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Modified Particle Swarm Optimization Applied to 

Integrated Demand Response and DG Resources 

Scheduling 
Pedro Faria, João Soares, Zita Vale, Hugo Morais and Tiago Sousa 

 

 
Abstract—The elastic behavior of the demand consumption 

jointly used with other available resources such as distributed 
generation (DG) can play a crucial role for the success of smart 
grids. The intensive use of Distributed Energy Resources (DER)  
and the technical and contractual constraints result in large-scale 
non linear optimization problems that require computational 
intelligence methods to be solved. 

This  paper  proposes  a  Particle  Swarm  Optimization  (PSO) 

based methodology to support the minimization of the operation  
costs of a virtual power player that manages the resources in a 
distribution network and the network itself. Resources include 
the DER available in the considered time period and the energy  
that  can  be  bought  from  external  energy  suppliers.   Network 
constraints are considered. The proposed approach uses Gaussian 

mutation of the strategic parameters and contextual self-parame-  
terization of the maximum and minimum particle velocities. 

The case study considers a real 937 bus distribution network, 
with 20310 consumers and 548 distributed generators. The ob- 
tained solutions are compared with a deterministic approach and 
with PSO without mutation and Evolutionary PSO, both using 
self-parameterization. 

Index Terms—Demand response, energy resource management, 
particle swarm optimization, virtual power player. 

 
 

NOMENCLATURE 

                   Voltage angle at bus   in period  

                 Maximum voltage angle at bus  

                                            Minimum voltage angle at   bus 

Fixed cost coefficient of DG unit in period  

Linear cost coefficient of DG unit in period  
 

 
 

 
 
 

 
 

 
 
  

 

  

 
 
 

 
 

 

  

Quadratic cost coefficient of DG unit in 

period 

Charge  cost  of storage in period 

Discharge  cost  of storage  in  period 

program cost, for load in period 

program cost, for load in period 

program  cost,  for load in period 

Excess available power cost coefficient of 

DG unit in period 

Non-supplied demand cost of load in 

period 

Imaginary part of the element in admittance 

matrix corresponding to the row and 

column 

Real part of the element in admittance 

matrix corresponding to the row and 

column 

Total number of buses 

Total number of distributed generators 

Total number of DG units for the bus 

Total number of lines 

Total number of loads 

Total number of loads for the bus 

Total number of storage units 

Total number of storage units for the bus 

Total number of external suppliers 

Total number of SP external suppliers for 

the bus 

Active power charge of storage in period 

Active power charge of storage at bus  in 

period 

Active power generation of distributed 

generation unit DG in period 

Active power generation of distributed 

generation unit DG at bus    in  period 

 

 

 

 



 

 
 

  Maximum active power generation of 

distributed generator unit DG in   period 

   Minimum  active  power  generation of 

distributed generator unit DG in period 

           Active power discharge of storage in 

period 

     active power reduction, for load 

in period 

                active power reduction, for load at 

bus   in period 

     active load curtailment, for load 

in period 

                active power reduction, for load at 
bus    in period 

     active load curtailment, for load 

in period 

                active power reduction, for load at 

bus    in period 

       Excess available power by DG unit  in 

period  , relative to take or pay contracts 

         Active power demand of load in period 

 Maximum reduction active power, in    

program, for load in period 

 Maximum reduction active power, in  

program, for load in period 

 Maximum reduction active power, in  

program, for load in period 

          Non-supplied  demand  for load in period 

          Non-supplied demand for load at bus 

in period 

         Active power acquired from supplier in 

period 

         Active power generation of SP external 
supplier at bus    in period 

    Maximum active power of SP external 

supplier in period 

         Reactive power generation of distributed 

generation unit DG in period 

         Reactive power generation of distributed 
generation unit DG at bus    in  period 

