compact dwarfs not to lie on the fundamental plane as defined by the lower surface
brightness ellipticals.

Dwarf Spheroidal Systems

With MOND, systems that lie below the solid line in Figure 7, i.e., those systems
with low internal accelerations, would be expected to exhibit larger discrepancies.
This is particularly true of the dwarf spheroidal systems with internal accelerations
ranging down to 0.1ao. On the basis of the low surface brightness of these systems
Milgrom (1983b) predicted that, when velocity dispersion data became available
for the stellar component, these systems should have a dynamical mass 10 or more
times larger than that accounted for by the stars. These kinematic data are now
available, and, indeed, these systems, when considered in the context of Newtonian
dynamics, require a significant dark matter content, as is indicated by M/L values
in the range of 10–100 (Mateo 1998).

For a spherically symmetric, isolated, low-density object that is deep in the
MOND regime, a general mass estimator is given by

M = 81

4

σ 4

Gao
, (16)

whereσ is the line-of-sight velocity dispersion (Gerhard & Spergel 1992, Milgrom
1994b). However, in estimating the dynamical mass of dwarf spheroidals with
MOND, one must consider the fact that these objects are near the Galaxy, and the
external field effect may be important. A measure of the degree of isolation of such
an object would be given by

η = 3σ 2
/

2rc

V2∞
/

R
≈ gi

ge
, (17)

whererc is the core radius,V∞ is the asymptotic rotation velocity of the Galaxy
(≈200 km/s), andR is the galactocentric distance of the dwarf. Forη<1 the dwarf
spheroidal is dominated by the Galactic acceleration field, and the external field
effect must be taken into account. In this case the dynamical mass is simply given
by the Newtonian estimate with the effective constant of gravity multiplied by
ao/ge. In the opposite limit the MOND mass estimator for a system deep in the
MOND limit is given by Equation 16.

Gerhard & Spergel (1992) and Gerhard (1994) have argued that MOND M/L
values for dwarf spheroidals, based upon these estimators, have a very large range,
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with, for example, Fornax requiring a global M/L between 0.2 and 0.3, whereas
the UMi dwarf requires M/L≈ 10–13; that is to say, although some implied M/L
values are unrealistically low, in other cases MOND still seems to require dark
matter. Milgrom (1995) has responded to this criticism by pointing out that the
kinematic data on dwarf spheroidals is very much in a state of flux and when more
recent values forσ are used along with the realistic error estimates, the MOND
M/L values for the dwarf spheroidals span a very reasonable range—on the order
of one to three. Velocity dispersion data on dwarf spheroidals compiled by Mateo
(1998) yield the MOND M/L values shown in Figure 9. In addition, MOND
seems to fit the radial variation of velocity dispersion with a plausible amount of
anisotropy (comparable to or less than required by dark matter) in the cases for
which such data are available (Lokas 2001). It is clear that, for this class of objects,
improved data gives MOND estimates for M/L values that are generally consistent
with that expected for standard stellar populations.

Globular Clusters and Molecular Clouds

The globular clusters in Figure 7 generally lie well above the solid line; i.e., the
internal accelerations are in excess ofao. This implies that these systems should
show no significant mass discrepancy within the half-light radius, as seems to
be implied by the very reasonable M/L values based upon Newtonian dynamics.
For a set of 56 globular clusters tabulated by Pryor & Meylan (1993) the mean
Newtonian M/LV is 2.4± 1. There are several cases of globular clusters with very
low internal accelerations (for example NGC 6366 havinggi/ao≈ 0.07), but these
are generally cases in which the external Galactic field dominates (i.e., this object
is only 4 kpc from the Galactic Center andge> ao). Periodic tidal shocks may also
affect the internal dynamics of the systems and result in larger core radii than if
the systems were completely isolated.

The massive molecular clouds in the Galaxy are a unique class of objects to
be considered in this context, in the sense that they are not generally included
in discussions of the dark matter problem or global scaling relations. However,
we see from Figure 7 that the internal accelerations within these objects are also
roughly comparable toao—a fact that emerged from the empirically discovered
size-line width relation for molecular clouds in the Galaxy (Solomon et al. 1987).
Milgrom (1989b) noticed that this also implies that the surface density of molecular
clouds is comparable to6m—a property too striking to be entirely coincidental.
The suggested explanation is that molecular clouds withgi> ao≈ ge expand via
classical internal two-body evaporation untilgi ≈ ao, at which point they encounter
a barrier to further evaporation; this can be seen as a consequence of the fact that an
isolated system in MOND is always bound. If, alternatively,gi� ao≈ ge, then there
is no barrier to tidal disruption in the Galaxy. Thereby,ao emerges as a preferred
internal acceleration for molecular clouds. Regions in a galaxy wherege> ao

would, as an additional consequence, lack massive molecular clouds (as in the
inner 3 kpc of the Galaxy apart from the exceptional Galactic Center clouds). The
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Figure 9 The MOND mass-to-light ratio for dwarf spheroidal satellites of the Galaxy as
a function ofη, the ratio of the internal to external acceleration. This is the parameter that
quantifies the influence of the Galactic acceleration field (the external field effect); when
η<1 the object is dominated by the external field.
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fact that the molecular clouds lie somewhat below the solid line in Figure 7 would
also suggest that, viewed in the context of Newtonian dynamics, there should be a
dark matter problem for molecular clouds; that is, the classical dynamically inferred
mass should be somewhat larger than the mass derived by counting molecules.

Solomon et al. (1987) noted that combining the size–line width relation with
the Newtonian virial theorem and an empirical mass-CO luminosity relation for
molecular clouds results in a luminosity–line width relation that is analogous to
the Faber-Jackson relation for ellipticals. Viewed in terms of MOND, the cor-
responding mass-velocity dispersion relation is not just analogous: It is the low
mass extrapolation of the same relation that applies to all pressure-supported,
nearly isothermal systems up to and including clusters of galaxies. If one applies
Equation 8 to objects with a velocity dispersion of 4 or 5 km/s (typical of giant
molecular clouds), then one deduces a mass of a few times 105 M�. No explana-
tion of global scaling relations for extragalactic objects in terms of dark matter can
accommodate the extension of the relation to such subgalactic objects.

Small Groups of Galaxies

We include small galaxy groups in this section on pressure-supported systems even
though this is more properly a small n-body problem. Proceeding from individual
galaxies, the next rung on the ladder is binary galaxies, but it is difficult to extract
meaningful dynamical information about these systems, primarily because of high
contamination by false pairs. The situation improves for small groups because
of more secure identification with an increasing number of members. Although
uncertainties in the mass determination of individual groups remains large, either
in the context of Newtonian dynamics or MOND, it is likely that statistical values
deduced for selected samples of groups may be representative of the dynamics.

This problem has been considered by Milgrom (1998), who looked primarily
at a catalogue of groups by Tucker et al. (1998) taken from the Las Campanas
Redshift Survey. The median orbital acceleration of galaxies in this sample of
groups is on the order of a few percent ofao, so these systems are in the deep
MOND regime. Milgrom therefore applied the MOND mass estimator relevant to
this limit (Equation 16) and found that median M/L values are reduced from about
100 based on Newtonian dynamics to around 3 with MOND. Given the remaining
large uncertainties owing to group identification and unknown geometry, these
results are consistent with no dark matter in groups when considered in terms of
MOND.

