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Abstract— One of the method to have a fast acquisition of
GNSS signals is the parallel code-phase search, which uses the
fast Fourier transform (FFT) to perform the correlation. A
problem with this method is the potential sign transition that
can happen between two code periods due to data or secondary
code and lead to a loss of sensitivity or to the non-detection of
the signal. A known straightforward solution consists in using
two code periods instead of one for the correlation. However,
in addition to increasing the complexity, this solution is not
efficient since half of the points calculated are discarded. This
led us to look for a more efficient algorithm. The algorithm
proposed in this article transforms the initial correlation into
two smaller correlations. When the radix-2 FFT is used, the
proposed algorithm is more efficient for half of the possible
sampling frequencies. It is shown for example that the theoretical
number of operations can be reduced by about 21 %, and that the
memory resources for an FPGA implementation can be almost
halved.

I. INTRODUCTION

After the antenna and the front-end, the first step of a

GNSS receiver is the acquisition [1]. With the evolution of

the technology, the serial search has been replaced by parallel

architectures, with a massive duplication of correlators or

using FFTs [2]. A drawback of using the FFT is that a circular

correlation is performed instead of a linear correlation, which

can lead to a reduced signal-to-noise ratio due to potential sign

transitions [3].

A well-known straightforward solution consists in doubling

the length of the correlation and using zero-padding [4], [5].

In this case, the first half of the correlation always contains

a correlation peak that is maximum, while the second half

contains a peak that may be affected by a sign transition.

Consequently, only the first half of the correlation is used.

This straightforward solution however increases the com-

plexity, and is not computationally efficient since half of the

points calculated are not used. This lead us to look for a more

efficient algorithm. Instead of computing the initial correlation,

the algorithm proposed in this paper computes two smaller

correlations. This algorithm may be more efficient if there is a

constraint on the correlation length. For example, considering

the use of radix-2 FFTs, for half of the possible sampling

frequencies, the FFTs length is divided by two, leading to a

better efficiency.

It is important to note that the proposed algorithm has no

impact on the sensitivity since it is not an approximation

but simply a different way to perform an operation, contrary

to algorithms performing a down-sampling in the frequency

domain [6] or using a folding technique [7] for example.

Section II presents briefly the acquisition principle, and

describes the use of the FFT, the problem due to the potential

transitions, and the straightforward solution. Section III details

the proposed algorithm. Section IV compares the straightfor-

ward and proposed algorithms for two particular cases before

generalizing. Section V concludes on the applicability of the

proposed algorithm.

II. ACQUISITION OF GNSS SIGNALS

The acquisition consists in detecting the satellites in view

and estimating their corresponding Doppler frequency and

code phase. To do so, the incoming signal is multiplied by

a complex exponential, then multiplied by a locally generated

pseudo-random noise (PRN) code, and then accumulated to

raise the signal out of the noise. To detect the signal, the

frequency of the complex exponential should be as close as

possible to the carrier frequency of the incoming signal, and

the phase of the local PRN code should be as close as possible

the code phase of the incoming signal [8]. In a serial search,

the possibilities are tested one after each other until the signal

is detected, which implies a very long processing time due to

the large number of possibilities. The FFT is thus often used to

make the acquisition faster, by parallelizing the search in the

code domain (method called parallel code-phase search (PCS))

or in the frequency domain (method called parallel frequency

search (PFS)) [9], [10]. In this paper, we focus on the PCS.

A. Correlation

The multiplication of the incoming signal by the local PRN

code and the accumulation for different phases is equivalent to

a correlation, as shown by (1), where h and x are the signals

to correlate (they correspond to the local PRN code and to the

incoming signal after the carrier removal, respectively), and

N is the number of samples in one code period.

y[n] =

N−1∑

k=0

h[k]x[n+ k] with n = 0, ..., N − 1 (1)

Calculating the correlation with (1) corresponds to fixing x

and shifting h to the right, as illustrated in Fig. 1, where the

position of h relative to x is shown for two different values

of n.
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Fig. 1. Illustration of the correlation (Eq. (1)). The numbers in the boxes
indicate the samples.
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Fig. 2. Illustration of the circular correlation (Eq. (2)). The numbers in the
boxes indicate the samples.

B. Parallel code-phase search

It is well known that a circular correlation can be computed

efficiently using FFTs [11]. Since the incoming code is peri-

odic, doing a circular correlation instead of a correlation is not

a problem. The FFT can thus be used for the acquisition [12].

The circular correlation between two signals, h and x, is given

by (2), where the overbar denotes the complex conjugate, mod

denotes the modulo operation, and IFFT means inverse FFT.