  Maximum  reactive  power  generation of 

distributed generator unit DG in period 

  Minimum  reactive  power  generation of 

distributed generator unit DG in period 

         Reactive power demand of load at bus 

in period 

         Reactive power acquired from supplier 

in period 

 
         Reactive power generation of SP external 

supplier at bus    in period 

   Maximum  reactive  power  of  SP external 

supplier in period 

                 Maximum apparent power flow established 

in line   that connect the bus   and 

Total number of periods 

                 Voltage at bus     in polar form in period  

                   Voltage  magnitude at bus     in period 

                 Maximum voltage magnitude at bus 

                 Minimum voltage magnitude at bus 

        Binary variable of DG unit related to    accept 

the active power generation in period 

                    Series admittance of line that connect the 

bus   and 

                Shunt admittance of line connected in the 

bus 

 

I. INTRODUCTION 

 
ELECTRIC power systems are not the same anymore. 

Be- ginning with the liberalization of electricity markets, sev-     

eral changes have been occurring [1]. The increasingly intensive 

use of Distributed Generation (DG), the creation of Demand Re- 

sponse (DR) programs [2], [3], and the increasing requirements 

in terms of energy quality and network reliability have increased 

the complexity of the infrastructure operation and planning, and 

aim at bringing to practice the concept of Smart Grid (SG) [4]. 

In this competitive and complex environment, computational 

intelligence methods will be required for obtaining solutions for 

large dimension problems, in an acceptable time [5]. Reference 

[4] attests the importance of using computational intelligence in 

many aspects of SG as the system optimization. Particle Swarm 

Optimization (PSO) is an effective method to determine the so- 

lution of large-scale non linear optimization problems [6]. PSO 

has  been  successfully  applied  to  several  power  systems prob- 

lems [7]–[10]. 

Aggregation of small-scale distributed resources, as well as 

their operation, in a competitive environment leads to the cre- 

ation of Virtual Power Players (VPP) [11]. VPP can aggregate 

diversity of players and of energy resources, including DR, 

making  them  profitable [11]. 

DR [14], [15] is a very promising resource in the context of 

electricity markets [12], [13] and SG [14], [16]. A method to de- 

termine the DR capacity in a distribution network is presented 

in [14]. Reference [15] proposes a method to maximize con- 

sumers’ benefits, regarding their demand reduction in face of 

the variation in electricity prices and their uncertainties. 

In the context of smart grids operated by a virtual power 

player, the distributed energy resources scheduling gains high 

relevance due to the competitive environment of smart grid 

operation. References [17]–[20] report important recent works 



 

 
 

on this field. Those works use different resources optimization 

points of view: [17], [19], and [20] optimize the grid operation, 

whereas [18] optimizes the consumer installation. Although 

network constraints are very relevant in this context, these are 

usually not included in the proposed optimization models. This 

inclusion can be done embedding the network simulation in 

the problem formulation or using a simpler approach, namely 

the validation of the obtained solutions. The  later  method  is 

used in [17] which uses a real time digital simulator to validate 

the solutions. References [19], [20] do not consider network 

constraints. In this way, the present work is innovative in con- 

sidering the network constraints in the problem formulation. 

Moreover, most works that propose a heuristic optimization 

approach do not assess the quality and the efficiency of the 

solution by comparing it with the solution obtained with a 

deterministic approach which is done in the present paper. 

This paper deals with the integrated management of demand 

response and DG in the scope of smart grids. An efficient man- 

agement of these resources requires the use of adequate methods 

able to cope with the large-scale non linear optimization prob- 

lems that result from the large number of distributed energy 

resources and from the need to ensure that the technical and 

contractual constraints are not violated. The deterministic ap- 

proaches are not suitable because their execution times are too 

high for the operation time constraints. Computational intelli- 

gence methods have proved to be able to provide good solutions 

for the envisaged type  of problems in much shorter    times. 

The present paper proposes a particle swarm optimization 

based methodology to support the minimization of the opera- 

tion costs of a virtual power player that manages the resources 

in a distribution network and the network itself. Those resources 

include the distributed energy resources available in the consid- 

ered time period and the energy that can be bought from external 

energy suppliers. Demand response resources are divided into 

three capacity programs, namely RedA, RedB, RedC, with dis- 

tinct price and power characteristics. Network constraints are 

considered using an AC power    flow. 