Rich Clusters of Galaxies

Clusters of galaxies lie below theσ 2
l /r =ao line in Figure 7; thus, these objects

would be expected to exhibit significant discrepancies. That this is the case has
been known for 70 years (Zwicky 1933), although the subsequent discovery of
hot X-ray-emitting gas goes some way toward alleviating the original discrepancy.
For an isothermal sphere of hot gas at temperature T, the Newtonian dynamical
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Figure 10 (Left) the Newtonian dynamical mass of clusters of galaxies within an observed
cutoff radius (rout) vs. the total observable mass in 93 X-ray-emitting clusters of galaxies
(White et al. 1997). The solid line corresponds toMdyn=Mobs (no discrepancy). (Right) the
MOND dynamical mass withinrout vs. the total observable mass for the same X-ray-emitting
clusters. From Sanders (1999).

mass within radiusro, calculated from the equation of hydrostatic equilibrium, is

Mn = ro

G

kT

m

(
d ln(ρ)

d ln(r )

)
, (18)

wherem is the mean atomic mass and the logarithmic density gradient is evaluated
at ro. For the X-ray clusters tabulated by White et al. (1997), this Newtonian
dynamical mass plotted against the observable mass, primarily in hot gas, is shown
in Figure 10 (Sanders 1999), in which we see that the dynamical mass is typically
about a factor of 4 or 5 larger than the observed mass in hot gas and in the stellar
content of the galaxies. This rather modest discrepancy viewed in terms of dark
matter has led to the so-called baryon catastrophe: not enough nonbaryonic dark
matter in the context of standard CDM cosmology (White et al. 1993).

With MOND, the dynamical mass [assuming an isothermal gas (Equation 8)]
is given by

Mm = (Gao)−1

(
kT

m

)2(d ln(ρ)

d ln(r )

)2

, (19)

and this is also shown in Figure 10, again plotted against the observable mass. The
larger scatter is due to the fact that the temperature and the logarithmic density
gradient enter quadratically in the MOND mass determination. Here we see that,
using the same value ofao determined from nearby galaxy rotation curves, the
discrepancy is on average reduced to about a factor of 2. The fact that MOND
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predicts more mass than is seen in clusters has been pointed out previously in the
specific example of the Coma cluster (The & White 1988) and for three clusters
with measured temperature gradients for which the problem is most evident in the
central regions (Aguirre et al. 2001).

The presence of a central discrepancy is also suggested by strong gravitational
lensing in clusters, i.e., the formation of multiple images of background sources
in the central regions of some clusters (Sanders 1999). The critical surface density
required for strong lensing is

6c = 1

4π

cHo

G
F(zl , zs), (20)

whereF is a dimensionless function of the lens and source redshifts that depends
upon the cosmological model (Blandford & Narayan 1992); typically for clusters
and background sources at cosmological distancesF ≈10 (assuming that a MOND
cosmology is reasonably standard). It is then evident that6c>6m, which means
that strong gravitational lensing always occurs in the Newtonian regime. MOND
cannot help with any discrepancy detected by strong gravitational lensing. Because
strong gravitational lensing in clusters typically indicates a projected mass within
200–300 kpc between 1013and 1014M�, which is not evidently present in the form
of hot gas and luminous stars, it is clear that there is a missing mass problem in
the central regions of clusters that cannot be repaired by MOND. This remaining
discrepancy could be interpreted as a failure, or one could say that MOND predicts
that the baryonic mass budget of clusters is not yet complete and that there is more
mass to be detected (Sanders 1999). It would have certainly been devastating for
MOND had the predicted mass turned out to be typically less than the observed
mass in hot gas and stars; this would be a definitive falsification.

There is an additional important aspect of clusters of galaxies regarding global
scaling relations. As pressure-supported, near-isothermal objects, clusters should
lie roughly upon the sameM− σ relation defined by the elliptical galaxies. That
this is the case was first pointed out by Sanders (1994), using X-ray observations
of about 16 clusters that apparently lie upon the extension of the Faber-Jackson
relation for elliptical galaxies. From Equation 8 we find that an object having a
line-of-sight velocity dispersion of 1000 km/s would have a dynamical mass of
about 0.5× 1014 M�, which is comparable to the baryonic mass of a rich cluster
of galaxies. The fact that the Faber-Jackson relation—albeit with considerable
scatter—extends from molecular clouds to massive clusters of galaxies finds a
natural explanation in terms of MOND.

Super-Clusters and Lyα Forest Clouds

The largest coherent astronomical objects with the lowest internal accelerations
are super-clusters of galaxies, as exemplified by the Perseus-Pisces filament. If one
assumes that this object is virialized in a direction perpendicular to the long axis
of the filament, then a linear mass density (µo) for the filament may be calculated
following the arguments given by Eisenstein et al. (1996); by approximating the
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filament as an infinitely long, axisymmetric, isothermal cylinder, one finds

µo = 2σ 2

G
. (21)

Applying this relation to Perseus-Pisces, these authors estimated a global M/L in
the super-cluster of 450 h—indicating a serious mass discrepancy.

Milgrom (1997b) has generalized the arguments of Eisenstein et al. and found
that a relation similar to Equation 21 holds even if one drops the assumptions of
axial symmetry and isothermality. He then derived a MOND estimator for the line
density of a filament:

µo = Q

〈
σ 2
⊥
〉2

aoGrh
, (22)

whereσ⊥ is the velocity dispersion perpendicular to the filament axis,rh is the half
mass radius, and Q (≈2) depends upon the velocity anisotropy factor. Applying
this expression to Perseus-Pisces, Milgrom found an M/L value on the order of
10; once again the MOND M/L seems to require little or no dark matter, even on
this very large scale. This is significant because the internal acceleration in this
object is on the order of 0.03ao, which suggests that the MOND formula applies,
at least approximately, down to this very low acceleration.

The diffuse intergalactic clouds resulting in the Lyα forest absorption lines in the
spectra of distant quasars are also apparently objects with internal acceleration very
much lower thanao. These have been considered as self-gravitating objects both in
the context of dark matter (Rees 1986) and MOND (Milgrom 1988). There is now
evidence that the sizes of individual absorbers may be as large as 100 kpc, as indi-
cated by observations of gravitationally lensed quasars and quasar pairs (Schaye
2001). Given that the widths of the absorption lines are on the order of 10 km/s,
then the internal accelerations within these systems may be as small as 3× 10−4 ao.
Schaye (2001) has argued that the characteristic sizes of the Lyα clouds are most
likely to be comparable to the Jeans length. In the context of MOND this would be

λJ =
(

σ 4

Gao6

) 1
2

, (23)

where6 is the mean surface density. Because the fractional ionization is likely to
be very high (6 is dominated by protons), one finds that this characteristic size,
in terms of MOND should be more on the order of 10 kpc, in contradiction to
observations of common lines in quasar pairs. On this basis, Aguirre et al. (2001)
have argued that the observed large sizes of the absorbers, perpendicular to the
line of sight, are inconsistent with the predictions of MOND.