To conjugate h has no effect since the local code is real, but

the conjugate on the FFT of h must be kept, else the operation

would become a convolution.

y[n] =

N−1∑

k=0

h[k]x[(n+ k) mod N ] with n = 0, ..., N − 1

y = IFFT
(

FFT(h) FFT(x)
)

(2)

Calculating the circular correlation with (2) corresponds to

fixing x and circularly shifting h to the right (or equivalently

fixing h and circularly shifting x to the left), as illustrated in

Fig. 2.

C. Problem of potential sign transitions

With the PCS, the length of the incoming code used for the

circular correlation corresponds to one period. However, the

first sample of the incoming code can be any chip. This means

that the incoming code is in fact composed of two portions

of two different periods. Because of the data or the secondary

code, a sign transition can thus be present and result in a

reduction of the correlation peak, as shown in Fig. 3. Without

data, at the correct alignment, the multiplication of the two

codes results in a signal having only ones, and accumulating

this signal gives the value 1023. However, with data, after the

multiplication of the two codes, the first 623 points are equal

to 1, and the last 400 points are equal to −1, leading to a

value of 223 after accumulation.
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with data
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Fig. 3. Illustration of the problem due to data bit transition for a code of
1023 chips (e.g. code of the GPS L1 C/A signal). The numbers in the boxes
indicate the chips.
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Fig. 4. Illustration of the straightforward solution to the data bit transition
problem for a code of 1023 chips (Eq. (3)). The numbers in the boxes indicate
the chips.

D. Straightforward solution

A well-known straightforward solution consists in perform-

ing a circular correlation using two consecutive periods of the

incoming code and one period of code padded with zeros for

the local replica [4], [5]. In this way, there is always a complete

period of the incoming code, and thus a maximum correlation

peak, as shown in Fig. 4.

The corresponding equation is given by (3), with N still

the number of samples in one code period, and h[k] = 0 for

N ≤ k ≤ 2N − 1.

y[n] =

2N−1∑

k=0

h[k]x[(n+ k) mod 2N ] with n = 0, ..., 2N−1

y = IFFT
(

FFT(h) FFT(x)
)

(3)

Since the length of the incoming code corresponds to

two periods, there are two peaks in the circular correlation.

However, the peak appearing in the first half of the circular

correlation is always maximum (the sign of the peak is not

important, only its magnitude is), while the peak appearing in

the second half of the circular correlation can be reduced due

to a sign transition. Consequently, only the first half of the

circular correlation is used and the second half is discarded,

i.e. only y[n] for n = 0, ..., N − 1 is desired. It can be noted

that the last sample of x is not necessary anymore, and thus

the correlation can be computed on 2N − 1 points if wanted.

Of course, this solution is not computationally efficient. The

next section describes the proposed algorithm to obtain the first

half of the circular correlation while discarding fewer points.
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Fig. 5. Illustration of the first sum in (6). The numbers in the boxes indicate
the samples.
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Fig. 6. Illustration of the second sum in (6). The numbers in the boxes
indicate the samples.

III. PROPOSED ALGORITHM

A. Derivation

Firstly, starting from (3), we use the fact that h[k] = 0 for

N ≤ k ≤ 2N − 1 to obtain (4).

y[n] =
N−1∑

k=0

h[k]x[(n+ k) mod 2N ] with n = 0, ..., 2N−1

(4)

Secondly, we use the fact that we are not interested in

computing the second half of y to limit n to N − 1. This

implies that n+k ≤ 2N −2, which allows the removal of the

modulo operation to obtain (5), which is equivalent to (1).

y[n] =

N−1∑

k=0

h[k]x[(n+ k) mod 2N ] with n = 0, ..., N − 1

=

N−1∑

k=0

h[k]x[n+ k] with n = 0, ..., N − 1 (5)

Thirdly, we separate the sum in (5) in two sums to obtain

(6). For the first sum, 0 ≤ n + k ≤ 3N/2 − 2, therefore the

last N/2 samples of x are not used, as illustrated in Fig. 5.