The proposed PSO approach uses Gaussian mutation of the 

strategic parameters and self-parameterization of the maximum 

and minimum particle velocities, according to the context. This 

work is an evolution of the work published in [21]. The previous 

 

paper [21] did not consider the network constraints and thus 

the optimization model used only linear constraints. Addition- 

ally, the generation resources are now individually considered 

whereas in [21] they were aggregated in four distinct types. The 

proposed PSO approach has been adapted to this new realistic 

model considering the non linear network constraints. A power 

flow model [22] has been embedded in the algorithm to enable 

the analysis of network violations for the swarm solutions. This 

leads to more accurate solutions than the ones obtained in [21]. 

The self-parameterization algorithm presented in [21] has been 

redesigned to deal with the new model. 

After this introduction section, Section 2 explains the for- 

mulation of the proposed scheduling problem and Section 3 

explains the proposed PSO methodology. A case study that 

considers a real 937-bus distribution network, with 20310 

consumers and 548 distributed generators is presented in 

Section 4. Finally, the most important conclusions of the work 

are presented in Section 5. 

II. ENERGY RESOURCE SCHEDULING FORMULATION    

The proposed problem features the minimization of the VPP 

costs and can be modeled as a mixed-integer non linear    opti- 

mization problem. The energy resource management requires a 

multi-period optimization, and the formulation is modeled for a 

specified time period . This formulation has been implemented 

in General Algebraic Modeling System (GAMS) [23]. The ob- 

jective function can be expressed as (1), shown at the bottom of 

the page. 

This objective function leads to the minimization of the costs 

considering the reduction of load in three different and succes- 

sive steps (demand response capacity programs RedA, RedB, 

and RedC), the costs of the energy provided by the external 

suppliers, and costs of the energy provided by photovoltaic, 

wind, Combined Heat and Power (CHP), Municipal Solid Waste 

(MSW), biomass, fuel cell, hydro, and storage. The problem for- 

mulation considers the network constraints accounted by an AC 

power flow. 

The constraints of the problem are the following equations 

(2)–(13): 

• The network active (2) and reactive (3) power balance in 

each period and in each bus . in each period. During 

 

 

 
 

 

 

 

 

 

 
 

(1) 



 

 
 

the operation of a power system, both active and reactive 

power generation must meet the verified demand. 

 

(12) 

 

(13) 
 

• Storage technical constraints in each period - The storage 

units’ operation constraints considered in the proposed 

methodology and implemented in the proposed methods 

are the ones presented in [24]. Those include multi-period 

balance of the power in each storage unit as well as the 

charge and discharge rates. 

 
 

 

 

 
(2) 

 

 

 

 

 

 

 
 

(3) 
 

• Bus voltage magnitude (4) and angle (5) limits in each bus 

must be assured. In the reference bus, the voltage magni- 

tude and angle are fixed and set by the user. 
 

(4) 

 

(5) 

 

• Line thermal limits, which represent the maximum power 

that can flow in a line due to its characteristics; 
 

  
 

   (6) 
 

• Resources active (7), (9) and reactive (8), (10) power gen- 

eration limits in each  period  , respectively  for DG  units 

(7), (8) and upstream suppliers (9), (10). The maximum ac- 

tive power that can be reduced in each consumer, in each 

step, is assured by (11), (12), (13). 

 

 
(7) 

 

 

 

(8) 

(9) 

 

(10) 

(11) 