However, these authors noted that the external field effect provides a possi-
ble escape. The implied internal accelerations of the clouds, if they are roughly
spherical with sizes of 100 kpc, are likely to be much smaller than the external
acceleration field resulting from large-scale structure, which, as we saw above, is
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on the order of several percentao. In this case the Jean’s length is given by the
traditional Newtonian formula with an effective constant of gravity, which may
be 20 or 30 times larger than G, and the sizes can be consistent with the large
observed extent.

THE PHYSICAL BASIS OF MOND

The Bekenstein-Milgrom Theory

In spite of its empirical success, MOND remains a largely ad hoc modification of
Newtonian gravity or dynamics without connection to a more familiar theoretical
framework. This is, at present, the essential weakness of the idea. The original
algorithm (Equation 2 or 3) cannot be considered as a theory but as a successful
phenomenological scheme for which an underlying theory is necessary. If one
attempts to apply Milgrom’s original prescription (either as a modification of
gravity or inertia) to an N-body system, then immediate physical problems arise,
such as nonconservation of linear momentum (Felten 1984).

Bekenstein & Milgrom (1984) recognized this and proposed a nonrelativistic
Lagrangian-based theory of MOND as a modification of Newtonian gravity. Given
a scalar potentialφ, the dynamics of the theory is contained in field action

Sf = −
∫

d3r

[
ρφ + (8πG)−1a2

o F

(∇φ2

a2
o

)]
. (24)

The particle action takes its standard form. The field equation derived, as usual,
under the assumption of stationary action is

∇ ·
[
µ

( |∇φ|
ao

)
∇φ

]
= 4πGρ, (25)

where the functionµ(x)= dF/dx2 must have the asymptotic behavior required
in the simple MOND prescription; i.e.,F(x2)= (x2)3/2 in the MOND limit (x� 1)
andF(x2)= x2 in the Newtonian limit. The equation of motion for a particle assumes
its usual Newtonian form.

Because of the symmetry of the Lagrangian density to space-time translations
(and to space rotations), the theory respects the laws of conservation of energy
and (angular) momentum. Moreover, Bekenstein & Milgrom demonstrated that,
in the context of this theory, the motion of a compound object (e.g., a star or star
cluster in the Galaxy) in an external field is independent of its internal structure
(or internal accelerations) and may be described in terms of its center-of-mass
accelerations; i.e., objects like stars with Newtonian internal accelerations behave
like billiard balls in the external field, even in the MOND limit. However, the
external acceleration field does affect the internal dynamics of such a subsystem
in just the way proposed by Milgrom—the external field effect.

In addition to enjoying the properties of consistency and conservation, this
modified Poisson equation has an interesting symmetry property. It is well known
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that the usual Poisson equation is conformally invariant in two spatial dimensions.
Conformal transformations comprise a set of angle-preserving coordinate trans-
formations that represent, in effect, a position-dependent transformation of units of
length. Many of the well-known equations of physics (e.g., Maxwell’s equations)
are invariant under transformations of this form. Milgrom (1997a) discovered that
there is a nonlinear generalization of the Poisson equation that is conformally
invariant in D spatial dimensions in the presence of a sourceρ. This is of the form

∇ · {[(∇φ)2]D/2− 1∇φ} = αDGρ. (26)

When D= 2 Equation 26 becomes the usual Poisson equation, but when D= 3
the equation takes the form that is exactly required for MOND phenomenology.
In other words, the Bekenstein-Milgrom field equation in the MOND limit is
conformally invariant in three spatial dimensions. The full significance of this
result is unclear, but it should be recalled that much of modern physics rests upon
just such symmetry principles.

The Bekenstein-Milgrom theory is a significant step beyond Milgrom’s original
prescription. Even though the theory is noncovariant, it demonstrates that MOND
can be placed upon a solid theoretical basis and that MOND phenomenology is
not necessarily in contradiction with cherished physical principles. Although this
is its essential significance, the theory also permits a more rigorous consideration
of specific aspects of MOND phenomenology relating to N-body systems—such
as the external field effect.

It is, in general, difficult to solve this nonlinear equation except in cases of high
symmetry in which the solution reduces to that given by the simple algorithm.
Brada & Milgrom (1995) have derived analytic solutions for Kuzmin disks and
of their disk-plus-bulge generalizations. The solution can be obtained in the form
of a simple algebraic relation between the Bekenstein-Milgrom solution and the
Newtonian field of the same mass distribution, and this relation can be extended to
a wider class of disk configurations (e.g., exponential disks) where it holds approx-
imately. From this work, it is evident that the simple MOND relation (Equation 3)
gives a radial force distribution in a thin disk, which is generally within 10% of
that determined by the Bekenstein-Milgrom field equation.

Brada (1997) has developed a numerical method of solution for N-body prob-
lems based upon a multigrid technique, and Brada & Milgrom (1999b) used this
method to consider the important problem of stability of disk galaxies. They
demonstrated that MOND, as anticipated (Milgrom 1989a), has an effect simi-
lar to a dark halo in stabilizing a rotationally supported disk against bar-forming
modes. However, there is also a significant difference (also anticipated by Milgrom
1989a). In a comparison of MOND and Newtonian truncated exponential disks
with identical rotation curves (the extra force in the Newtonian case being provided
by a rigid dark halo), Brada & Milgrom found that, as the mean surface density
of the disk decreases (the disk sinks deeper into the MOND regime), the growth
rate of the bar-forming m= 2 mode decreases similarly in the two cases. However,
in the limit of very low surface densities the MOND growth rate saturates while
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Figure 11 The scaled growth rate of the m= 2 instability in Newtonian disks with
dark matter (dashed line) and MONDian disks as a function of disk mass. In the
MOND case as the disk mass decreases, the surface density decreases and the disk
sinks deeper into the MOND regime. In the equivalent Newtonian case, the rotation
curve is maintained at the MOND level by supplementing the force with an inert dark
halo. From Brada & Milgrom 1999b.

the Newtonian growth rate continues to decrease as the halo becomes more dom-
inant. This effect, shown in Figure 11, may provide an important observational
test: With MOND, LSB galaxies remain marginally unstable to bar- and spiral-
forming modes, whereas in the dark matter case, halo-dominated LSB disks
become totally stable. Observed LSB galaxies do have bars and m= 2 spirals
(McGaugh et al. 1995a). In the context of dark matter, these signatures of self-
gravity are difficult to understand in galaxies that are totally halo-dominated (Mihos
et al. 1997).