For the second sum, N/2 ≤ n + k ≤ 2N − 2, therefore the

first N/2 samples of x are not used, as illustrated in Fig. 6.

y[n] =

N

2
−1

∑

k=0

h[k]x[n+ k] +
N−1∑

k=
N

2

h[k]x[n+ k]

with n = 0, ..., N − 1 (6)

Fourthly, we replace the sums in (6) by circular correlations

by computing N/2 − 1 extra samples, i.e. 0 ≤ n ≤ 3N/2 −
2, and including a modulo operation to obtain (7), which is

illustrated in Figs. 7 and 8.
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Fig. 7. Illustration of the first sum in (7). The numbers in the boxes indicate
the samples.
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Fig. 8. Illustration of the second sum in (7). The numbers in the boxes
indicate the samples.

yM [n] =

N

2
−1

∑

k=0

h[k]x[(n+ k) mod (3N/2− 1)]

+

N

2
−1

∑

k=0

h

[
N

2
+ k

]

x

[
N

2
+ (n+ k) mod (3N/2− 1)

]

with n = 0, ..., 3N/2− 2 (7)

Coming back with the FFT notation, the operation per-

formed in (7) can be computed using FFTs as shown in (8).

yM = IFFT
(

FFT(h0) FFT(x0)
)

+ IFFT
(

FFT(h1) FFT(x1)
)

(8)

= IFFT
(

FFT(h0) FFT(x0) + FFT(h1) FFT(x1)
)

with

h0 =
[

h[0] h[1] . . . h
[
N

2
− 1

]
N−1

︷ ︸︸ ︷

0 . . . 0
]

h1 =
[

h
[
N

2

]
h
[
N

2
+ 1

]
. . . h [N − 1] 0 . . . 0

]

x0 =
[

x[0] x[1] . . . x
[
3N

2
− 2

] ]

x1 =
[

x
[
N

2

]
x
[
N

2
+ 1

]
. . . x [2N − 2]

]

The resulting signal yM (M for modified) is a vector of

3N/2−1 samples. Its first N samples are equal to the first N
samples of y, i.e. the proposed algorithm computes correctly

the first half of y, where there is the maximum correlation
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peak. The last N/2−1 samples of yM are different than those

of y, without consequences since these samples are discarded.

The proposed algorithm computes thus five FFTs (FFT and

IFFT are equivalent from computational point of view) of

3N/2 − 1 points and discards N/2 − 1 points, while the

straightforward algorithm computes three FFTs of 2N points

and discards N points (or 2N−1 and N−1 if the last sample

of x is not used).

Sometimes, it is assumed that the FFT for the local code

are pre-generated in order to save operations during the

acquisition. In this case, the proposed algorithm computes 3

FFTs while the straightforward algorithm computes 2 FFTs.

B. Use with radix-2 FFT

Since the proposed algorithm performs FFTs of 3N/2 −

1 points, if the use of radix-2 FFTs is desired, there is the

constraint given by (9), with l a positive integer [13], [14].

This equation has integer solutions only if l is odd, and the

result for a range of suitable values is provided in Table I.

3N

2
− 1 = 2l ⇔ N =

2

3
(2l + 1) (9)

However, it is possible to add zeros at the end of the signals

to increase the length without impacting the first N samples

of yM, as illustrated in Fig. 9 where one zero is added.

By adding one zero, the proposed algorithm performs FFTs

of 3N/2 points, and the constraint to use radix-2 FFTs is given

by (10), which has no integer solution.

3N

2
= 2l ⇔ N =

2

3
2l (10)

By adding two zeros, the proposed algorithm performs FFTs

of 3N/2+ 1 points, and the constraint to use radix-2 FFTs is

given by (11), which has integer solutions only if l is even.

The result for a range of suitable values is provided in Table

I.
3N

2
+ 1 = 2l ⇔ N =

2

3
(2l − 1) (11)

0 1 ···h

0x ···
+ 1– 1

+ 1– 1

1 ···

h
+ 1– 1

N

2
N-1 N ···

0 1 ···

3N-2

2-2

n=0

n=N–1

h
+ 1– 1

01 ···
n=3N–1

Direction of shifting of h2

N-1

2-1

N-1

2-1

N-1

2-1

N-1

2-1

Fig. 9. Illustration of the first sum in (7) with the padding of one zero. The
numbers in the boxes indicate the samples.

l 11 12 13 14 15 16

L = 2
l 2048 4096 8192 16 384 32 768 65 536

2N 2732 5460 10 924 21 844 43 692 87 380

TABLE I

POSSIBLE CORRELATION LENGTH (2N ) AND FFT LENGTH (L) FOR THE

PROPOSED ALGORITHM CONSIDERING THE RADIX-2 FFT.

IV. APPLICATION

In this section, the straightforward and proposed algorithms

are compared considering a PRN code of 1 ms. The compari-

son is done in terms of number of operations, FPGA resources

and processing time on personal computers. Two particular

cases are discussed before presenting the general case.