III. MUTATED PARTICLE SWARM APPROACH 

Particle Swarm Optimization (PSO) was created with an ini- 

tial experiment of a swarm simulator first published in [25]. The 

authors foresaw its potential for optimization problems, namely 

to mitigate the difficulties of solving complex problems in terms 

of computational time. PSO belongs to the category of swarm 

intelligence methods [26] and computational intelligence. It  is 

used in the present paper to solve the energy resource scheduling 

problem due to being effective in difficult optimization tasks, 

namely for non linear large dimension problems [27]. A PSO 

modified version (PSO-MUT), using Gaussian mutation of the 

strategic parameters, and self-parameterization is proposed for 

this purpose. The results and the performance of the proposed 

method are compared with those obtained with conventional 

techniques using the professional optimization tool GAMS™, 
with the version of PSO without mutation as well as Evolu- 

tionary Particle Swarm Optimization (EPSO) found in [28]. The 

three versions implemented in this paper use a specific modifi- 

cation, namely self-parameterization of the maximum and min- 

imum velocities according to the problem context already in- 

troduced in [21]. This will enable a fair comparison of the PSO 

methodologies in the case study rather than only using the self- 

parameterization on the proposed PSO-MUT. Self-parameteri- 

zation was improved from the authors’ conference paper [21] to 

be used in the present ERM problem. Self-parameterization re- 

lies on the automatic adjustment of PSO parameters, namely the 

maximum and the minimum velocities to be set independently 

from user configuration enabling easy and fast use of the method 

and also better results. The proposed self-parameterization has 

been specifically designed for the ERM problem formulation. 

For other ERM formulations the algorithm rules should be care- 

fully adapted and tested. The maximum and the minimum ve- 

locity limits are calculated according to the following: Vector of 

Prices vector with generator marginal cost prices and loads 

demand response cut prices. 

For each element (i) of Vector of Prices apply (14) where the 

variables with lower price will have higher velocities. 

 

             (14) 

 

Fig. 1 depicts the proposed PSO approach for the demand re- 

sponse scheduling problem presented in this paper. The power 

flow algorithm included in the meta-heuristics is based on the 

theory given in [22]. The minimum velocity limits for load re- 

duction variables are higher if the highest energy supplier price 

tends to be expensive compared to the other prices. If the energy 



 

 

 
TABLE I 

GENERATOR AND SUPPLIER DATA—EXAMPLE 

 

 

 

 

For better understanding of the above equations, let consider 

the following example of two generators (Table I) and two loads 

(Table II). Prices are in monetary units (m.u.). 

There are three considered demand response capacity pro- 

grams with a minimum load reduction for each step. First, the 

marginal costs of the generators, MC1 for generator 1 (16) and 

MC2 for generator 2 (17) (shown at the bottom of the page), are 

calculated  using  generators’  upper limit. 

Then, applying (14) for each element of Vector of Prices, we 

determine maxVel  for each of the variables (Table    III). 

This means that the variable with  higher  velocity  would be 

the one that corresponds to Generator 2 because it has the lower 

energy price. On the contrary, the price of RedC of Load1 is the 

less desired variable to increase given the considered scenario. 

The minimum velocity limits of variables are calculated ac- 

cording to the rank position (lowest to highest) of the higher 

energy supplier contract price, according to (15). In this case 

there is only one energy supplier contract; it appears in the 7th 

place along with RedA of Load1. In this case, considering po- 

sition 7 and a total of 9 variables, we    have:  

. If this price was the lowest, i.e., the less expensive, there- 

fore being in the 1st position of the price rank, this would be- 

come:       . 

In what concerns the mutation of strategic parameters, used 

only in PSO-MUT, the strategic parameters  ,  are:  inertia, 

memory, and cooperation. The particles movement is ruled by 

(18). 

 

  

(18) 
 

 

Fig. 1.  PSO-MUT for the proposed energy resource scheduling problem. 

 

 
supplier price tends to be cheaper, then the minimum velocity 

limits tend to be lower in order to have less load cuts. 

The minimum velocity limits are calculated as in (15): 

 
                                                        (15) 

The Gaussian mutation is used in each PSO iteration, intro- 

ducing more diversification in the search process rather than 

the standard version using fixed and random only weights. At 

the beginning of the process the values of the corresponding 

weights are randomly generated between 0 and 1. After that, 

the particle’s  weights   are  changed in each iteration   of 

PSO using a Gaussian mutation method according to (19): 

 

                          (19) 

 

 

 

 

                                              (16) 

 

(17) 



 

 

 
TABLE II 

LOAD CURTAILMENT PRICES—EXAMPLE 

 

 

 

TABLE III 

MAXIMUM VELOCITY LIMITS OF  VARIABLES 

 

 

 

where       are the resulting particle’s weights after mutation, 

and    is the learning parameter, externally fixed between 0 and 

1. A high value of  gives more importance to mutation. N(0,1) 

is a random number following a normal distribution with mean 

of 0 and a variance of 1 (squared scale). Once again, the strategic 

parameters are limited to values between 0 and 1 in this stage. 