The Brada method has also been applied to calculating various consequences of
the external field effect, such as the influence of a satellite in producing a warp in the
plane of a parent galaxy (Brada & Milgrom 2000a). The idea is that MOND, via
the external field effect, offers a mechanism other than the relatively weak effect of
tides in inducing and maintaining warps. As noted above, the external field effect is
a nonlinear aspect of MOND, subsumed by the Bekenstein-Milgrom field equation;
unlike Newtonian theory, even a constant external acceleration field influences the
internal dynamics of a system. Brada & Milgrom (2000a) demonstrated that a
satellite at the position and with the mass of the Magellanic clouds can produce a
warp in the plane of the Galaxy with about the right amplitude and form.
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The response of dwarf satellite galaxies to the acceleration field of a large parent
galaxy has also been considered (Brada & Milgrom 2000b). It was found that the
satellites become more vulnerable to tidal disruption because of the expansion
induced by the external field effect as they approach the parent galaxy (the effective
constant of gravity decreases toward its Newtonian value). The distribution of
satellite orbits is therefore expected to differ from the case of Newtonian gravity
plus dark matter, although it is difficult to make definitive predictions because of
the unknown initial distribution of orbital parameters.

Although the Bekenstein-Milgrom theory is an important development for all
the reasons outlined above, it must be emphasized that it remains, at best, only a
clue to the underlying theoretical basis of MOND. The physical basis of MOND
may lie completely in another direction—as modified Newtonian inertia rather than
gravity. However, a major advantage of the theory is that it lends itself immediately
to a covariant generalization as a nonlinear scalar-tensor theory of gravity.

Modified Newtonian Dynamics as a Modification
of General Relativity

As noted above, the near coincidence ofao with cHo suggests that MOND may
reflect the influence of cosmology upon particle dynamics or 1/r2 attraction. How-
ever, in the context of general relativity there is no such influence of this order,
with or without the maximum permissible cosmological term—a fact that may be
deduced from the Birkhoff theorem (Nordtvedt & Will 1972). Therefore, general
relativity, in a cosmological context, cannot be the effective theory of MOND,
although the theory underlying MOND must effectively reduce to general rela-
tivity in the limit of high accelerations [see Will (2001) for current experimental
constraints on strong field deviations from general relativity].

The first suggested candidate theory (Bekenstein & Milgrom 1984) is an un-
conventional scalar-tensor theory that is a covariant extension of the nonrelativistic
Bekenstein-Milgrom theory. Here the Lagrangian for the scalar field is given by

Ls = a2
o

c4
F

[
φ,αφ

,αc4

a2
o

]
, (27)

where F(X) is an arbitrary positive function of its dimensionless argument. This
scalar field, as usual, interacts with matter jointly withgµν via a conformal trans-
formation of the metric, i.e., the form of the interaction Lagrangian is taken to be

L I = L I [ξ (φ2)gµν . . .], (28)

whereξ is a function of the scalar field (this form preserves weak equivalence
where particles follow geodesics of a physical metricĝµν = ξ (φ2)gµν). The scalar
field action (

∫
Ls
√−gd4x) is combined with the usual Einstein-Hilbert action of

general relativity and the particle action formed fromLI to give the complete theory.
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Thus, the covariant form of the Bekenstein-Milgrom field equation becomes

(µφ,α);α = 4πGT

c4
, (29)

where, again,µ= dF/dX andT is the contracted energy-momentum tensor. The
complete theory includes the Einstein field equation with an additional source term
owing to the contribution of the scalar field to the energy-momentum tensor. Again
we require that F(X) has the asymptotic behaviorF(X)→X

3
2 in the limit where

X� 1 (the MOND limit) andF(X)→ωX in the limit of X� 1. Thus, in the limit
of large field gradients the theory becomes a standard scalar-tensor theory of Brans-
Dicke form (Brans & Dicke 1961); it is necessary thatω� 1000 if the theory is
to be consistent with local solar system and binary pulsar tests of general rela-
tivity (Will 2001). Because of the nonstandard kinetic Lagrangian (Equation 27)
Bekenstein (1988) termed this theory the aquadratic Lagrangian or AQUAL theory.

Bekenstein & Milgrom (1984) immediately noticed a physical problem with
the theory: Small disturbances in the scalar field propagate at a velocity faster than
the speed of light in directions parallel to the field gradient in the MOND regime.
This undesirable property appears to be directly related to the aquadratic form
of the Lagrangian and is inevitably true in any such theory in which the scalar
force decreases less rapidly than 1/r2 in the limit of low field gradient. Clearly,
the avoidance of causality paradoxes, if only in principle, should be a criterion for
physical viability.

The acausal propagation anomaly led Bekenstein (1988a,b) to propose an al-
ternative scalar-tensor theory in which the field is complex

χ = Aeiφ (30)

and the Lagrangian assumes its usual quadratic form

Ls = 1

2
A2φ,αφ

,α + A,αA,α + V(A2), (31)

whereV(A2) is a potential associated with the scalar field. The unique aspect of the
theory is that only the phase couples to matter (jointly withgµν as in Equation 28);
hence, it is designated “phase coupling gravitation” (PCG). The field equation for
the matter coupling field is then found to be

(A2φ,α);α = 4πηG

c4
T, (32)

whereη is a dimensionless parameter describing the strength of the coupling to
matter. Thus, the termA2 plays the role of the MOND functionµ; A2 is also a func-
tion of (∇φ)2, but the relationship is differential instead of algebraic. Bekenstein
noted that ifV(A2)=−kA6 precisely, the phenomenology of MOND is recovered
by the scalar fieldφ (hereao is related to the parameterskandη). Because such a po-
tential implies an unstable vacuum, alternative forms were considered by Sanders
(1988), who demonstrated that phenomenology similar to MOND is predicted as
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long asdV/dA< 0 over some range ofA. Moreover, in a cosmological context
(Sanders 1989) PCG, with the properly chosen bare potential, becomes an effec-
tive MOND theory where the cosmologicalφ̇ plays the role ofao. Romatka (1992)
considered PCG as one of a class of two-scalar plus tensor theories in which the
scalar fields couple in one of their kinetic terms and demonstrated that, in a certain
limit, Bekenstein’s sextic potential theory approaches the original AQUAL theory.
This suggests that PCG may suffer from a similar physical anomaly as AQUAL,
and indeed, Bekenstein (1990) discovered that PCG apparently permits no stable
background solution for the field equations—an illness as serious as that of the
acausal propagation that the theory was invented to cure.

A far more practical problem with AQUAL, PCG, or, in fact, all scalar-tensor
theories in which the scalar field enters as a conformal factor multiplying the
Einstein metric (Equation 28) is the failure to predict gravitational lensing at the
level observed in rich clusters of galaxies (Bekenstein & Sanders 1994). If one
wishes to replace dark matter by a modified theory of gravity of the scalar-tensor
type with the standard coupling to matter, then the scalar field produces no enhanced
deflection of light. The reason for this is easy to understand: In scalar-tensor
theories particles follow geodesics of a physical metric that is conformally related
(as in Equation 28) to the usual Einstein metric. But Maxwell’s equations are
conformally invariant, which means that photons take no notice of the scalar field
(null geodesics of the physical and Einstein metrics coincide). In other words, the
gravitational lensing mass of an astronomical system should be comparable to that
of the detectable mass in stars and gas and thus much less than the traditional virial
mass. This is in sharp contrast to the observations (Fort & Mellier 1994).