A. Sampling frequency of 5 MHz

For the first case, a sampling frequency of 5 MHz is

considered. There are thus N = 5000 samples in one code

period. To tackle the sign transition problem, two periods are

used, i.e. 2N = 10 000 samples.

For the straightforward algorithm, in order to use radix-2

FFTs, the signals must be padded with zeros until the closest

power of two, i.e. 16 384. The corresponding implementation

is given in Fig. 10, where x contains 10 000 signal samples

plus 6384 zeros, and h contains 5000 signal samples plus 11

384 zeros. Note that since the local code is a real signal, the

FFT followed by the conjugate operation has been replaced

by an IFFT for the sake of simplicity [15].

For the proposed algorithm, x0 and x1 contain 3N/2 −

1 = 7499 signal samples, and must be padded with 693

zeros to reach the closest power of two, 8192. The proposed

algorithm will thus compute the first 8192 samples of a circular

correlation on 10 924 points (cf Table I). The corresponding

implementation is given in Fig. 11 where x0 contains the first

7499 samples of x plus 693 zeros, x1 contains the last 7499

samples of x plus 693 zeros, h0 contains the first N/2 = 2500
samples of h plus 5692 zeros, and h1 contains the last 2500

samples of h plus 5692 zeros.

The complexity of both algorithms can be evaluated by

the number of operations they perform. Considering that an

FFT of L points requires L/2 log
2
(L) multiplications, the

straightforward algorithm performs 3L/2 log
2
(L)+L multipli-

cations, i.e. 360 448 with L = 16 384. The proposed algorithm

performs 5L/2 log
2
(L)+2L multiplications, i.e. 282 624 with

L = 8192. The theoretical number of multiplications is thus

reduced by 21.6 % (the reduction is similar for the number of

additions). If we consider that the FFTs for the local code are

pre-generated, the theoretical number of multiplications would

be reduced by 28.3 %, which is even better.

The complexity can also be evaluated by the resources re-

quired with a hardware implementation. Considering an Altera

Stratix III FPGA, a basic comparison of the algorithms can be

done using the estimation provided by the Altera MegaWizard.

Table II provides the resources in terms of Adaptive Look-up

table (ALUT), memory of 9 Kibit (M9K) and digital signal

x[n]

h[n]

y[n]

H[k]

X[k] Y[k]
FFT

IFFT

IFFT

16 384

16 384 16 384

Fig. 10. Implementation of the straightforward algorithm for a sampling
frequency of 5 MHz.
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x0[n] X0[k]
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8192
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Fig. 11. Implementation of the proposed algorithm for a sampling frequency
of 5 MHz.
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Y0[k]
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Hi[k]

8192

YM[k]

i ∈{0;1}

8192

8192

8192

Fig. 12. Implementation of the proposed algorithm using multiplexing for a
sampling frequency of 5 MHz.

processing (DSP) elements for both algorithms, considering

the streaming implementation of the FFT with a resolution

of 18 bits [16]. It can be seen that the proposed algorithm

uses more resources, except for the memory, however the

processing time is divided by two since the FFT length is

divided by two [15]. Since the resources are increased by a

factor less than two, there is thus a gain in efficiency.

If an increase of the resources is not desired, the proposed

algorithm can be used with multiplexing as depicted in Fig.

12. The multiplexing requires an additional memory, which is

compensated by the removal of two FFT blocks, as shown in

Table II. Therefore, with the implementation of Fig. 12, the

processing time is about the same as with the implementation

of Fig. 10 (in fact it is slightly reduced due to the reduced

latency of the FFTs [15]), and the resources are globally

reduced (by almost of a factor two for the memory).

The complexity can also be evaluated by the processing

time required with a software implementation. The average

processing time of the algorithms has been measured on four

different personal computers. With the proposed algorithm,

the processing time was reduced by 24, 18, 12 and 11 %,

respectively, which gives an average reduction of 16.2 %.

Algorithm
Logic Memory Multipliers

(ALUT) (M9K) (DSP element)

Straightforward 22 431 912 76

Proposed 35 286 760 128

Proposed with
21 150 488 76

multiplexing

TABLE II

FPGA RESOURCES FOR THE STRAIGHTFORWARD (L = 16 384) AND

PROPOSED (L = 8192) ALGORITHMS.

B. Sampling frequency of 4 MHz

For the second case, a sampling frequency of 4 MHz is

considered. There are thus N = 4000 samples in one code

period. To tackle the sign transition problem, two periods are

used, i.e. 2N = 8000 samples.