It must be clarified that all the solutions obtained by the PSO 

based methods use an AC power flow in order to consider the 

network constraints and the power losses. 

 
IV. CASE STUDY 

The present case study illustrates the application of the pro- 

posed methodology to a set of consumers connected to a real 

Portuguese distribution network. The considered network is op- 

erated by a VPP that aims to minimize the operation costs. VPP 

operates the existing sources (DG and suppliers) and the de- 

mand response capacity programs. In each period, with the aim 

of facing the existing load demand, the VPP performs the sched- 

uling of the existing resources. Due to the space limitation for 

presenting results, a single period was considered and the exis- 

tence of storage units is not taken into account. 

Firstly the characterization of the case study scenario is pre- 

sented in sub-section A. The obtained results with the proposed 

methodology, with the other PSO approaches and the determin- 

istic approach are then shown and compared in Sub-section B. 

 

A. Scenario Characterization 

The network used in this case study is a real 30 kV distri- 

bution network, supplied by one high voltage substation (60/30 

kV) with 90 MVA of maximum power capacity distributed by 

6 feeders, with a total number of 937 buses and 464 MV/LV 

transformers [24]. Fig. 2 shows the summarized scheme of the 

distribution network. The number of consumers and the demand 

in each feeder is also shown. 

This distribution network has already been in use for many 

years and it has suffered many reformulations. It is partly com- 

posed of aluminum conductors and partly of copper conductors 

and the distribution is made by power lines and underground 

cables. The 20 310 consumers connected to this network are 

classified into five consumer types. The peak power demand is 

62 630 kW. 

Regarding the participation of the consumers in each one of 

the proposed demand response capacity programs (three succes- 

sive reduction steps—RedA, RedB, and RedC), a determined 

power reduction and the respective remuneration price were 

established for each consumer type. Each reduction step only 

can be used after the previous one have been fully used (e.g., 

RedC only can be used when RedA and RedB have been al- 

ready fully used). For this case study, the maximum power re- 

duction was fixed equal to 10%, 5%, and 5% of each load nom- 

inal value, respectively for demand response capacity programs 

RedA, RedB, and RedC. Table IV presents the values  of  de- 

mand reduction costs in each demand response capacity pro- 

gram. These values correspond to the remuneration values that 

are paid to the consumers participating in each demand response 

capacity programs, which are considered fixed for each con- 

sumer type. 

Table IV also presents the total capacity of demand reduction 

in each demand response capacity program, regarding the con- 

sumer types, for the considered network. 

As the original network does not have  distributed  genera- 

tion, the energy sources considered for this case study resulted 

from a study regarding the allocation of DG. Table V presents 

the values of prices (unitary operation costs), total available 

capacity, and the number of units for each type of DG tech- 

nology. The respective values for the ten considered suppliers, 

connected to the network in the substation, are also presented. 

Only the linear component of the sources cost functions is con- 

sidered in this case study. 

As it was explained in Section III, the considered optimiza- 

tion has been solved using a deterministic approach and 3 PSO 

variants approaches (without mutation—PSO—and with muta- 

tion—PSO-MUT and EPSO [28]). Table VI presents the values/ 

description of both PSO methods’ parameters. The values for 

the learning parameter in EPSO were set to 0.8 and the replica 

was set to 1. Self-parameterization is also introduced in EPSO 

to  enable  a  closer comparison. 