A possible cure for this ailment is a nonconformal relation between the physical
and Einstein metrics; that is, in transforming the Einstein metric to the physical
metric, a special direction is picked out for additional squeezing or stretching
(Bekenstein 1992, 1993). To preserve the isotropy of space, this direction is usu-
ally chosen to be time-like in some preferred cosmological frame as in the classical
stratified theories (Ni 1972). In this way one may reproduce the general relativis-
tic relation between the weak-field force on slow particles and the deflection of
light (Sanders 1997). However, the Lorentz invariance of gravitational dynamics
is broken, and observable preferred frame effects—such as a polarization of the
earth-moon orbit (M¨uller et al. 1996)—are inevitable at some level. It is of in-
terest that an aquadratic Lagrangian for the scalar field (similar to Equation 27)
can provide a mechanism for local suppression of these effects; essentially, the
scalar force may be suppressed far below the Einstein-Newton force in the limit
of solar system accelerations. On this basis, one could speculate that cosmology
is described by a preferred frame theory (there is clearly a preferred cosmologi-
cal frame from an observational point of view). Then it may be argued that the
reconciliation of preferred frame cosmology with general relativistic local dynam-
ics (weak local preferred frame effects) requires MOND phenomenology at low
accelerations (Sanders 1997). However, any actual theory is highly contrived at
this point.
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In summary, it is fair to say that, at present, there is no satisfactory covariant
generalization of MOND as a modification of general relativity. But this does
not imply that MOND is wrong any more than the absence of a viable theory of
quantum gravity implies that general relativity is wrong. It is simply a statement
that the theory remains incomplete and that perhaps the tinkering with general
relativity is not the ideal way to proceed.

Modified Newtonian Dynamics as a Modification
of Newtonian Inertia

A different approach has been taken by Milgrom (1994a, 1999), who considers
the possibility that MOND may be viewed as a modification of particle inertia. In
such theories, at a nonrelativistic level, one replaces the standard particle action
(
∫
v2/2dt) by a more complicated object,AmS[r (t), ao], whereAm depends upon

the body and can be identified with the particle mass, andS is a functional of the
particles trajectory,r (t), characterized by the parameterao. This form ensures weak
equivalence. Milgrom (1994a) proved that if such an action is to be Galilei invari-
ant and have the correct limiting behavior (Newtonian asao→ 0 and MONDian
asao→∞), then it must be strongly nonlocal; i.e., the motion of a particle at a
point in space depends upon its entire past trajectory. This nonlocality has certain
advantages in a dynamical theory: For example, because a particle’s motion de-
pends upon an infinite number of time-derivatives of the particle’s position, the
theory does not suffer from the instabilities typical of higher derivative (weakly
nonlocal) theories. Moreover, because of the nonlocality, the acceleration of the
center of mass of a composite body emerges as the relevant factor in determining
its dynamics (Newtonian or MONDian) rather than the acceleration of its indi-
vidual components. Milgrom further demonstrated that, in the context of such
theories, the simple MOND relation (Equation 2) is exact for circular orbits in an
axisymmetric potential (although not for general orbits).

Although these results on the nature of generalized particle actions are of consid-
erable interest, this, as Milgrom stresses, is not yet a theory of MOND as modified
inertia. The near coincidence ofao with cHo suggests that MOND is, in some
sense, an effective theory; that is to say, MOND phenomenology only arises when
the theory is considered in a cosmological background (the same may also be true
if MOND is due to a modified theory of gravity). However, the cosmology does
not necessarily directly affect particle motion; the same agent—a cosmological
constant—may affect both cosmology and dynamics. Suppose, for example, that
inertia results from the interaction of an accelerating particle with the vacuum.
Suppose further that there is a nonzero cosmological constant (which is consistent
with a range of observations). Then because a cosmological constant is an attribute
of the vacuum, we might expect that it has a nontrivial effect upon particle inertia
at accelerations corresponding to≈c

√
3.

The phenomenon of Unruh radiation provides a hint of how this might happen
(Unruh 1975). An observer uniformly accelerating through Minkowski space sees
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a nontrivial manifestation of vacuum fields as a thermal bath at temperature

kT = h̄

2πc
a, (33)

wherea is the acceleration (this is exactly analogous to Hawking radiation, wherea
is identified with the gravitational acceleration at the event horizon). In other words,
an observer can gain information about his state of motion by using a quantum
detector. However, the same observer accelerating through de Sitter space sees a
modified thermal bath now characterized by a temperature

kT3 = h̄

2πc

√
a2+ c23

3
(34)

(Narnhofer et al. 1996, Deser & Levin 1997). The presence of a cosmological
constant changes the accelerating observer’s perception of the vacuum through the
introduction of a new parameter with units of acceleration (c

√
3) and a magnitude

comparable toao. If the observer did not know about the cosmological constant
this would also change his perception of the state of motion.

The Unruh radiation itself is too miniscule to be directly implicated as the field
providing inertia: It may be, in effect, a tracer of the particle’s inertia. Milgrom
(1999) has suggested that inertia may be what drives a noninertial body back
to some nearby inertial state—attempting to reduce the vacuum radiation to its
minimum value. If that were so then the relevant quantity with which to identify
inertia would be1T=T3−T. In that case one could write

2πc

h̄
k1T = aµ(a/ao), (35)

where

µ(x) = [1+ (2x)−2]1/2− (2x)−1 (36)

with ao= 2c(3/3)1/2. Inertia defined in this way would have precisely the two
limiting behaviors of MOND.

Again, this is not a theory of MOND as modified inertia but only a suggestive
line of argument. To proceed further along this line, a theory of inertia derived
from interaction with vacuum fields is necessary—something analogous to in-
duced gravity (Sakharov 1968), in which the curvature of space-time modifies the
behavior of vacuum fields producing an associated action for the metric field. If
this approach is correct, the free action of a particle must be derived from the
interactions with vacuum fields.

Gravitational Lensing and No-Go Theorems

We have noted above that the phenomenon of gravitational lensing places strong
constraints upon scalar-tensor theories of modified dynamics, specifically upon
the relation between the physical metric and the gravitational metric (Bekenstein
& Sanders 1994, Sanders 1997). Here we wish to discuss gravitational lensing in a
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more general sense because it is the only measureable relativistic effect that exists
on the scale of galaxies and clusters and therefore is generally relevant to proposed
modifications of general relativity that may be only effective on this scale. Indeed,
several authors have attempted to formulate no-go theorems for modified gravity
on the basis of the observed gravitational lensing.

The first of these was Walker (1994), who considered general metrics of the
standard Schwarzschild formds2=−B(r )dt2+ A(r )dr2+r 2d�2 with the con-
dition thatA= B−1 andB− 1= 2φ(r), whereφ(r) is a general weak field potential
of the formφ∝ r n. With these assumptions he demonstrated that gravity is actually
repulsive for photons if 0< n< 2—i.e., gravitational lenses would be divergent. He
used this argument to rule out the Mannheim & Kazanas (1989) spherical vacuum
solution for Weyl conformal gravity in whichφ(r) contains such a linear term.
But then Walker went on to consider the mean convergence〈κ〉 and the variance
of the shearσγ in the context ofφ(r)∝ log r which might be relevant to MOND.
Again with the condition thatA=B−1, this form of the potential would imply a
mean convergence of〈κ〉≈107 while the observations constrainκ <1; that is to
say, with such an effective potential the optical properties of the Universe would
be dramatically different than observed.