For the straightforward algorithm, in order to use radix-

2 FFTs, the signals have to be padded with zeros until the

closest power of two, i.e. 8192.

For the proposed algorithm, x0 and x1 contain 3N/2−1 =
5999 signal samples, and must be padded with 2193 zeros to

reach the closest power of two, 8192. This means that the

FFT length is the same as for the straightforward algorithm,

while the proposed algorithm performs 5 FFTs instead of 3

for the straightforward algorithm. Consequently, in this case,

the proposed algorithm is not more efficient.

C. General case

The two particular cases discussed have resulted in different

conclusions. In the first case, the proposed algorithm was

more efficient than the straightforward algorithm because

the FFT length was halved, while in the second case the

proposed algorithm was not more efficient since the FFT

length was unchanged and more FFTs were computed. In fact,

the efficiency of the proposed algorithm depends on the initial

correlation length, i.e. on the sampling frequency, as shown in

Fig. 13.

If the initial number of points is slightly below or equal to a

power of two, the straightforward algorithm is more efficient

because the zero-padding needed to reach the desired length

is moderate (e.g. for the second case discussed, the length has

been increased from 8000 to 8192, i.e. only 2.4 % of increase).

If the initial number of points is slightly above a power

of two, the straightforward algorithm requires important zero-

padding (e.g. for the first case discussed the length has been

increased from 10 000 to 16 384, i.e. 63.84 % of increase),

while the proposed algorithm requires moderate zero-padding

(e.g. for the first case discussed, the length has been increased

from 10 000 to 10 924, i.e. 9.24 % of increase), which explains

the better efficiency of the proposed algorithm in this case.

The best choice between the straightforward and proposed

algorithms according to the sampling frequency can be found

using Fig. 13. It can be seen that the proposed algorithm is

more efficient than the straightforward algorithm for half of

the sampling frequencies. For the GPS L1 C/A signal, which

has a PRN code of 1 ms, the minimum sampling frequency

is 2.046 MHz. If the sampling frequency is close to this

minimum, more specifically between 2.046 and 2.048 MHz,

the straightforward algorithm is more efficient. However, such

low sampling frequency result in poor resolution and a higher

frequency is often used. For the GPS L5, Galileo E5a and

E5b signals, which have a PRN code of 1 ms, the minimum

sampling frequency is 20.46 MHz. If the sampling frequency

is close to this minimum, more specifically between 20.46 and

21.846 MHz, the proposed algorithm is more efficient (as also

demonstrated in [17]).
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It exists methods that perform a compression or averaging

before the correlation to reduce the number of points. For

example, a method performs an average in order to obtain one

sample per chip [18]. The proposed algorithm can be used in

addition to such method. For example, with the GPS L1 C/A

signal, the number of points would be 2046 after averaging

(two periods of 1023 points); in this case the straightforward

algorithm is more efficient (the equivalent sampling frequency

is 1.023 MHz). With the GPS L5, Galileo E5a and E5b signals,

the number of points would be 20 460 after averaging (two

periods of 10 230 points); in this case the proposed algorithm

is more efficient (the equivalent sampling frequency is 10.23

MHz).

V. CONCLUSION

This paper focuses on the problem of the acquisition of

GNSS signals with the parallel code-phase search approach

when sign transitions due to data or secondary code can

happen.

A straightforward solution available in the literature double

the length of the correlation and discards half of the points

calculated, which is inefficient. With this in mind, we try to

find a more efficient algorithm. The algorithm we propose

transforms the initial correlation into two smaller correlations,

implying more FFTs, but of smaller length.

Without constraints on the length of the FFT, the proposed

algorithm does not present advantage. However, when using

the common and widespread radix-2 FFT, which requires

lengths that are a power of two, the proposed algorithm can

be more efficient. Indeed, for some sampling frequencies, the

zero-padding to reach the required length is less important

for the proposed algorithm, which enables to halve the length

of the FFTs and leads to a better efficiency. The proposed

algorithm is more efficient for half of the possible sampling

frequencies. For the other half, the length of the FFT is not

reduced, and the proposed algorithm is thus not more efficient.

The proposed algorithm can be applied to any GNSS signal,

and is particularly well-suited for the GPS L5, Galileo E5a and

E5b signals. It can potentially be applied to other domains, as

soon as a system performs a circular correlation where half of

an input is zero, and half of the output is discarded.
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Fig. 13. FFT length for the straightforward and proposed algorithms for a 1-ms code according to the sampling frequency. The axis is logarithmic. For a
4-ms code (as Galileo E1), multiply the actual sampling frequency by 4.
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