This case study corresponds to a total of 62046 variables. In 

the PSO methods these variables are coded  in  memory  vec- 

tors, i.e., each particle has a dimension space of 62046. The 

max position of each particle’s dimension is defined by the ca- 

pacity limits of demand response capacity programs and gener- 

ators/aggregators upper limit power whereas the min position    is 



 

 

 

 

 

Fig. 2.   Distribution network. 

 

 

TABLE IV 
DEMAND RESPONSE CAPACITY PROGRAMS CHARACTERIZATION 

 

 

 

TABLE V SOURCES  

CHARACTERIZATION 

 

 

 

 
zero. This case study uses 20 particles and 150 iterations. These 

values were obtained by empirical experimentation. Increasing 

the number of iterations and particles would result in more ex- 

ecution time without significant solution quality    gains. 

TABLE VI 
PARAMETERS  OF  PSO  METHODS 

 

 

 

B. Results 

This sub-section presents the results obtained for this  case 

study energy resources management. In order to evaluate the 

effectiveness of the PSO methods and of the proposed energy 

resources management methodology, the results are shown re- 

garding the three approaches (deterministic mixed integer non 

linear programming optimization obtained in GAMS; heuristic 

optimization obtained the proposed PSO, labeled as “PSO”; and 

heuristic optimization obtained by the proposed mutated version 

of PSO, labeled as “PSO-MUT”). The number of particles as- 

signed to PSO and PSO-MUT methods was 20. The number of 

iterations was 150 for both versions in order to allow comparing 

the results. The details of the results shown in Figs. 3 to 6 cor- 

respond to a random solution obtained by the PSO and by the 

PSO-MUT. 

Fig. 3 shows the results of the resource scheduling. The 

solutions obtained by the deterministic approach (labeled as 

“GAMS”) are considered as the reference. It is possible to see 



 

 

 

 

 

Fig. 3.   Energy resource scheduling. 

 
 

 

 

Fig. 4.   Feeder 1 medium commerce consumers schedule in the RedA program. 

 

 

that the PSO methods schedule all the resources (but not all 

their available capacity), while the deterministic approach does 

not make use of fuel cell units due to their operation costs. On 

contrary, demand response capacity programs are more used in 

the solution obtained by GAMS. The energy provided by the 

suppliers is more used by the solution obtained by PSO-MUT. 

The proposed methodology schedules each resource individ- 

ually. However, here the results are presented in a condensed 

form, showing the total aggregated amount of power sched- 

uled for each type of DG technology, each type of consumer, 

etc. Fig. 4 shows more detailed results for the medium com- 

merce consumers in feeder 1 in what concerns the schedule in 

the RedA demand response capacity program. 

For these consumers, the deterministic approach schedules 

all the consumers for participation in the demand reduction pro- 

gram whereas the solutions obtained by the PSO methods do not 

scheduled some of the consumers for     participation. 

Fig. 5 presents the solutions costs obtained for each type of 

resource. Three components of the objective function are rep- 

resented, namely DG, supplier and demand response costs. The 

costs of demand response capacity programs are calculated ac- 

cording to the consumers scheduled by each method. As ex- 



 

 

 

 

 

Fig. 5.   Energy resource scheduling costs. 

 
 

 

 

Fig. 6.   Evolution of the average solutions of the PSO methods. 

 

 
pected, the differences between the solutions obtained by the 

three approaches are related to the schedules presented in Fig. 3. 

 

Fig. 6 shows the average solution found in each iteration for 

1000 runs of the three considered PSO based approaches. It is 

clear that the proposed PSO-MUT has a faster evolution to the 

solution, which is also the best found solution among the PSO 

methods. 

Table VII shows the values of both operation costs and exe- 

cution time for the four considered approaches. 

These results show that the three PSO-based methods are 

able to obtain solutions very close to the value obtained with 

the deterministic approach (8662.6 m.u.) in much faster execu- 

tion time. The proposed PSO-MUT leads to the best    average 

 

value (8809.2 m.u.) with the minimum standard deviation. The 

proposed PSO-MUT execution time is slightly higher than the 

one of the PSO without mutation and significantly lower than 

the EPSO execution time. The EPSO execution time is higher 

mainly due to the replication of the swarm and to the required 

evaluations of the swarm and replica solutions. 