The second no-go theorem is by Edery (1999) and is even more sweeping.
Basically the claim is that, again assuming a metric in the standard Schwarzschild
form with A=B−1, any potential that yields flat rotation curves (i.e.,φ falls less
rapidly than 1/r) is repulsive for photons even though it may be attractive for
nonrelativistic particles. This was disputed by Bekenstein et al. (2000), who pointed
out that solar system tests do not constrain the form of A and B on galactic scale,
except in the context of a specific gravity theory. An alternative theory may exhibit
AB= 1 to high accuracy on a solar system scale butAB 6= 1 on a galactic scale;
indeed, this is a property of the stratified scalar-tensor theory of Sanders (1997),
which predicts enhanced deflection in extragalactic sources but is also consistent
with solar system gravity tests at present levels of precision.

Walker’s objection would actually seem to be more problematic for MOND;
here the estimate of enormous mean convergence due to galactic lenses is inde-
pendent of the assumption ofAB= 1. This problem has also emerged in a different
guise in the galaxy-galaxy lensing results of Hoekstra et al. (2002). These results
imply that galaxy halos have a maximum extent; if represented by isothermal
spheres, the halos do not extend beyond 470h−1 on average. With MOND the
equivalent halo for an isolated galaxy would be infinite. Walker also noted that
for MOND to be consistent with a low mean convergence, the modified force law
could only extend to several Mpc at most, beyond which there must be a return to
r−2 attraction.

The external field effect provides a likely escape from such objections in the
context of pure (unmodified) MOND. Basically, no galaxy is isolated. For an
L∗ galaxy the acceleration at a radius of 470 kpc is about 0.02ao. This is at the
level of the external accelerations expected from large-scale structure. For lower
accelerations one would expect a return to a 1/r2 law with a larger effective constant
of gravity. For this reason, such objections cannot be considered as a falsification
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of MOND. It might also be that at very low accelerations the attraction really
does return to 1/r2, as speculated by Sanders (1986), although there is not yet a
compelling reason to modify MOND in this extreme low acceleration regime.

MONDian gravitational lensing in a qualitative sense is also considered by
Mortlock & Turner (2001), who after making the reasonable assumption that the
relation between the weak field force and deflection in MOND is the same as in
general relativity (specifically including the factor 2 over the Newtonian deflec-
tion) considered the consequences when the force is calculated from the MOND
equation. The first result of interest is that the thin lens approximation (i.e., the de-
flection in an extended source depends only upon the surface density distribution)
cannot be made with MOND; this means that the deflection depends, in general,
upon the density distribution along the line of sight. They further pointed out that
observations of galaxy-galaxy lensing (taking the galaxies to be point masses) is
consistent with MOND, at least within the truncation noted by Hoekstra et al.
(2002). Mortlock & Turner proposed that a test discriminating between MOND
and dark halos would be provided by azimuthal symmetry of the galaxy-galaxy
lensing signal: MOND would be consistent with such symmetry, whereas halos
would not. They further noted that gravitational microlensing in the context of
MOND would produce a different signature in the light curves of lensed objects
(particularly in the wings) and that this could be observable in cosmological mi-
crolensing (however, this effect may be limited by the external field of the galaxy
containing the microlensing objects).

In general, in extragalactic lenses such as galaxy clusters distribution of shear
in background sources (and hence apparent dark mass distribution) should be cal-
culable from the distribution of observable matter; i.e., there should be a strong
correlation between the visible and, in terms of general relativity, the dark mass
distribution. The theme of correlation between the observable (visible) structure
of a lens and the implied shape of the dark matter distribution was taken up by
Sellwood & Kosowsky (2002), who emphasized that the observed correlation in
position angles between the elongated light distribution and implied mass distribu-
tion; Kochanek (2002) argues strongly in favor of some form of modified gravity.

It is clear from these discussions that gravitational lensing may provide generic
tests of the MOND hypothesis vs. the dark matter hypothesis and that any more
basic theory must produce lensing at a level comparable to that of general relativity
with dark matter. This already strongly constrains the sort of theory that may
underpin MOND.

COSMOLOGY AND THE FORMATION OF STRUCTURE

Considerations of cosmology in the context of MOND might appear to be prema-
ture in the absence of a complete theory. However, there are some very general
statements that can be made about a possible MOND universe independently of
any specific underlying theory. First of all, the success of the hot Big Bang with
respect to predicting the thermal spectrum and isotropy of the cosmic microwave
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background as well as the observed abundances of the light isotopes (e.g., Tytler
et al. 2000) strongly implies that a theory of MOND should preserve the stan-
dard model—at least with respect to the evolution of the early hot Universe. This,
in fact, may be considered as a requirement on an underlying theory. Second, it
would be contrary to the spirit of MOND if there were cosmologically signif-
icant quantities of nonbaryonic CDM (�cdm� 1); i.e., dark matter that clusters
on the scale of galaxies. This is not to say dark matter is nonexistent; the fact
that�V (luminous matter) is substantially less than the�b (baryons) implied by
primordial nucleosynthesis (Fukugita et al. 1998) means that there are certainly
as-yet-undetected baryons. Moreover, particle dark matter also exists in the form
of neutrinos. It is now clear from the detection of neutrino oscillations (Fukuda
et al. 1998) that at least some flavors of neutrinos have mass: The constraints are
.004h−2<�ν < 0.1h−2 (Turner 1999) with the upper limit imposed by the exper-
imental limit on the electron neutrino mass (3 ev). However, it would be entirely
inconsistent with MOND if dark matter, baryonic or nonbaryonic, contributed sub-
stantially to the mass budget of galaxies. Neutrinos near the upper limit of 3 ev
cannot accumulate in galaxies owing to the well-known phase space constraints
(Tremaine & Gunn 1979), but they could collect within and contribute to the mass
budget of rich clusters of galaxies (which would not be inconsistent with MOND,
as noted above). Apart from this possibility it is reasonable to assume that MOND
is most consistent with a purely baryonic universe.