V. CONCLUSION 

The future context of operation of distribution networks, 

according to the smart grid paradigm, will accommodate large 

amounts of distributed generation. Enhancement of service 

quality, increase of energy efficiency and reduction of the 

operation costs are expected in the new context. Virtual power 

players will play an important role managing and operating 



 

 

 
TABLE VII 

EXECUTION TIME AND OPERATION COSTS VALUES  COMPARISON 

 
 

 

 

aggregated energy resources, which also include demand 

response. Due to the competitive environment, important de- 

cisions must be as efficient as possible and be taken in short 

time horizons; computational intelligence methods will be very 

important in this field. 

In this paper, a Particle Swarm Optimization (PSO) based 

methodology is proposed and applied to the schedule of several 

energy resources, including demand response, distributed gen- 

eration, and the energy that can be bought to a set of suppliers, 

minimizing the operation costs from the point of view of a VPP 

that operates the network. The proposed method uses Gaussian 

mutation of the strategic parameters and self-parameterization 

of the maximum and minimum particle velocities, according to 

the context. 

The application of the proposed method has been illustrated 

with a case study based on a real 937 bus distribution network, 

with 20310 consumers and 548 distributed generators. The so- 

lutions obtained with the proposed method are compared with 

those obtained with a deterministic approach, the classic PSO, 

and the Evolutionary PSO (EPSO). The proposed PSO-MUT 

approach leads to the best average solution and presents execu- 

tion times only slightly higher than traditional PSO. 

 

REFERENCES 

[1]  D. Kirschen, “Demand-side view of electricity markets,” IEEE Trans. 
Power Syst., vol. 18, no. 2, pp. 520–527, May 2003. 

[2] C. Woo and L. Greening, “Special issue demand response resources: 

The US and international experience introduction,” Energy, vol. 35, 

pp. 1515–1517, Apr. 2010. 
[3] J. Bushnell, B. Hobbs, and F. Wolak, “When it comes to demand re- 

sponse, is FERC its own worst enemy?,” The Electricity J., vol. 22, no. 

8, pp. 9–18, Oct. 2009. 
[4] G. K. Venayagamoorthy, “Dynamic, stochastic, computational, and 

scalable technologies for smart grids,” IEEE Comput. Intell. Mag., 

vol. 6, no. 3, pp. 22–35, Aug. 2011. 

[5] H. He and A. Kusiak, “Special issue on computational intelligence in 
smart grid [Guest Editorial],” IEEE Comput. Intell. Mag., vol. 6, no. 3, 

pp. 12–64, Aug. 2011. 

[6] Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J. Hernandez, 
and R. Harley, “Particle swarm optimization: Basic concepts, variants 

and applications in power systems,” IEEE Trans. Evol. Comput., vol. 

12, no. 2, pp. 171–195, Apr. 2008. 
[7] M. R. AlRashidi and M. E. El-Hawary, “A survey of particle swarm op- 

timization applications in electric power systems,” IEEE Trans. Evol. 

Comput., vol. 13, pp. 913–918, Aug. 2009. 

[8] K. Y. Lee and M. A. El-Sharkawi, Modern Heuristic Optimization 

Techniques: Theory and Applications to Power Systems. Hoboken, 

NJ: IEEE Press/Wiley-Interscience, 2008. 

[9] Y. Yare, G. Venayagamoorthy, and U. Aliyu, “Optimal generator main- 

tenance scheduling using a modified discrete PSO,” in IET Proc. Gen- 

eration, Transmission and Distribution, Nov. 2008, vol. 2, no. 6, pp. 
834–846. 

[10] B. Luitel and G. K. Venayagamoorthy, “Particle swarm optimization 

with quantum infusion for system identification,” Engineering Appli- 

cations of Artificial Intelligence, vol. 23, no. 5, pp. 635–649, Aug. 

2010. 