This possibility has been considered by McGaugh (1998), who first pointed
out that, in the absence of CDM, oscillations should exist in the present power
spectrum of large-scale density fluctuations—at least in the linear regime. These
oscillations are the relic of the sound waves frozen into the plasma at the epoch
of recombination and are suppressed in models in which CDM makes a dominant
contribution to the mass density of the Universe (Eisenstein & Hu 1998). McGaugh
(1999b) further considered whether or not a cosmology with�m≈�b≈ 0.02h−2

would be consistent with observations of anisotropies in the cosmic microwave
background, particularly the pattern of acoustic oscillations predicted in the an-
gular power spectrum (e.g., Hu et al. 1997). McGaugh, using the standard CMB-
FAST program (Seljak & Zaldarriaga 1996), pointed out that in a purely baryonic
Universe with vacuum energy density being the dominant constituent the second
acoustic peak would be much reduced with respect to the a priori expectations of
the concordance3CDM model (Ostriker & Steinhardt 1995). The reason for this
low amplitude is Silk damping (Silk 1968) in a low�m, pure baryonic universe—
the shorter wavelength fluctuations are exponentially suppressed by photon dif-
fusion. When the Boomerang and Maxima results first appeared (Hanany et al.
2000, Lange et al. 2001), much of the initial excitement was generated by the
unexpected low amplitude of the second peak. With�total= 1.01 and�m=�b

(no CDM or nonbaryonic matter of any sort), McGaugh (2000) produced a good
match to these initial Boomerang results. A further prediction is that the third
acoustic peak should be even further suppressed. There are indications from the
more complete analysis of Boomerang and Maxima data (Netterfield et al. 2001,
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Lee et al. 2001) that this may not be the case, but the systematic uncertainties
remain large.

The SNIa results on the accelerated expansion of the Universe (Perlmutter et al.
1999) as well as the statistics of gravitational lensing (Falco et al. 1998) seem
to exclude a pure baryonic, vacuum energy–dominated universe, although it is
unclear that all of the systematic effects are well understood. It is also possible that
a MOND cosmology differs from a standard Friedmann cosmology in the low-z
Universe, particularly with regard to the angular size distance–redshift relation. At
this point it remains unclear whether these observations require CDM. It is evident
that such generic cosmological tests for CDM relate directly to the viability of
MOND. Nonetheless, cosmological evidence for dark matter, in the absence of
its direct detection, is still not definitive, particularly considering that a MOND
universe may be non-Friedmannian.

Can we then, in the absence of a theory, reasonably guess what form a MOND
cosmology might take? When a theory is incomplete, the way to proceed is to make
several assumptions (Ans̈atze) in the spirit of the theory as it stands and determine
the consequences. This has been done by Felten (1984) and by Sanders (1998),
who following the example of Newtonian cosmology, considered the dynamics of a
finite expanding sphere. Here it is assumed that the MOND acceleration parameter
ao does not vary with cosmic time. The second critical assumption is that, in the
absence of a relativistic theory, the scale factor of the sphere is also the scale
factor of the Universe, but then an immediate contradiction emerges. MONDian
dynamics of a sphere permits no dimensionless scale factor. Uniform expansion of
a spherical region is not possible, and any such region will eventually recollapse
regardless of its initial density and expansion velocity (Felten 1984). In the low
acceleration regime the dynamical equation for the evolution of the sphere, the
MONDian equivalent of the Friedmann equation, is given by

ṙ = u2
i −

[
2�mH2

o r 3
oao

]1/2
ln(r/ri ), (37)

whereri is the initial radius of the sphere,ro is a comoving radius, andui is the
initial expansion velocity. From the form of Equation 37 it is obvious that the
sphere will eventually recollapse. It would also appear that a MONDian universe
is inconsistent with the cosmological principle.

However, looking at the Newtonian equations for the dynamics of a spherical
region, one finds that, at any given epoch, the acceleration increases linearly with
radial distance from the center of the sphere. This means that there exists a critical
radius given by

rc =
√

GMrc

/
ao, (38)

whereMrc is the active gravitational mass withinrc. Beyondrc (which is epoch
dependent) the acceleration exceedsao; therefore, on larger scales the dynamics
of any spherical region is Newtonian and the expansion may be described by
a dimensionless scale factor. During this Newtonian expansion, it would appear
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possible to make the standard assumption of Newtonian cosmology that the scale
factor of the sphere is identical to the scale factor of the universe, at least on
comoving scales corresponding toMrc or larger.

Making use of the Friedmann equations we find that

rc = 2ao

�mH2
o

x3 (39)

during the matter-dominated evolution of the Universe (Sanders 1998). Herex is
the dimensionless scale factor withx= 1 at present. Therefore, larger and larger
comoving regions become MONDian as the Universe evolves. Because in the
matter-dominated period the horizon increases asrh∝ x1.5, it is obvious that at
some point in the past the scale over which MOND applies was smaller than
the horizon scale. This would suggest that, in the past, whereas small regions
may have been dominated by modified dynamics, the evolution of the Universe
at large is described by the usual Friedmann models. In particular, in the early
radiation-dominated universe,rc is very much smaller than the MONDian Jeans
length,λj ≈ (c/Ho)x4/3 (the Hubble deceleration is very large at early times), so
the expectation is that the dynamical history of the early MOND universe would
be identical to the standard Big Bang.

After recombination, the Jeans length of the baryonic component falls very
much belowrc, and by a redshift of 3 or 4,rc approaches the horizon scale; the
entire Universe becomes MONDian. Thus, we might expect that the evolution of a
postrecombination MOND universe might differ in significant ways from the stan-
dard Friedmann-Lemaitre models, particularly with respect to structure formation.
One could assume that when the critical radius (Equation 39) grows beyond a par-
ticular comoving scale, then the MOND relation (Equation 37) applies for the sub-
sequent evolution of regions on that scale, and recollapse will occur on a time scale
comparable to the Hubble time at that epoch. For a galaxy mass object (1011M�,
rc≈ 14 kpc) this happens at a redshift of about 140, and recollapse would occur on
time scale of several hundred million years. Therefore, we might expect galaxies
to be in place as virialized objects by a redshift of 10. It is evident that larger scale
structure forms later, with the present turn around radius being at about 30 Mpc.

There are two problems with such a scenario for structure formation. The first is
conceptual: In a homogeneous Universe what determines the point or points about
which such recollapse occurs? Basically in this picture small density fluctuations
play no role,whereas we might expect that in the real world structure develops
from the field of small density fluctuations as in the standard picture. The second
problem is observational: This picture predicts inflow out to scales of tens of
megaparsecs; it would have been quite difficult for Hubble to have discovered his
law if this were true.

These problems may be overcome in the context of a more physically consistent,
albeit nonrelativistic, theory of MOND cosmology (Sanders 2001). Following
Bekenstein & Milgrom (1984), one begins with a two-field Lagrangian-based
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theory of MOND (nonrelativistic) in which one field is to be identified with the
usual Newtonian field and the second field describes an additional MOND force
that dominates in the limit of low accelerations. The theory embodies two important
properties: MOND plays no role in the absence of fluctuations (the MOND field
couples only to density inhomogeneities). This means the basic Hubble flow is left
intact. Second, although the Hubble flow is not influenced by MOND, it enters
as an external field that influences the internal dynamics of a finite-size region.
Basically, if the Hubble deceleration (or acceleration) over some scale exceedsao,
the evolution of fluctuations on that scale is Newtonian.