[11] T. Pinto, Z. A. Vale, H. Morais, I. Praça, and C. Ramos, “Multi-agent 
based electricity market simulator with VPP: Conceptual and imple- 

mentation issues,” in Proc. IEEE Power & Energy Society General 

Meeting, 2009, Jul. 26–30, 2009, pp. 1–9. 

[12] P. Faria, Z. Vale, J. Soares, and J. Ferreira, “Demand response manage- 
ment in power systems using a particle swarm optimization approach,” 

IEEE Intell. Syst., 2011, DOI: 10.1109/MIS.2011.35. 

[13] P. Faria and Z. Vale, “Demand response in electrical energy supply: 
An optimal real time pricing approach,” Energy, vol. 36, no. 8, pp. 

5374–5384, Aug. 2011. 

[14] J. Medina, N. Muller, and I. Roytelman, “Demand response and dis- 

tribution grid operations: Opportunities and challenges,” IEEE Trans. 

Smart Grid, vol. 1, no. 2, pp. 193–198, Sep. 2010. 

[15] A. J. Conejo, J. M. Morales, and L. Baringo, “Real-time demand re- 

sponse model,” IEEE Trans. Smart Grid, vol. 1, no. 3, pp. 236–242, 
Dec. 2010. 

[16] Z. Vale, T. Pinto, H. Morais, I. Praca, and P. Faria, “VPP’s multi-level 

negotiation in smart grids and competitive electricity markets,” in Proc. 

IEEE Power and Energy Society General Meeting, Jul. 24–29, 2011, 

pp. 1–8. 

[17] T. Logenthiran, D. Srinivasan, A. M. Khambadkone, and H. N. Aung, 

“Multiagent system for real-time operation of a microgrid in real-time 
digital simulator,” IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 925–933, 

Jun. 2012. 

[18] M. Pedrasa, T. Spooner, and I. MacGill, “Coordinated scheduling of 
residential distributed energy resources to optimize smart home energy 

services,” IEEE Trans. Smart Grid, vol. 1, no. 2, pp. 134–143, Sep. 

2010. 
[19] A. Saber and G. Venayagamoorthy, “Efficient utilization of renewable 

energy sources by gridable vehicles in cyber-physical energy systems,” 

IEEE Syst. J., vol. 4, no. 3, pp. 285–294, Sep. 2010. 

[20] M. Hopkins, A. Pahwa, and T. Easton, “Intelligent dispatch for dis- 
tributed renewable resources,” IEEE Trans. Smart Grid, vol. 3, no. 2, 

pp. 1047–1054, Jun. 2012. 

[21] P. Faria, Z. Vale, J. Soares, and J. Ferreira, “Particle swarm optimiza- 
tion applied to integrated demand response resources scheduling,” in 

Proc. IEEE Symp. Computational Intelligence Applications in Smart 

Grid (CIASG), Apr. 11–15, 2011, pp. 1–8. 

[22] D. Thukaram, H. M. W. Banda, and J. Jerome, “A robust three phase 

power flow algorithm for radial distribution systems,” Electrical Power 

Syst. Res., vol. 50, pp. 227–236, 1999. 
[23] GAMS—The Solver Manuals. GAMS Development Corp., Wash- 

ington, DC, 2007. 

[24] S. Gonçalves, H. Morais, T. Sousa, and Z. Vale, “Energy resource 
scheduling in a real distribution network managed by several virtual 

power players,” presented at the 2012 IEEE Power and Energy Society 

Transmission and Distribution Conf., Orlando, FL, 2012. 

[25] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc. 

IEEE Int. Conf. Neural Networks, Dec. 1995, vol. 4, pp. 1942–1948. 



 

 

 
[26] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From 

Natural to Artificial Systems. Oxford, U.K.: Oxford Univ. Press, 

1999. 

[27] A. Engelbrecht, Computational Intelligence: An Introduction. New 

York: Wiley, 2007. 

[28] V. Miranda, “Evolutionary algorithms with particle swarm move- 
ments,” in Proc. 13th Int. Conf. Intelligent Systems Application to 

Power Systems, Nov. 6–10, 2005, pp. 6–21. 

 

 

 