Figure 12 shows the growth of fluctuations of different comoving scales com-
pared with the usual Newtonian growth. It is evident that MOND provides a con-
siderable boost, particularly at the epoch during which the cosmological constant
begins to dominate. This is due to the fact that the external acceleration field
vanishes at this point and therefore plays no role in suppressing the modified
dynamics. This adds a new aspect to an anthropic argument originally given by

Figure 12 The growth of spherically symmetric over-densities in a low-density baryonic
universe as a function of scale factor in the context of a two-field Lagrangian theory of
MOND. The solid curves correspond to regions with comoving radii of 20, 40, and 80 Mpc.
The dotted line is the corresponding Newtonian growth. With MOND, smaller regions enter
the low-acceleration regime sooner and grow to larger final amplitude. The vertical dashed
line indicates the epoch at which the cosmological constant begins to dominate the Hubble
expansion.
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Milgrom (1989c): We are observing the universe at an epoch during which3

has only recently emerged as the dominant term in the Friedmann equation be-
cause that is when structure formation proceeds rapidly. The predicted MOND
power spectrum (Sanders 2001) is rather similar in form to the CDM power spec-
trum in the concordance model but contains the baryonic oscillations proposed by
McGaugh (1998). These would be telling but are difficult to resolve in large-scale
structure surveys.

It is the external field effect owing to Hubble deceleration that tames the very
rapid growth of structure in this scenario. In the context of the two-field theory this
effect may be turned off, and then it is only the peculiar accelerations that enter the
MOND equation. This case has been considered by Nusser (2002), who finds ex-
tremely rapid growth to the nonlinear regime and notes that the final MOND power
spectrum is proportional tok−1, independent of its original form. He found that to be
consistent with the present amplitude of large-scale fluctuationsao must be reduced
by about a factor of 10 over the value determined from rotation curve-fitting. He
has confirmed this with N-body simulations, again applying the MOND equation
only in determining the peculiar accelerations. This suggests that the Hubble de-
celeration should come into play in a viable theory of MOND structure formation.

All of these conclusions are tentative; their validity depends upon the validity of
the original assumptions. Nonetheless, it is evident that MOND is likely to promote
the formation of cosmic structure from very small initial fluctuations; this, after
all, was one of the primary motivations for nonbaryonic cosmic dark matter.

CONCLUSIONS

It is noteworthy that MOND, as an ad hoc algorithm, can explain many systematic
aspects of the observed properties of bound gravitating systems: (a) the presence
of a preferred surface density in spiral galaxies and ellipticals (the Freeman and
Fish laws); (b) the fact that pressure-supported, nearly isothermal systems ranging
from molecular clouds to clusters of galaxies are characterized by specific inter-
nal acceleration (≈ao); (c) the existence of a tight rotation velocity-luminosity
relation for spiral galaxies (the TF law)—specifically revealed as a correlation
between the total baryonic mass and the asymptotically flat rotation velocity of
the formM∝V4; (d) the existence of a luminosity-velocity dispersion relation in
elliptical galaxies (Faber-Jackson)—a relation that extends to clusters of galaxies
as a baryonic mass-temperature relation; and (e) the existence of a well-defined
two-parameter family of observed properties, the fundamental plane, of ellipti-
cal galaxies—objects that have varied formation and evolutionary histories and
nonhomologous structure. Moreover, this is all accomplished in a theory with a
single new parameter with units of acceleration,ao, that must be within an order of
magnitude of the cosmologically interesting value ofcHo. Further, many of these
systematic aspects of bound systems do not have any obvious connection to what
has been traditionally called the “dark matter problem.” This capacity to connect
seemingly unrelated points is the hallmark of a good theory.
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Impressive as these predictions (or explanations) of systematics may be, it is
the aspect of spiral galaxy rotation curves that is most remarkable. The dark matter
hypothesis may, in principle, explain trends, but the peculiarities of an individual
rotation curve must result from the unique formation and evolutionary history of
that particular galaxy. The fact that there is an algorithm—MOND—that allows
the form of individual rotation curves to be successfully predicted from the ob-
served distribution of detectable matter—stars and gas—must surely be seen, at
the very least, as a severe challenge for the dark matter hypothesis. This challenge
would appear to be independent of whether or not the algorithm has a firm founda-
tion in theoretical physics because science is, after all, based upon experiment and
observation. Nonetheless, if MOND is, in some sense, correct then the simple algo-
rithm carries with it revolutionary implications about the nature of gravity and/or
inertia—implications that must be understood in a theoretical sense before the idea
can be unambiguously extended to problems of cosmology and structure formation.

Does MOND reflect the influence of cosmology on local particle dynamics at
low accelerations? The coincidence betweenao andcHo would suggest a connec-
tion. Does inertia result from interaction of an acceleration object with the vacuum
as some have suggested? If so, then one would expect a cosmological vacuum
energy density to influence this interaction. Are there long-range scalar fields in
addition to gravity, which in the manner anticipated by the Bekenstein-Milgrom
theory become more effective in the limit of low field gradients? Additional fields
with gravitational strength coupling are more or less required by string theory, but
their influence must be suppressed on the scale of the solar system (high accel-
erations); otherwise, they would have revealed themselves as deviations from the
precise predictions of general relativity at a fundamental level—violations of the
equivalence principle or preferred frame effects. Such suppression can be achieved
via the Bekenstein-Milgrom field equation.

Ideally, a proper theory of MOND would make predictions on a scale other than
extragalactic; this would provide the possibility of a more definitive test. An ex-
ample of this is the stratified aquadratic scalar-tensor theory, which predicts local
preferred frame effects at a level that should soon be detectable in the lunar laser
ranging experiment (Sanders 1997). An additional prediction that is generic of vi-
able scalar-tensor theories of MOND is the presence of an anomalous acceleration,
on the order ofao, in the outer solar system. The reported anomalous acceleration
detected by the Pioneer spacecrafts beyond the orbit of Jupiter (Anderson et al.
1998) is most provocative in this regard, but the magnitude (8× 10−8 cm/s2) is
somewhat larger than would be naively expected if there is a connection with
MOND. However, this is an example of the kind of test that, if confirmed, would
establish a breakdown of Newtonian gravity or dynamics at low acceleration.

In a 1990 review on dark matter and alternatives Sanders (1990) wrote, “over-
whelming support for dark matter would be provided by the laboratory detection
of candidate particles with the required properties, detection of faint emission
from low mass stars well beyond the bright optical image of galaxies, or the def-
inite observation of ‘micro-lensing’ by condensed objects in the dark outskirts of
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galaxies.” Now, more than a decade later, a significant baryonic contribution to
the halos of galaxies in the form of “machos” or low mass stars seems to have
been ruled out (Alcock et al. 2000). Particle dark matter has been detected in the
form of neutrinos, but of such low mass—certainly less than 3 ev and probably
comparable to 0.15 ev (Turner 1999)—that they cannot possibly constitute a sig-
nificant component of the dark matter—either cosmologically or on the scale of
galaxies. At the same time, the inferred contribution of CDM to the mass budget
of the Universe has dropped from 95% to perhaps 30%, and both observational
and theoretical problems have arisen with the predicted form of halos (Sellwood
& Kosowsky 2001). However, all of this has not deterred imaginative theorists
from speculative extrapolations of the standard model to conjure particles having
the properties desired to solve perceived problems with dark matter halos. It is
surely time to apply Occam’s sharp razor and seriously consider the suggestion
that Newtonian dynamics may break down in the heretofore unobserved regime
of low accelerations.
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